Skip to main content

Advertisement

Log in

Ascorbic acid participates in a general mechanism for concerted glucose transport inhibition and lactate transport stimulation

  • Transport Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

In this paper, we present a novel function for ascorbic acid. Ascorbic acid is an important water-soluble antioxidant and cofactor in various enzyme systems. We have previously demonstrated that an increase in neuronal intracellular ascorbic acid is able to inhibit glucose transport in cortical and hippocampal neurons. Because of the presence of sodium-dependent vitamin C transporters, ascorbic acid is highly concentrated in brain, testis, lung, and adrenal glands. In this work, we explored how ascorbic acid affects glucose and lactate uptake in neuronal and non-neuronal cells. Using immunofluorescence and reverse transcriptase-polymerase chain reaction (RT-PCR) analysis, the expression of glucose and ascorbic acid transporters in non-neuronal cells was studied. Like neurons, HEK293 cells expressed GLUT1, GLUT3, and SVCT2. With radioisotope-based methods, only intracellular ascorbic acid, but not extracellular, inhibits 2-deoxyglucose transport in HEK293 cells. As monocarboxylates such as pyruvate and lactate, are important metabolic sources, we analyzed the ascorbic acid effect on lactate transport in cultured neurons and HEK293 cells. Intracellular ascorbic acid was able to stimulate lactate transport in both cell types. Extracellular ascorbic acid did not affect this transport. Our data show that ascorbic acid inhibits glucose transport and stimulates lactate transport in neuronal and non-neuronal cells. Mammalian cells frequently present functional glucose and monocarboxylate transporters, and we describe here a general effect in which ascorbic acid functions like a glucose/monocarboxylate uptake switch in tissues expressing ascorbic acid transporters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

4-CIN:

α-cyano-4-hydroxycinnamate

CytB:

cytochalasin B

DHA:

dehydroascorbic acid

DOG:

deoxyglucose

DTT:

dithiothreitol

GLUT:

glucose transporter

MCT:

monocarboxylate transporter

Oua:

ouabain

SVCT:

sodium vitamin C transporter

References

  1. Ainscow EK, Mirshamsi S, Tang T, Ashford ML, Rutter GA (2002) Dynamic imaging of free cytosolic ATP concentration during fuel sensing by rat hypothalamic neurones: evidence for ATP-independent control of ATP-sensitive K(+) channels. J Physiol 544:429–445

    Article  PubMed  CAS  Google Scholar 

  2. Astuya A, Caprile T, Castro M, Salazar K, Garcia M de L, Reinicke K, Rodriguez F, Vera JC, Millan C, Ulloa V, Low M, Martinez F, Nualart F (2005) Vitamin C uptake and recycling among normal and tumor cells from the central nervous system. J Neurosci Res 79:146–156

    Article  PubMed  CAS  Google Scholar 

  3. Baker SK, McCullagh KJ, Bonen A (1998) Training intensity-dependent and tissue-specific increases in lactate uptake and MCT-1 in heart and muscle. J Appl Physiol 84:987–994

    Article  PubMed  CAS  Google Scholar 

  4. Basketter DA, Widdas WF (1978) Asymmetry of the hexose transfer system in human erythrocytes. Comparison of the effects of cytochalasin B, phloretin and maltose as competitive inhibitors. J Physiol 278:389–401

    PubMed  CAS  Google Scholar 

  5. Bloch R (1973) Inhibition of glucose transport in the human erythrocyte by cytochalasin B. Biochemistry 12:4799–4801

    Article  PubMed  CAS  Google Scholar 

  6. Boutelle MG, Svensson L, Fillenz M (1989) Rapid changes in striatal ascorbate in response to tail-pinch monitored by constant potential voltammetry. Neuroscience 30:11–17

    Article  PubMed  CAS  Google Scholar 

  7. Bouzier-Sore AK, Voisin P, Canioni P, Magistretti PJ, Pellerin L (2003) Lactate is a preferential oxidative energy substrate over glucose for neurons in culture. J Cereb Blood Flow Metab 23:1298–1306

    Article  PubMed  CAS  Google Scholar 

  8. Brauchi S, Rauch MC, Alfaro IE, Cea C, Concha II, Benos DJ, Reyes JG (2005) Kinetics, molecular basis, and differentiation of l-lactate transport in spermatogenic cells. Am J Physiol Cell Physiol 288:C523–C534

    Article  PubMed  CAS  Google Scholar 

  9. Broer S, Rahman B, Pellegri G, Pellerin L, Martin JL, Verleysdonk S, Hamprecht B, Magistretti PJ (1997) Comparison of lactate transport in astroglial cells and monocarboxylate transporter 1 (MCT 1) expressing Xenopus laevis oocytes. Expression of two different monocarboxylate transporters in astroglial cells and neurons. J Biol Chem 272:30096–3102

    Article  PubMed  CAS  Google Scholar 

  10. Brown AM, Wender R, Ransom BR (2001) Metabolic substrates other than glucose support axon function in central white matter. J Neurosci Res 66:839–843

    Article  PubMed  CAS  Google Scholar 

  11. Castro M, Caprile T, Astuya A, Millan C, Reinicke K, Vera JC, Vasquez O, Aguayo LG, Nualart F (2001) High-affinity sodium-vitamin C co-transporters (SVCT) expression in embryonic mouse neurons. J Neurochem 78:815–823

    Article  PubMed  CAS  Google Scholar 

  12. Castro M, Pozo M, Cortés C, Garcia M de L, Concha II, Nualart F (2007) Intracellular ascorbic acid inhibits transport of glucose by neurons, but not by astrocytes. J Neurochem 102:773–782

    Article  PubMed  CAS  Google Scholar 

  13. Chih CP, Roberts Jr EL (2003) Energy substrates for neurons during neural activity: a critical review of the astrocyte-neuron lactate shuttle hypothesis. J Cereb Blood Flow Metab 23:1263–1281

    Article  PubMed  CAS  Google Scholar 

  14. Daruwala R, Song J, Koh WS, Rumsey SC, Levine M (1999) Cloning and functional characterization of the human sodium-dependent vitamin C transporters hSVCT1 and hSVCT2. FEBS Lett 460:480–484

    Article  PubMed  CAS  Google Scholar 

  15. Dienel GA, Cruz NF (2004) Nutrition during brain activation: does cell-to-cell lactate shuttling contribute significantly to sweet and sour food for thought. Neurochem Int 45:321–351

    Article  PubMed  CAS  Google Scholar 

  16. Faaland CA, Race JE, Ricken G, Warner FJ, Williams WJ, Holtzman EJ (1998) Molecular characterization of two novel transporters from human and mouse kidney and from LLC-PK1 cells reveals a novel conserved family that is homologous to bacterial and Aspergillus nucleobase transporters. Biochim Biophys Acta 1442:353–360

    PubMed  CAS  Google Scholar 

  17. Fiorani M, D Sanctis R, Scarlatti F, Vallorani L, De Bellis R, Serafini G, Bianchi M, Stocchi V (2000) Dehydroascorbic acid irreversibly inhibits hexokinase activity. Mol Cell Biochem 209:145–153

    Article  PubMed  CAS  Google Scholar 

  18. Fischer H, Schwarzer C, Illek B (2004) Vitamin C controls the cystic fibrosis transmembrane conductance regulator chloride channel. Proc Natl Acad Sci USA 101:3691–3696

    Article  PubMed  CAS  Google Scholar 

  19. García MA, Salazar K, Millan C, Rodriguez F, Montecinos H, Caprile T, Silva C, Cortes C, Reinicke K, Aguayo L, Olate J, Molina B, Nualart F (2005) Sodium vitamin C cotransporter SVCT2is expressed in hypothalamic glial cells. Glia 50:32–47

    Article  Google Scholar 

  20. Ghamsemzadeh B, Cammack J, Adams RN (1991) Dynamic changes in extracellular fluis ascorbic acid monitored by in vivo electrochemistry. Brain Res 547:162–166

    Google Scholar 

  21. Godoy A, Ormazabal V, Moraga-Cid G, Zuniga FA, Sotomayor P, Barra V, Vasquez O, Montecinos V, Mardones L, Guzman C, Villagran M, Aguayo LG, Onate SA, Reyes AM, Carcamo JG, Rivas CI, Vera JC (2007) Mechanistic insights and functional determinants of the transport cycle of the ascorbic acid transporter SVCT2. Activation by sodium and absolute dependence on bivalent cations. J Biol Chem 282:615–624

    Article  PubMed  CAS  Google Scholar 

  22. Halestrap AP, Meredith D (2004) The SLC16 gene family-from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Arch 447:619–628

    Article  PubMed  CAS  Google Scholar 

  23. Halestrap AP, Price NT (1999) The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J 343 Pt 2:281–299

    Google Scholar 

  24. Hanu R, McKenna M, O'Neill A, Resneck WG, Bloch RJ (2000) Monocarboxylic acid transporters, MCT1 and MCT2, in cortical astrocytes in vitro and in vivo. Am J Physiol Cell Physiol 278:C921–C930

    PubMed  CAS  Google Scholar 

  25. Hornig D (1975) Distribution of ascorbic acid, metabolites and analogues in man and animals. Ann NY Acad Sci 258:103–118

    Article  PubMed  CAS  Google Scholar 

  26. Izumi Y, Benz AM, Katsuki H, Zorumski CF (1997) Endogenous monocarboxylates sustain hippocampal synaptic function and morphological integrity during energy deprivation. J Neurosci 17:9448–9457

    PubMed  CAS  Google Scholar 

  27. Juel C, Halestrap AP (1999) Lactate transport in skeletal muscle—role and regulation of the monocarboxylate transporter. J Physiol 517(Pt3):633–642

    Article  PubMed  CAS  Google Scholar 

  28. Koehler-Stec EM, Simpson IA, Vannucci SJ, Landschulz KT, Landschulz WH (1998) Monocarboxylate transporter expression in mouse brain. Am J Physiol 275:E516–E524

    PubMed  CAS  Google Scholar 

  29. Kratzing CC, Kelly JD, Oelrichs BA (1982) Ascorbic acid in neural tissues. J Neurochem 39:625–627

    Article  PubMed  CAS  Google Scholar 

  30. Leino RL, Gerhart DZ, van Bueren AM, McCall AL, Drewes LR (1997) Ultrastructural localization of GLUT 1 and GLUT 3 glucose transporters in rat brain. J Neurosci Res 49:617–626

    Article  PubMed  CAS  Google Scholar 

  31. Magistretti PJ, Pellerin L, Rothman DL, Shulman RG (1999) Energy on demand. Science 283:496–497

    Article  PubMed  CAS  Google Scholar 

  32. Maher F, Davies-Hill TM, Simpson IA (1996) Substrate specificity and kinetic parameters of GLUT3 in rat cerebellar granule neurons. Biochem J 315(Pt3):827–831

    PubMed  CAS  Google Scholar 

  33. Makar TK, Nedergaard M, Preuss A, Gelbard AS, Perumal AS, Cooper AJ (1994) Vitamin E, ascorbate, glutathione, glutathione disulfide, and enzymes of glutathione metabolism in cultures of chick astrocytes and neurons: evidence that astrocytes play an important role in antioxidative processes in the brain. J Neurochem 62:45–53

    Article  PubMed  CAS  Google Scholar 

  34. Malo C, Wilson JX (2000) Glucose modulates vitamin C transport in adult human small intestinal brush border membrane vesicles. J Nutr 130:63–69

    PubMed  CAS  Google Scholar 

  35. Maulen NP, Henriquez EA, Kempe S, Carcamo JG, Schmid-Kotsas A, Bachem M, Grunert A, Bustamante ME, Nualart F, Vera JC (2003) Up-regulation and polarized expression of the sodium-ascorbic acid transporter SVCT1 in post-confluent differentiated CaCo-2 cells. J Biol Chem 278:9035–9041

    Article  PubMed  CAS  Google Scholar 

  36. Padh H (1990) Cellular functions of ascorbic acid. Biochem Cell Biol 68:1166–1173

    Article  PubMed  CAS  Google Scholar 

  37. Pellerin L, Bergersen LH, Halestrap AP, Pierre K (2005) Cellular and subcellular distribution of monocarboxylate transporters in cultured brain cells and in the adult brain. J Neurosci Res 79:55–64

    Article  PubMed  CAS  Google Scholar 

  38. Pellerin L, Magistretti PJ (1996) Excitatory amino acids stimulate aerobic glycolysis in astrocytes via an activation of the Na+/K+ATPase. Dev Neurosci 18:336–342

    Article  PubMed  CAS  Google Scholar 

  39. Pellerin L, Pellegri G, Martin JL, Magistretti PJ (1998) Expression of monocarboxylate transporter mRNAs in mouse brain: support for a distinct role of lactate as an energy substrate for the neonatal vs. adult brain. Proc Natl Acad Sci USA 95:3990–3995

    Article  PubMed  CAS  Google Scholar 

  40. Peterkofsky B (1991) Ascorbate requirement for hydroxylation and secretion of procollagen: relationship to inhibition of collagen synthesis in scurvy. Am J Clin Nutr 54:1135S–1140S

    PubMed  CAS  Google Scholar 

  41. Phil NJ, Yoon H, Lombardi L (2001) Mouse MCT3 gene is expressed preferentially in retinal pigment and choroid plexus epithelia. Am J Physiol Cell Physiol 280:C1319–C1326

    Google Scholar 

  42. Pierce RC, Rebec GV (1990) Stimulation of both D1 and D2 dopamine receptors increases behavioral activation and ascorbate release in the neostriatum of freely moving rats. Eur J Pharmacol 191:295–302

    Article  PubMed  CAS  Google Scholar 

  43. Pierre K, Pellerin L (2005) Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J Neurochem 94:1–14

    Article  PubMed  CAS  Google Scholar 

  44. Prasad PD, Huang W, Wang H, Leibach FH, Ganapathy V (1998) Transport mechanisms for vitamin C in the JAR human placental choriocarcinoma cell line. Biochim Biophys Acta 1369:141–151

    Article  PubMed  CAS  Google Scholar 

  45. Rajan DP, Huang W, Dutta B, Devoe LD, Leibach FH, Ganapathy V, Prasad PD (1999) Human placental sodium-dependent vitamin C transporter (SVCT2): molecular cloning and transport function. Biochem Biophys Res Commun 262:762–768

    Article  PubMed  CAS  Google Scholar 

  46. Rebec GV, Pierce RC (1994) A vitamin as neuromodulator: ascorbate release into the extracellular fluid of the brain regulates dopaminergic and glutamatergic transmission. Prog Neurobiol 43:537–565

    Article  PubMed  CAS  Google Scholar 

  47. Rose RC, Bode AM (1993) Biology of free radical scavengers: an evaluation of ascorbate. Faseb J 7:1135–1142

    PubMed  CAS  Google Scholar 

  48. Rumsey SC, Daruwala R, Al-Hasani H, Zarnowski MJ, Simpson IA, Levine M (2000) Dehydroascorbic acid transport by GLUT4 in Xenopus oocytes and isolated rat adipocytes. J Biol Chem 275:28246–28253

    PubMed  CAS  Google Scholar 

  49. Rumsey SC, Kwon O, Xu GW, Burant CF, Simpson I, Levine M (1997) Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid. J Biol Chem 272:18982–18989

    Article  PubMed  CAS  Google Scholar 

  50. Sauberlich HE (1994) Pharmacology of vitamin C. Annu Rev Nutr 14:371–391

    Article  PubMed  CAS  Google Scholar 

  51. Schurr A, West CA, Rigor BM (1988) Lactate-supported synaptic function in the rat hippocampal slice preparation. Science 240:1326–1328

    Article  PubMed  CAS  Google Scholar 

  52. Schurr A, Miller JJ, Payne RS, Rigor BM (1999) An increase in lactate output by brain tissue serves to meet the energy needs of glutamate-activated neurons. J Neurosci 19:34–39

    PubMed  CAS  Google Scholar 

  53. Sibson NR, Dhankhar A, Mason GF, Rothman DL, Behar KL, Shulman RG (1998) Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc Natl Acad Sci USA 95:316–321

    Article  PubMed  CAS  Google Scholar 

  54. Siliprandi L, Vanni P, Kessler M, Semenza G (1979) Na+-dependent, electroneutral l-ascorbate transport across brush border membrane vesicles from guinea pig small intestine. Biochim Biophys Acta 552:129–142

    Article  PubMed  CAS  Google Scholar 

  55. Spielholz C, Golde DW, Houghton AN, Nualart F, Vera JC (1997) Increased facilitated transport of dehydroascorbic acid without changes in sodium-dependent ascorbate transport in human melanoma cells. Cancer Res 57:2529–2537

    PubMed  CAS  Google Scholar 

  56. Tsacopoulos M, Magistretti PJ (1996) Metabolic coupling between glia and neurons. J Neurosci 16:877–885

    PubMed  CAS  Google Scholar 

  57. Tseng MT, Chan SA, Schurr A (2003) Ischemia-induced changes in monocarboxylate transporter 1 reactive cells in rat hippocampus. Neurol Res 25:83–86

    Article  PubMed  Google Scholar 

  58. Tsukaguchi H, Tokui T, Mackenzie B, Berger UV, Chen XZ, Wang Y, Brubaker RF, Hediger MA (1999) A family of mammalian Na+-dependent l-ascorbic acid transporters. Nature 399:70–75

    Article  PubMed  CAS  Google Scholar 

  59. Vera JC, Rivas CI, Fischbarg J, Golde DW (1993) Mammalian facilitative hexose transporters mediate the transport of dehydroascorbic acid. Nature 364:79–82

    Article  PubMed  CAS  Google Scholar 

  60. Wang Y, Mackenzie B, Tsukaguchi H, Weremowicz S, Morton CC, Hediger MA (2000) Human vitamin C (l-ascorbic acid) transporter SVCT1. Biochem Biophys Res Commun 267:488–494

    Article  PubMed  CAS  Google Scholar 

  61. Wilson JX (2002) The physiological role of dehydroascorbic acid. FEBS Lett 527:5–9

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Chilean grants FONDECYT 1060135 and ACT-02 Conicyt-PBCT.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Francisco Nualart or Ilona I. Concha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castro, M.A., Angulo, C., Brauchi, S. et al. Ascorbic acid participates in a general mechanism for concerted glucose transport inhibition and lactate transport stimulation. Pflugers Arch - Eur J Physiol 457, 519–528 (2008). https://doi.org/10.1007/s00424-008-0526-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0526-1

Keywords

Navigation