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Abstract
Relevance Molecular network changes are the hallmark of the pathogenesis of ovarian cancers (OCs). Network-based bio-
markers benefit for the effective treatment of OC.
Purpose This study sought to identify key pathway–network alterations and network-based biomarkers for clarification of
molecular mechanisms and treatment of OCs.
Methods Ingenuity Pathway Analysis (IPA) platform was used to mine signaling pathway networks with 1198 human tissue
mitochondrial differentially expressed proteins (mtDEPs) and compared those pathway network changes between OCs and
controls. The mtDEPs in important cancer-related pathway systems were further validated with qRT-PCR and Western blot in
OC cell models. Moreover, integrative analysis of mtDEPs and Cancer Genome Atlas (TCGA) data from 419 patients was used
to identify hub molecules with molecular complex detection method. Hub molecule–based survival analysis and multiple
multivariate regression analysis were used to identify survival-related hub molecules and hub molecule signature model.
Results Pathway network analysis revealed 25 statistically significant networks, 192 canonical pathways, and 5 significant
molecular/cellular function models. A total of 52 canonical pathways were activated or inhibited in cancer pathogenesis,
including antigen presentation, mitochondrial dysfunction, GP6 signaling, EIF2 signaling, and glutathione-mediated detoxifica-
tion. Of them, mtDEPs (TPM1, CALR, GSTP1, LYN, AKAP12, and CPT2) in those canonical pathway and molecular/cellular
models were validated in OC cell models at the mRNA and protein levels. Moreover, 102 hub molecules were identified, and
they were regulated by post-translational modifications and functioned in multiple biological processes. Of them, 62 hub
molecules were individually significantly related to OC survival risk. Furthermore, multivariate regression analysis of 102 hub
molecules identified significant seven hub molecule signature models (HIST1H2BK, ALB, RRAS2, HIBCH, EIF3E, RPS20,
and RPL23A) to assess OC survival risks.
Conclusion These findings provided the overall signaling pathway network profiling of human OCs; offered scientific data to
discover pathway network-based cancer biomarkers for diagnosis, prognosis, and treatment of OCs; and clarify accurate molec-
ular mechanisms and therapeutic targets. These findings benefit for the discovery of effective and reliable biomarkers based on
pathway networks for OC predictive and personalized medicine.
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Introduction

Ovarian cancer (OC) is one of the gynecologic malignancies,
with high morbility and mortality, and is often diagnosed at its
late stage [1]. It is a challenge to develop novel molecular
biomarkers related to the early diagnosis, treatment, and prog-
nosis in OC personalized medicine [2]. However, OC is a
multifaceted disease that involved multifactors, complex bio-
logical processes, and unpredictable consequences [3]. It is
not reasonable for a single molecule as biomarker for accurate
predictive, preventive, and personalized medicine (PPPM)
practice [2]. Numerous molecule alterations at different levels,
including DNAs (genome), RNAs (transcriptome), proteins
(proteome), and metabolites (metabolome), are involved in
development and progression of OC and enriched in different
pathway network systems [4]. Recent research showed that
proteoform diversity made ones think about more complex
tumorigenesis [5]. Molecular pathways and networks could
help one understand the interactome from a view point of
systematic biology [6]. Therefore, recognition of integrated
molecular network variations would identify key biomarkers
and therapeutic targets and benefit potential molecular mech-
anisms of OC toward personalized medicine.

High-throughput proteomics offers a promising approach
to identify effective cancer biomarkers [7]. Especially, subcel-
lular proteomics is able to directly investigate the targeted
organelle that is associated with the specific biological func-
tions [8]. Mitochondria, as a ubiquitous subcellular organelle,
not only provide cell energy, but also are the key links of
metabolism, signaling, cellular differentiation, cell cycle, and
cell death in eukaryotic cells [9]. Mitochondrial pathways are
involved in many diseases, including malignant tumors, dia-
betes, Parkinson’s disease, Alzheimer’s disease, and cardio-
vascular disease [10, 11]. Thus, mitochondrial proteomics has
become a hotspot in the study of disease to discover new
biomarkers and molecular targets for drug discovery and ther-
apeutic intervention in recent years [12]. Our previous studies
identified 5115 mitochondrial expressed proteins (mtEPs) and
70 statistically significant KEGG pathways based on 5115
mtEPs in human OCs [13], which provided the mitochondrial
protein expression profiling and overall pathway profiling in
human OC. Furthermore, we identified 1198 mitochondrial
differentially expressed proteins (mtDEPs) in human OCs
compared to controls and revealed the changes of energy me-
tabolism pathway system including glycolysis, Kreb’s cycle,
and oxidative phosphorylation [13, 14]. In fact, besides energy
metabolism pathway system, 1198 mtDEP-involved pathway
networks are very complex. It is necessary to completely and
comprehensively investigate the entire pathway networks in-
volved those 1198 mtDEPs to identify key pathway networks
and hub molecules for human OC.

Ingenuity Pathway Analysis (IPA) (http://www.ingenuity.
com) is a popular and extensively used pathway network

analysis platform to mine statistically significant canonical
pathways, network, and network-based hub molecules from
differentially expressed proteomic data [15]. The Bhub
molecules^ with many interaction partners might be assigned
to specific biological function in the interaction network, with
inherent characteristics such as (i) tend to be composed of
many distinct or repetitive structural domains, (ii) tend to be
signal transduction and transcription, and (iii) multiple post-
translational modifications (PTMs) [16]. Molecular Complex
Detection (MCODE) plugin is a reliable method to distinguish
hub molecules from non-hub molecules [17]. Furthermore,
integrative analysis of functions, co-expression, chromosome
location, subcellular localizations, and prognostic values of
hub molecules may play significant roles in the diagnosis
and treatment of OC.

This study used IPA pathway analysis platform to recon-
struct and compare biological pathways and networks based
on our previous identified 1198 mtDEPs in OCs compared to
controls; used MCODE plugin to identify hub molecules; and
comprehensively analyzed the functions, co-expression, chro-
mosome location, subcelluar locations, and prognostic values
of hub molecules. Additionally, the prognostic model of mul-
tiple hub molecule signature was constructed with multivari-
able regression method to predict risk score in OC patients.
These results provide scientific data to further classify the
molecular mechanisms of OC and discover key signaling
pathway network and pathway network-based molecule panel
biomarkers for OCs.

Materials and methods

OC tissue specimen

A total of 18 ovarian tissue samples including seven epithelial
OC tissues (high-degrade, poorly or moderately differentiated
carcinoma cells) and 11 control ovaries with benign gyneco-
logic disease (fibroids, adenomyosis, ovary serous
cystadenoma, cervical intraepithelial neoplasia, atypical hy-
perplasia of endometrium, and pelvic organ prolapse) were
obtained from Department of Gynecology, Xiangya
Hospital, Central South University, China. This study was
approved by the Medical Ethics Committee of Xiangya
Hospital, and the written informed consent was obtained from
each patient. Both OC and control tissues were verified by
histological analysis. Each tissue sample was immediately
placed in liquid nitrogen and then stored at − 80 °C.

Ovarian cancer mtDEP dataset

A total of 1198 mtDEPs dataset was obtained with iTRAQ
quantitative proteomics analysis of mitochondrial samples
that were isolated and purified from human epithelial OC
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and control ovary tissues [13, 14]. Briefly, ovarian tissue sam-
ples were fully minced in pieces and homogenized in mito-
chondrial isolation buffer that contained Nagarse, followed by
differential centrifugation to obtain crude mitochondria. The
crude mitochondria were further centrifuged with Nycodenz
gradient to purify mitochondria. The purified mitochondria
samples were verified by Western blot and electron microsco-
py. The prepared OC and control mitochondria were digested
with trypsin. The tryptic peptides were labeled with iTRAQ
reagents, fractionated with SCX chromatography. The
iTRAQ-labeled peptides were mixed equally and were sub-
jected to LC–MS/MS analysis on a Q Exactive mass spec-
trometer (Thermo Scientific). MS/MS spectra were acquired
and used to search protein database with MASCOT engine
(Matrix Science, London, UK; version 2.2), embedded into
Proteome Discoverer 1.4. mtDEPs were determined with the
intensity differences of iTRAQ reporter ions. The detailed
experimental procedure was described in our previous studies
[14, 18].

Ingenuity Pathway Analysis

Ingenuity Pathway Analysis (IPA) software is a well-cited
stand-alone bioinformatics analysis tool to analyze signaling
pathways and molecular networks. For the mtDEP data, the
Swiss-Prot accession numbers and the corresponding fold
changes between OC and control ovaries were input to the
IPA data upload workflow. The matched genes/molecules
can be indexed automatically with IPA, and the output table
contains detailed description of mapped gene/molecules. The
input IDs (proteins and genes) were grouped into different
categories, including the all IDs (all input IDs), unmapped
IDs (no match is found in the IPA system), and mapped IDs
(match the corresponding molecules and recognize the dupli-
cate IDs). For the duplicate IDs, the identifier with the highest
fold change or the first instance was used in the pathway
analysis.

Cell lines and cell culture

OC cell lines TOV-21G and SKOV3 cells and control cell line
IOSE80 cells were purchased from Keibai Academy of
Science (Nanjing, China). TOV-21G cells were cultured in
RPMI-1640 medium, and SKOV3 and IOSE80 cells were
cultured in DMEM medium (Corning, NY, USA), supple-
mented with 10% fetal bovine serum (FBS, Gibco). All these
cells were maintained with 5% CO2 and atmosphere at 37 °C.

RNA extraction and qRT-PCR analyses

Total RNAs from cell lines were extracted with TRizol reagent
(Invitrogen) according to the manufacturer’s instructions.
Total RNAs were reversely transcribed into cDNAs and then

used to perform qRT-PCR with SYBR Premix ExTaq
(TaKaRa). Beta-actin was used as an internal control for
mRNA quantification.

Western blotting

Equal amounts of proteins were separated by 10% SDSPAGE
gels and transferred onto PVDF membranes. The proteins on
the membrane were incubated with primary antibodies against
TPM1, CALR, GSTP1, CPT2, and AKAP12 (1:500; Sangon)
and LYN and β-actin (1:1000; Santa Cruz Biotechnology) at
4 °C overnight and then were incubated for 2 h with horse-
radish peroxidase-conjugated goat antirat secondary antibody
(1:5000; Santa Cruz Biotechnology) at room temperature.

Identification of hub molecules with molecular
complex detection

To evaluate their interactive associations, all mtDEPs were
mapped to the STRING database. Subsequently, the protein–
protein interactions (PPIs) were analyzed by Cytoscape soft-
ware (version 3.2.1; National Resource for Network Biology)
to obtain the PPI network. The criteria of hub molecule
searching were set as the molecular complex detection
(MCODE) score > 6, and a statistically significant difference
(p < 0.05). GO biological process (BP) of those hubmolecules
was analyzed with Cytoscape ClueGO (two-sided
hypergeometric test, adjusted P value < 0.05 corrected with
Benjamini–Hochberg). Chromosome location, cell location,
post-translational modifications (PTM), and analysis of prog-
nostic values for these hub molecules were performed by R
package (https://www.r-project.org/), SysPTM (http://
lifecenter.sgst.cn/SysPTM/), and Kaplan–Meier plotter
(http://kmplot.com/private/index.php.p=home), respectively.
Biomarkers that had been reported were checked by
CooLGeN (http://ci.smu.edu.cn/CooLGeN/Home.php).

TCGA data of OC patients

TCGA data portal provides a platform for researchers to
search, download, and analyze datasets generated from
TCGA database (http://cancergenome.nih.gov/). Level 3
RNA-seq V2 data were obtained from the TCGA data of
419 OC patients. The expression data of hub molecules were
extracted to do co-expression analysis by RStudio.

Statistical analysis

For the qPCR andWestern blot analysis, each experiment was
repeated at least three times; data were expressed as the mean
± SD of triplicates. The Student’s t test was used to assess
differences between-group in vitro studies with a statistical
significance (P < 0.05). Statistical analyses were performed
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using SPSS 13.0 (SPSS Inc.). A Benjamini–Hochberg was
used to calculate the adjusted p value to determine the proba-
bility of the association between the genes in the experimental
dataset and the canonical pathway in the IPA database. The
level of statistical significance was set to p < 0.05. Activation z
score was calculated to evaluate that the canonical pathway
was activated or inhibited. If z score ≥ 2, it means that the
canonical pathway was more likely to be activated. If z score ≤
− 2, it means that the canonical pathwaywas more likely to be
inhibited. The hub genes were subjected to SPSS20 to per-
form multivariate regression analysis to calculate the regres-
sion coefficient for each gene with statistical significance of
p < 0.05.

Results

Significant signaling pathways of human OC mined
from OC mtDEP dataset

A total of 1198 mtDEPs between OCs and controls were iden-
tified with iTRAQ-based quantitative proteomics
(Supplementary Table 1), and of them, 1174 identifiers were
mapped with IPA to the corresponding molecules (genes; pro-
teins) (Supplementary Table 1) for IPA pathway network anal-
ysis. Each identifier was annotated with a Swiss-Prot acces-
sion number, gene name, protein name, subcellular location,
family, and potential targets of drugs. Based on those 1174
identifiers, a total of 192 statistically significant canonical
pathways (p < 0.05) were identified to involve the identified
mtDEPs (Supplementary Table 2). Those 192 statistically sig-
nificant canonical pathways were further filtered by |z| score ≥
2; 52 statistically significant canonical pathways might be
activated or inhibited (Supplementary Table 2). Here, the pa-
rameter of z score represents signaling pathways were activat-
ed (z score ≥ 2) or inhibited (z score ≤ − 2). Further analysis of
the relationships between those 52 activated or inhibited ca-
nonical pathways and cancer biology revealed 29 cancer-
related pathways (Supplementary Figure 1), with the detailed
information on those 29 cancer-related canonical pathways
(p < 0.05; |z| ≥ 2). The important tumor-associated pathways
were antigen presentation pathway (Supplementary Figure 1
item 1; Table 1), mitochondrial dysfunction (Supplementary
Figure 1 item 2; Table 1), GP6 signaling pathway
(Supplementary Figure 1 item 3; Table 1), EIF2 signaling
(Supplementary Figure 1 item 4; Table 1), and glutathione-
mediated detoxification (Supplementary Figure 1 item 5;
Table 1).

Along with the advancement in tumor immunology, the
immune-checkpoint blockade therapy has been an important
part in the mode of combined therapy of tumor. One of the
most important immune checkpoint pathways has been ap-
plied between the PD-1 receptor expressed on activated Tcells

and its ligands, programmed death-1 ligand (PD-L1) and PD-
L2. With the arrival of PD-1 in the domestic antitumor drug
market, the hot topic of tumor immunotherapy appears fre-
quently in people’s view. A large number of studies on immu-
notherapy combined with other therapies are also in full
swing. Treatment approaches that target the PD-L1 have
yielded objective responses in a subset of individuals with
advanced carcinomas in some clinical trials [19]. The
mtDEPs enriched in antigen presentation pathway
(Supplementary Figure 1 item 1) indicated some potential
antitumor-related immune molecules. Antigen presentation
pathway describes a key immune process that is essential for
T cell immune response triggering. Thus, the new biomarkers
investigated in the antigen presentation pathway included
CALR (fold change = 1.97, p = 0.013), HLA-A (fold
change = 2.68, p = 0.004), HLA-C (fold change = 1.82, p =
0.005), HLA-DPA1 (fold change = 3.57, p = 0.006), HLA-
DPB1 (fold change = 2.00, p = 0.011), HLA-DQB1 (fold
change = 2.00, p = 0.011), HLA-DRA (fold change = 1.81,
p = 0.0008), HLA-DRB1 (fold change = 1.66, p = 0.015),
HLA-DRB5 (fold change = 0.38, p = 0.0002), HLA-E (fold
change = 1.60, p = 0.030), PDIA3 (fold change = 1.87, p =
0.001), and TAP2 (fold change = 1.60, p = 0.001), which
may represent novel therapeutic targets for the prediction
and eventual improvement of the response to therapy in pa-
tients with OC. Some key molecules, such as CALR, HLA-A,
HLA-DRB1, PDIA3, HLA-DQB1, HLA-E, and TAP2, have
been implicated in various types of cancers and emphasized
their important values related to the tumor progression [20].
Immunotherapy or immunotherapy combined with other ther-
apies made the internal environment expose a vast array of
antigens, so further understanding on the process of antigen
presentation pathway is particularly important. Meanwhile,
tumor immune-related pathways were also enriched, such as
B cell development pathway, cd28 signaling in T Helper cell,
chemokine signaling, IL-1 signaling, IL15 signaling, IL-2 sig-
naling, IL-3 signaling, IL-4 signaling, and IL-8 signaling.
Those enriched pathways indicated mitochondria play impor-
tant roles in mediating tumor immune.

During the last decade, a great attention has also been paid
to energy metabolic reprogramming of cancer. However, can-
cer basic studies fail to reach a consistent conclusion on mi-
tochondrial function in cancer energy metabolism [21]. The
mtDEPs enriched in mitochondrial dysfunction pathway
(Supplementary Figure 1 item 2) provided molecular markers
of the abnormal energy metabolism between cancer tissues
and control tissues, including ACO1 (fold change = 0.65,
p = 0.006), AIFM1 (fold change = 1.58, p = 0.002), ATPAF1
(fold change = 1.90, p = 0.009), ATPAF2 (fold change = 1.54,
p = 0.0001), BCL2 (fold change = 0.30, p = 0.00003), COX17
(fold change = 2.74, p = 0.004), COX4I1 (fold change = 1.51,
p = 0.004), COX4I2 (fold change = 0.20, p = 0.0006),
COX6C (fold change = 1.54, p = 0.005), COX7A2 (fold
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Table 1 The important tumor-associated canonical pathways include antigen presentation pathway, mitochondrial dysfunction, GP6 signaling path-
way, EIF2 signaling, and glutathione-mediated detoxification

Pathway name Protein Coverage
(%)

Unique
peptides

PSMs MW
(kDa)

Calc.
pI

Ratio
(T/N)

p value
(t test)

Antigen presentation
pathway

HLA-A protein (fragment) (J7RE54_HUMAN) 51.28 1 19 31.60 5.67 1.70 5.24E−03
MHC class I antigen (fragment) (D0W033_HUMAN) 37.73 1 12 31.57 5.94 2.69 4.15E−03
MHC class I antigen (fragment) (A0A0K0KRA3_

HUMAN)
47.51 1 11 21.19 7.02 4.12 5.31E−04

MHC class I antigen (fragment) (A0A0K0KSD4_
HUMAN)

48.62 1 13 21.22 7.87 1.82 5.58E−03

MHC class I antigen (fragment) (E3SWK8_HUMAN) 53.04 1 15 21.12 7.37 2.21 2.77E−02
MHC class II antigen (fragment) (Q67AU1_HUMAN) 31.18 1 4 10.84 5.10 3.58 6.74E−03
MHC class II antigen (fragment) (A0A0S2C388_

HUMAN)
25.4 5 7 28.68 7.43 2.01 1.13E−02

MHC class II antigen (fragment) (S6AP35_HUMAN) 45.08 1 21 41.16 6.62 1.58 4.23E−02
MHC class II antigen (fragment) (A0A142L067_

HUMAN)
24.11 3 5 25.87 7.15 1.67 1.55E−02

HLA class II histocompatibility antigen, DR alpha chain
(A0A0G2JMH6_HUMAN)

32.68 2 47 28.60 5.00 1.82 8.26E−04

MHC class II antigen (fragment) (N1NSB5_HUMAN) 52.81 2 10 10.89 6.52 1.84 1.55E−03
HLA-DRB5 protein (fragment) (A0A024F8S6_

HUMAN)
42.48 1 23 25.73 6.52 0.38 2.40E−04

MHC class Ib antigen (fragment) (I3RW89_HUMAN) 25.42 3 11 33.78 5.40 1.60 3.08E−02
Protein disulfide-isomerase A3 (PDIA3_HUMAN) 70.89 27 324 56.75 6.35 1.71 4.04E−03
Protein disulfide-isomerase A3 (fragment) (H7BZJ3_

HUMAN)
74.8 1 58 13.51 7.30 1.87 1.35E−03

Calreticulin variant (fragment) (Q53G71_HUMAN) 62.32 21 156 46.89 4.45 1.98 1.19E−02
Antigen peptide transporter 2 (X5CMH5_HUMAN) 28.31 17 36 77.65 7.85 1.60 1.20E−03

Mitochondrial
dysfunction

Cytoplasmic aconitate hydratase (ACOC_HUMAN) 13.27 10 13 98.34 6.68 0.65 6.04E−03
Apoptosis-inducing factor 1, mitochondrial (AIFM1_

HUMAN)
46.66 24 158 66.86 8.95 1.59 2.76E−03

ATP synthase mitochondrial F1 complex assembly factor
1 (ATPF1_HUMAN)

29.57 8 17 36.41 7.96 1.90 9.90E−03

ATP synthase mitochondrial F1 complex assembly factor
2 (ATPF2_HUMAN)

21.45 5 10 32.75 7.09 1.54 1.57E−04

B cell CLL/lymphoma 2, isoform CRA_b
(A0A024R2C4_HUMAN)

4.88 1 1 22.32 6.96 0.31 3.30E−05

Cytochrome c oxidase copper chaperone (fragment)
(H7C4E5_HUMAN)

12.07 1 1 6.41 7.69 2.75 2.33E−03

Cytochrome c oxidase subunit 4 isoform 1, mitochondrial
(COX41_HUMAN)

36.09 7 48 19.56 9.51 1.52 4.37E−03

Cytochrome c oxidase subunit 4 isoform 2, mitochondrial
(COX42_HUMAN)

5.85 1 1 20.00 9.63 0.21 6.28E−04

Cytochrome c oxidase subunit 6C (COX6C_HUMAN) 52 7 30 8.78 10.39 1.54 5.97E−03
Cytochrome c oxidase subunit 7A2, mitochondrial

(CX7A2_HUMAN)
27.71 2 15 9.39 9.76 1.55 3.89E−02

Cytochrome c oxidase subunit 7A-related protein, mito-
chondrial (COX7R_HUMAN)

54.39 4 8 12.61 9.42 1.88 5.33E−03

Cytochrome c (fragment) (C9JFR7_HUMAN) 57.43 6 42 11.33 9.66 2.43 1.11E−03
Glutathione peroxidase 7 (GPX7_HUMAN) 33.16 5 9 20.98 8.27 1.66 2.77E−04
Serine protease HTRA2, mitochondrial (HTRA2_

HUMAN)
13.1 4 7 48.81 10.07 1.58 8.22E−03

Amine oxidase (flavin-containing) B (AOFB_HUMAN) 43.46 18 143 58.73 7.50 0.41 2.86E−04
Thioredoxin, mitochondrial (THIOM_HUMAN) 36.75 3 18 18.37 8.29 1.52 5.11E−03
Cytochrome b-c1 complex subunit 6, mitochondrial

(QCR6_HUMAN)
51.65 5 18 10.73 4.44 1.59 1.63E−02

Voltage-dependent anion-selective channel protein 1
(VDAC1_HUMAN)

81.27 17 431 30.75 8.54 1.55 4.97E−03
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Table 1 (continued)

Pathway name Protein Coverage
(%)

Unique
peptides

PSMs MW
(kDa)

Calc.
pI

Ratio
(T/N)

p value
(t test)

GP6 signaling pathway Disintegrin and metalloproteinase domain-containing
protein 10 (ADA10_HUMAN)

10.83 7 9 84.09 7.77 1.57 3.42E−04

EIF2 signaling Collagen alpha-1(X) chain (COAA1_HUMAN) 1.91 1 1 66.12 9.67 0.24 2.71E−04
Collagen alpha-1(XVI) chain (COGA1_HUMAN) 1.81 3 4 157.65 7.84 0.43 7.50E−04
Collagen alpha-1(I) chain (CO1A1_HUMAN) 14.96 7 87 138.86 5.80 0.30 8.28E−05
Collagen, type I, alpha 1, isoform CRA_a (D3DTX7_

HUMAN)
18.53 2 61 84.69 6.24 0.36 5.47E−05

Collagen alpha-2(I) chain (A0A087WTA8_HUMAN) 13.27 15 55 129.07 9.01 0.29 1.84E−03
Collagen alpha-1(II) chain (CO2A1_HUMAN) 3.03 3 3 141.70 6.92 0.17 7.01E−04
Collagen alpha-1(III) chain (CO3A1_HUMAN) 6.41 9 21 138.48 6.61 0.30 6.85E−04
Collagen alpha-2(IV) chain (CO4A2_HUMAN) 6.43 7 18 167.45 8.66 0.39 4.18E−03
Collagen, type V, alpha 2, isoform CRA_b (D3DPH5_

HUMAN)
2.14 2 2 86.03 6.06 0.24 3.59E−03

Collagen alpha-1(VI) chain (CO6A1_HUMAN) 32.78 27 57 108.46 5.43 0.40 1.54E−03
Collagen alpha-2(VI) chain (CO6A2_HUMAN) 18.84 18 50 108.51 6.21 0.44 5.27E−04
Collagen alpha-3(VI) chain (E7ENL6_HUMAN) 31.1 1 165 277.95 8.18 0.37 4.07E−04
Collagen alpha-6(VI) chain (CO6A6_HUMAN) 0.71 1 2 247.02 6.89 0.40 2.11E−03
Collagen alpha-1(VIII) chain (CO8A1_HUMAN) 4.84 3 8 73.32 9.61 0.33 9.61E−04
Inositol 1,4,5-trisphosphate receptor type 1 (ITPR1_

HUMAN)
12.8 23 48 313.73 6.04 0.59 6.55E−05

Laminin subunit alpha-2 (A0A087WYF1_HUMAN) 3.85 10 12 343.20 6.37 0.58 3.10E−03
Laminin subunit gamma-2 (LAMC2_HUMAN) 4.02 4 4 130.89 6.19 1.60 4.91E−03
Protein kinase C (A0A169TED2_HUMAN) 11.61 6 10 76.64 7.47 0.57 4.56E−03
B cell CLL/lymphoma 2, isoform CRA_b

(A0A024R2C4_HUMAN)
4.88 1 1 22.32 6.96 0.31 3.30E−05

Eukaryotic translation initiation factor 3 subunit C
(B4E2Z6_HUMAN)

19.52 11 20 90.48 5.71 0.62 6.44E−04

Eukaryotic translation initiation factor 3 subunit D
(EIF3D_HUMAN)

12.77 5 10 63.93 6.05 0.64 3.21E−03

Eukaryotic translation initiation factor 3 subunit E
(EIF3E_HUMAN)

26.29 11 18 52.19 6.04 0.65 1.78E−04

Eukaryotic translation initiation factor 3 subunit F
(B4DMT5_HUMAN)

31.27 8 14 33.22 5.59 0.64 1.04E−03

Eukaryotic translation initiation factor 3 subunit G
(fragment) (K7ER90_HUMAN)

9.25 2 2 25.43 5.49 0.61 7.81E−04

Eukaryotic translation initiation factor 3 subunit H
(A0A087WZK9_HUMAN)

22.92 6 9 39.56 6.39 0.58 3.64E−03

Eukaryotic translation initiation factor 3 subunit I (EIF3I_
HUMAN)

17.23 6 9 36.48 5.64 0.65 1.56E−03

Eukaryotic translation initiation factor 3 subunit K
(K7ES31_HUMAN)

20.44 2 4 15.86 6.74 0.65 5.63E−03

Eukaryotic translation initiation factor 3 subunit L
(B4DQF6_HUMAN)

6.97 4 7 62.65 6.16 0.63 1.71E−03

Eukaryotic initiation factor 4A-II (E7EQG2_HUMAN) 44.48 6 32 41.26 5.64 0.62 1.08E−02
40S ribosomal protein S30 (RS30_HUMAN) 16.95 1 2 6.64 12.15 0.53 3.97E−03
78 kDa glucose-regulated protein (GRP78_HUMAN) 56.73 35 376 72.29 5.16 1.77 1.87E−04
Polypyrimidine tract binding protein 1, isoform CRA_b

(A6NLN1_HUMAN)
12.71 5 14 56.48 9.38 0.50 9.42E−04

60S ribosomal protein L12 (RL12_HUMAN) 44.85 5 12 17.81 9.42 0.57 1.62E−03
60S ribosomal protein L23a (RL23A_HUMAN) 31.41 5 13 17.68 10.45 0.65 7.46E−03
60S ribosomal protein L9 (RL9_HUMAN) 39.58 7 20 21.85 9.95 0.64 2.02E−03
RPLP1 protein (Q6FG99_HUMAN) 44.74 2 8 11.56 4.37 0.56 1.05E−03
40S ribosomal protein S12 (RS12_HUMAN) 53.79 7 21 14.51 7.21 0.65 1.54E−03
40S ribosomal protein S19 (RS19_HUMAN) 39.31 6 25 16.05 10.32 0.56 3.77E−04
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change = 1.54, p = 0.03), COX7A2L (fold change = 1.87, p =
0.005), CYCS (fold change = 2.42, p = 0.001), GPX7 (fold
change = 1.66, p = 0.0002), HTRA2 (fold change = 1.57, p =
0.008), MAOB (fold change = 0.41, p = 0.0002), TXN2 (fold
change = 1.52, p = 0.005), and UQCRH (fold change = 1.59,
p = 0.01). Some key molecules identified with quantitative
mitochondrial proteomics, such as BCL2, PRDX5, AIFM1,
VDAC1, HTRA2, COX1, and CYTB, were reported in pre-
vious studies [13, 14].Meanwhile, energymetabolism–related
pathways were also enriched in glucose metabolism pathways
and in lipid metabolism pathways, such as acetone degrada-
tion I pathway, fatty acid beta-oxidation I, fatty acid beta-
oxidation III, TCA cycle II (eukaryotic), and oxidative phos-
phorylation pathway. Those enriched pathways indicated mi-
tochondria play important roles in maintaining the energy me-
tabolism of tumor cells. Mitochondrial dysfunction pathway
in combination with the changes of these energy metabolism
pathways made ones pay a great attention on energymetabolic
reprogramming of cancer.

GP6 is widely recognized as a requisite factor for the for-
mation of platelet aggregation on a collagen surface under
blood flow. Currently, platelets play a critical role in cancer
development, progression, and spread ofmalignancy. Platelets
activated by cancer cells were always detected in vitro, and the
similar results appeared in clinical studies that increased levels
of platelet activation in cancer patients. Moreover, platelets are
in all probability involved in the development of venous
thromboembolism (a frequent complication of malignant dis-
ease) in cancer patients associated with high mortality [22].

Those data suggest that continuous activation and thus ex-
haustion of platelets were involved in cancer-associated ve-
nous thromboembolism and cancer mortality. The mtDEPs
enriched in GP6 signaling pathway (Supplementary Figure 1
item 3) showed those molecules may took part in continuous
activation of platelets to affect cancer development, progres-
sion, and spread of malignancy. The mtDEPs enriched in GP6
signaling pathway provided molecular markers between can-
cer tissues and control tissues, including ADAM10 (fold
change = 1.57, p = 0.0003), COL10A1 (fold change = 0.24,
p = 0.0002), COL16A1 (fold change = 0.43, p = 0.0007),
COL1A1 (fold change = 0.30, p = 0.00008), COL1A2 (fold
change = 0.29, p = 0.001), COL2A1 (fold change = 0.17, p =
0.0007), COL3A1 (fold change = 0.30, p = 0.0006), COL4A2
(fold change = 0.39, p = 0.004), COL5A2 (fold change = 0.24,
p = 0.003), COL6A1 (fold change = 0.40, p = 0.001),
COL6A2 (fold change = 0.44, p = 0.0005), COL6A6 (fold
change = 0.40, p = 0.002), COL8A1 (fold change = 0.33, p =
0.0009), FGFR4 (fold change = 0.39, p = 0.00001), ITPR1
(fold change = 0.59, p = 0.00006), LAMA2 (fold change =
0.58, p = 0.003), LYN (fold change = 1.54, p = 0.03),
PRKCA (fold change = 0.57, p = 0.004), and PTPN11 (fold
change = 0.37, p = 0.001). Some tumor-related molecules in
this pathway are frequently reported in recent years.
PTPN11 is a member of the protein tyrosine phosphatase fam-
ily. PTPs are well known to be signaling molecules that regu-
late a series of cellular processes, including cell migration,
differentiation, metabolic control, cell growth, oncogenic
transformation, and mitotic cycle [23]. Protein kinase C

Table 1 (continued)

Pathway name Protein Coverage
(%)

Unique
peptides

PSMs MW
(kDa)

Calc.
pI

Ratio
(T/N)

p value
(t test)

40S ribosomal protein S20 (RS20_HUMAN) 25.21 3 10 13.36 9.94 0.64 5.19E−05
40S ribosomal protein S21 (Q8WVC2_HUMAN) 12.35 1 3 8.84 8.50 0.63 3.09E−03
40S ribosomal protein S28 (RS28_HUMAN) 46.38 3 8 7.84 10.70 0.54 5.04E−03
40S ribosomal protein S29 (A0A087WTT6_HUMAN) 13.21 1 2 6.11 9.14 0.66 3.27E−03
40S ribosomal protein S3 (RS3_HUMAN) 65.43 15 46 26.67 9.66 0.62 5.61E−05
Ras-related protein R-Ras (RRAS_HUMAN) 29.36 4 11 23.47 6.93 0.64 1.88E−02
Ras-related protein R-Ras2 (RRAS2_HUMAN) 18.63 2 7 23.38 6.01 0.66 6.54E−03

Glutathione-mediated
detoxification

Glutathione S-transferase kappa 1 (GSTK1_HUMAN) 66.37 13 129 25.48 8.41 2.13 4.24E−07

Glutathione S-transferase Mu 1 (GSTM1_HUMAN) 48.17 3 24 25.70 6.70 0.46 6.84E−04
Glutathione S-transferase Mu 2 (GSTM2_HUMAN) 61.47 8 31 25.73 6.37 0.49 4.40E−03
Glutathione S-transferase Mu 3 (GSTM3_HUMAN) 52.44 4 43 26.54 5.54 0.37 5.16E−04
Glutathione S-transferase Mu 4 (A0A0A0MR85_

HUMAN)
26.61 1 14 25.55 5.90 0.59 8.21E−03

Glutathione S-transferase Mu 5 (GSTM5_HUMAN) 36.7 2 25 25.66 7.39 0.59 4.01E−04
Glutathione S-transferase pi (fragment) (C7DJS2_

HUMAN)
42.38 1 14 16.66 5.10 2.02 3.78E−02

Maleylacetoacetate isomerase (MAAI_HUMAN) 26.85 1 7 24.20 8.54 1.59 3.61E−03
Maleylacetoacetate isomerase (G3V5T0_HUMAN) 28.71 1 7 22.60 7.69 2.07 8.20E−04
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(PKC) is a family of serine- and threonine-specific protein
kinases, which can be activated by calcium or the second
messenger diacylglycerol. PKC family members are involved
in a variety of protein phosphorylation targets and are known
to modulate activity of diverse cellular signaling pathways.
Members of the PKC family have been reported to play roles
in various cellular processes, such as cell transformation, cell
adhesion, cell volume control, and cell cycle checkpoint [24].

The translation initiation factor EIF2 catalyzes the first reg-
ulated step of protein synthesis initiation, promoting the bind-
ing of the initiator tRNA to 40S ribosomal subunits. EIF2 is
composed of 3 nonidentical subunits, the 36-kD EIF2-alpha
subunit (EIF2S1), the 38-kD EIF2-beta subunit (EIF2S2), and
the 52-kD EIF2-gamma subunit (EIF2S3). EIF2S1, EIF2S2,
and EIF2S3 were all reported to associate tumor progression
[25]. The mtDEPs enriched in EIF2 signaling pathway

(Supplementary Figure 1 item 4) showed cancer cell launched
the new translation process respect to control group.
Glutathione-mediated detoxification pathway (Supplementary
Figure 1 item 5) also has been reported to associate tumor pro-
gression [26]. Cancer cells were bound to generate a large num-
ber of reactive oxygen species (ROS), and it was no doubted that
producing ROS in excess can be harmful. Glutathione peroxi-
dase is the body’s primary antioxidant that is found in every cell.
The mtDEPs enriched in glutathione-mediated detoxification
pathway might prove that cancer cells developed sophisticated
systems to self-protect and respond to their environment.

Beyond those important tumor-associated pathways, the
other significant pathways were also closely related to the
tumor occurrence and development, such as mTOR signaling,
Gap junction signaling, OC signaling, protein ubiquitination
pathway, and PPAR-α/RXRα activation (Supplementary

Fig. 1 Pathway overlapping analysis and validation of cancer associated
canonical pathways. a The interactions among those identified canonical
pathways. b qRT-PCR quantitative analysis of the expression levels of
TPM1, LYN, CALR, GSTP1, CPT2, and AKAP12 in OC cells TOV21G
and SKOV3 compared to control cells IOSE80. c Protein expression

levels of TPM1, LYN, CALR, GSTP1, CPT2, and AKAP12 in OC cells
TOV21G and SKOV3 compared to control cells IOSE80. dWestern blot
quantitative analysis of TPM1, LYN, CALR, GSTP1, CPT2, and
AKAP12 in OC cells TOV21G and SKOV3 compared to control cells
IOSE80. n = 3. *p < 0.05; **p < 0.01; ***p < 0.001. NS no significance
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Table 2). Mitochondria play important roles in multiple cellu-
lar signaling pathways and have broad biological activities.
All those indicated signaling pathways that involved ovarian
mitochondrial proteins were reliable for further studies of OC.

Molecular and cellular functions provide significant
tumor-related molecules

The analyzed molecular and cellular functions include cell
movement, cell death and survival, cell-to-cell signaling and
interaction, free radical scavenging, and lipid metabolism
(Supplementary Figure 2). Those identified molecules were
related to tumor cells proliferation, migration, invasion, signal
transduction, and energy metabolism. Analysis of cellular lo-
calizations of proteins in the human network found that the
same molecule could appear in different cellular function

networks and that the same cellular function could recruit
different proteins in diverse cellular localizations. The result
indicated that cancer was a multifaceted disease that involved
multifactors, complex biological processes, and unpredictable
consequences. It is not reasonable for the use of a single mol-
ecule as biomarker for accurate PPPM practice. Consistency
was obtained by pathway overlapping analysis, which showed
the interaction among those identified canonical pathways and
the high biological complexity of the organism (Fig. 1a). The
analyzed molecular and cellular functions provided the corre-
sponding biomarkers with the significantly altered expres-
sions, including that SPIN1, SPINT2, APCS, FBN1,
COL4A1, TGM1, TCN1, PUM1, BCL2, S100A14, SUN2,
VTCN1, HLA-A1, PKP3, COMT, TPM1, UBC, MBP,
MFAP5, NCAM1, SSPN, MBP, COL1A1, and MANF were
related to cell death and survival; that S100A14, VTCN1,

Fig. 2 The hub molecules were identified within OC tissues. a The
protein–protein interactions (PPIs) with combined scores greater than
0.4 were selected to construct PPI network. b–g The entire PPI network

was analyzed usingMCODE, and six modules (module 1 score = 24.357,
module 2 score = 15, module 3 score = 10.435, module 4 score = 10.4,
module 5 score = 8.769, and module 6 score = 6.609) were obtained
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MUC1, CD63, SLC3A2, LPAP1, NCAM1, SELENOK,
SUN2, HLA-A, DCN, COL4A1, and FBN were related to
cell movement; that SPINT2, COL3A1,CXCL12, COL4A1,
LABA, BCL2, MC2, and HLA-Awere related to cell-to-cell
signaling and interaction; that DCN, NAMPT, APCS, SSPN,
MUC1, CYCS, ABCB10, BNIP3, CYCS, ACTB10, BNIP3,
CYBA, ACTB, BCL2, EEF1A2, and SLCI5A10 were related
to free radical scavenging; and that MBP, TNFSF10, APCS,
SLC27A4, SSPN, NCAM, EEF1A2, ACAA1, CLC25A10,
COMT, and BCL2 were related to lipid metabolism.

qRT-PCR and Western blot validated OC mtDEPs

To validate mtDEPs identified by iTRAQ quantitative mito-
chondrial proteomics, the protein expressions of the identified
mtDEPs were examined, including TPM1 (fold change =
0.32, p = 0.0001, enriched in OC pathway), CALR (fold
change = 1.97, p = 0.013, enriched in antigen presentation
pathway), GSTP1 (fold change = 2.02, p = 0.037, enriched in
glutathione-mediated detoxification-table pathway), CPT2
(fold change = 2.05, p = 0.01, enriched in lipid metabolism
network), AKAP12 (fold change = 0.52, p = 0.003, cell move-
ment network), and LYN (fold change = 1.54, p = 0.037,
enriched in GP6 signaling pathway), with the expression
levels of mRNAs and proteins of those DEPs in the cultured
OC cells TOV21G and SKOV3 and control cells IOSE80.
The significant changes in the mRNA and protein expression
levels of TPM1, CALR, GSTP1, CPT2, AKAP12, and LYN
were observed in the cultured cells by qRT-PCR and Western
blot, respectively (Fig. 1b–d). The results of Western blot in
the prepared samples had a good consistency with the results
of iTRAQ quantitative mitochondrial proteomics.

Networks derived from OC mtDEP data

A total of 1174 identifiers were mapped with IPA network
analysis to the corresponding molecules (genes; proteins).
Among those OC quantitative mitochondrial proteomics data,
25 networks were ident i f ied to involve mtDEPs
(Supplementary Figure 3). Those 25 networks had cross-
talks and similar biological functions during ovary carcino-
genesis and were classified into multiple functional clusters.
Cluster 1 included networks 12, 19, and 21, which are in-
volved in nucleic acid metabolism, gene expression, and
DNA replication. EIF family members, ZNF207, ANXA5,
CDKN2A, SNP1, FHL2, TRAP1, RNA polymerase II,
PKC(s), and NME4 play key roles in cluster 1. Cluster 2
included networks 2, 3, 6, 10, 12, 13, 16, and 17, which are
involved in amino acid metabolism, post-translation modifi-
cation, protein folding, and protein synthesis. NTRK1,
SHMT2, GLDC, AURKAIP1, MRPS15, MRPS21,
HYOU1, EMC family members, PDIA4, PDIA6, HMGA,
XRCC6, H2AFX, H2AFY, ATP6AP2, CAVINI, CAVIN3,

SEPT family members, Syntaxin, BLC2L1, A2FM1,
SLC25A5, VDAC1, EIF family members, LGALS3BP,
COX4I1, COX6C, MT-CO1, MT-CO2, and GSTP1 play
key roles in cluster 2. Cluster 3 included networks 1, 8, 10,
11, 22, and 24, which are involved in cell morphology, cellular
movement, cellular assembly and organization, cellular func-
tion and maintenance, cell death and survival, cellular devel-
opment, cellular growth, and proliferation. FLNB, PDLIM7,
FLNA, SVIL, NCL, YBX1, SPTBN1, SPTAN1, KRT19,
KRT18, KRT8, VIM, DSP, TELO2, DNAJB1, Syntaxin,
SNAP29, CAVIN1, ATP6AP2, SEPT family members,
AIFM1, VDAC1, SLC25A5, BCL2L2, TUFM, DPYSL5,
DPYSL2, TUBB4A, tubulin, LPAR1, ALB, LGALS3, and
COL1A1 play key roles in cluster 3. Cluster 4 included net-
works 7, 12, 14, and 19, which are involved in cancer.
COL6A1, PLOP1, collagen type V2, collagen, EIF family
members, RPS20, ribosomal 40s subunit, PNKB, CDKN2A,
TRAP1, ANXA5, ZNF207, MCM, and RAN polymerase II
play key roles in cluster 4. Cluster 5 included networks 4, 5, 9,
15, 18, 20, 23, and 25, which are involved in other diseases
including metabolic disease and organismal injury and
abnormalities.

The hub molecules were identified within OC tissues

The PPIs with combined scores greater than 0.4 were selected
to construct PPI network (Fig. 2a). The entire PPI network
was analyzed using MCODE, and six modules (module 1
score = 24.357, module 2 score = 15, module 3 score =
10.435, module 4 score = 10.4, module 5 score = 8.769, and
module 6 score = 6.609) were chosen (Fig. 2b–g). Thus, a
total of 102 hub molecules were identified in OCs (Table 2).
Those hub molecules assisted in improving the understanding
of the key molecular mechanisms underlying OC develop-
ment, and the results may help the further study of the biolog-
ical mechanism of OCs. GO analysis indicated that hub mol-
ecules were significantly enriched in biological processes,
such as nuclear-transcribed mRNA catabolic process, transla-
tion, peptide metabolic process, and protein targeting to mem-
brane (Fig. 3a; Supplementary Table 3).

Spatiotemporal coordination is a key factor in biological
processes. Some hub molecules in PPI networks tend to be
co-expressed or co-localized with partial hub molecules more
strongly than others; a difference is possibly related to func-
tional differences between the hub molecules [16]. In previous
research, it has been suggested that various co-expression and
co-localization were reflected in the molecular characteristics
or structures of the hub molecules [16]. Drawing graphics of
hub molecules co-expression and co-localization greatly help
understand clear function and biological mechanisms of OCs.
The mRNA expression data of 102 hub molecules across 419
OC patients were extracted from TCGA database
(Supplementary Table 4), and the results of co-expression,
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Table 2 A total of 102 hub molecules were identified in ovarian cancer

ID Gene Description Location Ratio
(tumor/
control)

P09110 ACAA1 Acetyl-CoA acyltransferase 1 Cytoplasm 2.70

P42025 ACTR1B ARP1 actin–related protein 1 homolog B Cytoplasm 0.64

P11766 ADH5 Alcohol dehydrogenase 5 (class III), chi polypeptide Cytoplasm 0.52

P08913 ADRA2A Adrenoceptor alpha 2A Plasma membrane 0.37

P00568 AK1 Adenylate kinase 1 Cytoplasm 0.61

P02768 ALB Albumin Extracellular space 0.34

P54886 ALDH18A1 Aldehyde dehydrogenase 18 family member A1 Cytoplasm 1.74

P00352 ALDH1A1 Aldehyde dehydrogenase 1 family member A1 Cytoplasm 0.44

O75891 ALDH1L1 Aldehyde dehydrogenase 1 family member L1 Cytoplasm 0.64

Q9BXN1 ASPN Asporin Extracellular space 0.45

O75531 BANF1 Barrier to autointegration factor 1 Nucleus 0.65

Q9BUT1 BDH2 3-Hydroxybutyrate dehydrogenase 2 Cytoplasm 0.51

Q03692 COL10A1 Collagen type X alpha 1 chain Extracellular space 0.24

Q05707 COL14A1 Collagen type XIValpha 1 chain Extracellular space 0.47

Q07092 COL16A1 Collagen type XVI alpha 1 chain Extracellular space 0.43

P02452 COL1A1 Collagen type I alpha 1 chain Extracellular space 0.30

P02458 COL2A1 Collagen type II alpha 1 chain Extracellular space 0.17

P02461 COL3A1 Collagen type III alpha 1 chain Extracellular space 0.30

P08572 COL4A2 Collagen type IV alpha 2 chain Extracellular space 0.39

P12109 COL6A1 Collagen type VI alpha 1 chain Extracellular space 0.40

P12110 COL6A2 Collagen type VI alpha 2 chain Extracellular space 0.44

A6NMZ7 COL6A6 Collagen type VI alpha 6 chain Extracellular space 0.40

P27658 COL8A1 Collagen type VIII alpha 1 chain Extracellular space 0.33

P48061 CXCL12 C-X-C motif chemokine ligand 12 Extracellular space 0.35

Q13268 DHRS2 Dehydrogenase/reductase 2 Nucleus 0.39

P25685 DNAJB1 DnaJ heat shock protein family (Hsp40) member B1 Nucleus 0.59

Q13217 DNAJC3 DnaJ heat shock protein family (Hsp40) member C3 Cytoplasm 1.62

Q9NTX5 ECHDC1 Ethylmalonyl-CoA decarboxylase 1 Cytoplasm 1.69

P30084 ECHS1 Enoyl-CoA hydratase, short chain 1 Cytoplasm 1.52

P42126 ECI1 Enoyl-CoA delta isomerase 1 Cytoplasm 1.64

Q08426 EHHADH Enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase Cytoplasm 1.62

O15371 EIF3D Eukaryotic translation initiation factor 3 subunit D Cytoplasm 0.64

P60228 EIF3E Eukaryotic translation initiation factor 3 subunit E Cytoplasm 0.65

Q13347 EIF3I Eukaryotic translation initiation factor 3 subunit I Cytoplasm 0.65

P30040 ERP29 Endoplasmic reticulum protein 29 Cytoplasm 1.81

Q96RP9 GFM1 G elongation factor mitochondrial 1 Cytoplasm 1.88

P36269 GGT5 Gamma-glutamyltransferase 5 Plasma membrane 0.57

P23378 GLDC Glycine decarboxylase Cytoplasm 2.24

P63096 GNAI1 G protein subunit alpha i1 Plasma membrane 0.48

Q9HAV0 GNB4 G protein subunit beta 4 Plasma membrane 0.56

Q96SL4 GPX7 Glutathione peroxidase 7 Cytoplasm 1.66

Q9Y2Q3 GSTK1 Glutathione S-transferase kappa 1 Cytoplasm 2.13

P09488 GSTM1 Glutathione S-transferase mu 1 Cytoplasm 0.46

P28161 GSTM2 Glutathione S-transferase mu 2 Cytoplasm 0.49

B4E2J2 GSTM3 Glutathione S-transferase mu 3 Cytoplasm 0.37

P46439 GSTM5 Glutathione S-transferase mu 5 Cytoplasm 0.59

P07305 H1F0 H1 histone family member 0 Nucleus 0.32
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Table 2 (continued)

ID Gene Description Location Ratio
(tumor/
control)

Q92522 H1FX H1 histone family member X Nucleus 0.34

P16104 H2AFX H2A histone family member X Nucleus 0.33

O75367 H2AFY H2A histone family member Y Nucleus 0.47

P0C0S5 H2AFZ H2A histone family member Z Nucleus 0.25

Q9NRV9 HEBP1 Heme binding protein 1 Cytoplasm 0.62

Q6NVY1 HIBCH 3-Hydroxyisobutyryl-CoA hydrolase Cytoplasm 1.58

P16403 HIST1H1C Histone cluster 1 H1 family member c Nucleus 0.51

P10412 HIST1H1E Histone cluster 1 H1 family member e Nucleus 0.34

Q96KK5 HIST1H2AH Histone cluster 1 H2A family member h Nucleus 0.61

P06899 HIST1H2BJ Histone cluster 1 H2B family member j Nucleus 0.31

O60814 HIST1H2BK Histone cluster 1 H2B family member k Nucleus 0.52

Q8IUE6 HIST2H2AB Histone cluster 2 H2A family member b Nucleus 0.22

P28845 HSD11B1 Hydroxysteroid 11-beta dehydrogenase 1 Cytoplasm 0.52

P11021 HSPA5 Heat shock protein family A (Hsp70) member 5 Cytoplasm 1.77

P61604 HSPE1 Heat shock protein family E (Hsp10) member 1 Cytoplasm 1.86

Q9Y4L1 HYOU1 Hypoxia upregulated 1 Cytoplasm 1.73

Q14643 ITPR1 Inositol 1,4,5-trisphosphate receptor type 1 Cytoplasm 0.59

P51884 LUM Lumican Extracellular space 0.45

Q8IXM3 MRPL41 Mitochondrial ribosomal protein L41 Cytoplasm 1.53

Q9H2W6 MRPL46 Mitochondrial ribosomal protein L46 Cytoplasm 1.53

Q13405 MRPL49 Mitochondrial ribosomal protein L49 Cytoplasm 1.56

Q4U2R6 MRPL51 Mitochondrial ribosomal protein L51 Cytoplasm 1.57

Q96EL3 MRPL53 Mitochondrial ribosomal protein L53 Cytoplasm 1.55

Q6P161 MRPL54 Mitochondrial ribosomal protein L54 Cytoplasm 1.79

O15235 MRPS12 Mitochondrial ribosomal protein S12 Cytoplasm 2.27

P82914 MRPS15 Mitochondrial ribosomal protein S15 Cytoplasm 1.50

Q9Y3D9 MRPS23 Mitochondrial ribosomal protein S23 Cytoplasm 1.78

P82932 MRPS6 Mitochondrial ribosomal protein S6 Cytoplasm 2.59

P82933 MRPS9 Mitochondrial ribosomal protein S9 Cytoplasm 1.63

P46199 MTIF2 Mitochondrial translational initiation factor 2 Cytoplasm 1.55

P20774 OGN Osteoglycin Extracellular space 0.47

P07237 P4HB Prolyl 4-hydroxylase subunit beta Cytoplasm 1.56

Q14554 PDIA5 Protein disulfide isomerase family A member 5 Cytoplasm 1.51

Q9BY49 PECR Peroxisomal trans-2-enoyl-CoA reductase Cytoplasm 1.57

Q13162 PRDX4 Peroxiredoxin 4 Cytoplasm 1.64

P51888 PRELP Proline and arginine rich end leucine rich repeat protein Extracellular space 0.34

P17612 PRKACA Protein kinase cAMP-activated catalytic subunit alpha Cytoplasm 0.57

P22694 PRKACB Protein kinase cAMP-activated catalytic subunit beta Cytoplasm 0.50

Q8IZV5 RDH10 Retinol dehydrogenase 10 Nucleus 2.05

P30050 RPL12 Ribosomal protein L12 Nucleus 0.57

P62750 RPL23A Ribosomal protein L23a Cytoplasm 0.65

P32969 RPL9 Ribosomal protein L9 Nucleus 0.64

P39019 RPS19 Ribosomal protein S19 Cytoplasm 0.56

P60866 RPS20 Ribosomal protein S20 Cytoplasm 0.64

P23396 RPS3 Ribosomal protein S3 Cytoplasm 0.62

P10301 RRAS RAS related Cytoplasm 0.64

P62070 RRAS2 RAS related 2 Plasma membrane 0.66

164 EPMA Journal (2019) 10:153–172



correlation coefficient, and p value were obtained with
Rstudio (Fig. 3b). The high correlations among hub molecules
were found, such as COL10A1 and COL1A1, COL1A1 and
COL3A1, LUM and ASPN, and HIST1H1C and
HIST1H2BK. Further studies should focus on those hub mol-
ecules with high correlation, which indicated that spatiotem-
poral dynamics was encoded. Co-localization analysis in-
cludes chromosome location (Fig. 3c) and cell location (Fig.
3d).Multiple post-translationalmodifications (PTMs) of those
hub molecules were predicted with SysPTM database
(Supplementary Table 5), including phosphorylation, acetyla-
tion, methylation, palmitoylation, glycosylation, and inter-
chain disulfide bridge. Those robust findings suggested that
the co-expression and location of hub molecules may be reg-
ulated by PTMs.

The KMplot results (p < 0.05) revealed that 62 of 102 hub
molecules resulted in significant OC overall survival. A total
of 12 hub molecules, including CXCL12 (fold change = 0.34,
p = 0.0051), HSPA5 (fold change = 1.77, p = 0.0001), P4HB
(fold change = 1.56, p = 0.007), HSPE1 (fold change = 1.86,
p = 0.003), LUM (fold change = 0.45, p = 0.001), XRCC6
(fold change = 0.59, p = 0.0002), ALDH1L1 (fold change =
0.64, p = 0.002), RPS19 (fold change = 0.56, p = 0.0003),
GSTM3 (fold change = 0.37, p = 0.0005), PRKACB (fold
change = 0.50, p = 0.002), COL1A1 (fold change = 0.30, p =
0.00008), and COL6A2 (fold change = 0.44, p = 0.0005),
were coincidence with previous studies (Fig. 4). The other
50 hub molecules that have not been reported previously
may be new findings in OCs, such as ASPN, COL3A1,
COL6A6, COL10A1, DNAJB1, GFM1, GNAI1, GNB4,
GSTM5, HEBP1, HIBCH, HIST1H4D, HIST1H4F,
HYOU1, MRPL46, MRPL53, MRPS12, OGN, PDIA5,
PRELP, RDH10, RRAS, and RRAS2 (Supplementary
Figure 4).

Moreover, survival risk score system was constructed
based on hub molecule signature. Those 102 hub molecules
were subjected to SPSS 20 to construct a survival risk score
system by multivariate regression analysis. The regression

coefficient for hub molecule was generated (Table 3). The
significance level was set as p < 0.05. The survival risk score
was calculated as follows: Survival risk score = (0.136 × ex-
pression level of HIST1H2BK) + (0.171 × expression level of
ALB) + (0.115 × expression level of RRAS2) + (0.101 × ex-
pression level of HIBCH) + (− 0.120 × expression level of
EIF3E) + (0.228 × expression level of RPS20) + (− 0.184 ×
expression level of RPL23A). Higher score of this model in-
dicated longer survival time or lower mortality risk for OC
patients.

Discussion

Molecular network changes are the hallmark in the pathogen-
esis of OCs and benefit for the discovery of effective and
reliable biomarkers for early diagnosis, prognostic evaluation,
or targeted therapy to prolong survival time of the patients
[27]. Mitochondria are dynamic organelles that are essential
for biological process and play key roles in energy metabo-
lism, immunity adjustment, cell cycle, cell proliferation and
apoptosis, and autophagy [28]. Mitochondrial dysfunctions
could have a broad impact on the human diseases, including
cancer [29]. In recent years, some studies have been focusing
on mitochondria contributing to malignant transformation and
carcinoma progression [11]. Mitochondrial biomarkers exhib-
it important scientific merits in human medical researches
[30]. For example, the increased expression of trefoil factor
family 3 (TFF3) is identified in a variety of cancers. TFF3
silencing induces the mitochondria-mediated apoptosis sig-
naling pathway by enhancing BAX translocating to the mito-
chondria and by increasing the expression of the mitochondri-
al pro-apoptotic proteins. Thus, it is useful to develop mito-
chondrial biomarkers related to carcinogenesis [31]. In addi-
tion, as important intracellular organelles, the mitochondria
play a critical role in regulating cancer signaling pathway, by
structural derangement and metabolic modulation. For exam-
ple, PINK1–PARK2 pathway increases mitochondrial iron

Table 2 (continued)

ID Gene Description Location Ratio
(tumor/
control)

P60468 SEC61B Sec61 translocon beta subunit Cytoplasm 2.11

Q9Y5M8 SRPRB SRP receptor beta subunit Cytoplasm 1.55

P37837 TALDO1 Transaldolase 1 Cytoplasm 0.66

P43897 TSFM Ts translation elongation factor, mitochondrial Cytoplasm 1.62

P49411 TUFM Tu translation elongation factor, mitochondrial Cytoplasm 1.52

O95881 TXNDC12 Thioredoxin domain containing 12 Cytoplasm 1.93

Q99536 VAT1 Vesicle amine transport 1 Plasma membrane 0.64

P12956 XRCC6 X-ray repair cross complementing 6 Nucleus 0.59
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accumulation, which activated the Warburg effect and
inflammasome in tumor cells. These findings demonstrated
that mitochondrial disorders may lead to cancer development
[32].

In our long-term program of mitochondrial proteomics in
OCs, we firstly quantitatively mapped 5115 mitochondrial
proteins in OC mitochondrial samples and 52 statistically sig-
nificant KEGG pathways from those mapped 5115 mitochon-
drial proteins [13], which is the basic data and reference pro-
filing for in-depth study of OC mitochondrial functions.
Furthermore, mtDEPs (n = 1198) were identified to offer a
direct data for analysis of mitochondrial function abnormali-
ties in OCs [14, 18]. Here we used those 1198 mtDEPs to

construct 192 statistically canonical pathways and 25 net-
works and extracted 102 hub molecules, and 62 hub mole-
cules were significantly related to cancer survival rates.
Among 192 significantly IPA-canonical pathways derived
from 1198 mtDEPs, 18 mtDEP-derived IPA canonical path-
ways were also included in the list of 52 significant KEGG
pathways derived from 5115 mapped mtEPs [13], and two
energy metabolic pathways (oxidative phosphorylation, and
TCA cycle) were also revealed with KEGG pathway analysis
from mapped mtEPs data [13] and quantitative mtDEPs data
[14], with activation z score > 2 (Supplementary Table 6).
Therefore, compared to our previously reported KEGG path-
ways from mapped mtEP data and mtDEPs data, this study

Fig. 3 Biological processes, co-expression and co-localization analysis of
hub molecules. a The hub molecules were classified according to the
biological process. b The results of co-expression at the mRNA level

between hub molecules. c The results of chromosome location and co-
expression at the protein level between hubmolecules. d The cell location
of those hub molecules
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Fig. 4 Kaplan–Meier (KM) survival curve of hub molecules ALDH1L1, COL1A1, COL6A2, CXCL12, GSTM3, HSPA5, HSPE1, LUM, P4HB,
PRKACB, RPS19, and XRCC6 in OCs
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provided much more comprehensive, complete, and overall
signaling pathway profiling and networks mined from 1198
mtDEPs with IPA analysis from the point of systematic view,
annotated activation and inhibition of canonical pathways
based on z score, and revealed significant seven hub molecule
signature models (HIST1H2BK, ALB, RRAS2, HIBCH,
EIF3E, RPS20, and RPL23A) to assess EOC survival risks.
Comprehensive analysis of all obtained data, including canon-
ical pathways, networks, TCGA data, and experimental vali-
dated data, revealed several signaling pathways and networks
were significantly associated with OC through regulating fun-
damental biologic behavior of tumor, such as immune dysreg-
ulation, tumor promotion inflammation, deregulating cellular
energetics, cell death, proliferation signaling, and tissue inva-
sion and metastasis. Two important OC-associated pathway
network systems are in-depth discussed here, including im-
mune dysregulation and cellular energetics.

Immune dysregulation signaling pathway system: An
emerging hallmark of tumor evading immune dysregulation
was still an unresolved issue as to how immune system plays
in resisting formation and progression of tumors or
micrometastases [33]. Immune surveillance proposes immune
system monitored cells and tissues and eliminated incipient
cancer cells. However, solid tumors sometimes appeared de-
fective immunological monitoring and could evade eradica-
tion. Tumor evading immune dysregulation might be correlat-
ed with prognosis in many tumors. For example, the heavily
infiltrated with CTLs and NK cells in colon and ovarian tu-
mors was related to a better prognosis [34]. This study
enriched a series of pathways related to immune system, in-
cluding altered T cell and B cell signaling in rheumatoid ar-
thritis, calcium-induced T lymphocyte apoptosis, cd28 signal-
ing in T helper cell, icos signaling in T helper cells, nur77
signaling in T lymphocytes, T helper cell differentiation, B
cell development, crosstalk between dendritic cells, and natu-
ral killer cells. T cell, B cell, and natural killer cells are the
main immune cells in vivo, and the findings were similar to
what has been previously reported. This study provided a

number of immune-related pathways on OC, and those iden-
tified proteins may act as antitumor immunity to block tumor
formation and progression in humans. For example, perspec-
tives of TLR2 (T cell and B cell signaling in rheumatoid ar-
thritis pathway) agonists in vaccine-adjuvant immunotherapy
for cancer have been reported [35]. Other proteins, including
HLA-A, HLA-DMA,HLA-DQA1, HLA-DQB1, HLA-DRA,
HLA-DRB1, and HLA-DRB5, were not reported on tumor–
host immunological interactions, which indicated the proteins
need further studies to testify them as novel OC biomarkers
for tumor immunology. CAPN2, ITPR1, PPP3CA, and
PRKCAwere enriched in calcium-induced T lymphocyte ap-
optosis pathway, and not reported on tumor-host immunolog-
ical interactions, but those proteins were repeatedly reported
relevant to human cancers [36]. It remains unknown whether
those molecules influence development of carcinomas by im-
mune system. SHP2, encoded by the PTPN11 gene (cd28
signaling in T helper cell), is a member of the protein tyrosine
phosphatase family. SHP2 was involved in multiple cell sig-
naling pathways, including Ras/MAPK and Hippo/YAP path-
ways, and led to the progression of various cancer types in-
cluding breast cancer, gastric, and leukemia. Meanwhile,
SHP2 also interacted with immune checkpoint receptors to
regulate T cell activation. Thus, SHP2 was a key protein to
activate T cell immune responses toward cancer cells [37]. In
addition, other identified markers of immune-related path-
ways may also provide clues about crosstalk between tumor
and immunity, including icos signaling in T helper cells
(CD40, FGFR4, HLA-A, HLA-DMA, HLA-DQA1, HLA-
DQB1, HLA-DRA, HLA-DRB1, HLA-DRB5, ITPR1,
PPP3CA, and PTPN11), nur77 signaling in T lymphocytes
(BCL2, CYCS, HLA-A, HLA-DMA, HLA-DQA1, HLA-
DQB1, HLA-DRA, HLA-DRB1, HLA-DRB5, and
PPP3CA), T helper cell differentiation (CD40, HLA-A,
HLA-DMA, HLA-DQA1, HLA-DQB1, HLA-DRA, HLA-
DRB1, and HLA-DRB5), B cell development (CD40, HLA-
A, HLA-DMA, HLA-DQA1, HLA-DQB1, HLA-DRA,
HLA-DRB1, and HLA-DRB5), and crosstalk between

Table 3 Regression model for
survival risk score system based
on 102 hub molecules as
independent variables and overall
survival (OS: days) as dependent
variable*

Independent variables Unstandardized coefficients Standardized
coefficients

t Significance
(p value)

B Std. error Beta

(Constant) − 770.138 689.051 − 1.118 0.264

HIST1H2BK 106.767 37.540 .136 2.844 0.005

ALB 422.058 115.081 .171 3.667 0.000

RRAS2 195.161 79.392 .115 2.458 0.014

HIBCH 166.011 77.862 .101 2.132 0.034

EIF3E − 163.306 68.674 − .120 − 2.378 0.018

RPS20 241.445 63.608 .228 3.796 0.000

RPL23A − 223.377 71.427 − .184 − 3.127 0.002

*ANOVA, df = 7, F = 8.625, p = 0.000
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dendritic cells and natural killer cells (ACTB, ACTC1, CD40,
FSCN1, HLA-A, HLA-C, HLA-DRA, HLA-DRB1, HLA-
DRB5, HLA-E, and TNFSF10).

Cellular energetic signaling pathway network: An emerg-
ing hallmark of reprogramming energy metabolism made re-
searches refocus efforts to a novel anticancer strategy on can-
cer cells. The study of tumor cell energy metabolism is
multiangle, which focused on glucose metabolism and lipid
metabolism in the past 10 years. The metabolism of glucose to
lactic acid in the presence of oxygen had been recognized in
cancer cells, commonly called the Warburg effect [38].
However, the reverse Warburg effect was put forward in
2009 and provided complementary mechanisms for cancer
energy metabolism. Cancer cells secreted ROS to induce ox-
idative stress and aerobic glycolysis in mesenchymal cells. In
turn, mesenchymal cells produced lots of nourishment to the
adjacent cancer cells [39]. Novel evidence is shedding light on
alterations in lipid metabolism-associated pathways, which
have often been discounted for past years. All of the evidence
suggests that lipid disorder is closely related to tumorigenesis.
This study enriched a series of pathways related to energy
metabolism, including TCA cycle II (eukaryotic), acetone
degradation I, fatty acid beta-oxidation I, fatty acid beta-
oxidation III, ketogenesis pathway, leptin signaling in obesity,
and superpathway of cholesterol biosynthesis. Those identi-
fied proteins may act as antitumor energy metabolism to block
tumor formation and progression in humans. For example, by
microarray analysis, one confirmed that fumarate hydratase
messenger RNA (TCA cycle II pathway) was low expression
in renal cancer cells. Consistence with the possibility that al-
tered gene expression of fumarate hydratase represented one
change to a more anaerobic state [40]. Overnutrition was
known as a confirmed independent cancer risk factor.
However, the oncogenic mechanisms remain poorly under-
stood. Enoyl-CoA hydratase-1(ECHS1), the enzyme involved
in the oxidation of fatty acids (fatty acid beta-oxidation I path-
way), regulates mTOR signaling and cellular apoptosis by
sensing nutrients. Overnutrition suppressed enoyl-CoA
hydratase-1 (ECHS1) activity and linked to increased risk of
cancer [41]. Moreover, other identified markers of energy
metabolism-related pathways may also provide clues about
crosstalk between tumor and energy metabolism, including
acetone degradation I (CYP19A1, CYP1B1, CYP2J2,
CYP2S1, CYP4B1, and CYP4X1), fatty acid beta-oxidation
III (ECI1, and EHHADH), ketogenesis pathway (ACAT2,
BDH1, BDH2, and HMGCS2), and leptin signaling in obesity
(FGFR4, JAK2, PDIA3, PLCB3, PLCH1, PRKACA,
PRKACB, PRKAR2B, and PTPN11).

Moreover, some other canonical pathways and hubmolecules
also get ones to paymore attention to, including iron homeostasis
signaling pathway, endoplasmic reticulum stress pathway, inhi-
bition of matrix metalloproteases, mTOR signaling, protein
ubiquitination pathway, RAS activation, RhoA signaling, role

of tissue factor in cancer, and role of JAK family kinase in IL-6
type cytokine signaling. All those pathways are worth further
studying to verify their relationship with OCs.

In addition to the pathway analysis, the key molecules in
those pathway network system were also extensive analyzed
with multiple methods, including molecular and cellular func-
tions, network, and hub molecule analyses, which were poten-
tial biomarkers for the development of an OC, such that
CXCL12, HSPA5, P4HB, HSPE1, LUM, ALDH1L1,
RPS19, GSTM3, PRKACB, COL1A1, and COL6A2, as re-
ported were significantly related to overall survival. To some
degree, these results indicate that our findings were consistent
with previous studies and also make new discoveries.
Mitochondrial changes lead to morphology and functions
transformation and influence downstream metabolic process-
es. Mitochondrial proteins can be developed as molecular bio-
markers or therapeutic targets in the development of new in-
terventions to selectively kill cancer versus normal cells [42].
For example, mitochondria or mitochondrial reactive oxygen
species (ROS) in a cancer provided novel targets for antican-
cer therapy. Mitochondrial ROS are characterized by overpro-
duction in cancer cells, which promotes cancer progression by
modifying gene expressions, inducing genomic instability and
participating in signaling pathways. Designing novel and se-
lective mitochondria-targeted agents may help to increase
therapeutic specificity and reduce drug toxicity of these
agents. Mitochondria-targeted antioxidants are found to
be effective based on the oncogenic role of ROS [43].
In addition, mitochondria-targeted drugs stimulated
mitophagy and blocked cancer cell proliferation.
Traditional methods targeting the mitochondria of cancer
cells always aimed at influencing antiapoptotic proteins
or inducing changing energy metabolism. Currently,
tumor-associated mitochondrial antigens were recognized
by the immune system, which provides a novel way to
mitochondria-targeted drugs development [44].

Strength and limitation

This study focused on mitochondria proteome and its involved
molecular network alterations in OCs to reveal mitochondria-
related signaling pathways and candidate biomarkers. Seven ep-
ithelial OC tissues and 11 control ovaries with benign gyneco-
logic disease were used to prepare OC and control mitochondria
for identification of 1198 mtDEPs, followed by construction of
25 statistically significant networks and 192 canonical pathways.
Some important molecules, including TPM1, CALR, GSTP1,
CPT2, AKAP12, and LYN, in those pathway networks were
further verified in OC cells (TOV-21G and SKOV3) compared
to normal ovarian cells (IOSE80), which showed the consistent
results with the results of tissue mitochondrial proteomics. These
findings provided the scientific data to better understand the roles
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of OC mitochondrial proteome from systems biology angle.
Here, one should realize that (i) mitochondria from 7 OC tissues
were mixed as the cancer mitochondrial sample, and mitochon-
dria from 11 control ovaries weremixed as the control mitochon-
drial sample, and then the cancer and control mitochondrial sam-
ples were used for quantitative proteomics analysis to decrease
between-individual heterogeneity. However, for identification of
mtDEPs as biomarkers, it is necessary to verify them in an ex-
panded OC and control ovary tissues in future. (ii) For OC cell
lines, there weremany types of OC cell lines, including epithelial
cells (e.g., SKOV3, TOV-21G, and OV-1063), epithelial-like
cells (e.g., UWB1.289, UACC-2727, and UACC-1598), and
endometrioid OC cells (e.g., IGROV, and TOV112D). Cell lines
SKOV3 and TOV-21G used in this study were from American
Type Culture Collection (ATCC), and they were frequently used
in OC-related studies. SKOV3 isolated from ovarian adenocar-
cinoma was one of serous epithelial ovarian carcinoma cell lines
and moderately differentiated. TOV-21G from ovarian surface
epithelium was isolated from primary malignant adenocarcino-
ma. SKOV3 and TOV-21Gwere all tumorigenic in nudemice to
indicate malignancy degree of tumor. The control ovarian cell
line (IOSE80) was also from normal ovarian surface epithelium,
and it is reasonable to be used as control group. In addition, three
cell lines SKOV3, TOV-21G, and IOSE80 in this study were
consistent in cell origin (namely epithelial cells) with our ana-
lyzed OC and control tissues; thus, those three cell lines can be
used to verify our tissue proteomics results. However, for iden-
tification of mtDEPs as biomarker or therapeutic targets, it is
necessary to use more OC cell lines and normal control cells
for future validation. (iii) In order to determine the clinical values
of 102 hub molecules derived from 1198 mtDEPs, the present
survival analysis and multivariate regression analysis of those
hub molecules were not based on those 7 OC and 11 control
ovary tissues used for proteomic analysis, but based on 419 OC
patients in the TCGAdatabase through obtaining TCGAmRNA
data corresponding to 102 OC-tissue mtDEPs. Therefore, sur-
vival analysis and multivariate regression model analyses were
derived from mtDEP-corresponding mRNA data among 419
OC patients and their clinical survival data. Thereby, the sample
size (n = 419) was acceptable for analysis of hub molecules,
survival analysis, and survival regression model in the mRNA
level. However, protein is the final performer of gene. It would
be necessary to further verify those hub molecule biomarkers
and seven hub molecule signature models (HIST1H2BK,
ALB, RRAS2, HIBCH, EIF3E, RPS20, and RPL23A) in the
protein level among significantly increased clinical samples.

Conclusions and expert recommendations

Molecular pathway network changes are the hallmark of OC
pathogenesis. This study provided overall signaling pathway
network change profiling of OC based on the analysis of 1198

mtDEPs between OC and control tissues, including 25 statis-
tically significant networks, 192 statistically significant ca-
nonical pathways, and 52 activated or inhibited pathways. A
total of 102 important hub molecules (proteins; genes) were
identified with integrative analysis of 1198 mtDEPs and
TCGA transcriptomic data of 419 OC patients, including 62
hub molecules related to survival risk of OCs. Moreover, sta-
tistically significant seven hub molecule signature models
(HIST1H2BK, ALB, RRAS2, HIBCH, EIF3E, RPS20, and
RPL23A) were constructed for assessment of survival risk of
OC patients. These findings provided pathway network data-
base of OCs. Moreover, in-depth analysis of hub molecules
and construction of seven hub molecule signature models
could assist in discovery of potential biomarkers and novel
mechanisms of ovarian carcinogenesis.

We recommend this research article to promote
mitochondria-based molecular network studies in OCs
from multiparameter systematic opinion and emphasize
the importance of OC multiomics such as integrating pro-
teomics and transcriptomics in basic research and transla-
tional and application research in the field of personalized
medicine in OCs. Especially, molecular network-based
biomarkers are important for reliable and effective in per-
sonalized diagnosis and prognosis assessment of OCs, and
molecular network-based clarification of molecular mech-
anisms is important for discovery of effective and reliable
drug targets for OC personalized treatment. The identified
survival-related hub molecules and seven hub molecule
signature models are important resource of pattern bio-
marker for personalized medicine in OCs.
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