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Work is presented on the role of cAMP-dependent protein phosphorylation in post-translational processing
and biosynthesis of complex I subunits in mammalian cell cultures. PKA-mediated phosphorylation of the
NDUFS4 subunit of complex I promotes in cell cultures in vivo import/maturation in mitochondria of the
precursor of this protein. The import promotion appears to be associated with the observed cAMP-
dependent stimulation of the catalytic activity of complex I. These effects of PKA are counteracted by
activation of protein phosphatase(s). PKA and the transcription factor CREB play a critical role in the
biosynthesis of complex I subunits. CREB phosphorylation, by PKA and/or CaMKs, activates at nuclear and
mitochondrial level a transcriptional regulatory cascade which promotes the concerted expression of nuclear
and mitochondrial encoded subunits of complex I and other respiratory chain proteins.
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1. Introduction

Complex I (NADH–ubiquinone oxidoreductase E.C 1.6.5.3) is the
largest enzyme complex of the respiratory chain of high eukaryotes. In
mammals the complex has in addition to 14 essential subunits,
conserved from prokaryotes to humans, 31 supernumerary subunits
[1–5]. The functional role of the supernumerary subunits is not
completely understood. Some of these participate in the assembly of
the complex [6–9], and/or regulation of the functional activity by
cellular transduction signals [5,9–13]. The complex which appears to
function as a regulable pacemaker of mitochondrial oxidative
phosphorylation [9–12], contributes by 40% to the energy linked
proton translocation in the respiratory by a mechanism which is,
however, not yet well defined [1–3,5].

Inmammalian cells complex I is themajor site of oxygen free radical
production [10,14–21], it plays a critical role in cell growth, death,
degeneration [22], and transformation [23,24]. Seven subunits of
mammalian complex I are encoded by mitochondrial DNA, the other
38 by nuclear genes located in different chromosomes [1–3,5]. Complex
I genes have been found to be hotspots for pathological mutations in
humans and some of the subunits are particularly vulnerable to
environmental stressors [22,25–31]. Much remains to be known on
(i) how the expression of the nuclear and mitochondrial genes is
regulated in a coordinated way [32–37]; (ii) the mechanism by which
the subunits synthesized in the cytosol are imported in mitochondria
and assembled in a 1 to 1 stoicheiometry ratiowith those synthesized in
themitochondrial matrix [7,38]; (iii) how the biogenesis and functional
capacity of the complex is regulated indifferent tissue-cells and adapted
to the continuously changing energy demand of mammalian organs;
(iv) how the activity of the complex is affected by subunit post-
translational modifications like phosphorylation [9,39–43], acylation,
oxidation-reduction [20,21] and proteolytic processing [44].

In this paper work on the role of the cAMP cascade and cAMP-
dependent protein kinase in the regulation of the expression and
functional capacity of complex I in human cell is presented.
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Table 1A
cAMP-dependent protein kinase promotes the activity of complex I and lowers ROS level in mammalian cell cultures.

Cell lines Depressed activity of complex I
in serum-starved cell cultures

Promotion by cAMP of
complex I activity

High level of ROS
in cell cultures

cAMP induced
decrease of ROS level

Ref

Balb/c 3T3 mouse fibroblasts + + (cholera toxin activation of G-protein) + (serum-starved cells) + [45]
C2C12 mouse myoblasts Not tested + (cholera toxin) Not tested Not tested [47]
Skin human fibroblasts + + (cholera toxin) Not tested Not tested [46]
NHDF neonatal human dermal fibroblasts + + (dibutyryl-cAMP, isoprotenerol) + (serum-starved cells) + [48]
Hela cells + + (dibutyryl-cAMP) + (serum-starved cells) + [48]
Skin fibroblasts with NDUFS1
pathological mutations

Not tested + (dibutyryl-cAMP) + + [29]

Retroviral-vector transfected human
bone marrow mesenchimal cells

Not tested +(dibutyryl-cAMP) + + [49]

650 S. Papa et al. / Biochimica et Biophysica Acta 1797 (2010) 649–658
2. Post-translational regulation by PKA of the functional capacity
of complex I

Various conditions have been found inwhich the functional capacity
of complex I in human and mouse replicating cells is markedly
depressed, as compared to other respiratory chain complexes, the
decrease being counteracted by activation of the cAMP cascade or direct
addition to cells of a permeant derivative of cAMP. These conditions,
summarized in Table 1A, encompass withdrawal of cell growth factors
introduced by serum starvation of human cell cultures [45–48], homo-
zygousmutation in complex INDUFS1 gene (75 kDa subunit) associated
with neurological disease [29], retroviral-vector transfected bone-
narrow-derived mesenchymal cells [49]. The depression of the
NADH–ubiquinone oxidoreductase activity of complex I, was associated
with remarkable enhancement of the cellular level of oxygen reactive
species, which was also reversed by cAMP [29,45,48,49]. The rescue
effects exertedby cAMPwas found to be associatedwithPKAdependent
phosphorylation of thenuclear encodedNDUFS4 (18 kd, AQDQ) subunit
of complex I (Table 1B) [9,45,46]. The phosphorylation state of the
NDUFS4 protein can be contributed, on its way from the cytosol to
mitochondria, by the balance of the activities of PKA and protein
phosphatase(s) (PP2A, PP2C, etc.), both present in the cytosol [50,51]
and mitochondria [52,53].

The protein encoded by the human NDUFS4 gene and the
corresponding genes in mammals and birds has a highly conserved
C-terminus inwhich a canonical RVSTKphosphorylation site in the last
residues, with the highest phosphorylation score for PKA, is present
(http://www.cbs.dtu.dk/services/NetPhosK/). The impact on mito-
chondrial functions of pathological mutations in the coding sequence
of the NDUFS4 gene has been characterized: a base duplication at
position 466–470 in exon 5, which destroyed the RVSTK phosphor-
ylation site in the carboxy terminus [54], a single base deletion at
position 289/290 in exon 3, introducing a premature termination
codon (PTC) [55] and a nonsense mutation in the first exon causing
Table 1B
Experimental evidence showing PKA-mediated serine phosphorylation in the RVS site of th

Biological material Experimental observation

Balb/c 3T3 mouse fibroblasts, C2C12 mouse myoblasts Permanent activation of G
phosphorylation of 18 kDa

Blue native human isolated complex I from normal and
patient's fibroblasts with NDUFS4 mutations

Cholera thoxin promotes i
Phosphorylation of this pr
mutations of the NDUFS4
by specific antibodies raise
the protein

Purified bovine heart complex I Two dimensional IEF/SDS
with the specific antibody

Note: Unpublished observations from the author's laboratory based on 32P labelling and TLC
carboxy terminus of purified human NDUFS4 protein obtained by expression in E. coli of a
premature termination of the protein [56]. Not only in this last
mutation, as expected, but also in the other two the entire 18 kDa
(AQDAQ) subunit disappeared from the patient'sfibroblasts [6]. All the
three NDUFS4 mutations resulted in defective assembly of complex I,
with the appearance of a non-functional lower molecular weight
subcomplex [6] and complete suppression of the NADH ubiquinone
oxidoreductase activity which did not respond any longer to cAMP
activation [6]. In amousemodel NDUFS4 pointmutation, resulting in a
PTC truncating the last 10–15 aminoacids of the protein including the
RVSTK phosphorylation site, was recently found to be lethal in the
homozygous state and to result, in the heterozygous state, in amarked
depression of Complex I activity in heart mitochondria [57].

The results presented in Fig. 1 show that serum starvation of
fibroblast cultures, has no effect on the level of cAMP, but it results in
marked promotion of protein phosphatase activity (PP2A type?) (see
also [58,59]). The depression of the functional activity of complex I is
rescued in 30 min by activation of cAMPproduction, elicited by addition
of the β-adrenergic agonist isoprotenerol (Fig. 1), similarly to what was
observeduponpermanent activation of theGprotein by cholera toxin or
direct addition of dibutyryl-cAMP (see Table 1A). Inhibition of the
phosphatase activity by okadaic acid is equally effective, in the same
time span, in reversing the depression of the activity of complex I. The
functional capacity of complex I thus depends on a dynamic balance
between protein phosphorylation by PKA and dephosphorylation by
protein phosphatase(s).

Addition of all trans retinoic acid (ATRA) to exponentially growing
NHEK (normal human epidermal keratinocyte) culture arrests cell
growth ([60], see also [61]). The arrest of cell growth is associated
with enhanced phosphatase activity (Fig. 2 see [62,63]). The ATRA
treatment results, like in the case of serum deprivation, in specific
inhibition of complex I activity which is, also in this case, reversed by
phosphatase inhibition with okadaic acid or activation of PKA by
dibutyryl-cAMP (Fig. 2). It can be mentioned here that among many
proteins whose expression is enhanced by ATRA, there is the GRIM-
e conserved C-terminus of the NDUFS4, 18 kDa subunit of complex I.

s Ref

protein by cholera toxin promotes immunodetected serine
subunit(s) of complex I

[45,47]

mmunodetected serine phosphorylation of 18 kDa subunit.
otein band is missing in patient's fibroblasts with pathological
gene resulting in disappereance of the protein product detected
d against the N-terminus and phosphorylated C-terminus of

[6,22,46]

-PAGE separation, 32P-labelling by [γ-32P]ATP and immunodetection
show PKA-mediated phosphorylation of the NDUFS4 isoform

[9]

phosphoamino acid mapping show that “in vitro” PKA phosphorylates serine 173 in the
recombinant construct of the entire human NDUFS4 cDNA.

http://www.cbs.dtu.dk/services/NetPhosK/


Fig. 1. Level of cAMP and activities of phosphatase (PP2A type), NADH–ubiquinone oxidoreductase and cytochrome c oxidase in serum-starved fibroblasts. Effect of the β-
receptor agonist isoprotenerol. NHDFn (normal human dermal fibroblast-neonatal) cells grown in the exponential phase in DMEM at 37 °C, 5% CO2 air mixture in the presence
of 10% fetal bovine serum (CTRL) were subjected to 48 h serum limitation (0.5% FBS) (SL). Serum-starved cells were then treated for 35 min with 1 μM isoprotenerol (SL+ISO)
or for 2 h with 0.1 μM Okadaic acid (SL+OK). For cAMP assay the culture medium was aspirated and 1 ml 0.1 M HCl was added to the cell layer followed by 10 min incubation
at 37 °C. The lysed cells were scraped into an Eppendorf tube. The samples were centrifuged and the supernatants used to determine cAMP concentration by a direct
immunoassay kit (Assay Designs). Total protein concentration was determined by a Bio Rad protein assay. Protein phosphatase (PP2A type?) activity was assayed
photometrically using a Ser/Thr phosphatase assay kit (Upstate Biotechnology). NADH–ubiquinone oxidoreductase and cytochrome c oxidase activities were determined as
described in [6] in the mitoplast fraction of the cells. The histogram shows the means (expressed as percentage of control) of three different experiments±S.E.M. For other
experimental details see [6].
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19, retinoid-interferon induced mortality factor [64,65]. GRIM-19 was
initially detected in the nucleus [66–68], but subsequently found to
represent a bona fide constituent of complex I (subunit B16.6) [69].
GRIM-19 is essential for the assembly of the complex [70] and is found
to be phosphorylated in vivo [43].

The finding that pathological mutations in the NDUFS4 coding
sequence result in defective assembly of complex I [22] as well as the
observation that cAMP fails to reproduce in isolatedmitochondria [71]
the effect exerted on complex I activity and ROS balance in cell
Fig. 2. Activation by ATRA of phosphatase activity and inhibition of complex I activity in NHEK
Where indicated NHEK cultures were grown 72 h in the presence of 20 µM ATRA at the co
described in the legend to Fig. 1. The activity of complex I, complex IV and citrate synthase w
bars, cells after ATRA treatment were exposed for 1h to 100 nM okadaic acid; dashed bars
experimental details see [6].
cultures “in vivo” [45–48] led to the discovery that cAMP-dependent
phosphorylation of the NDUFS4 subunit of the complex promotes the
import in mitochondria of this nuclear encoded protein [72]. It can be
recalled that work from other laboratories has provided evidence
showing that PKA promotes the import in mitochondria of proteins
like cytochrome P4502B1 [73], CY2E1 [74] and glutathione S-
transferase (GSTA4-4) [75].

The NDUFS4 subunit of complex I, like the NDUFB11 (ESSS) subunit,
has a canonical positively charged leader sequence (Fig. 3) characteristic
cell cultures. Recovery of complex I inhibition by okadaic acid or dibutyryl-cyclic-AMP.
nditions described in the legend to Fig. 10. The Phosphatase activity was measured as
as determined as in [6]. Open bars, controls; gray bars, cells treated with ATRA; squared
, cells after ATRA treatment were exposed for 1 h to 100 µM dibutyryl-cyclic-AMP. For



Fig. 3. Binding to the surface of rat liver mitochondria of the full-length precursor of the NDUFS4 subunit of complex I and its import/maturation in the inner mitochondrial
compartment. At the top the human NDUFS4 and ESSS sequences are presented. The presequences are underlined and consensus phosphorylation sequences for cAMP-
dependent protein kinase are shown in bold characters with asterisks under the phosphorylable serines (EMBL Data Bank). Full-length human NDUFS4 wild type or mutated
Ser173Ala NDUFS4 (panel A) or full-length human ESSS (panel B) were synthesized in the RRL system in the presence of [35S] methionine and then added to a mitochondrial
import mixture containing rat liver mitochondria and an ATP energy supplying system as described in [72]. After 35 min incubation at 30 °C mitochondria were spun down
from the import mixture before or after trypsin treatment (1 μg per 50 μg mitochondrial proteins, 35 min on ice) and analyzed by SDS-PAGE and autoradiography. Panel A,
histograms of the densitometric analysis of radioactive spots expressed as % of the control (CTRL), of the trypsin sensitive bound precursor (empty squares) and the trypsin
resistant mature form (filled squares) of the NDUFS4 wild type (CTRL) and serine/alanine 173 mutated form (S173A) after in vitro mitochondrial import in the absence and in
the presence of cPKA, alkaline phosphatase (AP), cPKA plus valinomycin, cPKA plus valinomycin and oligomycin. Panel B, histograms of the densitometric analysis, of
radioactive spots expressed as % of the control (CTRL), of the trypsin sensitive bound precursor (empty squares) and the trypsin resistant mature form (filled squares) of the
ESSS protein (CTRL) after in vitro mitochondrial import in the absence and in the presence of cPKA, AP and valinomycin. Data reproduced with permission from [72]. For
experimental details see [72] and text.
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of the Δψ and ATP dependent TOM/TIM mitochondrial import system
[76]. The results presented in Fig. 3A show that the Δψ dependent
import and maturation in isolated mitochondria of [35S] methionine-
labelled precursor protein, produced “in vitro” by expression in the
reticulocyte lysate system of the full-length NDUFS4 cDNA, is promoted
when phosphorylated by added PKA and inhibited by phosphatase. The
import/maturation in isolated mitochondria of the NDUFS4 protein,
which is completed within 60 min, is completely suppressed by site
specific substitution of serine 173 with alanine in the C-terminal RVS
phosphorylation site. The Δψ dependent mitochondrial import/matu-
ration of theNDUFB11protein is, on the contrary, unaffectedbyPKAand
phosphatase (Fig. 3).

In similar experiments Lazarou et al. [38,77] showed that in vitro-
synthesized NDUFS4 protein is within 60 min incorporated in the
mature complex I in human fibroblastmitochondria. This is practically
the same time span in which in cell cultures cAMP stimulates the
activity of complex I and lowers ROS level (Table 1A) [6,45–48].

In “vivo”observations inHela cells transfectedwith a construct of the
wild NDUFS4 cDNA showed that the precursor form of the over-
expressed protein is detectable in the cytosolic fraction, whilst in the
mitochondrial fraction only themature NDUFS4 protein is present [72].
Treatment of transfected HeLa cells with H89, prevents the accumula-
tion in mitochondria of the mature NDUFS4 protein. When HeLa cells
are transfected with a construct of the NDUFS4 cDNA with S173A
substitution, the precursor form of the NDUFS4 protein accumulates in
the cytosol, but no mature NDUFS4 protein, in addition to the en-
dogenous content, appears in mitochondria [72].

The results presented in Fig. 4 show that the stimulation by
isoprotenerol of the activity of complex I in serum-starved human
fibroblast cultures is completely abolished by CCCP or by valinomycin,
which a collapsing mitochondrial Δψ, suppresses import/maturation
in mitochondria of newly synthesized NDUFS4 protein (see Fig. 3).
These observations, taken together, indicate that the activity of
complex I depends on a continuous exchange of pre-existing, possibly
damaged, NDUFS4 subunit in the complexwith the newly synthesized
protein [see also 77]. The stimulation of NADH–ubiquinone oxidore-
ductase activity, effected in a time span of 60 min by cAMP, is likely to
be associated with stimulation of import/maturation of the precursor
of the NDUFS4 protein, phosphorylated by PKA, and its maturation
and functional association in complex I. The present observations are
consistent with the mechanism of complex I biogenesis, pointed out
by studies of Lazarou et al. [77], involving two complementary pro-
cesses: synthesis of mtDNA-encoded subunits to seed de novo
assembly and exchange of pre-existing subunits with newly imported
ones to maintain complex I homeostasis. These authors propose that
subunit exchange may act as an efficient mechanism to prevent the
accumulation of oxidatively damaged subunits that would otherwise
be detrimental to mitochondrial oxidative phosphorylation.

3. Expression of complex I subunits. The role of phosphoCREB

Lack of growth factors, effected by serum deprivation of replicating
mammalian cells in the exponential growth phase, results in arrest of
cell growth, with cells going to rest in the G0 phase. G0 cells re-enter,
upon serum addition, in the G1 protein synthetic phase of the cycle
[78,79]. The arrest of cell growth effected by serum starvation and its
restoration by serum is a complex phenomenon involving down and
up regulation, respectively, of complex events in the down-stream
signal transduction networks recruited in the cellular response to
growth factors [79,80].



Fig. 4. CCCP and valinomycin prevent the stimulatory effect exerted by the β-receptor
agonist isoprotenerol on complex I activity in serum-starved fibroblast culture. NHDFn
cells grown in the exponential phase inDMEM in the presence of 10% fetal bovine serum,
FBS, (CTRL)were subjected to 48 h serum limitation (0.5% FBS) (SL). Serum-starved cells
were then treated for 35 minwith 1 μM isoprotenerol in the absence (SL+ISO) or in the
presence of the 2 μM CCCP (SL+ISO+CCCP), or of 5 μM valinomycin (SL+ISO+val).
After treatment cells were harvested and themitoplast fraction prepared as described in
[6]. Complex I and complex IV activities represent the means±S.E.M. of three or more
determinations in themitoplast fraction of the cells. Experimental details as in Fig. 1 and
[6].
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Fig. 5 shows the growth arrest of exponentially growing NHDFn
human fibroblasts caused by serum starvation and their subsequent
re-entry in the cell cycle upon serum addition. The cell-growth
Fig. 5. Arrest of human fibroblast growth by serum starvation, serum induced fibroblast
growth and prevention of the effect by H89. Growth curves of NHDFn fibroblasts was
followed by inoculating 100,000 cells/well in 100 mm petri dishes and daily cell
counting for 7 days. Cell growth in standard culture conditions supplemented with 10%
FBS (circles), under 72 h serum limitation with 0.5% FBS (squares), followed, where
indicated, by the addition of 10% FBS in the absence (squares) or in the presence of 5 µM
H89 (triangles).
promoting effect of the serum is completely prevented if added
together with H89, a permeant inhibitor of PKA.

Fig. 6 shows that serum addition to serum-starvedfibroblasts, after a
lag some hours, starts to promote the NADH–ubiquinone oxidoreduc-
tase activity of complex I,markedly depressed in the serum-starved cell,
reaching a maximum effect at 24 h treatment, after which a decline
ensues. Serum starvation/supplementation has practically no effect on
complex IV activity. Serum promotion of the functional capacity of
complex I, which ismuch delayedwith respect to the post-translational
cAMP/PKA stimulation of the catalytic activity of complex I, is evidently
associatedwith stimulation of protein biosynthesis,which characterizes
the G1 phase of the cell cycle, in which fibroblasts are re-introduced
from the G0 phase by serum supplementation. Still the serum
promoting effect on the functional capacity of complex I is completely
suppressed, like the promotion of cell growth, by the PKA inhibitor H89
(Fig. 6). Protein phosphorylation by PKA, in addition to direct post-
translational effect on the activity of complex I, appears thus to be
involved also in its biosynthetic expression. Evidence of this is provided
by the results presented in Fig. 7 which show that serum addition to
serum-starved fibroblasts induces an increase in the cellular level of the
nuclear encoded GRIM 19 and 39 kDa (NDUFA9) subunits of complex I,
reaching a maximum at 24 h. This effect also is prevented by H89.

A role of PKA-mediated protein phosphorylation in the expression
of subunits of complex I might involve a cascade of transcription (co)
activators [81–83]. This starts with the cAMP-response element
binding protein CREB (cyclic-AMP response element binding protein)
whose activity depends, in fact, on phosphorylation by PKA. CREB
belongs to the CREB/ATF1 family of cAMP/Ca2+ responsive tran-
scription factors [84,85]. The transcriptional activity of CREB is
induced through serine phosphorylation in its conserved kinase
inducible domain (KID) by PKA [86], Ca2+/calmodulin protein kinases
(CaMKs) [83] and other kinases [85,87,88]. The phosphorylation
dependent activation of CREB involves its interaction with basal
transcription factors, adaptor(s), constitutive and inducible coactiva-
tors, the TATA box and POL II in gene promoters [85,88,89]. The CREB
transcriptional complex controls the expression of the transcriptional
coactivator PPARγ coactivator 1α (PGC-1α) [90] (Fig. 10). Induced
expression of PGC-1α, a member of the PGC-1 family of coactivators,
activates in turn a transcriptional regulatory cascade which amplifies
the impact of CREB mediated signal transduction on mitochondrial
biogenesis [91]. This involves in a down-stream sequence NRF1, NRF2
and the mitochondrial transcriptor factor TFAM (see Fig. 10). TFAM
controls the transcription of both the heavy and light mtDNA strands
interacting on the D-loopwith additional transcription factors and the
mitochondrial RNA polymerase [82,92,93].

A second process has more recently been discovered which
contributes to coordinate the expression of nuclear and mitochondrial
genes. This consists in the translocation of CREB from the cytoplasm into
mitochondria where it binds to the mtDNA D-loop and activates the
biosynthesis of mitochondrial encoded subunits [94–97]. Findings have
beenpresented [94] showing that in addition to thenucleus, CREB is also
localized in the innermitochondrial compartment of rat brain. The CREB
protein, extracted from synaptic mitochondria, was shown to be
phosphorylated by PKA [94]. Lee et al. [95] showed that, in neuronal
cell cultures CREB protein binds to the mtDNA D-loop. In these cells the
stable overexpression of mito-tagged CREB increased the transcript
level of ND2, ND4, and ND5 mitochondrial genes of complex I.
Disruption of CREB activity in mitochondria, by overexpression of
dominant negative mito-tagged CREB, decreased the expression of
mitochondrial genes, down-regulated complex I-dependent mitochon-
drial respiration and increased susceptibility to the plant toxin, 3-
nitropropionic acid (3-NP), an inductor of Huntington disease in an
experimentalmodel [95]. Ryu et al. [96] found also that activation by the
antioxidant iron chelator deferoxamine of the PKA localized in the
mitochondrial matrix [53], promoted CREB binding to the mtDNA D-
loop.



Fig. 6. Promotion by serum supplementation of the activity of complex I and prevention of the effect by H89, in fibroblast culture. NADH–ubiquinone oxidoreductase and
cytochrome c oxidase activities in mitoplasts from NHDFn fibroblasts grown in standard medium, with 10% FBS (Ctrl), after 72 h serum limitation, 0.5% FBS (Starv), (points on
the ordinate) followed by serum induction, (addition of 10% FBS) in the absence (circles), or in the presence of 5 µM H89 (squares). Experimental details as the legend of Fig. 1
and [6].
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Results from work in the author's laboratory (Fig. 8), show that
[35S] methionine-labelled CREB, produced “in vitro” by expression in
the reticulocyte lysate system of the full-length CREB cDNA, enters
into the inner compartment of isolated rat liver mitochondria by a Δψ
and Tom-20 dependent import process [97]. The imported CREB does
not undergo N-terminal processing as has also been observed for
other nuclear encoded mitochondrial matrix-targeted proteins
[74,98]. The imported CREB promotes the synthesis of subunits of
respiratory chain complexes (in particular those of complex I), this
effect being strongly potentiated when CREB is added together with
cAMP or the catalytic subunit of PKA (Fig. 9). It can be noted that
cAMP has per se some stimulatory effect. The promoting effect of
CREB and cAMP or cPKA is completely abolished by the PKA inhibitor,
H89.

Thus CREB, imported into mitochondria promotes, when phosphor-
ylated by cAMP-dependent protein kinase, the synthesis of mitochond-
rially encoded subunits of OXPHOS complexes, in particular of complex
I. CREB in the inner mitochondrial compartment can also be phosphor-
ylated by the PKA present in the same compartment [53], where it can
Fig. 7. Effect of serum supplementation on the level of the 39 kDa and GRIM-19
subunits of complex I and prevention of the effect by H89 in fibroblast culture. The level
of the 39 kDa (triangles) and GRIM 19 (circles) complex I subunits normalized vs beta-
actin level was immunodetermined with specific antibodies in the total cell lysate of
NHDFn fibroblasts grown in standard medium, with 10% FBS (Ctrl), 72 h after serum
limitation, 0.5% FBS (Starv), (points on the ordinate) and in 48 h after 10% FBS addition
in the absence (empty symbols) and in the presence of 5 µM H89 (filled symbols).
Experimental details as in [6].
be activated by cAMP generated by a carbondioxide/bicarbonate
regulated soluble adenylyl cyclase present inside the mitochondria
[99–101].

4. Conclusions

In fibroblast cultures increase of the cAMP concentration, induced
by the β-adrenergic agonist isoprotenerol, promotes, within an hour,
the catalytic activity of complex I and lowers the ROS level. PKA
dependent phosphorylation of the NDUFS4 subunit of complex I (see
Table 1B) promotes in the same time span import/maturation in
mitochondria of the precursor of this protein, an effect which appears
to be associated with the stimulation of the catalytic activity of the
Fig. 8. Import in rat liver mitochondria of the [35S] methionine-labelled human CREB
protein. [35S] methionine-labelled CREB was synthesized in the RRL translation system
and added to the import mixture containing isolated rat liver mitochondria and an ATP
energy supplying system. After 60 min incubation at 30 °C mitochondria were spun
down and analyzed by SDS/PAGE and autoradiography. Where indicated mitochondria
were treated, before pelletting, with trypsin (1 μg per 50 μg mitochondrial proteins) in
the absence or in the presence of 0.2% Triton X-100 for 35 min at 0 °C. Panel A, import
incubation for 60 min, in the absence or in the presence of valinomycin (0.1 μg per mg
mitochondrial proteins) as specified in the figure. Panel B, mitochondrial import in the
absence or in the presence of 3 μg of the antibody against Tom70 or against Tom20 as
specified in the figure. The SDS-PAGE slabs were also blotted with an antibody against
the 39 kDa subunit of complex I. Reproduced with permission from [97]. For
experimental details see [97] and text.



Fig. 9. Effect of in vitro-synthesized CREB, cAMP, cPKA and H89 on the synthesis of mtDNA-encoded subunits of respiratory chain and ATP synthase in the rat liver mitochondria.
Mitochondrial protein synthesis was performed in a mixture containing rat liver mitochondria, aminoacid mixture with [35S] methionine, cycloheximide plus the addition of the RRL
translation mixture with or without cold synthesized CREB, for 60 min at 30 °C. After incubation mitochondria were spun down and subjected to SDS/PAGE and autoradiography.
Panel A, mitochondrial protein synthesis was performed in the presence of the RRL translated mixture without the cold synthesized CREB (lanes 1–4), or in the presence of the RRL
mixture with the cold synthesized CREB (lanes 5–9). Lane 1: control. Lane 2: 50 μM cAMP plus 50 μM IBMX. Lane 3: 50 μM db-cAMP plus IBMX. Lane 4: cPKA (1 U per 10 lg of
mitochondrial protein). Lane 5: no addition. Lane 6: cAMP plus IBMX. Lane 7: db-cAMP plus IBMX. Lane 8: cPKA. Lane 9: chloramphenicol (CAP) (3 mg/ml). Histograms showing the
mean ADU (as percentage of control) of the whole gel lane radioactivity of the [35S] methionine-labelled mitochondrial proteins. Mean values of three separate experiments. Panel B,
the RRL mixture with cold synthesized CREB was present in all the lanes, including the control, where indicated H89 (100 nM) was present during the mitochondrial protein
synthesis incubation. Histograms showing the mean ADU (as percentage of control) of the whole gel lane radioactivity of the [35S] methionine-labelled mitochondrial proteins.
Reproduced with permission from [97]. For experimental details see [97] and text.
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complex. These effects of PKA are counteracted by promotion of
protein phosphatase activity.

In addition to short-termpost-translationalmodulation of complex I
catalytic activity, PKA plays a longer-term role in the biosynthesis of
complex I subunits. Serum starvation causes arrest of fibroblast growth
(in the G0 phase), growth being restored by serum supplementation
which reintroduces cells in the protein biosynthetic G1 phase of the
cycle. The functional capacity and the subunit level of complex I
markedly decrease in serum starvation and increases upon serum
supplementation. Both serum promotion of fibroblast growth and
restoration of the level and activity of complex I are completely
suppressed by the PKA inhibitor H89. In addition to PKA a role in the
promotion of biosynthesis of complex I subunits is played by the
transcription factor CREB, whose activity depends on phosphorylation
byPKA. PhosphorylationbyPKAand/orCaMKsofCREBandTORC family
members (transducer of regulated CRE-binding proteins) induces
transcription of PGC-1α a master gene regulator of mitochondrial
biogenesis (Fig. 10). PGC-1α activates a transcriptional regulatory
cascade, involving in a down-stream sequence NRF1, NRF2 and TFAM.
Promotion by phosphoCREB of this regulatory cascade activates at
nuclear andmitochondrial level the concerted expressionofnuclear and
mitochondrial encoded subunits of complex I and other respiratory
chain proteins. In this way the cAMP cascade can modulate adaptive
plasticity of mitochondrial oxidative phosphorylation system in
mammalian cells.
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