Advertisement
No access
STKE Reviews

Reactive Oxygen Species–Mediated Mitochondria-to-Nucleus Signaling: A Key to Aging and Radical-Caused Diseases

Science's STKE
25 Apr 2006
Vol 2006, Issue 332
p. re3

Abstract

Mitochondria-generated reactive oxygen species have been implicated as a common feature that connects aging of organisms and age-related diseases. Efficient elimination of these radicals by antioxidants correlates with increased life span. Understanding how the mitochondrion signals to the nucleus to regulate antioxidant proteins might be a key to aging processes and treatment of human diseases.

Abstract

The mitochondrial respiratory chain generates reactive oxygen species (ROS), oxygen-containing molecules that are chemically reactive because they contain unpaired electrons, as a by-product of aerobic metabolism. These ROS are rapidly detoxified by antioxidant proteins. The failure of effective detoxification of cells from mROS contributes to aging and has been implicated in the development and progression of age-related diseases. ROS can be decreased by dietary antioxidants or by antioxidant proteins, which are encoded by nuclear genes. Because the source of ROS and the location of gene regulation are separated, mitochondria-to-nucleus signaling is thought to regulate cellular detoxification. Notable advances have been made in identifying the protective signaling pathways that are activated by increased intracellular oxidant levels. There is increasing evidence that protein oxidation directly regulates phosphatases and kinases. Some of these signaling molecules appear to function as ROS sensors that initiate signaling from the mitochondria to the nucleus. Understanding how the mitochondrion signals to the nucleus to regulate antioxidant proteins might be useful in efforts to extend life span in humans or to improve treatments for neurodegenerative or other diseases influenced by ROS.

Get full access to this article

View all available purchase options and get full access to this article.

References

1
E. A. Schon, Mitochondrial genetics and disease. Trends Biochem. Sci. 25, 555–560 (2000).
2
G. N. Landis, J. Tower, Superoxide dismutase evolution and life span regulation. Mech. Ageing Dev. 126, 365–379 (2005).
3
D. C. Wallace, Mitochondrial diseases in man and mouse. Science 283, 1482–1488 (1999).
4
S. Hekimi, L. Guarente, Genetics and the specificity of the aging process. Science 299, 1351–1354 (2003).
5
T. Finkel, N. J. Holbrook, Oxidants, oxidative stress and the biology of ageing. Nature 408, 239–247 (2000).
6
T. B. Kirkwood, S. N. Austad, Why do we age? Nature 408, 233–238 (2000).
7
R. A. Butow, N. G. Avadhani, Mitochondrial signaling: The retrograde response. Mol. Cell 14, 1–15 (2004).
8
D. J. Selkoe, Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature 399, A23–A31 (1999).
9
J. W. Lustbader, M. Cirilli, C. Lin, H. W. Xu, K. Takuma, N. Wang, C. Caspersen, X. Chen, S. Pollak, M. Chaney, F. Trinchese, S. Liu, F. Gunn-Moore, L. F. Lue, D. G. Walker, P. Kuppusamy, Z. L. Zewier, O. Arancio, D. Stern, S. S. Yan, H. Wu, ABAD directly links Aβ to mitochondrial toxicity in Alzheimer’s disease. Science 304, 448–452 (2004).
10
T. Finkel, Opinion: Radical medicine: Treating ageing to cure disease. Nat. Rev. Mol. Cell Biol. 6, 971–976 (2005).
11
D. Harman, Aging and disease: Extending functional life span. Ann. N. Y. Acad. Sci. 786, 321–336 (1996).
12
D. Harman, Aging: A theory based on free radical and radiation chemistry. J. Gerontol. 11, 298–300 (1956).
13
J. Taub, J. F. Lau, C. Ma, J. H. Hahn, R. Hoque, J. Rothblatt, M. Chalfie, A cytosolic catalase is needed to extend adult lifespan in C. elegans daf-C and clk-1 mutants. Nature 399, 162–166 (1999).
14
R. S. Sohal, R. Weindruch, Oxidative stress, caloric restriction, and aging. Science 273, 59–63 (1996).
15
J. Sun, J. Tower, FLP recombinase-mediated induction of Cu/Zn-superoxide dismutase transgene expression can extend the life span of adult Drosophila melanogaster flies. Mol. Cell. Biol. 19, 216–228 (1999).
16
D. Xu, T. Finkel, A role for mitochondria as potential regulators of cellular life span. Biochem. Biophys. Res. Commun. 294, 245–248 (2002).
17
W. C. Orr, R. S. Sohal, Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263, 1128–1130 (1994).
18
T. L. Parkes, A. J. Elia, D. Dickinson, A. J. Hilliker, J. P. Phillips, G. L. Boulianne, Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons. Nat. Genet. 19, 171–174 (1998).
19
S. Melov, P. Coskun, M. Patel, R. Tuinstra, B. Cottrell, A. S. Jun, T. H. Zastawny, M. Dizdaroglu, S. I. Goodman, T. T. Huang, H. Miziorko, C. J. Epstein, D. C. Wallace, Mitochondrial disease in superoxide dismutase 2 mutant mice. Proc. Natl. Acad. Sci. U.S.A. 96, 846–851 (1999).
20
D. C. Wallace, A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Annu. Rev. Genet. 39, 359–407 (2005).
21
P. Storz, H. Doppler, A. Toker, Protein kinase D mediates mitochondrion-to-nucleus signaling and detoxification from mitochondrial reactive oxygen species. Mol. Cell. Biol. 25, 8520–8530 (2005).
22
P. Storz, Reactive oxygen species in tumor progression. Front. Biosci. 10, 1881–1896 (2005).
23
E. Cadenas, Mitochondrial free radical production and cell signaling. Mol. Aspects Med. 25, 17–26 (2004).
24
D. Han, E. Williams, E. Cadenas, Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochem. J. 353, 411–416 (2001).
25
M. Crompton, The mitochondrial permeability transition pore and its role in cell death. Biochem. J. 341, 233–249 (1999).
26
M. Madesh, G. Hajnoczky, VDAC-dependent permeabilization of the outer mitochondrial membrane by superoxide induces rapid and massive cytochrome c release. J. Cell Biol. 155, 1003–1015 (2001).
27
J. D. Crapo, T. Oury, C. Rabouille, J. W. Slot, L. Y. Chang, Copper,zinc superoxide dismutase is primarily a cytosolic protein in human cells. Proc. Natl. Acad. Sci. U.S.A. 89, 10405–10409 (1992).
28
L. A. Sturtz, K. Diekert, L. T. Jensen, R. Lill, V. C. Culotta, A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage. J. Biol. Chem. 276, 38084–38089 (2001).
29
A. C. Mello Filho, R. Meneghini, In vivo formation of single-strand breaks in DNA by hydrogen peroxide is mediated by the Haber-Weiss reaction. Biochim. Biophys. Acta 781, 56–63 (1984).
30
J. A. Imlay, S. M. Chin, S. Linn, Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 240, 640–642 (1988).
31
T. Finkel, Oxidant signals and oxidative stress. Curr. Opin. Cell Biol. 15, 247–254 (2003).
32
C. S. Boyd, E. Cadenas, Nitric oxide and cell signaling pathways in mitochondrial-dependent apoptosis. Biol. Chem. 383, 411–423 (2002).
33
S. Immenschuh, E. Baumgart-Vogt, Peroxiredoxins, oxidative stress, and cell proliferation. Antioxid. Redox Signal. 7, 768–777 (2005).
34
S. G. Rhee, H. Z. Chae, K. Kim, Peroxiredoxins: A historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic. Biol. Med. 38, 1543–1552 (2005).
35
Z. A. Wood, E. Schroder, J. Robin Harris, L. B. Poole, Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 28, 32–40 (2003).
36
G. J. Kops, T. B. Dansen, P. E. Polderman, I. Saarloos, K. W. Wirtz, P. J. Coffer, T. T. Huang, J. L. Bos, R. H. Medema, B. M. Burgering, Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 419, 316–321 (2002).
37
P. Storz, A. Toker, Protein kinase D mediates a stress-induced NF-κB activation and survival pathway. EMBO J. 22, 109–120 (2003).
38
D. H. Flint, J. F. Tuminello, M. H. Emptage, The inactivation of Fe-S cluster containing hydro-lyases by superoxide. J. Biol. Chem. 268, 22369–22376 (1993).
39
T. C. Meng, T. Fukada, N. K. Tonks, Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol. Cell 9, 387–399 (2002).
40
N. K. Tonks, Redox redux: Revisiting PTPs and the control of cell signaling. Cell 121, 667–670 (2005).
41
I. Nakashima, M. Kato, A. A. Akhand, H. Suzuki, K. Takeda, K. Hossain, Y. Kawamoto, Redox-linked signal transduction pathways for protein tyrosine kinase activation. Antioxid. Redox Signal. 4, 517–531 (2002).
42
D. Xu, I. I. Rovira, T. Finkel, Oxidants painting the cysteine chapel: Redox regulation of PTPs. Dev. Cell 2, 251–252 (2002).
43
S. R. Lee, K. S. Kwon, S. R. Kim, S. G. Rhee, Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J. Biol. Chem. 273, 15366–15372 (1998).
44
Y. Guo, N. Cheong, Z. Zhang, R. De Rose, Y. Deng, S. A. Farber, T. Fernandes-Alnemri, E. S. Alnemri, Tim50, a component of the mitochondrial translocator, regulates mitochondrial integrity and cell death. J. Biol. Chem. 279, 24813–24825 (2004).
45
D. J. Pagliarini, S. E. Wiley, M. E. Kimple, J. R. Dixon, P. Kelly, C. A. Worby, P. J. Casey, J. E. Dixon, Involvement of a mitochondrial phosphatase in the regulation of ATP production and insulin secretion in pancreatic β cells. Mol. Cell 19, 197–207 (2005).
46
M. Salvi, A. Stringaro, A. M. Brunati, E. Agostinelli, G. Arancia, G. Clari, A. Toninello, Tyrosine phosphatase activity in mitochondria: Presence of Shp-2 phosphatase in mitochondria. Cell. Mol. Life Sci. 61, 2393–2404 (2004).
47
M. Salvi, A. M. Brunati, A. Toninello, Tyrosine phosphorylation in mitochondria: A new frontier in mitochondrial signaling. Free Radic. Biol. Med. 38, 1267–1277 (2005).
48
L. Cardone, A. Carlucci, A. Affaitati, A. Livigni, T. DeCristofaro, C. Garbi, S. Varrone, A. Ullrich, M. E. Gottesman, E. V. Avvedimento, A. Feliciello, Mitochondrial AKAP121 binds and targets protein tyrosine phosphatase D1, a novel positive regulator of src signaling. Mol. Cell. Biol. 24, 4613–4626 (2004).
49
S. R. Lee, K. S. Yang, J. Kwon, C. Lee, W. Jeong, S. G. Rhee, Reversible inactivation of the tumor suppressor PTEN by H2O2. J. Biol. Chem. 277, 20336–20342 (2002).
50
J. Jiang, Y. Zhang, A. R. Krainer, R. M. Xu, Crystal structure of human p32, a doughnut-shaped acidic mitochondrial matrix protein. Proc. Natl. Acad. Sci. U.S.A. 96, 3572–3577 (1999).
51
P. Storz, A. Hausser, G. Link, J. Dedio, B. Ghebrehiwet, K. Pfizenmaier, F. J. Johannes, Protein kinase C [micro] is regulated by the multifunctional chaperon protein p32. J. Biol. Chem. 275, 24601–24607 (2000).
52
E. M. Valente, P. M. Abou-Sleiman, V. Caputo, M. M. Muqit, K. Harvey, S. Gispert, Z. Ali, D. Del Turco, A. R. Bentivoglio, D. G. Healy, A. Albanese, R. Nussbaum, R. Gonzalez-Maldonado, T. Deller, S. Salvi, P. Cortelli, W. P. Gilks, D. S. Latchman, R. J. Harvey, B. Dallapiccola, G. Auburger, N. W. Wood, Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304, 1158–1160 (2004); published online 15 April 2004.
53
S. W. Oh, A. Mukhopadhyay, N. Svrzikapa, F. Jiang, R. J. Davis, H. A. Tissenbaum, JNK regulates lifespan in Caenorhabditis elegans by modulating nuclear translocation of forkhead transcription factor/DAF-16. Proc. Natl. Acad. Sci. U.S.A. 102, 4494–4499 (2005).
54
M. C. Wang, D. Bohmann, H. Jasper, JNK signaling confers tolerance to oxidative stress and extends lifespan in Drosophila. Dev. Cell 5, 811–816 (2003).
55
M. Salvi, A. M. Brunati, L. Bordin, N. La Rocca, G. Clari, A. Toninello, Characterization and location of Src-dependent tyrosine phosphorylation in rat brain mitochondria. Biochim. Biophys. Acta 1589, 181–195 (2002).
56
T. Miyazaki, L. Neff, S. Tanaka, W. C. Horne, R. Baron, Regulation of cytochrome c oxidase activity by c-Src in osteoclasts. J. Cell Biol. 160, 709–718 (2003).
57
S. Itoh, S. Lemay, M. Osawa, W. Che, Y. Duan, A. Tompkins, P. S. Brookes, S. S. Sheu, J. Abe, Mitochondrial Dok-4 recruits Src kinase and regulates NF-κB activation in endothelial cells. J. Biol. Chem. 280, 26383–26396 (2005).
58
A. Livigni, A. Scorziello, S. Agnese, A. Adornetto, A. Carlucci, C. Garbi, I. Castaldo, L. Annunziato, E. V. Avvedimento, A. Feliciello, Mitochondrial AKAP121 links cAMP and src signaling to oxidative metabolism. Mol. Biol. Cell 17, 263–271 (2006).
59
A. Brunet, A. Bonni, M. J. Zigmond, M. Z. Lin, P. Juo, L. S. Hu, M. J. Anderson, K. C. Arden, J. Blenis, M. E. Greenberg, Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868 (1999).
60
M. Tatar, A. Bartke, A. Antebi, The endocrine regulation of aging by insulin-like signals. Science 299, 1346–1351 (2003).
61
D. J. Clancy, D. Gems, L. G. Harshman, S. Oldham, H. Stocker, E. Hafen, S. J. Leevers, L. Partridge, Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292, 104–106 (2001).
62
A. Brunet, L. B. Sweeney, J. F. Sturgill, K. F. Chua, P. L. Greer, Y. Lin, H. Tran, S. E. Ross, R. Mostoslavsky, H. Y. Cohen, L. S. Hu, H. L. Cheng, M. P. Jedrychowski, S. P. Gygi, D. A. Sinclair, F. W. Alt, M. E. Greenberg, Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303, 2011–2015 (2004); published online 19 February 2004.
63
H. Tran, A. Brunet, J. M. Grenier, S. R. Datta, A. J. Fornace, Jr., P. S. DiStefano, L. W. Chiang, M. E. Greenberg, DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science 296, 530–534 (2002).
64
M. A. Essers, S. Weijzen, A. M. de Vries-Smits, I. Saarloos, N. D. de Ruiter, J. L. Bos, B. M. Burgering, FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J. 23, 4802–4812 (2004).
65
M. Yamamoto, J. D. Clark, J. V. Pastor, P. Gurnani, A. Nandi, H. Kurosu, M. Miyoshi, Y. Ogawa, D. H. Castrillon, K. P. Rosenblatt, M. Kuro-o, Regulation of oxidative stress by the anti-aging hormone klotho. J. Biol. Chem. 280, 38029–38034 (2005).
66
G. Barja, Free radicals and aging. Trends Neurosci. 27, 595–600 (2004).
67
S. Nemoto, M. M. Fergusson, T. Finkel, Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science 306, 2105–2108 (2004).
68
R. S. Balaban, S. Nemoto, T. Finkel, Mitochondria, oxidants, and aging. Cell 120, 483–495 (2005).
69
D. Harman, Role of free radicals in aging and disease. Ann. N. Y. Acad. Sci. 673, 126–141 (1992).
70
C. A. Knight-Lozano, C. G. Young, D. L. Burow, Z. Y. Hu, D. Uyeminami, K. E. Pinkerton, H. Ischiropoulos, S. W. Ballinger, Cigarette smoke exposure and hypercholesterolemia increase mitochondrial damage in cardiovascular tissues. Circulation 105, 849–854 (2002).
71
T. M. Dawson, V. L. Dawson, Molecular pathways of neurodegeneration in Parkinson’s disease. Science 302, 819–822 (2003).
72
S. Nemoto, T. Finkel, Ageing and the mystery at Arles. Nature 429, 149–152 (2004).
73
D. R. Rosen T. Siddique, D. Patterson, D. A. Figlewicz, P. Sapp, A. Hentati, D. Donaldson, J. Goto, J. P. O’Regan, H. X. Deng, Z. Rahmani, A. Krizus, D. McKenna-Yasek, A. Cayabyab, S. M. Gaston, R. Berger, R. E. Tanzi, J. J. Halperin, B. Herzfeldt, R. van den Bergh, W.-Y. Hung, T. Bird, G. Deng, D. W. Mulder, C. Smyth, N. G. Laing, E. Soriano, M. A. Pericak-Vance, J. Haines, G. A. Rouleau, J. S. Gusella, H. R. Horvitz, R. H. Brown Jr., Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59–62 (1993).
74
E. Bossy-Wetzel, R. Schwarzenbacher, S. A. Lipton, Molecular pathways to neurodegeneration. Nat. Med. 10, (suppl.), S2–S9 (2004).
75
J. K. Andersen, Oxidative stress in neurodegeneration: Cause or consequence? Nat. Med. 10, (suppl.), S18–S25 (2004).
76
C. Behl, J. B. Davis, R. Lesley, D. Schubert, Hydrogen peroxide mediates amyloid β protein toxicity. Cell 77, 817–827 (1994).
77
F. Li, N. Y. Calingasan, F. Yu, W. M. Mauck, M. Toidze, C. G. Almeida, R. H. Takahashi, G. A. Carlson, M. Flint Beal, M. T. Lin, G. K. Gouras, Increased plaque burden in brains of APP mutant MnSOD heterozygous knockout mice. J. Neurochem. 89, 1308–1312 (2004).
78
A. L. Jackson, L. A. Loeb, The contribution of endogenous sources of DNA damage to the multiple mutations in cancer. Mutat. Res. 477, 7–21 (2001).
79
R. Delsite, S. Kachhap, R. Anbazhagan, E. Gabrielson, K. K. Singh, Nuclear genes involved in mitochondria-to-nucleus communication in breast cancer cells. Mol. Cancer 1, 6 (2002).
80
G. C. Kujoth, A. Hiona, T. D. Pugh, S. Someya, K. Panzer, S. E. Wohlgemuth, T. Hofer, A. Y. Seo, R. Sullivan, W. A. Jobling, J. D. Morrow, H. Van Remmen, J. M. Sedivy, T. Yamasoba, M. Tanokura, R. Weindruch, C. Leeuwenburgh, T. A. Prolla, Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309, 481–484 (2005).
81
A. Trifunovic, A. Wredenberg, M. Falkenberg, J. N. Spelbrink, A. T. Rovio, C. E. Bruder, Y. M. Bohlooly, S. Gidlof, A. Oldfors, R. Wibom, J. Tornell, H. T. Jacobs, N. G. Larsson, Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417–423 (2004).
82
S. E. Schriner, N. J. Linford, G. M. Martin, P. Treuting, C. E. Ogburn, M. Emond, P. E. Coskun, W. Ladiges, N. Wolf, H. Van Remmen, D. C. Wallace, P. S. Rabinovitch, Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308, 1909–1911 (2005); published online 5 May 2005.
83
T. Grune, T. Jung, K. Merker, K. J. Davies, Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and ‘aggresomes’ during oxidative stress, aging, and disease. Int. J. Biochem. Cell Biol. 36, 2519–2530 (2004).
84
D. A. Bota, K. J. Davies, Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat. Cell Biol. 4, 674–680 (2002).
85
B. I. Giasson, J. E. Duda, I. V. Murray, Q. Chen, J. M. Souza, H. I. Hurtig, H. Ischiropoulos, J. Q. Trojanowski, V. M. Lee, Oxidative damage linked to neurodegeneration by selective α-synuclein nitration in synucleinopathy lesions. Science 290, 985–989 (2000).
86
H. J. Lee, S. Y. Shin, C. Choi, Y. H. Lee, S. J. Lee, Formation and removal of α-synuclein aggregates in cells exposed to mitochondrial inhibitors. J. Biol. Chem. 277, 5411–5417 (2002).
87
L. J. Hsu, Y. Sagara, A. Arroyo, E. Rockenstein, A. Sisk, M. Mallory, J. Wong, T. Takenouchi, M. Hashimoto, E. Masliah, α-synuclein promotes mitochondrial deficit and oxidative stress. Am. J. Pathol. 157, 401–410 (2000).
88
M. F. Beal, Mitochondria, oxidative damage, and inflammation in Parkinson’s disease. Ann. N. Y. Acad. Sci. 991, 120–131 (2003).
89
S. W. Ballinger, C. Patterson, C. A. Knight-Lozano, D. L. Burow, C. A. Conklin, Z. Hu, J. Reuf, C. Horaist, R. Lebovitz, G. C. Hunter, K. McIntyre, M. S. Runge, Mitochondrial integrity and function in atherogenesis. Circulation 106, 544–549 (2002).
90
C. A. Neumann, D. S. Krause, C. V. Carman, S. Das, D. P. Dubey, J. L. Abraham, R. T. Bronson, Y. Fujiwara, S. H. Orkin, R. A. Van Etten, Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature 424, 561–565 (2003).
91
H. Van Remmen, Y. Ikeno, M. Hamilton, M. Pahlavani, N. Wolf, S. R. Thorpe, N. L. Alderson, J. W. Baynes, C. J. Epstein, T. T. Huang, J. Nelson, R. Strong, A. Richardson, Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol. Genomics 16, 29–37 (2003).
92
T. P. Szatrowski, C. F. Nathan, Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 51, 794–798 (1991).
93
O. Portakal, O. Ozkaya, M. Erden Inal, B. Bozan, M. Kosan, I. Sayek, Coenzyme Q10 concentrations and antioxidant status in tissues of breast cancer patients. Clin. Biochem. 33, 279–284 (2000).
94
P. A. Baeuerle, R. A. Rupec, H. L. Pahl, Reactive oxygen intermediates as second messengers of a general pathogen response. Pathol. Biol. (Paris) 44, 29–35 (1996).
95
H. Wiseman, B. Halliwell, Damage to DNA by reactive oxygen and nitrogen species: Role in inflammatory disease and progression to cancer. Biochem. J. 313, 17–29 (1996).
96
M. A. Trush, T. W. Kensler, An overview of the relationship between oxidative stress and chemical carcinogenesis. Free Radic. Biol. Med. 10, 201–209 (1991).
97
T. J. Slaga, A. J. Klein-Szanto, L. L. Triplett, L. P. Yotti, K. E. Trosko, Skin tumor-promoting activity of benzoyl peroxide, a widely used free radical-generating compound. Science 213, 1023–1025 (1981).
98
P. A. Cerutti, Prooxidant states and tumor promotion. Science 227, 375–381 (1985).
99
S. D. Pletcher, S. J. Macdonald, R. Marguerie, U. Certa, S. C. Stearns, D. B. Goldstein, L. Partridge, Genome-wide transcript profiles in aging and calorically restricted Drosophila melanogaster. Curr. Biol. 12, 712–723 (2002).
100
D. Harman, Aging: Overview. Ann. N. Y. Acad. Sci. 928, 1–21 (2001).
101
S. Nemoto, M. M. Fergusson, T. Finkel, SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1α. J. Biol. Chem. 280, 16456–16460 (2005).
102
L. Guarente, C. Kenyon, Genetic pathways that regulate ageing in model organisms. Nature 408, 255–262 (2000).
103
K. T. Howitz, K. J. Bitterman, H. Y. Cohen, D. W. Lamming, S. Lavu, J. G. Wood, R. E. Zipkin, P. Chung, A. Kisielewski, L. L. Zhang, B. Scherer, D. A. Sinclair, Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425, 191–196 (2003).
104
S. Melov, J. Ravenscroft, S. Malik, M. S. Gill, D. W. Walker, P. E. Clayton, D. C. Wallace, B. Malfroy, S. R. Doctrow, G. J. Lithgow, Extension of life-span with superoxide dismutase/catalase mimetics. Science 289, 1567–1569 (2000).
105
I thank E. A. Thompson and H. Doeppler for their helpful comments on the manuscript. Research in the Storz laboratory is funded by the Mayo Clinic Cancer Center.

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science's STKE
Volume 2006 | Issue 332
April 2006

Permissions

See the Reprints and Permissions page for information about permissions for this article.

Authors

Affiliations

Peter Storz [email protected]
Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, 4500 San Pablo Road, Jacksonville, FL 32224, USA.

Notes

*Corresponding author. E-mail: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Therapeutic Potential of Perillaldehyde in Ameliorating Vulvovaginal Candidiasis by Reducing Vaginal Oxidative Stress and Apoptosis, Antioxidants, 11, 2, (178), (2022).https://doi.org/10.3390/antiox11020178
    Crossref
  2. Compensatory Genetic and Transcriptional Cytonuclear Coordination in Allopolyploid Lager Yeast ( Saccharomyces pastorianus ) , Molecular Biology and Evolution, 39, 11, (2022).https://doi.org/10.1093/molbev/msac228
    Crossref
  3. Reactive Oxygen Species in Oral Squamous Cell Carcinoma Progression and Importance of Stem Cells in Cancer Therapeutics, Handbook of Oxidative Stress in Cancer: Therapeutic Aspects, (2403-2426), (2022).https://doi.org/10.1007/978-981-16-5422-0_218
    Crossref
  4. Reactive Oxygen Species in Oral Squamous Cell Carcinoma Progression and Importance of Stem Cells in Cancer Therapeutics, Handbook of Oxidative Stress in Cancer: Therapeutic Aspects, (1-24), (2022).https://doi.org/10.1007/978-981-16-1247-3_218-1
    Crossref
  5. Impact of Environmental and Occupational Exposures in Reactive Oxygen Species-Induced Pancreatic Cancer, Handbook of Oxidative Stress in Cancer: Mechanistic Aspects, (637-662), (2022).https://doi.org/10.1007/978-981-15-9411-3_157
    Crossref
  6. Evaluation of the Response of HOS and Saos-2 Osteosarcoma Cell Lines When Exposed to Different Sizes and Concentrations of Silver Nanoparticles, BioMed Research International, 2021, (1-16), (2021).https://doi.org/10.1155/2021/5013065
    Crossref
  7. Redox nanomedicine ameliorates chronic kidney disease (CKD) by mitochondrial reconditioning in mice, Communications Biology, 4, 1, (2021).https://doi.org/10.1038/s42003-021-02546-8
    Crossref
  8. "Metal elements and pesticides as risk factors for Parkinson's disease - A review", Toxicology Reports, 8, (607-616), (2021).https://doi.org/10.1016/j.toxrep.2021.03.009
    Crossref
  9. Impact of Environmental and Occupational Exposures in Reactive Oxygen Species Induced Pancreatic Cancer, Handbook of Oxidative Stress in Cancer: Mechanistic Aspects, (1-26), (2021).https://doi.org/10.1007/978-981-15-4501-6_157-1
    Crossref
  10. Incorporation of a Biocompatible Nanozyme in Cellular Antioxidant Enzyme Cascade Reverses Huntington's Like Disorder in Preclinical Model, Advanced Healthcare Materials, 10, 7, (2001736), (2020).https://doi.org/10.1002/adhm.202001736
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Purchase access to this article

Download and print this article within 24 hours for your personal scholarly, research, and educational use.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media