Skip to main content
Log in

In silico studies of interactions of peptide-conjugated cholesterol metabolites and betulinic acid with EGFR, LDR, and N-terminal fragment of CCKA receptors

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this work, we designed three new ligands by conjugating cholesterol metabolites 3-hydroxy-5-cholestenoic acid (3-HC) and 3-oxo-4-cholestenoic acid (3-OC) and the natural tri-terpenoid betulinic acid with the tumor-targeting peptide YHWYGYTPQNVI. Molecular interactions with the unconjugated peptide and the conjugates were examined with three receptors that are commonly overexpressed in pancreatic adenocarcinoma cells using ligand docking and molecular dynamics. This study demonstrated the utility of the designed conjugates as a valuable scaffold for potentially targeting EGFR and LDLR receptors. Our results indicate that the conjugates showed strong binding affinities and formation of stable complexes with EGFR, while the unconjugated peptide, BT-peptide conjugate, an 3-HC-peptide conjugate showed the formation of fairly stable complexes with LDLR receptor. For EGFR, two receptor kinase domains were explored. Interactions with the N-terminal domain of CCKA-R were relatively weaker. For LDLR, binding occurred in the beta-propeller region. For the N-terminal fragment of CCKA-R, the conjugates induced significant conformational changes in the receptor. The molecular dynamic simulations for 100 ns demonstrate that BT-peptide conjugates and the unconjugated peptide had the highest binding and formed the most stable complexes with EGFR. RMSD and trajectory analyses indicate that these molecules transit to a dynamically stable configuration in most cases within 60 ns. NMA analysis indicated that amongst the conjugates that showed relatively higher interactions with the respective receptors, the highest potential for deformability was seen for the N-terminal-47 amino acid region of the CCKA-R receptor with and the lowest for the LDLR-receptor. Thus, the newly designed compounds may be evaluated in the future toward developing drug delivery materials for targeting tumor cells overexpressing LDLR or EGFR.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Associated data are included in the supplementary information. The manuscript will be shared on the faculty website and research square.

Code availability

None.

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) CA Cancer J Clin 71:7–33

    PubMed  Google Scholar 

  2. Hellmann MD, Li BT, Chaft JE, Kris MG (2016) Ann Onc 27:1829–1835

    CAS  Google Scholar 

  3. Ventola CL (2017) Pharm Therapeutics 42:514–521

    Google Scholar 

  4. Mirjolet C, Papa AL, Créhange G, Raguin O, Seignez C, Paul C, Truc G, Maingon P, Millot N (2013) Radiother Oncol 108:136–142

    CAS  PubMed  Google Scholar 

  5. Akhtar MJ, Ahamed M, Alhadlaq HA, Alrokayan SA, Kumar S (2014) Clin Chim Acta 436:78–92

    CAS  PubMed  Google Scholar 

  6. Accardo A, Mansi R, Morisco A, Mangiapia G, Paduana L, Tesauro D, Radulescu A, Aurilio M, Aloj L, Arra C, Morelli G (2010) Mol Biosyst 6:878–887

    CAS  PubMed  Google Scholar 

  7. Wang J, Liu W, Tu Q, Wang J, Song N, Zhang Y, Nie N, Wang J (2011) Biomacromol 12:228–234

    CAS  Google Scholar 

  8. Kang MH, Yoon HY, Choi YW (2017) Chapter 5- RIPL peptide as a novel cell penetrating and homing peptide: design, characterization and application to liposomal nanocarriers for hepsin-specific intracellular delivery, Nanostructures for Cancer Therapy, in Micro and Nanotechnologies 129–157

  9. Choi YS, Lee JY, Suh JS, Lee SJ, Yang VC, Chung P, Park YJ (2011) Curr Pharm Biotechnol 12:1166–1182

    CAS  PubMed  Google Scholar 

  10. Otte A, Jernmann E, Behe M, Goetze H, Bucher HC, Roser HW, Heppler A, Mueller-Brand J, Maecke HR (1997) Eur J Nucl Med 24:792–795

    CAS  PubMed  Google Scholar 

  11. Romanov VI, Durand DB, Petrenko VA (2001) Prostate 47:239–251

    CAS  PubMed  Google Scholar 

  12. Chau Y, Tan FE, Langer R (2004) Bioconjugate Chem 15:931–941

    CAS  Google Scholar 

  13. Feng S, Zou L, Ni Q, Zhang X, Li Q, Zheng L, Xie L, Li H, Huang D (2014) Cell Biochem Biophys 70:1913–1921

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Acharya R, Chacko S, Bose P, Lapenna A, Pattanayak SP (2019) Sci Rep 9:15743

    PubMed  PubMed Central  Google Scholar 

  15. Oliveira-Cunha M, Newman WG, Siriwardena AK (2011) Cancers (Basel) 3:1513–1526

    CAS  Google Scholar 

  16. Schlessinger J (2000) Cell 103:211–225

    CAS  PubMed  Google Scholar 

  17. Yarden Y (2001) Eur J Cancer 37:S3–S8

    CAS  PubMed  Google Scholar 

  18. Henriksen L, Grandal MV, Knudsen SL, van Deurs B, Grøvdal LM (2013) PLoS One 8:e58148

  19. Master AM, Sen Gupta A (2012) Nanomedicine (Lond) 7:1895–1906

    CAS  Google Scholar 

  20. Vasseur S, Guillaumond F (2015) Mol Cell Oncol 3: e1033586

  21. Mayengbam SS, Singh A, Pillai AD, Bhat MK (2021) Transl Oncol 14:101043

  22. Wank S (1998) Am J Physiol Gastrointest Liver Physiol 274:G607–G613

    CAS  Google Scholar 

  23. Weinberg DS, So C, Ruggeri B, Biswas S, Barber M, Waldman S (2000) Dig Dis Sci 45:538–543

    CAS  PubMed  Google Scholar 

  24. Guillaumond F, Bidaut G, Ouaissi M, Servais S, Gouirand V, Olivares O, Lac S, Borge L, Roques J, Gayet O, Pinault M, Guimaraes C, Nigri J, Loncle C, Lavaut M, Garcia S, Tailleux A, Staels B, Calvo E, Tomasini R, Iovanna J, Vasseur S (2015) Proc Natl Acad Sci U S A 112:2473–2478

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sassi K, Nury T, Samadi M, Fennira FB, Vejux A, Lizard G (2021) Gliomas Chapter 6 not sure how to correctly cite when listed as chapter (97–120)

  26. Radwan AA, Alanazi FK (2014) Saudi Pharm J 22:3–16

    PubMed  Google Scholar 

  27. Ades A, Carvalho JP, Graziani SR, Amancio RF, Souen JS, Pinotti JA, Maranhão RC (2001) Gynecol Oncol 82:84–87

    CAS  PubMed  Google Scholar 

  28. Ishimaru C, Yonezawa Y, Kuriyama I, Nishida M, Yoshida H, Mizushina Y (2008) Lipids 43:373–382

    CAS  PubMed  Google Scholar 

  29. Sun L, Cao J, Chen K, Cheng L, Zhou C, Yan B, Qian W, Li J, Duan W, Ma J, Qi D, Wu E, Wang Z, Liu Q, Ma Q, Xu Q (2019) Int J Oncol 54:98–110

    CAS  PubMed  Google Scholar 

  30. Fulda S (2008) Int J Mol Sci 9:1096–1107

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Aiken C, Chen CH (2005) Trends Mol Med 11:31–36

    CAS  PubMed  Google Scholar 

  32. Chowdhury AR, Mandal S, Mittra B, Sharma S, Mukhopadhyay S, Majumder HK (2002) Med Sci Monit 8:254–265

    Google Scholar 

  33. Schaap FG, Trauner M, Jansen PL (2014) Nat Rev Gastroenterol Hepatol 11:55–67

    CAS  PubMed  Google Scholar 

  34. Hossein-Nejad-Ariani H, Althagafi E, Kaur K (2019) Sci Rep 9:2723

    PubMed  PubMed Central  Google Scholar 

  35. Master AM, Qi Y, Oleinick NL, Gupta AS (2012) Nanomedicine 8:655–664

    CAS  PubMed  Google Scholar 

  36. Mickler FM, Möckl L, Ruthardt N, Ogris M, Wagner E, Bräuchle C (2012) Nano Lett 12:3417–3423

    CAS  PubMed  Google Scholar 

  37. Abourbeh G, Shir A, Mishani E, Ogris M, Rödl W, Wagner E, Levitzki A (2012) IUBMB Life 64:324–330

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lin W, Chien W (2015) Journal Nanopart Res 17:349

    Google Scholar 

  39. The PyMOL Molecular Graphics System, Version 2.0 Schrodinger, LLC

  40. Klamt A, Eckert F (2011) TmoleX3.1 COSMOlogic GmbH & amp; Co.: KG, Leverkusen, Germany

  41. Eckert F, Klamt A (2002) AIChE J 48:369–385

    CAS  Google Scholar 

  42. Yu J, Zhou Y, Tanaka I, Yao M (2010) Bioinformatics 26:46–52

    PubMed  Google Scholar 

  43. Yan C, Xu X, Zou X (2017) Modeling Peptide-Protein Interactions: Methods and Protocols. 3–9

  44. Yan C, Zou X (2015) J Comput Chem 36:49–61

    CAS  PubMed  Google Scholar 

  45. Trott O, Olson AJ (2010) J Comput Chem 31:455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M (2015) Nucleic Acids Res 43:W443–W447

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Bowers KJ, Chow E, Xu H, Dror RO, Eastwood MP, Gregersen BA, Klepeis JL, Kolossváry I, Moraes MA, Sacerdoti FD, Salmon JK, Shan Y, Shaw DE (2006) Proc. ACM/IEEE Conference on Supercomputing (SC06)

  48. López-Blanco JR, Aliaga JI, Quintana-Ortí ES, Chacón P (2014) Nucleic Acids Res 42:W271–W276

    PubMed  PubMed Central  Google Scholar 

  49. Klamt A, Eckert F, Arlt W (2010) Annu Rev Chem Biomol Eng 1:101–122

    CAS  PubMed  Google Scholar 

  50. Gonzalez-Miquel M, Massel M, DeSilva A, Palomar J, Rodriguez F, Brennecke JF (2014) J Phys Chem 118:11512–11522

    CAS  Google Scholar 

  51. Feng P, Che Y, Chen D (2020) Eur J Integr Med 33:101009

  52. James K, Verkhivker GM (2014). PLoS ONE. https://doi.org/10.1371/journal.pone.0113488

    Article  PubMed  PubMed Central  Google Scholar 

  53. Li Y, Li X, Ma W, Dong Z (2014) J Chem Theory Comput 10:3503–3511

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Li Y, Li X, Dong Z (2015) J Comput Aided Mol Des 29:1045–1055

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Park JH, Liu Y, Lemmon MA, Radhakrishnan R (2012) Biochem J 448:417–423

    CAS  PubMed  Google Scholar 

  56. Xu G, Searle L, Hughes TV, Beck AK, Connolly PJ, Abad MC, Neeper MP, Struble GT, Springer BA, Emanuel SL, Gruniger RH, Pandey N, Adams M, Moreno-Mazza S, Fuentes-Pesquera AR (2008) Bioorg Med Chem Lett 18:3495–3499

    CAS  PubMed  Google Scholar 

  57. Stamost J, Sliwkowski MX, Eigenbrot C (2002) J Biol Chem 277:46265–46272

    Google Scholar 

  58. Li Z, Zhao R, Wu X, Sun Y, Yao M, Li J, Xu Y, Gu J (2005) FASEB J 19:1978–1985

    CAS  PubMed  Google Scholar 

  59. Ongarora B, Fontenot K, Hu X, Sehgal I, Satyanarayana-Jois S, Vicente M (2012) J Med Chem 55:3725–3738

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhao Z, Xie L, Bourne PE (2019) J Chem Inf Model 59:453–462

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Dong YW, Liao ML, Meng XL, Somero GN (2018) Proc Natl Acad Sci USA 115:1274–1279

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Jin Z, Wang Y, Yu XF, Tan QQ, Liang SS, Li T, Zhang H, Shaw PC, Wang J, Hu C (2020) Comput Biol Chem 85:107241

  63. Jiang X, Yu J, Zhou Z, Kongsted J, Song Y, Pannecouque C, Clercq ED, Kang D, Poongavanam V, Liu X, Zhang P (2019) Med Res Rev 39:1–45

    Google Scholar 

  64. Lobanov MY, Bogatyreva NS, Galzitskaya OV (2008) Mol Biol 42:623–628

    CAS  Google Scholar 

  65. Sammad FA, Suliman BA, Basha SH, Manivasagam T, Essa MM. (2016) PloS One 11: e0153999

  66. Ali A, Banerjee S, Kamaal S, Usman M, Das N, Afzal M, Alarifi A, Sepay N, Roy P, Ahmad M (2021) RSC Adv 11:14362–14373

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Beglova N, Blacklow SC (2005) Trends Biochem Sci 30:309–317

    CAS  PubMed  Google Scholar 

  68. Wilson C, Wardell MR, Weisgraber KH, Mahley RW, Agard DA (1991) E Science 252:1817–1822

    CAS  Google Scholar 

  69. Andersen OM, Dagil R, Kragelund BB (2013) J Lipid Res 54:2763–2774

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Pellegrini M, Mierke DF (1999) Biochemistry 38:14775–14783

    CAS  PubMed  Google Scholar 

  71. Wank S (1995) Am J Physiol 269:G628–G646

    CAS  PubMed  Google Scholar 

  72. Bahar I, Lezon TR, Bakan A, Shrivastava IH (2010) Chem Rev 110:1463–1497

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Tirion MM, Ben-Avraham D (1993) J Mol Biol 230:186–195

    CAS  PubMed  Google Scholar 

  74. Lopez-Blanco JR, Aliaga JI, Quintana-Orti ES, Chacon P (2014) Nucleic Acids Res 42:W271–W276

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of study: I. A. Banerjee; Acquisition of data: M. M. Bashant, S. M. Mitchell, C. G. Lebedenko and L. R. Hart. Analysis and interpretation of data: I. A. Banerjee, M. M. Bashant and C. G. Lebedenko.

Corresponding author

Correspondence to Ipsita A. Banerjee.

Ethics declarations

Consent for publication

The authors give full consent for publication.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3316 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashant, M.M., Mitchell, S.M., Hart, L.R. et al. In silico studies of interactions of peptide-conjugated cholesterol metabolites and betulinic acid with EGFR, LDR, and N-terminal fragment of CCKA receptors. J Mol Model 28, 16 (2022). https://doi.org/10.1007/s00894-021-05007-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-05007-5

Keywords

Navigation