Skip to main content
Log in

Hydrogen water alleviates obliterative airway disease in mice

  • Original Article
  • Published:
General Thoracic and Cardiovascular Surgery Aims and scope Submit manuscript

Abstract

Objective

Bronchiolitis obliterans syndrome arising from chronic airway inflammation is a leading cause of death following lung transplantation. Several studies have suggested that inhaled hydrogen can protect lung grafts from ischemia–reperfusion injury via anti-inflammatory and -oxidative mechanisms. We investigated whether molecular hydrogen-saturated water can preserve lung allograft function in a heterotopic tracheal allograft mouse model of obliterative airway disease

Methods

Obliterative airway disease was induced by heterotopically transplanting tracheal allografts from BALB/c donor mice into C57BL/6 recipient mice, which were subsequently administered hydrogen water (10 ppm) or tap water (control group) (n = 6 each) daily without any immunosuppressive treatment. Histological and immunohistochemical analyses were performed on days 7, 14, and 21.

Results

Hydrogen water decreased airway occlusion on day 14. No significant histological differences were observed on days 7 or 21. The cluster of differentiation 4/cluster of differentiation 3 ratio in tracheal allografts on day 14 was higher in the hydrogen water group than in control mice. Enzyme-linked immunosorbent assay performed on day 7 revealed that hydrogen water reduced the level of the pro-inflammatory cytokine interleukin-6 and increased that of forkhead box P3 transcription factor, suggesting an enhancement of regulatory T cell activity.

Conclusions

Hydrogen water suppressed the development of mid-term obliterative airway disease in a mouse tracheal allograft model via anti-oxidant and -inflammatory mechanisms and through the activation of Tregs. Thus, hydrogen water is a potential treatment strategy for BOS that can improve the outcome of lung transplant patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Meyer KC, Raghu G, Verleden GM, Corris PA, Aurora P, Wilson KC, et al. ISHLT/ATS/ERS BOS Task Force Committee; ISHLT/ATS/ERS BOS Task Force Committee. An international ISHLT/ATS/ERS clinical practice guideline: diagnosis and management of bronchiolitis obliterans syndrome. Eur Respir J. 2014;44:1479–503.

    Article  PubMed  Google Scholar 

  2. The International Society for Heart and Lung Transplantation. www.ishlt.org

  3. Christie JD, Edwards LB, Aurora P, Dobbels F, Kirk R, Rahmel AO, et al. The registry of the International Society for Heart and LungTransplantation: twenty-sixth official adult lung and heart–lung transplantation report—2009. J Heart Lung Transplant. 2009;28:1031–49.

    Article  PubMed  Google Scholar 

  4. Estenne M. Hertz MI: bronchiolitis obliterans after human lung transplantation. Am J Respir Crit Care Med. 2002;166:440–4.

    Article  PubMed  Google Scholar 

  5. Tanaka Y, Shigemura N, Kawamura T, Noda K, Isse K, Stolz DB, et al. Profiling molecular changes induced by hydrogen treatment of lung allografts prior to procurement. Biochem Biophys Res Commun. 2012;425:873–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang G, Li Z, Meng C, Kang J, Zhang M, Ma L, et al. The anti-inflammatory effect of hydrogen on lung transplantation model of pulmonary microvascular endothelial cells during cold storage period. Transplantation. 2018;102:1253–61.

    Article  CAS  PubMed  Google Scholar 

  7. Kawamura T, Huang CS, Tochigi N, Lee S, Shigemura N, Billiar TR, et al. Inhaled hydrogen gas therapy for prevention of lung transplant-induced ischemia/reperfusion injury in rats. Transplantation. 2010;90:1344–51.

    Article  CAS  PubMed  Google Scholar 

  8. Kawamura T, Wakabayashi N, Shigemura N, Huang CS, Masutani K, Tanaka Y, et al. Hydrogen gas reduces hyperoxic lung injury via the Nrf2 pathway in vivo. Am J Physiol Lung Cell Mol Physiol. 2013;304:L646–L656656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kawamura T, Huang CS, Peng X, Masutani K, Shigemura N, Billiar TR, et al. The effect of donor treatment with hydrogen on lung allograft function in rats. Surgery. 2011;150:240–9.

    Article  PubMed  Google Scholar 

  10. Liu R, Fang X, Meng C, Xing J, Liu J, Yang W, et al. Lung inflation with hydrogen during the cold ischemia phase decreases lung graft injury in rats. Exp Biol Med (Maywood). 2015;240:1214–22.

    Article  CAS  Google Scholar 

  11. Zhou H, Fu Z, Wei Y, Liu J, Cui X, Yang W, et al. Hydrogen inhalation decreases lung graft injury in brain-dead donor rats. J Heart Lung Transplant. 2013;32:251–8.

    Article  PubMed  Google Scholar 

  12. Haam S, Lee S, Paik HC, Park MS, Song JH, Lim BJ, et al. The effects of hydrogen gas inhalation during ex vivo lung perfusion on donor lungs obtained after cardiac death. Eur J Cardiothorac Surg. 2015;48:542–7.

    Article  PubMed  Google Scholar 

  13. Kurokawa R, Seo T, Sato B, Hirano S, Sato F. Convenient methods for ingestion of molecular hydrogen: drinking, injection, and inhalation. Med Gas Res. 2015;5:13.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hasegawa S, Ito M, Fukami M, Hashimoto M, Hirayama M, Ohno K. Molecular hydrogen alleviates motor deficits and muscle degeneration in mdx mice. Redox Rep. 2017;22:26–34.

    Article  CAS  PubMed  Google Scholar 

  15. Ito M, Hirayama M, Yamai K, Goto S, Ito M, Ichihara M, et al. Drinking hydrogen water and intermittent hydrogen gas exposure, but not lactulose or continuous hydrogen gas exposure, prevent 6-hydorxydopamine-induced Parkinson's disease in rats. Med Gas Res. 2012;2:15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ito M, Ibi T, Sahashi K, Ichihara M, Ito M, Ohno K. Open-label trial and randomized, double-blind, placebo-controlled, crossover trial of hydrogen-enriched water for mitochondrial and inflammatory myopathies. Med Gas Res. 2011;1:24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Itoh T, Fujita Y, Ito M, Masuda A, Ohno K, Ichihara M, et al. Molecular hydrogen suppresses FcepsilonRI-mediated signal transduction and prevents degranulation of mast cells. Biochem Biophys Res Commun. 2009;389:651–6.

    Article  CAS  PubMed  Google Scholar 

  18. Kishimoto Y, Kato T, Ito M, Azuma Y, Fukasawa Y, Ohno K, et al. Hydrogen ameliorates pulmonary hypertension in rats by anti-inflammatory and antioxidant effects. J Thorac Cardiovasc Surg. 2015;150(645–54):e3.

    Google Scholar 

  19. Mano Y, Kotani T, Ito M, Nagai T, Ichinohashi Y, Yamada K, et al. Maternal molecular hydrogen administration ameliorates rat fetal hippocampal damage caused by in utero ischemia-reperfusion. Free Radic Biol Med. 2014;69:324–30.

    Article  CAS  PubMed  Google Scholar 

  20. Muramatsu Y, Ito M, Oshima T, Kojima S, Ohno K. Hydrogen-rich water ameliorates bronchopulmonary dysplasia (BPD) in newborn rats. Pediatr Pulmonol. 2016;51:928–35.

    Article  PubMed  Google Scholar 

  21. Fu Y, Ito M, Fujita Y, Ito M, Ichihara M, Masuda A, et al. Molecular hydrogen is protective against 6-hydroxydopamine-induced nigrostriatal degeneration in a rat model of Parkinson's disease. Neurosci Lett. 2009;453:81–5.

    Article  CAS  PubMed  Google Scholar 

  22. Hele DJ, Yacoub MH, Belvisi MG. The heterotopic tracheal allograft as an animal model of obliterative bronchiolitis. Respir Res. 2001;2:169–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shenoy KV, Solomides C, Cordova F, Rogers TJ, Ciccolella D, Criner GJ. Low CD4/CD8 ratio in bronchus-associated lymphoid tissue is associated with lung allograft rejection. J Transplant. 2012;2012:928081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yamashita K, Ollinger R, McDaid J, Sakahama H, Wang H, Tyagi S, et al. Heme oxygenase-1 is essential for and promotes tolerance to transplanted organs. FASEB J. 2006;20:776–8.

    Article  CAS  PubMed  Google Scholar 

  25. Bach FH. Heme oxygenase-1 and transplantation tolerance. Hum Immunol. 2006;67:430–2.

    Article  CAS  PubMed  Google Scholar 

  26. Öllinger R, Pratschke J. Role of heme oxygenase-1 in transplantation. Transpl Int. 2010;23:1071–81.

    Article  PubMed  Google Scholar 

  27. Holweg CT, Balk AH, Snaathorst J, van den Engel S, Niesters HG, Maat AW, et al. Intragraft heme oxygenase-1 and coronary artery disease after heart transplantation. Transpl Immunol. 2004;13:265.

    Article  CAS  PubMed  Google Scholar 

  28. Bhorade SM, Chen H, Molinero L, Liao C, Garrity ER, Vigneswaran WT, et al. Decreased percentage of CD4+FoxP3+ cells in bronchoalveolar lavage from lung transplant recipients correlates with development of bronchiolitis obliterans syndrome. Transplantation. 2010;90:540–6.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nakagiri T, Warnecke G, Avsar M, Thissen S, Kruse B, Kühn C, et al. Lung function early after lung transplantation is correlated with the frequency of regulatory T cells. Surg Today. 2012;42:250–8.

    Article  PubMed  Google Scholar 

  30. Krustrup D, Iversen M, Martinussen T, Schultz HH, Andersen CB. The number of FoxP3+ cells in transbronchial lung allograft biopsies does not predict bronchiolitis obliterans syndrome within the first five years after transplantation. Clin Transplant. 2015;29:179–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We thank Dr. Koji Kawaguchi, Dr. Takayuki Fukui, Dr. Shota Nakamura, Dr. Shunsuke Mori, and Dr. Kohei Yokoi for all their help and guidance.

Funding

This work was supported by MiZ Co., Ltd. (Kamakura, Japan). S. Hirano and R. Kurokawa are board members of MiZ Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Ozeki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozeki, N., Yamawaki-Ogata, A., Narita, Y. et al. Hydrogen water alleviates obliterative airway disease in mice. Gen Thorac Cardiovasc Surg 68, 158–163 (2020). https://doi.org/10.1007/s11748-019-01195-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11748-019-01195-3

Keywords

Navigation