<iframe src="//www.googletagmanager.com/ns.html?id=GTM-5TSRKG" height="0" width="0" style="display: none; visibility: hidden">
Research Article
No access
Published Online: 15 August 2006

Enzymatic Activity Is Necessary for the Tumor-Suppressive Effects of MnSOD

Publication: Antioxidants & Redox Signaling
Volume 8, Issue Number 7-8

Abstract

The antioxidant protein manganese-containing superoxide dismutase (MnSOD) has been found to be a new type of tumor-suppressor protein. Overexpression of the cDNA for this gene in various types of cancer via plasmid transfection or adenovirus transduction leads to growth suppression both in vitro and in vivo. The growth-suppressive effect of MnSOD overexpression has been presumed to be due to the enzymatic activity of the MnSOD protein, but could be due to a number of other mechanisms, including a regulatory effect of the RNA or protein produced. To examine this question, we used site-directed mutagenesis to produce a mutant form of human MnSOD that has a leucine at amino acid 26 in the active site rather than the usual histidine. We demonstrate that plasmid transfection or adenoviral transduction of this mutant MnSOD cDNA leads to a large increase in immunoreactive MnSOD protein, but little or no increase in enzymatic activity. In contrast, overexpression of wild-type MnSOD leads to cells with both increased MnSOD protein and activity. Overexpression of wild-type, but not mutant, MnSOD leads to decreased plating efficiency and growth. These results clearly demonstrate that the tumor-suppressive effect of MnSOD protein is largely due to its enzymatic activity.

Get full access to this article

View all available purchase options and get full access to this article.

Information & Authors

Information

Published In

cover image Antioxidants & Redox Signaling
Antioxidants & Redox Signaling
Volume 8Issue Number 7-82006
Pages: 1283 - 1293
PubMed: 16910776

History

Published online: 15 August 2006
Published in print: 2006

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Yuping Zhang
Free Radical and Radiation Biology Program, Department of Radiation Oncology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa.
Brian J. Smith
Department of Biostatistics, College of Public Health and Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa.
Larry W. Oberley
Free Radical and Radiation Biology Program, Department of Radiation Oncology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa.

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top