Skip to main content
Log in

Striatal glucose consumption in chorea-free subjects at risk of Huntington's disease

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Controversial data have been reported with regard to the diagnostic value of the positron emission tomographic (PET) measurement of striatal glucose consumption (rCMRGlc) in chorea-free subjects at risk of Huntington's disease (HD). For further clarification of this issue we measured striatal and cerebellar rCMRGlc in 27 chorea-free subjects at risk of HD, 20 patients with manifest HD and 20 control subjects, using PET and18F-fluorodeoxyglucose. In 6 of the at-risk subjects cerebellar ratios of striatal rCMRGlc were decreased below the corresponding 99% confidence limit determined in the controls. This indicates that the PET measurement of rCMRGlc may, indeed, be valuable in establishing the diagnosis of incipient HD in presymptomatic at-risk subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bortz J (1985) Lehrbuch der Statistik für Sozialwissenschaftler. Springer, Berlin

    Google Scholar 

  2. Conneally PM (1984) Huntington's disease: genetics and epidemiology. Am J Hum Genet 36:506–526

    PubMed  Google Scholar 

  3. Dubinsky RM, Hallett M, Levey B, Di Chiro G (1989) Regional brain glucose metabolism in neurocanthocytosis. Neurology 39:1253–1255

    PubMed  Google Scholar 

  4. Folstein S, Jensen B, Leigh R, Folstein M (1983) The measurement of abnormal movement: methods developed for Huntington's disease. Neurobehav Toxicol Teratol 5:605–609

    PubMed  Google Scholar 

  5. Grafton ST, Mazziotta JC, Pahl JJ, St George-Hyslop P, Haines JL, Gusella J, Hoffman JM, Baxter LR, Phelps ME (1990) A comparison of neurological, metabolic, structural and genetic evaluations in persons at risk for Huntington's disease. Ann Neurol 28:614–621

    PubMed  Google Scholar 

  6. Gusella JF, Wexler NS, Conneally PH, et al (1983) A polymocphic DNA marker genetically linked to Huntington's disease. Nature 306:234–238

    PubMed  Google Scholar 

  7. Hamacher K, Coenen HH, Stöcklin G (1986) Efficient stereospecific synthesis of no-carrier-added 2-[18F] fluoro2-deoxy-d-glucose using aminopolyether supported nucleophilic substitution. J Nucl Med 27:235–238

    PubMed  Google Scholar 

  8. Hawkins RA, Mazziotta JC, Phelps ME (1987) Wilson's disease studied with FDG and positron emission tomography. Neurology 37:1707–1711

    PubMed  Google Scholar 

  9. Hayden MR, Hewitt J, Stoessl AJ, Clare J, Ammann W, Martin WRW (1987) The combined use of positron emission tomography and DNA polymorphisms for preclinical detection of Huntington's disease. Neurology 37:1441–1447

    PubMed  Google Scholar 

  10. Hefter H, Homberg V, Lange H, Freund H-J (1987) Impairment of rapid movement in Huntington's disease. Brain 110:585–612

    PubMed  Google Scholar 

  11. Herzog H, Rota Kops E, Schmid A, Feinendegen LE (1991) A consideration of the effects of differing parameters in PET on the accuracy of radioactivity quantitation in vivo. Med Prog Technol 17:193–198

    PubMed  Google Scholar 

  12. Hömberg V, Hefter H, Granseyer G, Strauss W, Lange W, Hennerici M (1986) Event-related potentials in patients with Huntington's disease and relatives at risk in relation to detailed psychometry. Electroencephalogr Clin Neurophysiol 63:552–569

    Article  PubMed  Google Scholar 

  13. Horwitz B (1990) Quantification and analysis of positron emission tomographic metabolic data. In: Duara R (ed) Positron emission tomography in dementia. (Frontiers in clinical neuroscience, vol 10) Wiley-Liss, New York, pp 13–70

    Google Scholar 

  14. Hosokowa S, Ichiya Y, Kuwabara Y, Ayabe Z, Mitsuo K, Goto I, Kato M (1987) Positron emission tomography in cases of chorea with different underlying diseases. J Neurol Neurosurg Psychiatry 50:1284–1287

    PubMed  Google Scholar 

  15. Huang S-C, Phelps ME, Hoffman El, Sideris K, Selin CH, Kuhl DE (1989) Noninvasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol 238:E69-E82

    Google Scholar 

  16. Kato H, Kobayashi K, Kohari S, Okita N, Iijima K (1987) Paroxysmal kinesigenic choreoathetosis and paroxysmal dystonic choreoathetosis in a patient with familial idiopathic hypoparathyroidism. Tohoku J Exp Med 151:233–239

    PubMed  Google Scholar 

  17. Kuwert T, Lange HW, Langen K-J, Herzog H, Aulich A, Feinendegen LE (1990) Cortical and subcortical glucose consumption measured by PET in patients with Huntington's disease. Brain 113:1404–1423

    Google Scholar 

  18. Kuwert T, Lange HW, Langen K-J, Herzog H, Hefter H, Aulich A, Feinendegen LE (1990) Normal striatal glucose consumption in two patients with benign hereditary chorea as measured by positron emission tomography. JNeurol 237:80–84

    Google Scholar 

  19. Kuwert T, Sures T, Herzog H, Loken M, Hennerici M, Langen K-J, Feinendegen LE (1992) On the influence of spatial resolution and of the size and form of regions of interest on the measurement of regional cerebral metabolic rates by positron emission tomography. J Neural Transm [Suppl] 37:53–66

    Google Scholar 

  20. Kuwert T, Ganslandt T, Jansen P, Jülicher F, Lange H, Herzog H, Scholz D, Aulich A, Feinendegen LE (1992) Influence of size of regions of interest on PET evaluation of caudate glucose consumption. J Comput Assist Tomogr 16:789–794

    PubMed  Google Scholar 

  21. Kuwert T, Hefter H, Scholz D, Milz M, Wei▪ P, Arendt G, Herzog H, Loken M, Hennerici M, Feinendegen LE (1992) Regional cerebral glucose consumption measured by positron emission tomography in patients with Wilson's disease. Eur J Nucl Med 19:96–101

    Article  PubMed  Google Scholar 

  22. Kuwert T, Noth J, Scholz D, Schwarz M, Lange HW, Topper R, Herzog H, Aulich A, Feinendegen LE (1993) Comparison of somatosensory evoked potentials with striatal glucose consumption measured by positron emission tomography in the early diagnosis of Huntington's disease. Mov Disord 8:98–106

    PubMed  Google Scholar 

  23. Lange HW, Strauss W, Hassel PC, Wöller W, Tegeler J (1983) Langzeittherapie bei Huntington-Kranken. Psycho 5:286–290

    Google Scholar 

  24. Lasker A, Zee D, Hain T, et al (1988) Saccade in Huntington's disease: slowing and dysmetria. Neurology 38:427–431

    PubMed  Google Scholar 

  25. Leigh R, Newman S, Folstein S, Lasker AG, Jensen BA (1983) Abnormal ocular motor control in Huntington's disease. Neurology 33:1268–1275

    PubMed  Google Scholar 

  26. Martin WRW, Clark C, Ammann W, Stoessl AJ, Shtybel W, Hayden MR (1992) Cortical glucose metabolism in Huntington's disease. Neurology 42:223–229

    PubMed  Google Scholar 

  27. Mazziotta JC (1989) Huntington's disease: studies with structural imaging techniques and positron emission tomography. Semin Neurol 9:360–369

    PubMed  Google Scholar 

  28. Mazziotta JC, Phelps ME, Pahl JJ, Huang S-C, Baxter LR, Riege WH, Hoffman JM, Kuhl DE, Lanto AB, Wapenski JA, Markham CH (1987) Reduced cerebral glucose metabolism in asymptomatic subjects at risk for Huntington's disease. N Engl J Med 316:357–362

    PubMed  Google Scholar 

  29. Myers R, Vonsattel J, Steven T, Cupples LA, Richardson EP, Martin JB, Bird ED (1988) Clinical and neuropathologic assessment of severity in Huntington's disease. Neurology 38:341–347

    PubMed  Google Scholar 

  30. Noth J, Engel L, Friedemann HH, Lange HW (1984) Evoked potentials in patients with Huntington's disease and their off-spring. 1. Somatosensory evoked potential. Electroencephalogr Clin Neurophysiol 59:134–141

    Article  PubMed  Google Scholar 

  31. Palella TD, Hichwa RD, Ehrenkaufer RC, Rothley JM, McQuillan MA, Young AB, Kelley WN (1981)18F-Fluorodeoxyglucose PET scanning in HPRT deficiency. Am J Hum Genet 37:A70.19

    Google Scholar 

  32. Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE (1979) Tomographic measurement of local cerebral glucose metabolic rate in human with (18F) 2-fluoro-2-deoxy-d-glucose: validation of method. Ann Neurol 6:371–388

    PubMed  Google Scholar 

  33. Pietrini P, Schapiro MB, Kozachuk W, Aronin N, Marshal P, Kumar A, Kaye JA, Friedland R, Rapoport SI (1990) Cerebral glucose metabolism in familial inverted chorea assessed by positron emission tomography (abstract). J Nucl Med 31:740

    Google Scholar 

  34. Reivich M, Alavi A, Wolf A, Fowler J, Russell J, Arnett C, MacGregor RR, Shiue CY, Atkins H, Anand A, Dann R, Greenberg JH (1985) Glucose metabolic rate kinetic model parameter determination in humans: the lumped constants and rate constants for [18]flu-orodeoxyglucose and [11C] deoxyglucose. J Cereb Blood Flow Metab 5:179–192

    PubMed  Google Scholar 

  35. Rota Kops E, Herzog H, Schmid A, Holte S, Feinendegen LE (1990) Performance characteristics of an eightring whole body PET scanner. J Comput Assist Tomogr 14:437–445

    PubMed  Google Scholar 

  36. Suchowersky O, Hayden MR, Martin WR, Stoessl AJ, Hildebrand AM, Pate BD (1986) Cerebral metabolism of glucose in benign hereditary chorea. Mov Disord 1:33–44

    PubMed  Google Scholar 

  37. Talairach J, Tournoux P (1988) Coplanar stereotaxic atlas of the human brain: 3-dimensional proportional system: an approach in cerebral imaging. Thieme, Stuttgart

    Google Scholar 

  38. rzepacz P, Webb M (1987) The choreameter: an objective test of chorea during voluntary movements. Biol Psychiatry 32:771–776

    Article  Google Scholar 

  39. Tyler JL, Strother SC, Zatorre RJ, Alivisatos B, Worsley KJ, Diksic M, Yamamoto YL (1988) Stability of regional cerebral glucose metabolism in the normal brain measured by positron emission tomography. J Nucl Med 29:631–642

    PubMed  Google Scholar 

  40. Volder AG de, Francart J, Laterre C, Dooms G, Bol A, Michel C, Goffinet AM (1989) Decreased glucose utilization in the striatum and frontal lobe in probable striatonigral degeneration. Ann Neurol 26:239–247

    PubMed  Google Scholar 

  41. Weindl A, Kuwert T, Leenders KL, Poremba M, Gräfin von Einsiedel H, Antonini A, Herzog H, Scholz D, Feinendegen LE, Conrad B (1993) Increased striatal glucose consumption in Sydenham's chorea. Mov Disord 8:437–444

    PubMed  Google Scholar 

  42. Young A, Shoulson I, Penney J, Starosta-Rubinstein S, Markel DS, Berent S, Giordani B, Ehrenkaufer R, Jewett D, Hichwa R (1986) Huntington's disease in Venezuela: neurological features and functional decline. Neurology 36:244–249

    PubMed  Google Scholar 

  43. Young AB, Penney JB, Starosta-Rubinstein S, Markel D, Berent S, Rothley J, Betley A, Hichwa R (1987) Normal caudate glucose metabolism in persons at risk for Huntington's disease. Arch Neurol 44:254–257

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuwert, T., Boecker, H., Titz, H. et al. Striatal glucose consumption in chorea-free subjects at risk of Huntington's disease. J Neurol 241, 31–36 (1993). https://doi.org/10.1007/BF00870669

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00870669

Key words

Navigation