Advertisement

Abstract

The seminal hypotheses proposed over the years for enzymatic catalysis are scrutinized. The historical record is explored from both biochemical and theoretical perspectives. Particular attention is given to the impact of molecular motions within the protein on the enzyme's catalytic properties. A case study for the enzyme dihydrofolate reductase provides evidence for coupled networks of predominantly conserved residues that influence the protein structure and motion. Such coupled networks have important implications for the origin and evolution of enzymes, as well as for protein engineering.

Get full access to this article

View all available purchase options and get full access to this article.

References and Notes

1
E.Fischer, Ber. Dtsch. Chem. Ges.27, 3189 (1894).
2
J.B.S.Haldane, Enzymes (Longmans, Green, London, 1930).
3
L.Pauling, Nature161, 707 (1948).
4
C.C.Blakeet al.,Nature206, 757 (1965).
5
M.F.Perutz, Faraday Discuss. Chem. Soc.93, 1 (1992).
6
A.Warshel, M.Levitt, J. Mol. Biol.103, 227 (1976).
7
R.Wolfenden, C.Ridgway, G.Young, J. Am. Chem. Soc.120, 833 (1998).
8
R.Wolfenden, M.J.Snider, C.Ridgway, B.Miller, J. Am. Chem. Soc.121, 7419 (1999).
9
A.Radzicka, R.Wolfenden, Science267, 90 (1995).
10
W.R.Cannon, S.J.Benkovic, J. Biol. Chem.273, 26257 (1998).
11
R.D.Gandour, R.L.Schowen, Eds., Transition States of Biochemical Processes (Plenum, New York, 1978).
12
W.Zhong, S.J.Benkovic, Anal. Biochem.255, 66 (1998).
13
W.R.Cannon, S.F.Singleton, S.J.Benkovic, Nature Struct. Biol.3, 821 (1996).
14
A. Warshel, Proc. Natl. Acad. Sci. U.S.A.81, 444 (1984).
15
F.H.Westheimer, Adv. Phys. Org. Chem.21, 1 (1985).
16
W.P.Jencks, Chem. Rev.72, 705 (1972).
17
T.C.Bruice, Annu. Rev. Biochem.45, 331 (1976).
18
K.Tanabe, G.McKay, J.D.Payzant, D.Bohme, Can. J. Chem.54, 1643 (1976).
19
M.J.Dewar, D.M.Storch, Proc. Natl. Acad. Sci. U.S.A.82, 2225 (1985).
20
M.F.Perutz, Proc. R. Soc. London Ser. B167, 448 (1967).
21
G.E.Lienhard, J. Am. Chem. Soc.88, 5642 (1966).
22
A.Warshel, Proc. Natl. Acad. Sci. U.S.A.75, 5250 (1978).
23
J.R.Knowles, Nature350, 121 (1991).
24
The alert reader will note that the imidazole of His95 acts as a general acid in its free-base form.
25
T.C.Bruice, U.K.Pandit, J. Am. Chem. Soc.82, 5858 (1960).
26
W.P.Jencks, Adv. Enzym.43, 219 (1975).
27
T.C.Bruice, Acc. Chem. Res.35, 139 (2002).
28
A.Shurki, M.Strajbl, J.Villa, A.Warshel, J. Am. Chem. Soc.124, 4097 (2002).
29
G.G.Hammes, Nature204, 342 (1964).
30
D.E.Koshland Jr., K.E.Neet, Annu. Rev. Biochem.37, 359 (1968).
31
Typically, electronically (vibrationally) adiabatic refers to reactions occurring in the electronic (vibrational) ground state, whereas electronically (vibrationally) nonadiabatic refers to reactions involving excited electronic (vibrational) states. The adiabatic limit corresponds to strong coupling and the nonadiabatic limit corresponds to weak coupling between the charge-transfer states.
32
D.Chandler, J. Stat. Phys.42, 49 (1986).
33
B.J.Gertner, K.R.Wilson, J.T.Hynes, J. Chem. Phys.90, 3537 (1989).
34
P.F.Barbara, T.J.Meyer, M.A.Ratner, J. Phys. Chem.100, 13148 (1996).
35
D.Borgis, J.T.Hynes, Chem. Phys.170, 315 (1993).
36
A.M.Kuznetsov, J.Ulstrup, Can. J. Chem.77, 1085 (1999).
37
The nonadiabatic rate is a sum of products of a prefactor and an exponential of a free-energy barrier, where the summation is over all relevant reactant and product quantum states. The prefactor differs in the adiabatic and nonadiabatic limits. For nonadiabatic electron and hydrogen-transfer reactions, the prefactor includes the coupling matrix element between the reactant and product wave functions, which determines the tunneling probability.
38
The assumption of a single reaction coordinate may not be appropriate for all types of reactions (e.g., multiple charge-transfer reactions). Furthermore, the choice of reaction coordinate is not unique. In some descriptions, the transition state is a saddle point on the coordinate potential energy surface, and the collective reaction coordinate corresponds to the minimum energy path from the transition state to the reactant and product. In alternative descriptions, the transition state is not necessarily a saddle point on the coordinate potential energy surface. For example, the collective reaction coordinate for charge-transfer reactions can be defined as the difference in the energies of two charge-transfer states interacting with the environment, and the transition state corresponds to the configuration at which this energy reaction coordinate is zero (39, 64, 71, 74).
39
J.Villa, A.Warshel, J. Phys. Chem. B105, 7887 (2001).
40
H.Frauenfelder, P.G.Wolynes, Science229, 337 (1985).
41
C.L.Tsou, Science262, 380 (1993).
42
L.Young, C.B.Post, Biochemistry35, 15129 (1996).
43
H.X.Zhou, S.T.Wlodek, J.A.McCammon, Proc. Natl. Acad. Sci. U.S.A.95, 9280 (1998).
44
I.Bahar, B.Erman, R.L.Jernigan, A.R.Atilgan, D.G. Covell, J. Mol. Biol.285, 1023 (1999).
45
E. Freire, Proc. Natl. Acad. Sci. U.S.A.97, 11680 (2000).
46
H.Pan, J.C.Lee, V.J.Hilser, Proc. Natl. Acad. Sci. U.S.A.97, 12020 (2000).
47
J.L.Radkiewicz, C.L.I.Brooks, J. Am. Chem. Soc.122, 225 (2000).
48
M.Karplus, J. Phys. Chem. B104, 11 (2000).
49
S.Caratzoulas, S.D.Schwartz, J. Chem. Phys.114, 2910 (2001).
50
S.Piana, P.Carloni, M.Parrinello, J. Mol. Biol.319, 567 (2002).
51
Q.Cui, M.Karplus, J. Phys. Chem. B106, 7927 (2002).
52
B.D.Dunietzet al.,J. Am. Chem. Soc.122, 2828 (2000).
53
D.S.Lu, G.A.Voth, Proteins Struct. Funct. Genet.33, 119 (1998).
54
D.Suarez, E.Brothers, K.M.Merz, Biochemistry41, 6615 (2002).
55
S.Hammes-Schiffer, Biochemistry41, 13335 (2002).
56
M.Karplus, J.D.Evanseck, D.Joseph, P.A.Bash, M.J.Field, Faraday Discuss. Chem. Soc.93, 239 (1992).
57
J.L.Gao, Curr. Opin. Struct. Biol.13, 184 (2003)
58
J.K.Hwang, Z.T.Chu, A.Yadav, A.Warshel, J. Phys. Chem.95, 8445 (1991).
59
S.R.Billeter, S.P.Webb, P.K.Agarwal, T.Iordanov, S. Hammes-Schiffer, J. Am. Chem. Soc.123, 11262 (2001).
60
P.K.Agarwal, S.R.Billeter, P.T.R.Rajagopalan, S.J. Benkovic, S.Hammes-Schiffer, Proc. Natl. Acad. Sci. U.S.A.99, 2794 (2002).
61
P.K.Agarwal, S.R.Billeter, S.Hammes-Schiffer, J. Phys. Chem. B106, 3283 (2002).
62
E.Z.Eisenmesser, D.A.Bosco, M.Akke, D.Kern, Science295, 1520 (2002).
63
Y.Cha, C.J.Murray, J.P.Klinman, Science243, 1325 (1989).
64
S.R.Billeter, S.P.Webb, T.Iordanov, P.K.Agarwal, S. Hammes-Schiffer, J. Chem. Phys.114, 6925 (2001).
65
D.G.Truhlaret al.,Acc. Chem. Res.35, 341 (2002).
66
M.J.Knapp, K.Rickert, J.P.Klinman, J. Am. Chem. Soc.124, 3865 (2002).
67
M.J.Knapp, J.P.Klinman, Eur. J. Biochem.269, 3113 (2002).
68
M.J.Sutcliffe, N.S.Scrutton, Eur. J. Biochem.269, 3096 (2002).
69
D.Antoniou, S.Caratzoulas, C.Kalyanaraman, J.S. Mincer, S.D.Schwartz, Eur. J. Biochem.269, 3103 (2002).
70
S.Chowdhury, R.Banerjee, J. Am. Chem. Soc.122, 5417 (2000).
71
R.A.Marcus, N.Sutin, Biochim. Biophys. Acta811, 265 (1985).
72
S.Hammes-Schiffer, J.C.Tully, J. Chem. Phys.101, 4657 (1994).
73
D.Borgis, J.T.Hynes, J. Phys. Chem.100, 1118 (1996).
74
K.Ando, J.T.Hynes, J. Mol. Liq.64, 25 (1995).
75
For a two-state model of electron transfer, the electron is localized on the donor for state 1 and on the acceptor for state 2. For the analogous two-state model of hydrogen transfer, the hydrogen vibrational wave function is localized near the donor for state 1 and near the acceptor for state 2. The motion of the heavy nuclei leads to a configuration for which the two states are degenerate. For hydrogen-transfer reactions, the hydrogen may tunnel at this degenerate configuration. If the vibrational ground state is above the hydrogen-transfer barrier, or this barrier is zero, the reaction is not called “tunneling” but is still quantum mechanical in nature.
76
Simulation approaches in which a tunneling “correction” is included in the prefactor (65, 117, 118) are useful for certain hydrogen-transfer systems but may be problematic in other regimes (67). An alternative approach (64) includes nuclear quantum mechanical effects for the calculation of the free-energy barrier, as well as for the calculation of the transmission coefficient prefactor. In this approach, the transition-state theory rate constant represents the adiabatic rate, and the transmission coefficient accounts for nonadiabatic effects as well as dynamical barrier recrossings. In this case (64), the transmission coefficient is between zero and unity, whereas tunneling corrections (65, 117, 118) introduce a prefactor that may be greater than unity.
77
These two effects are not rigorously separable in the enzyme reaction, and many enzyme motions contribute to both types of effects. Moreover, there is not a one-to-one correspondence between these two effects and the free-energy barrier and transmission coefficient.
78
W.J.Bruno, W.Bialek, Biophys. J.63, 689 (1992).
79
I.Daizadeh, E.S.Medvedev, A.A.Stuchebrukhov, Proc. Natl. Acad. Sci. U.S.A.94, 3703 (1997).
80
For hydrogen-transfer reactions, the hydrogen donor-acceptor vibrational mode can be either included in the collective reaction coordinate representing the reorganization of the environment in Fig.4 (64) or treated separately from the other motions in the enzyme system (66). The equilibrium, thermally averaged value of the donor-acceptor distance has been shown to change substantially along the collective reaction coordinate for hydrogen-transfer reactions (59, 61).
81
P.A.Charlton, D.W.Young, B.Birdsall, J.Feeney, G.C.K.Roberts, J. Chem. Soc. Chem. Commun.922 (1979).
82
C.A.Fierke, K.A.Johnson, S.J.Benkovic, Biochemistry26, 4085 (1987).
83
M.R.Sawaya, J.Kraut, Biochemistry36, 586 (1997).
84
T.C.Bruice, S.J.Benkovic, Biochemistry39, 6267 (2000).
85
D.M.Epstein, S.J.Benkovic, P.E.Wright, Biochemistry34, 11037 (1995).
86
M.J.Osborne, J.Schnell, S.J.Benkovic, H.J.Dyson, P.E.Wright, Biochemistry40, 9846 (2001).
87
P.T.R.Rajagopalanet al.,Proc. Natl. Acad. Sci. U.S.A.99, 13481 (2002).
88
G.P.Miller, S.J.Benkovic, Chem. Biol.5, R105 (1998).
89
P.T.R.Rajagopalan, S.Lutz, S.J.Benkovic, Biochemistry41, 12618 (2002).
90
Note that the network of coupled motions identified from the simulations is most likely not complete or unique, and the analysis is unable to differentiate between motions playing an active role in catalysis and motions responding to alterations caused by catalysis. Moreover, the details of this network may depend on the potential energy surface and sampling procedure implemented in the simulations.
91
J.B.Watney, P.K.Agarwal, S.Hammes-Schiffer, J. Am. Chem. Soc.125, 3745 (2003).
92
T.H.Rod, J.L.Radkiewicz, C.L.Brooks III, Proc. Natl. Acad. Sci. U.S.A.100, 6980 (2003).
93
E.V.Koonin, Y.I.Wolf, G.P.Karev, Nature420, 218 (2002).
94
L.Holm, C.Sander, Science273, 595 (1996).
95
A.G.Murzin, Curr. Opin. Struct. Biol.6, 386 (1996).
96
A.E.Todd, C.A.Orengo, J.M.Thornton, J. Mol. Biol.307, 1113 (2001).
97
J.A.Gerlt, P.C.Babbitt, Curr. Opin. Chem. Biol.2, 607 (1998).
98
P.C.Babbitt, J.A.Gerlt, J. Biol. Chem.272, 30591 (1997).
99
I.Friedberg, H.Margalit, Protein Sci.11, 350 (2002).
100
L.A.Mirny, E.I.Shakhnovich, J. Mol. Biol. 291, 177 (1999).
101
L.Oliveira, A.C.M.Paiva, G.Vriend, J. Comput. Aided Mol. Des.7, 649 (1993).
102
S.W.Lockless, R.Ranganathan, Science286, 295 (1999).
103
G.L.Moore, C.D.Maranas, Proc. Natl. Acad. Sci. U.S.A.100, 5091 (2003).
104
E.Hornung, M.Walther, H.Kuhn, I.Feussner, Proc. Natl. Acad. Sci. U.S.A.96, 4192 (1999).
105
P.H.Patel, L.A.Loeb, Proc. Natl. Acad. Sci. U.S.A.97, 5095 (2000).
106
E.Deu, K.A.Koch, J.F.Kirsch, Protein Sci.11, 1062 (2002).
107
S.Oue, A.Okamoto, T.Yano, H.Kagamiyama, J. Biol. Chem.274, 2344 (1999).
108
A.G.Murzin, Trends Biochem. Sci.18, 403 (1993).
109
J.J.Perona, C.S.Craik, J. Biol. Chem.272, 29987 (1997).
110
S.Chandrasegaran, J.Smith, Biol. Chem. Hoppe-Seyler380, 841 (1999).
111
J.Minshull, W.P.Stemmer, Curr. Opin. Chem. Biol.3, 284 (1999).
112
R.Alves, R.A.Chaleil, M.J.Sternberg, J. Mol. Biol.320, 751 (2002).
113
X.S.Xie, H.P.Lu, J. Biol. Chem.274, 15967 (1999).
114
R.Callender, R.B.Dyer, Curr. Opin. Struct. Biol.12, 628 (2002).
115
A.Fedorovet al.,Biochemistry40, 853 (2001).
116
R.M.Stroud, J.Finer-Moore, Biochemistry42, 239 (2003).
117
R.P.Bell, The Tunneling Effect in Chemistry (Chapman & Hall, London and New York, 1980).
118
C.Alhambra, J.C.Corchado, M.L.Sanchez, J.Gao, D.G.Truhlar, J. Am. Chem. Soc.122, 8197 (2000).
119
J.M.Thomas, Angew. Chem. Int. Ed. Eng.33, 913 (1994).
120
J.A.McCammon, S.C.Harvey, Dynamics of Proteins and Nucleic Acids (Cambridge Univ.Press, New York, 1987).
121
G.G.Hammes, Biochemistry41, 8221 (2002).
122
S.J.B. acknowledges funding from NIH grants GM13306 and GM24129. S.H.-S. acknowledges funding from NIH grant GM56207 and NSF grant CHE-0096357. We also thank Yolanda Small and James Watney for creating the figures.

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 301 | Issue 5637
29 August 2003

Submission history

Published in print: 29 August 2003

Permissions

Request permissions for this article.

Authors

Affiliations

Stephen J. Benkovic* [email protected]
Department of Chemistry, 152 Davey Laboratory, Pennsylvania State University, University Park, PA 16802, USA.
Sharon Hammes-Schiffer* [email protected]
Department of Chemistry, 152 Davey Laboratory, Pennsylvania State University, University Park, PA 16802, USA.

Notes

*
To whom correspondence should be addressed.E-mail: [email protected] (S.J.B.) and [email protected] (S.H.S.)

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Foldamer-templated catalysis of macrocycle formation, Science, 366, 6472, (1528-1531), (2021)./doi/10.1126/science.aax7344
    Abstract
  2. Site-selective enzymatic C‒H amidation for synthesis of diverse lactams, Science, 364, 6440, (575-578), (2021)./doi/10.1126/science.aaw9068
    Abstract
  3. Enzymatic construction of highly strained carbocycles, Science, 360, 6384, (71-75), (2021)./doi/10.1126/science.aar4239
    Abstract
  4. Enzymes at work are enzymes in motion, Science, 355, 6322, (247-248), (2021)./doi/10.1126/science.aal4632
    Abstract
  5. A Dynamic Knockout Reveals That Conformational Fluctuations Influence the Chemical Step of Enzyme Catalysis, Science, 332, 6026, (234-238), (2021)./doi/10.1126/science.1198542
    Abstract
  6. Surface Sites for Engineering Allosteric Control in Proteins, Science, 322, 5900, (438-442), (2021)./doi/10.1126/science.1159052
    Abstract
  7. Enzyme Motions Inside and Out, Science, 312, 5771, (208-209), (2021)./doi/10.1126/science.1127654
    Abstract
  8. Atomic Description of an Enzyme Reaction Dominated by Proton Tunneling, Science, 312, 5771, (237-241), (2021)./doi/10.1126/science.1126002
    Abstract
  9. Design and Evolution of New Catalytic Activity with an Existing Protein Scaffold, Science, 311, 5760, (535-538), (2021)./doi/10.1126/science.1118953
    Abstract
  10. Computational Design of a Biologically Active Enzyme, Science, 304, 5679, (1967-1971), (2021)./doi/10.1126/science.1098432
    Abstract
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Purchase digital access to this article

Download and print this article for your personal scholarly, research, and educational use.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media