ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Structure–Activity Relationship Study of Vitamin K Derivatives Yields Highly Potent Neuroprotective Agents

View Author Information
Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina 29425, United States
Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia, 23284, United States
*Phone: (843) 792-1289. E-mail: [email protected]
Cite this: J. Med. Chem. 2013, 56, 3, 1007–1022
Publication Date (Web):January 17, 2013
https://doi.org/10.1021/jm301485d
Copyright © 2013 American Chemical Society

    Article Views

    3741

    Altmetric

    -

    Citations

    57
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Historically known for its role in blood coagulation and bone formation, vitamin K (VK) has begun to emerge as an important nutrient for brain function. While VK involvement in the brain has not been fully explored, it is well-known that oxidative stress plays a critical role in neurodegenerative diseases. It was recently reported that VK protects neurons and oligodendrocytes from oxidative injury and rescues Drosophila from mitochondrial defects associated with Parkinson’s disease. In this study, we take a chemical approach to define the optimal and minimum pharmacophore responsible for the neuroprotective effects of VK. In doing so, we have developed a series of potent VK analogues with favorable drug characteristics that provide full protection at nanomolar concentrations in a well-defined model of neuronal oxidative stress. Additionally, we have characterized key cellular responses and biomarkers consistent with the compounds’ ability to rescue cells from oxidative stress induced cell death.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Figures and tables and detailed experimental procedures; HPLC and all spectral data. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 57 publications.

    1. Raushan Kumar Jha, Monojit Batabyal, Sangit Kumar. Blue Light Irradiated Metal-, Oxidant-, and Base-Free Cross-Dehydrogenative Coupling of C(sp2)–H and N–H Bonds: Amination of Naphthoquinones with Amines. The Journal of Organic Chemistry 2023, 88 (11) , 7401-7424. https://doi.org/10.1021/acs.joc.3c00666
    2. Lin Tang, Fang Yang, Shuai Zhang, Ge Lv, Qiuju Zhou, Lingyun Zheng. Fe-Catalyzed Radical Trifluoromethyl-Alkenylation of Alkenes or Alkynes with 2-Amino-1,4-naphthoquinones. The Journal of Organic Chemistry 2022, 87 (11) , 7274-7290. https://doi.org/10.1021/acs.joc.2c00477
    3. Yu Shangguan, Fazhou Yang, Hao Deng, Hao Liu, Ziyan Liu, Wanyue Zhuang, Chenxi Qiao, Aizheng Wang, Yumei Xiao, Cheng Zhang. Copper-Catalyzed Three-Component Difunctionalization of Aromatic Alkenes with 2-Amino-1,4-naphthoquinones and α-Bromocarboxylates. The Journal of Organic Chemistry 2019, 84 (17) , 10649-10657. https://doi.org/10.1021/acs.joc.9b01082
    4. Jordan T. Koehn, Cheryle N. Beuning, Benjamin J. Peters, Sara K. Dellinger, Cameron Van Cleave, Dean C. Crick, Debbie C. Crans. Investigating Substrate Analogues for Mycobacterial MenJ: Truncated and Partially Saturated Menaquinones. Biochemistry 2019, 58 (12) , 1596-1615. https://doi.org/10.1021/acs.biochem.9b00007
    5. Chao Shu, Chong-Yang Shi, Qing Sun, Bo Zhou, Tian-You Li, Qiao He, Xin Lu, Rai-Shung Liu, Long-Wu Ye. Generation of Endocyclic Vinyl Carbene Complexes via Gold-Catalyzed Oxidative Cyclization of Terminal Diynes: Toward Naphthoquinones and Carbazolequinones. ACS Catalysis 2019, 9 (2) , 1019-1025. https://doi.org/10.1021/acscatal.8b04455
    6. Qijun Wang, Bo Wang, Hao Deng, Yu Shangguan, Yan Lin, Yaqi Zhang, Zheming Zhang, Yumei Xiao, Hongchao Guo, Cheng Zhang. Silver-Catalyzed Three-Component Difunctionalization of Alkenes via Radical Pathways: Access to CF3-Functionalized Alkyl-Substituted 1,4-Naphthoquinone Derivatives. The Journal of Organic Chemistry 2019, 84 (2) , 1006-1014. https://doi.org/10.1021/acs.joc.8b02997
    7. Jordan T. Koehn, Dean C. Crick, Debbie C. Crans. Synthesis and Characterization of Partially and Fully Saturated Menaquinone Derivatives. ACS Omega 2018, 3 (11) , 14889-14901. https://doi.org/10.1021/acsomega.8b02620
    8. Cheng Zhang and C. James Chou . Metal-Free Direct Amidation of Naphthoquinones Using Hydroxamic Acids as an Amide Source: Application in the Synthesis of an HDAC6 Inhibitor. Organic Letters 2016, 18 (21) , 5512-5515. https://doi.org/10.1021/acs.orglett.6b02740
    9. Cheng Zhang, Jesse McClure, and C. James Chou . Silver-Catalyzed Direct Thiolation of Quinones by Activation of Aryl Disulfides to Synthesize Quinonyl Aryl Thioethers. The Journal of Organic Chemistry 2015, 80 (10) , 4919-4927. https://doi.org/10.1021/acs.joc.5b00247
    10. Eugenie Nepovimova, Elisa Uliassi, Jan Korabecny, Luis Emiliano Peña-Altamira, Sarah Samez, Alessandro Pesaresi, Gregory E. Garcia, Manuela Bartolini, Vincenza Andrisano, Christian Bergamini, Romana Fato, Doriano Lamba, Marinella Roberti, Kamil Kuca, Barbara Monti, and Maria Laura Bolognesi . Multitarget Drug Design Strategy: Quinone–Tacrine Hybrids Designed To Block Amyloid-β Aggregation and To Exert Anticholinesterase and Antioxidant Effects. Journal of Medicinal Chemistry 2014, 57 (20) , 8576-8589. https://doi.org/10.1021/jm5010804
    11. Chi Zhang, Meining Wang, Zhoulong Fan, Li-Ping Sun, and Ao Zhang . Substituent-Enabled Oxidative Dehydrogenative Cross-Coupling of 1,4-Naphthoquinones with Alkenes. The Journal of Organic Chemistry 2014, 79 (16) , 7626-7632. https://doi.org/10.1021/jo501419s
    12. Thaís Barreto Santos, Leonardo Gomes Cavalieri de Moraes, Paulo Anastácio Furtado Pacheco, Douglas Galdino dos Santos, Rafaella Machado de Assis Cabral Ribeiro, Caroline dos Santos Moreira, David Rodrigues da Rocha. Naphthoquinones as a Promising Class of Compounds for Facing the Challenge of Parkinson’s Disease. Pharmaceuticals 2023, 16 (11) , 1577. https://doi.org/10.3390/ph16111577
    13. Germán Plascencia-Villa, George Perry. Roles of Oxidative Stress in Synaptic Dysfunction and Neuronal Cell Death in Alzheimer’s Disease. Antioxidants 2023, 12 (8) , 1628. https://doi.org/10.3390/antiox12081628
    14. Shuowen Wang, Rong Li, Huawen Huang, Guojiang Mao, Wen Shao, Guo‐Jun Deng. Substrate‐Dependent Divergent Oxyamination of beta ‐Tetralones Enabling Modular Synthesis of 2‐Amino‐ para ‐Iminonaphthoquinones and 4‐Amino‐1,2‐Naphthoquinone Derivatives. Advanced Synthesis & Catalysis 2023, 365 (9) , 1449-1456. https://doi.org/10.1002/adsc.202300138
    15. Miriam Kolko, Zaynab Ahmad Mouhammad, Barbara Cvenkel. Is fat the future for saving sight? Bioactive lipids and their impact on glaucoma. Pharmacology & Therapeutics 2023, 245 , 108412. https://doi.org/10.1016/j.pharmthera.2023.108412
    16. Quanxiang Yan, Tao Zhang, Christine O'Connor, James W. Barlow, John Walsh, Gaia Scalabrino, Feng Xu, Helen Sheridan. The biological responses of vitamin K2: A comprehensive review. Food Science & Nutrition 2023, 11 (4) , 1634-1656. https://doi.org/10.1002/fsn3.3213
    17. Yu Dong, Yong Chen, Zhan-Yuan Zhang, Jun-Hu Qian, Zhen-Zhen Peng, Bo Chang, Zhi-Chuan Shi, Zhong-Hui Li, Bing He. A one-pot access to 2-(N-substituted Amino)-Quinones or 3-indolyl-Quinones from naphthol/hydroquinone. Tetrahedron 2023, 135 , 133337. https://doi.org/10.1016/j.tet.2023.133337
    18. Ruizhe Zhu, Yilin Fang, Hongyu Li, Ying Liu, Jing Wei, Shuwei Zhang, Liwei Wang, Rui Fan, Lingfang Wang, Shengjie Li, Tingtao Chen. Psychobiotic Lactobacillus plantarum JYLP-326 relieves anxiety, depression, and insomnia symptoms in test anxious college via modulating the gut microbiota and its metabolism. Frontiers in Immunology 2023, 14 https://doi.org/10.3389/fimmu.2023.1158137
    19. Kimie Nakagawa. Vitamin K Converting Enzyme and Its Biological Significance. Nippon Eiyo Shokuryo Gakkaishi 2023, 76 (4) , 199-205. https://doi.org/10.4327/jsnfs.76.199
    20. Tanmaykumar Varma, Pradnya Kamble, Madhavi Kumari, Vineet Diwakar, Prabha Garg. Vitamin-Based Derivatives for the Management of Alzheimer’s Disease. 2023, 317-344. https://doi.org/10.1007/978-981-99-6038-5_12
    21. Yu Dong, Ji-Xian Ye, Qi-Qi Luo, Yi Zheng, Rui-Qi Zhou, Ting Mei, Xiang-Long Chen, Zhi-Chuan Shi, Zhong-Hui Li, Bing He. Silver-Catalyzed, One-Pot, Three-Component Difunctionalization of Quinones: Synthesis of Indole-Functionalized p-Iminoquinone Derivatives. Synlett 2022, 33 (13) , 1273-1281. https://doi.org/10.1055/s-0040-1719929
    22. Arun D. Kulthe, Sunidhi Jaiswal, Durga Golagani, Prathama S. Mainkar, Srirama Murthy Akondi. Organophotoredox-catalyzed cyanoalkylation of 1,4-quinones. Organic & Biomolecular Chemistry 2022, 20 (22) , 4534-4538. https://doi.org/10.1039/D2OB00753C
    23. Victor Sebastián-Pérez, Paula Martínez de Iturrate, Montserrat Nácher-Vázquez, Luis Nóvoa, Concepción Pérez, Nuria E. Campillo, Carmen Gil, Luis Rivas. Naphthoquinone as a New Chemical Scaffold for Leishmanicidal Inhibitors of Leishmania GSK-3. Biomedicines 2022, 10 (5) , 1136. https://doi.org/10.3390/biomedicines10051136
    24. Shinya Fujii, Yoshitomo Suhara, Hiroyuki Kagechika. Recent Advances in the Medicinal Chemistry of Vitamin K Derivatives: An Overview (2000–2021). 2022https://doi.org/10.5772/intechopen.101667
    25. Satyajit Pal, Rana Chatterjee, Sougata Santra, Grigory V. Zyryanov, Adinath Majee. Metal‐Free, PhI(OAc) 2 ‐Promoted Oxidative C( sp 2 )−H Difunctionalization: Synthesis of Thioaminated Naphthoquinones. Advanced Synthesis & Catalysis 2021, 363 (23) , 5300-5309. https://doi.org/10.1002/adsc.202100796
    26. Fang Yang, Qiuju Zhou, Heyan Wang, Lin Tang. Copper‐Catalyzed Cross‐Dehydrogenative Phosphorylation of 2‐Amino‐1,4‐naphthoquinones with H ‐Phosphonates. European Journal of Organic Chemistry 2021, 2021 (41) , 5618-5622. https://doi.org/10.1002/ejoc.202100870
    27. Sonia Shastri, Tanvi Shinde, Krystel L. Woolley, Jason A. Smith, Nuri Gueven, Rajaraman Eri. Short-Chain Naphthoquinone Protects Against Both Acute and Spontaneous Chronic Murine Colitis by Alleviating Inflammatory Responses. Frontiers in Pharmacology 2021, 12 https://doi.org/10.3389/fphar.2021.709973
    28. Julia Bahja, Marcus K. Dymond. Does membrane curvature elastic energy play a role in mediating oxidative stress in lipid membranes?. Free Radical Biology and Medicine 2021, 171 , 191-202. https://doi.org/10.1016/j.freeradbiomed.2021.05.021
    29. Maxime Donzel, Deniz Karabiyikli, Leandro Cotos, Mourad Elhabiri, Elisabeth Davioud‐Charvet. Direct C−H Radical Alkylation of 1,4‐Quinones. European Journal of Organic Chemistry 2021, 2021 (25) , 3622-3633. https://doi.org/10.1002/ejoc.202100452
    30. Teng Ma, Hao Jin, Lai-Yu Kwok, Zhihong Sun, Min-Tze Liong, Heping Zhang. Probiotic consumption relieved human stress and anxiety symptoms possibly via modulating the neuroactive potential of the gut microbiota. Neurobiology of Stress 2021, 14 , 100294. https://doi.org/10.1016/j.ynstr.2021.100294
    31. Kimie Nakagawa. Diseases Due to the Deficiency in Vitamin K Conversion System and Its Prevention. YAKUGAKU ZASSHI 2021, 141 (5) , 669-674. https://doi.org/10.1248/yakushi.20-00243-1
    32. Eva Mezeiova, Jana Janockova, Rudolf Andrys, Ondrej Soukup, Tereza Kobrlova, Lubica Muckova, Jaroslav Pejchal, Miriama Simunkova, Jiri Handl, Petra Micankova, Jan Capek, Tomas Rousar, Martina Hrabinova, Eugenie Nepovimova, Jose Luis Marco-Contelles, Marian Valko, Jan Korabecny. 2-Propargylamino-naphthoquinone derivatives as multipotent agents for the treatment of Alzheimer’s disease. European Journal of Medicinal Chemistry 2021, 211 , 113112. https://doi.org/10.1016/j.ejmech.2020.113112
    33. Merve ÖZDEMİR, Aylin AYAZ. MULTİPL SKLEROZ’DA K VİTAMİNİNİN ROLÜ VAR MIDIR?. Kocatepe Tıp Dergisi 2020, 21 (4) , 362-369. https://doi.org/10.18229/kocatepetip.605508
    34. Fazhou Yang, Ziyan Liu, Hao Liu, Yu Shangguan, Hao Deng, Jiaxing Huang, Yumei Xiao, Hongchao Guo, Cheng Zhang. Cu-Catalysed synthesis of benzo[ f ]indole-2,4,9(3 H )-triones by the reaction of 2-amino-1,4-napthoquinones with α-bromocarboxylates. Organic & Biomolecular Chemistry 2020, 18 (34) , 6724-6731. https://doi.org/10.1039/D0OB00291G
    35. Anoop Kumar Panday, Danish Ali, Lokman H. Choudhury. One-pot synthesis of pyrimidine linked naphthoquinone-fused pyrroles by iodine-mediated multicomponent reactions. Organic & Biomolecular Chemistry 2020, 18 (26) , 4997-5007. https://doi.org/10.1039/D0OB00591F
    36. Mohamed-Elamir F. Hegazy, Masashi Fukaya, Mona Dawood, Ge Yan, Anette Klinger, Edmond Fleischer, Asmaa W. Zaglool, Thomas Efferth. Vitamin K3 thio-derivative: a novel specific apoptotic inducer in the doxorubicin-sensitive and -resistant cancer cells. Investigational New Drugs 2020, 38 (3) , 650-661. https://doi.org/10.1007/s10637-019-00810-7
    37. Cameron Van Cleave, Heide A. Murakami, Nuttaporn Samart, Jordan T. Koehn, Pablo Maldonado, Heidi D. Kreckel, Elana J. Cope, Andrea Basile, Dean C. Crick, Debbie C. Crans. Location of menaquinone and menaquinol headgroups in model membranes. Canadian Journal of Chemistry 2020, 98 (6) , 307-317. https://doi.org/10.1139/cjc-2020-0024
    38. Saiedeh Kamalifar, Hamzeh Kiyani. An expeditious and green one-pot synthesis of 12-substituted-3,3-dimethyl-3,4,5,12-tetrahydrobenzo[b]acridine-1,6,11(2H)-triones. Research on Chemical Intermediates 2019, 45 (12) , 5975-5987. https://doi.org/10.1007/s11164-019-04014-9
    39. Zhenhua Shang, Qingyu Chen, Linlin Xing, Yilin Zhang, Laura Wait, Yunfei Du. in   situ Formation of RSCl/ArSeCl and Their Oxidative Coupling with Enaminone Derivatives Under Transition‐metal Free Conditions. Advanced Synthesis & Catalysis 2019, 361 (21) , 4926-4932. https://doi.org/10.1002/adsc.201900940
    40. Dan-dan Wang, Mei-fang Jin, Dong-jing Zhao, Hong Ni. Reduction of Mitophagy-Related Oxidative Stress and Preservation of Mitochondria Function Using Melatonin Therapy in an HT22 Hippocampal Neuronal Cell Model of Glutamate-Induced Excitotoxicity. Frontiers in Endocrinology 2019, 10 https://doi.org/10.3389/fendo.2019.00550
    41. Prasanna Anjaneyulu Yakkala, Deepesh Giri, Bharatkumar Chaudhary, Prashant Auti, Satyasheel Sharma. Regioselective C–H alkylation and alkenylation at the C5 position of 2-amino-1,4-naphthoquinones with maleimides under Rh( iii ) catalysis. Organic Chemistry Frontiers 2019, 6 (14) , 2441-2446. https://doi.org/10.1039/C9QO00538B
    42. Krystel L. Woolley, Monila Nadikudi, Mitra N. Koupaei, Monika Corban, Paul McCartney, Alex C. Bissember, Trevor W. Lewis, Nuri Gueven, Jason A. Smith. Amide linked redox-active naphthoquinones for the treatment of mitochondrial dysfunction. MedChemComm 2019, 10 (3) , 399-412. https://doi.org/10.1039/C8MD00582F
    43. K. A. Myannik, I. S. Semenova, V. N. Yarovenko, M. M. Krayushkin. Synthesis of 3-(N-arylcarbamoyl)chromones from 2-hydroxyarylaminoenones and isocyanates. Russian Chemical Bulletin 2019, 68 (1) , 104-109. https://doi.org/10.1007/s11172-019-2423-5
    44. Shiva Rezazadeh, Ali Ebrahimi. A Computational Study on the Hydride Transfer Mechanism between Nicotinamide and Menadione. ChemistrySelect 2018, 3 (42) , 11977-11985. https://doi.org/10.1002/slct.201802389
    45. Reza Lasemi, Michael Kundi, Nahid Beladi Moghadam, Hanns Moshammer, Johannes A. Hainfellner. Vitamin K2 in multiple sclerosis patients. Wiener klinische Wochenschrift 2018, 130 (9-10) , 307-313. https://doi.org/10.1007/s00508-018-1328-x
    46. Sherine S. L. Chan, Tucker Williamson. Detection of Mitochondrial Toxicity Using Zebrafish. 2018, 323-346. https://doi.org/10.1002/9781119329725.ch21
    47. Thao Nguyen, Hiromasa Tsujiguchi, Yasuhiro Kambayashi, Akinori Hara, Sakae Miyagi, Yohei Yamada, Haruki Nakamura, Yukari Shimizu, Daisuke Hori, Fumihiko Suzuki, Koichiro Hayashi, Hiroyuki Nakamura. Relationship between Vitamin Intake and Depressive Symptoms in Elderly Japanese Individuals: Differences with Gender and Body Mass Index. Nutrients 2017, 9 (12) , 1319. https://doi.org/10.3390/nu9121319
    48. Elisa Uliassi, Federica Prati, Salvatore Bongarzone, Maria Laura Bolognesi. Medicinal Chemistry of Hybrids for Neurodegenerative Diseases. 2017, 259-277. https://doi.org/10.1016/B978-0-08-101011-2.00010-6
    49. Silvia M. Gancheva, Maria D. Zhelyazkova-Savova. Vitamin K2 Improves Anxiety and Depression but not Cognition in Rats with Metabolic Syndrome: a Role of Blood Glucose?. Folia Medica 2016, 58 (4) , 264-272. https://doi.org/10.1515/folmed-2016-0032
    50. Tokutaro Ogata, Tomoyo Yoshida, Maki Shimizu, Manami Tanaka, Chie Fukuhara, Junko Ishii, Arisa Nishiuchi, Kiyofumi Inamoto, Tetsutaro Kimachi. Unusual, chemoselective etherification of 2-hydroxy-1,4-naphthoquinone derivatives utilizing alkoxymethyl chlorides: scope, mechanism and application to the synthesis of biologically active natural product (±)-lantalucratin C. Tetrahedron 2016, 72 (11) , 1423-1432. https://doi.org/10.1016/j.tet.2016.01.040
    51. Mikhail Yu. Kornev, Vyacheslav Ya. Sosnovskikh. Synthesis and chemical properties of chromone-3-carboxylic acid (review). Chemistry of Heterocyclic Compounds 2016, 52 (2) , 71-83. https://doi.org/10.1007/s10593-016-1834-6
    52. Jiansong Fang, Xiaocong Pang, Rong Yan, Wenwen Lian, Chao Li, Qi Wang, Ai-Lin Liu, Guan-Hua Du. Discovery of neuroprotective compounds by machine learning approaches. RSC Advances 2016, 6 (12) , 9857-9871. https://doi.org/10.1039/C5RA23035G
    53. Qian Zhang, Cheng-Wei Tom Chang. Divergent and facile Lewis acid-mediated synthesis of N-alkyl 2-aminomethylene-1,3-indanediones and 2-alkylamino-1,4-naphthoquinones. Tetrahedron Letters 2015, 56 (7) , 893-896. https://doi.org/10.1016/j.tetlet.2015.01.014
    54. J.J. Rahn, J.E. Bestman, B.J. Josey, E.S. Inks, K.D. Stackley, C.E. Rogers, C.J. Chou, S.S.L. Chan. Novel Vitamin K analogs suppress seizures in zebrafish and mouse models of epilepsy. Neuroscience 2014, 259 , 142-154. https://doi.org/10.1016/j.neuroscience.2013.11.040
    55. Christophe Wiart. Phenolics. 2014, 285-374. https://doi.org/10.1016/B978-0-12-398373-2.00003-0
    56. C James Chou, Elizabeth S Inks, Benjamin J Josey. Vitamin K: A Structural Basis for the Design of Novel Neuroprotective Agents?. Future Medicinal Chemistry 2013, 5 (8) , 857-860. https://doi.org/10.4155/fmc.13.70
    57. Yu-jin Li, Huan-ming Huang, Jie Ju, Jian-hong Jia, Liang Han, Qing Ye, Wu-bin Yu, Jian-rong Gao. Iodine mediated reaction of quinones and N-substituted amino esters to 2-substituted benzo[f]isoindole-4,9-diones. RSC Advances 2013, 3 (48) , 25840. https://doi.org/10.1039/c3ra44095h

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect