Skip to main content

Advertisement

Log in

Is cellular senescence important in pediatric kidney disease?

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Somatic cellular senescence (SCS) describes the limited ability of cells to divide. Normally, SCS is associated with physiological aging, but evidence suggests that it may play a role in disease progression, even in young patients. Stressors such as acute injury or chronic inflammation may induce SCS, which in turn exhausts organ regenerative potential. This review summarizes what is known about SCS in the kidney with aging and disease. As most patients with chronic kidney disease (CKD) also develop cardiovascular complications, a second focus of this review deals with the role of SCS in cardiovascular disease. Also, as SCS seems to accelerate CKD and cardiovascular disease progression, developing strategies for new treatment options that overcome SCS or protect a patient from it represents an exciting challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ACE:

angiotensin-converting enzyme

ANRIL:

antisense noncoding RNA in the INK4 locus

ApoE:

apolipoprotein E

ARF:

alternate open reading frame

ATM:

ataxia telangiectasia mutated

ATR:

ataxia telangiectasia mutated and Rad3-related

CIP1:

cyclin-dependent kinase-interacting protein 1

CKD:

chronic kidney disease

CRP:

C-reactive protein

eNOS:

endothelial nitric oxide synthase

HDM2:

human double minute 2

HUS:

hemolytic uremic syndrome

INK4:

inhibitor of cyclin-dependent kinase 4

KIP:

cyclin-dependent kinase-inhibitory protein

MAPK:

mitogen-activated protein kinase

MDM2:

mouse double minute 2

mTOR:

mammalian target of rapamycin

NO:

nitric oxide

PBMC:

peripheral blood mononuclear cell

PIKK:

phosphatidylinositol 3 kinase-like kinases

Rb:

retinoblastoma protein

S6K1:

ribosomal protein s6 kinase 1

SA-β-GAL:

senescence-associated-β-galactosidase

SCS:

somatic cellular senescence

SNP:

single nucleotide polymorphism

SOD2:

partial mitochondrial superoxide dismutase

STASIS:

stimulation and stress-induced senescence-like arrest

WAF1:

wild-type p53-activated fragment 1

References

  1. Oh J, Wunsch R, Turzer M, Bahner M, Raggi P, Querfeld U, Mehls O, Schaefer F (2002) Advanced coronary and carotid arteriopathy in young adults with childhood-onset chronic renal failure. Circulation 106:100–105

    Google Scholar 

  2. Schmitt R, Cantley LG (2008) The impact of aging on kidney repair. Am J Physiol Renal Physiol 294:F1265–F1272

    CAS  PubMed  Google Scholar 

  3. Chkhotua A, Shohat M, Tobar A, Magal N, Kaganovski E, Shapira Z, Yussim A (2002) Replicative senescence in organ transplantation-mechanisms and significance. Transpl Immunol 9:165–171

    CAS  PubMed  Google Scholar 

  4. Westhoff JH, Schildhorn C, Jacobi C, Homme M, Hartner A, Braun H, Kryzer C, Wang C, Von ZT, Kranzlin B, Gretz N, Melk A (2010) Telomere shortening reduces regenerative capacity after acute kidney injury. J Am Soc Nephrol 21:327–336

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Halloran PF, Melk A, Barth C (1999) Rethinking chronic allograft nephropathy: the concept of accelerated senescence. J Am Soc Nephrol 10:167–181

    CAS  PubMed  Google Scholar 

  6. Melk A, Schmidt BM, Braun H, Vongwiwatana A, Urmson J, Zhu LF, Rayner D, Halloran PF (2009) Effects of donor age and cell senescence on kidney allograft survival. Am J Transplant 9:114–123

    CAS  PubMed  Google Scholar 

  7. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    CAS  PubMed  Google Scholar 

  8. Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460

    CAS  PubMed  Google Scholar 

  9. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu C-P, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279:349–352

    CAS  PubMed  Google Scholar 

  10. Deng Y, Chan SS, Chang S (2008) Telomere dysfunction and tumour suppression: the senescence connection. Nat Rev Cancer 8:450–458

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Meek DW (2009) Tumour suppression by p53: a role for the DNA damage response? Nat Rev Cancer 9:714–723

    CAS  PubMed  Google Scholar 

  12. von Zglinicki T (2002) Oxidative stress shortens telomeres. Trends Biochem Sci 27:339–344

    Google Scholar 

  13. Chen JH, Stoeber K, Kingsbury S, Ozanne SE, Williams GH, Hales CN (2004) Loss of proliferative capacity and induction of senescence in oxidatively stressed human fibroblasts. J Biol Chem 279:49439–49446

    CAS  PubMed  Google Scholar 

  14. Wright WE, Shay JW (2000) Telomere dynamics in cancer progression and prevention: fundamental differences in human and mouse telomere biology. Nat Med 6:849–851

    CAS  PubMed  Google Scholar 

  15. Wright WE, Shay JW (2002) Historical claims and current interpretations of replicative aging. Nat Biotechnol 20:682–688

    CAS  PubMed  Google Scholar 

  16. Weinberg RA (1995) The retinoblastoma protein and cell cycle control. Cell 81:323–330

    CAS  PubMed  Google Scholar 

  17. Serrano M, Lee HW, Chin L, CordonCardo C, Beach D, DePinho RA (1996) Role of the INK4a locus in tumor suppression and cell mortality. Cell 85:27–37

    CAS  PubMed  Google Scholar 

  18. Ramirez RD, Morales CP, Herbert BS, Rohde JM, Passons C, Shay JW, Wright WE (2001) Putative telomere-independent mechanisms of replicative aging reflect inadequate growth conditions. Genes Dev 15:398–403

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Carnero A, Hudson JD, Price CM, Beach DH (2000) p16(INK4A) and p19(ARF) act in overlapping pathways in cellular immortalization. Nat Cell Biol 2:148–155

    CAS  PubMed  Google Scholar 

  20. Krimpenfort P, Quon KC, Mooi WJ, Loonstra A, Berns A (2001) Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice. Nature 413:83–86

    CAS  PubMed  Google Scholar 

  21. Wei W, Hemmer RM, Sedivy JM (2001) Role of p14(ARF) in replicative and induced senescence of human fibroblasts. Mol Cell Biol 21:6748–6757

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ben-Porath I, Weinberg RA (2005) The signals and pathways activating cellular senescence. Int J Biochem Cell Biol 37:961–976

    CAS  PubMed  Google Scholar 

  23. Kurz DJ, Decary S, Hong Y, Erusalimsky JD (2000) Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci 113:3613–3622

    CAS  PubMed  Google Scholar 

  24. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O, Peacocke M, Campisi J (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92:9363–9367

    CAS  PubMed  Google Scholar 

  25. Itahana K, Campisi J, Dimri GP (2007) Methods to detect biomarkers of cellular senescence: the senescence-associated beta-galactosidase assay. Methods Mol Biol 371:21–31

    CAS  PubMed  Google Scholar 

  26. Terman A, Gustafsson B, Brunk UT (2007) Autophagy, organelles and ageing. J Pathol 211:134–143

    CAS  PubMed  Google Scholar 

  27. Narita M, Narita M, Krizhanovsky V, Nunez S, Chicas A, Hearn SA, Myers MP, Lowe SW (2006) A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation. Cell 126:503–514

    CAS  PubMed  Google Scholar 

  28. Narita M, Nunez S, Heard E, Narita M, Lin AW, Hearn SA, Spector DL, Hannon GJ, Lowe SW (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113:703–716

    CAS  PubMed  Google Scholar 

  29. Beausejour CM, Krtolica A, Galimi F, Narita M, Lowe SW, Yaswen P, Campisi J (2003) Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J 22:4212–4222

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Melk A, Ramassar V, Helms LMH, Moore R, Rayner D, Solez K, Halloran PF (2000) Telomere shortening in kidneys with age. J Am Soc Nephrol 11:444–453

    CAS  PubMed  Google Scholar 

  31. Ferlicot S, Durrbach A, Ba N, Desvaux D, Bedossa P, Paradis V (2003) The role of replicative senescence in chronic allograft nephropathy. Hum Pathol 34:924–928

    PubMed  Google Scholar 

  32. Melk A, Kittikowit W, Sandhu I, Halloran KM, Grimm P, Schmidt BMW, Halloran PF (2003) Cell senescence in rat kidneys in vivo increases with growth and age despite lack of telomere shortening. Kidney Int 63:2134–2143

    CAS  PubMed  Google Scholar 

  33. Melk A, Schmidt BM, Takeuchi O, Sawitzki B, Rayner DC, Halloran PF (2004) Expression of p16INK4a and other cell cycle regulator and senescence associated genes in aging human kidney. Kidney Int 65:510–520

    CAS  PubMed  Google Scholar 

  34. Chkhotua AB, Gabusi E, Altimari A, D'Errico A, Yakubovich M, Vienken J, Stefoni S, Chieco P, Yussim A, Grigioni WF (2003) Increased expression of p16(INK4a) and p27(Kip1) cyclin-dependent kinase inhibitor genes in aging human kidney and chronic allograft nephropathy. Am J Kidney Dis 41:1303–1313

    CAS  PubMed  Google Scholar 

  35. Krishnamurthy J, Torrice C, Ramsey MR, Kovalev GI, Al Regaiey K, Su L, Sharpless NE (2004) Ink4a/Arf expression is a biomarker of aging. J Clin Invest 114:1299–1307

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sitte N, Merker K, Grune T, von Zglinicki T (2001) Lipofuscin accumulation in proliferating fibroblasts in vitro: an indicator of oxidative stress. Exp Gerontol 36:475–486

    CAS  PubMed  Google Scholar 

  37. Christensen EI, Verroust PJ (2008) Interstitial fibrosis: tubular hypothesis versus glomerular hypothesis. Kidney Int 74:1233–1236

    CAS  PubMed  Google Scholar 

  38. Strutz FM (2009) EMT and proteinuria as progression factors. Kidney Int 75:475–481

    CAS  PubMed  Google Scholar 

  39. Nath KA (1992) Tubulointerstitial changes as a major determinant in the progression of renal damage. Am J Kidney Dis 20:1–17

    CAS  PubMed  Google Scholar 

  40. Chkhotua AB, Schelzig H, Wiegand P, Grosse S, Reis S, Art M, Abendroth D (2005) Influence of ischaemia/reperfusion and LFA-1 inhibition on telomere lengths and CDKI genes in ex vivo haemoperfusion of primate kidneys. Transpl Int 17:692–698

    CAS  PubMed  Google Scholar 

  41. Schelzig H, Chkhotua AB, Wiegand P, Grosse S, Reis S, Art M, Abendroth D (2003) Effect of ischemia/reperfusion on telomere length and CDKI genes expression in a concordant ex-vivo hemoperfusion model of primate kidneys. Ann Transplant 8:17–21

    CAS  PubMed  Google Scholar 

  42. Hochegger K, Koppelstaetter C, Tagwerker A, Huber JM, Heininger D, Mayer G, Rosenkranz AR (2007) p21 and mTERT are novel markers for determining different ischemic time periods in renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 292:F762–F768

    CAS  PubMed  Google Scholar 

  43. Chkhotua AB, Abendroth D, Froeba G, Schelzig H (2006) Up-regulation of cell cycle regulatory genes after renal ischemia/reperfusion: differential expression of p16(INK4a), p21(WAF1/CIP1) and p27(Kip1) cyclin-dependent kinase inhibitor genes depending on reperfusion time. Transpl Int 19:72–77

    CAS  PubMed  Google Scholar 

  44. Joosten SA, Van HV, Nolan CE, Borrias MC, Jardine AG, Shiels PG, Van Kooten C, Paul LC (2003) Telomere shortening and cellular senescence in a model of chronic renal allograft rejection. Am J Pathol 162:1305–1312

    PubMed  PubMed Central  Google Scholar 

  45. Westhoff JH, Hilgers KF, Stenbach MP, Hartner A, Klanke B, Amann K, Melk A (2008) Hypertension induces somatic cellular senescence in rat and human by induction of cell cycle inhibitor p16INK4a. Hypertension 52:123–129

    CAS  PubMed  Google Scholar 

  46. Baumann M, Bartholome R, Peutz-Kootstra CJ, Smits JF, Struijker-Boudier HA (2008) Sustained tubulo-interstitial protection in SHRs by transient losartan treatment: an effect of decelerated aging? Am J Hypertens 21:177–182

    CAS  PubMed  Google Scholar 

  47. Rodriguez-Iturbe B, Sepassi L, Quiroz Y, Ni Z, Wallace DC, Vaziri ND (2007) Association of mitochondrial SOD deficiency with salt-sensitive hypertension and accelerated renal senescence. J Appl Physiol 102:255–260

    CAS  PubMed  Google Scholar 

  48. Blasco MA, Lee H-W, Hande MP, Samper E, Lansdorp PM, DePinho RA, Greider CW (1997) Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91:25–34

    CAS  PubMed  Google Scholar 

  49. Kown MH, Murata S, Jahncke CL, Mari C, Berry GJ, Lijkwan MA, Blankenberg FG, Strauss HW, Robbins RC (2002) Donor cardiac allografts from p53 knockout mice exhibit apoptosis-independent prolongation of survival. Transplant Proc 34:3274–3276

    CAS  PubMed  Google Scholar 

  50. Melk A, Schmidt BMW, Vongwiwatana A, Rayner DC, Halloran PF (2005) Increased expression of senescence-associated cell cycle inhibitor p16INK4a in deteriorating renal transplants and diseased native kidney. Am J Transplant 5:1375–1382

    CAS  PubMed  Google Scholar 

  51. Sis B, Tasanarong A, Khoshjou F, Dadras F, Solez K, Halloran PF (2007) Accelerated expression of senescence associated cell cycle inhibitor p16INK4A in kidneys with glomerular disease. Kidney Int 71:218–226

    CAS  PubMed  Google Scholar 

  52. Szeto CC, Poon PY, Lai FM, Chow KM, Szeto CY, Li PK (2005) Chromosomal telomere shortening of kidney cells in IgA nephropathy by the measurement of DNA in urinary sediment. Clin Nephrol 64:337–342

    CAS  PubMed  Google Scholar 

  53. Bergmann MW, Zelarayan L, Gehrke C (2008) Treatment-sensitive premature renal and heart senescence in hypertension. Hypertension 52:61–62

    CAS  PubMed  Google Scholar 

  54. Koppelstaetter C, Schratzberger G, Perco P, Hofer J, Mark W, Ollinger R, Oberbauer R, Schwarz C, Mitterbauer C, Kainz A, Karkoszka H, Wiecek A, Mayer B, Mayer G (2008) Markers of cellular senescence in zero hour biopsies predict outcome in renal transplantation. Aging Cell 7:491–497

    CAS  PubMed  Google Scholar 

  55. McGlynn LM, Stevenson K, Lamb K, Zino S, Brown M, Prina A, Kingsmore D, Shiels PG (2009) Cellular senescence in pretransplant renal biopsies predicts postoperative organ function. Aging Cell 8:45–51

    CAS  PubMed  Google Scholar 

  56. El-Husseini A, Sabry A, Zahran A, Shoker A (2007) Can donor implantation renal biopsy predict long-term renal allograft outcome? Am J Nephrol 27:144–151

    PubMed  Google Scholar 

  57. Mitsnefes MM (2008) Cardiovascular complications of pediatric chronic kidney disease. Pediatr Nephrol 23:27–39

    PubMed  PubMed Central  Google Scholar 

  58. Schiffrin EL, Lipman ML, Mann JF (2007) Chronic kidney disease: effects on the cardiovascular system. Circulation 116:85–97

    PubMed  Google Scholar 

  59. Comi P, Chiaramonte R, Maier JA (1995) Senescence-dependent regulation of type 1 plasminogen activator inhibitor in human vascular endothelial cells. Exp Cell Res 219:304–308

    CAS  PubMed  Google Scholar 

  60. Hoffmann J, Haendeler J, Aicher A, Rossig L, Vasa M, Zeiher AM, Dimmeler S (2001) Aging enhances the sensitivity of endothelial cells toward apoptotic stimuli: important role of nitric oxide. Circ Res 89:709–715

    CAS  PubMed  Google Scholar 

  61. Maier JA, Statuto M, Ragnotti G (1993) Senescence stimulates U937-endothelial cell interactions. Exp Cell Res 208:270–274

    CAS  PubMed  Google Scholar 

  62. Matsushita H, Chang E, Glassford AJ, Cooke JP, Chiu CP, Tsao PS (2001) eNOS activity is reduced in senescent human endothelial cells: Preservation by hTERT immortalization. Circ Res 89:793–798

    CAS  PubMed  Google Scholar 

  63. Nakajima M, Hashimoto M, Wang F, Yamanaga K, Nakamura N, Uchida T, Yamanouchi K (1997) Aging decreases the production of PGI2 in rat aortic endothelial cells. Exp Gerontol 32:685–693

    CAS  PubMed  Google Scholar 

  64. Sato I, Morita I, Kaji K, Ikeda M, Nagao M, Murota S (1993) Reduction of nitric oxide producing activity associated with in vitro aging in cultured human umbilical vein endothelial cell. Biochem Biophys Res Commun 195:1070–1076

    CAS  PubMed  Google Scholar 

  65. van der Loo B, Labugger R, Skepper JN, Bachschmid M, Kilo J, Powell JM, Palacios-Callender M, Erusalimsky JD, Quaschning T, Malinski T, Gygi D, Ullrich V, Luscher TF (2000) Enhanced peroxynitrite formation is associated with vascular aging. J Exp Med 192:1731–1744

    PubMed  PubMed Central  Google Scholar 

  66. Chen J, Brodsky SV, Goligorsky DM, Hampel DJ, Li H, Gross SS, Goligorsky MS (2002) Glycated collagen I induces premature senescence-like phenotypic changes in endothelial cells. Circ Res 90:1290–1298

    CAS  PubMed  Google Scholar 

  67. Fenton M, Barker S, Kurz DJ, Erusalimsky JD (2001) Cellular senescence after single and repeated balloon catheter denudations of rabbit carotid arteries. Arterioscler Thromb Vasc Biol 21:220–226

    CAS  PubMed  Google Scholar 

  68. Ota H, Eto M, Kano MR, Ogawa S, Iijima K, Akishita M, Ouchi Y (2008) Cilostazol inhibits oxidative stress-induced premature senescence via upregulation of Sirt1 in human endothelial cells. Arterioscler Thromb Vasc Biol 28:1634–1639

    CAS  PubMed  Google Scholar 

  69. Kunieda T, Minamino T, Nishi J, Tateno K, Oyama T, Katsuno T, Miyauchi H, Orimo M, Okada S, Takamura M, Nagai T, Kaneko S, Komuro I (2006) Angiotensin II induces premature senescence of vascular smooth muscle cells and accelerates the development of atherosclerosis via a p21-dependent pathway. Circulation 114:953–960

    CAS  PubMed  Google Scholar 

  70. Khanna AK (2009) Enhanced susceptibility of cyclin kinase inhibitor p21 knockout mice to high fat diet induced atherosclerosis. J Biomed Sci 16:66

    PubMed  PubMed Central  Google Scholar 

  71. Imanishi T, Hano T, Nishio I (2005) Angiotensin II accelerates endothelial progenitor cell senescence through induction of oxidative stress. J Hypertens 23:97–104

    CAS  PubMed  Google Scholar 

  72. Chimenti C, Kajstura J, Torella D, Urbanek K, Heleniak H, Colussi C, Di Meglio F, Nadal-Ginard B, Frustaci A, Leri A, Maseri A, Anversa P (2003) Senescence and death of primitive cells and myocytes lead to premature cardiac aging and heart failure. Circ Res 93:604–613

    CAS  PubMed  Google Scholar 

  73. Ihling C, Menzel G, Wellens E, Monting JS, Schaefer HE, Zeiher AM (1997) Topographical association between the cyclin-dependent kinases inhibitor P21, p53 accumulation, and cellular proliferation in human atherosclerotic tissue. Arterioscler Thromb Vasc Biol 17:2218–2224

    CAS  PubMed  Google Scholar 

  74. Minamino T, Miyauchi H, Yoshida T, Ishida Y, Yoshida H, Komuro I (2002) Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction. Circulation 105:1541–1544

    CAS  PubMed  Google Scholar 

  75. Minamino T, Miyauchi H, Yoshida T, Tateno K, Kunieda T, Komuro I (2004) Vascular cell senescence and vascular aging. J Mol Cell Cardiol 36:175–183

    CAS  PubMed  Google Scholar 

  76. Cawthon RM, Smith KR, O'Brien E, Sivatchenko A, Kerber RA (2003) Association between telomere length in blood and mortality in people aged 60 years or older. Lancet 361:393–395

    CAS  PubMed  Google Scholar 

  77. Erusalimsky JD, Kurz DJ (2005) Cellular senescence in vivo: its relevance in ageing and cardiovascular disease. Exp Gerontol 40:634–642

    CAS  PubMed  Google Scholar 

  78. Nawrot TS, Staessen JA, Gardner JP, Aviv A (2004) Telomere length and possible link to X chromosome. Lancet 363:507–510

    CAS  PubMed  Google Scholar 

  79. Epel ES, Blackburn EH, Lin J, Dhabhar FS, Adler NE, Morrow JD, Cawthon RM (2004) Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci USA 101:17312–17315

    CAS  PubMed  Google Scholar 

  80. Jeanclos E, Schork NJ, Kyvik KO, Kimura M, Skurnick JH, Aviv A (2000) Telomere length inversely correlates with pulse pressure and is highly familial. Hypertension 36:195–200

    CAS  PubMed  Google Scholar 

  81. Samani NJ, Boultby R, Butler R, Thompson JR, Goodall AH (2001) Telomere shortening in atherosclerosis. Lancet 358:472–473

    CAS  PubMed  Google Scholar 

  82. Fitzpatrick AL, Kronmal RA, Gardner JP, Psaty BM, Jenny NS, Tracy RP, Walston J, Kimura M, Aviv A (2007) Leukocyte telomere length and cardiovascular disease in the cardiovascular health study. Am J Epidemiol 165:14–21

    PubMed  Google Scholar 

  83. Carrero JJ, Stenvinkel P, Fellstrom B, Qureshi AR, Lamb K, Heimburger O, Barany P, Radhakrishnan K, Lindholm B, Soveri I, Nordfors L, Shiels PG (2008) Telomere attrition is associated with inflammation, low fetuin-A levels and high mortality in prevalent haemodialysis patients. J Intern Med 263:302–312

    CAS  PubMed  Google Scholar 

  84. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392–395

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Selman C, Tullet JM, Wieser D, Irvine E, Lingard SJ, Choudhury AI, Claret M, Al-Qassab H, Carmignac D, Ramadani F, Woods A, Robinson IC, Schuster E, Batterham RL, Kozma SC, Thomas G, Carling D, Okkenhaug K, Thornton JM, Partridge L, Gems D, Withers DJ (2009) Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 326:140–144

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325:201–204

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Kaeberlein M, Kapahi P (2009) Cell signaling. Aging is RSKy business. Science 326:55–56

    CAS  PubMed  Google Scholar 

  88. Stanfel MN, Shamieh LS, Kaeberlein M, Kennedy BK (2009) The TOR pathway comes of age. Biochim Biophys Acta 1790:1067–1074

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Cox LS, Mattison JA (2009) Increasing longevity through caloric restriction or rapamycin feeding in mammals: common mechanisms for common outcomes? Aging Cell 8:607–613

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Demidenko ZN, Zubova SG, Bukreeva EI, Pospelov VA, Pospelova TV, Blagosklonny MV (2009) Rapamycin decelerates cellular senescence. Cell Cycle 8:1888–1895

    CAS  PubMed  Google Scholar 

  91. Zhuo L, Cai G, Liu F, Fu B, Liu W, Hong Q, Ma Q, Peng Y, Wang J, Chen X (2009) Expression and mechanism of mammalian target of rapamycin in age-related renal cell senescence and organ aging. Mech Ageing Dev 130:700–708

    CAS  PubMed  Google Scholar 

  92. Flechner SM (2008) Reviewing the evidence for de novo immunosuppression with sirolimus. Transplant Proc 40:S25–S28

    CAS  PubMed  Google Scholar 

  93. Pontrelli P, Rossini M, Infante B, Stallone G, Schena A, Loverre A, Ursi M, Verrienti R, Maiorano A, Zaza G, Ranieri E, Gesualdo L, Ditonno P, Bettocchi C, Schena FP, Grandaliano G (2008) Rapamycin inhibits PAI-1 expression and reduces interstitial fibrosis and glomerulosclerosis in chronic allograft nephropathy. Transplant 85:125–134

    CAS  Google Scholar 

  94. Lo A, Egidi MF, Gaber LW, Amiri HS, Vera S, Nezakatgoo N, Gaber AO (2004) Comparison of sirolimus-based calcineurin inhibitor-sparing and calcineurin inhibitor-free regimens in cadaveric renal transplantation. Transplant 77:1228–1235

    CAS  Google Scholar 

  95. Kaeberlein M (2010) Resveratrol and rapamycin: are they anti-aging drugs? BioEssays 32:96–99

    CAS  PubMed  Google Scholar 

  96. Jennings P, Koppelstaetter C, Aydin S, Abberger T, Wolf AM, Mayer G, Pfaller W (2007) Cyclosporine A induces senescence in renal tubular epithelial cells. Am J Physiol Renal Physiol 293:F831–F838

    CAS  PubMed  Google Scholar 

  97. Lally C, Healy E, Ryan MP (1999) Cyclosporine A-induced cell cycle arrest and cell death in renal epithelial cells. Kidney Int 56:1254–1257

    CAS  PubMed  Google Scholar 

  98. Wuhl E, Trivelli A, Picca S, Litwin M, Peco-Antic A, Zurowska A, Testa S, Jankauskiene A, Emre S, Caldas-Afonso A, Anarat A, Niaudet P, Mir S, Bakkaloglu A, Enke B, Montini G, Wingen AM, Sallay P, Jeck N, Berg U, Caliskan S, Wygoda S, Hohbach-Hohenfellner K, Dusek J, Urasinski T, Arbeiter K, Neuhaus T, Gellermann J, Drozdz D, Fischbach M, Moller K, Wigger M, Peruzzi L, Mehls O, Schaefer F (2009) Strict blood-pressure control and progression of renal failure in children. N Engl J Med 361:1639–1650

    PubMed  Google Scholar 

  99. Basso N, Paglia N, Stella I, de Cavanagh EM, Ferder L, del Rosario Lores AM, Inserra F (2005) Protective effect of the inhibition of the renin-angiotensin system on aging. Regul Pept 128:247–252

    CAS  PubMed  Google Scholar 

  100. Brouilette SW, Moore JS, McMahon AD, Thompson JR, Ford I, Shepherd J, Packard CJ, Samani NJ (2007) Telomere length, risk of coronary heart disease, and statin treatment in the West of Scotland Primary Prevention Study: a nested case-control study. Lancet 369:107–114

    CAS  PubMed  Google Scholar 

  101. Assmus B, Urbich C, Aicher A, Hofmann WK, Haendeler J, Rossig L, Spyridopoulos I, Zeiher AM, Dimmeler S (2003) HMG-CoA reductase inhibitors reduce senescence and increase proliferation of endothelial progenitor cells via regulation of cell cycle regulatory genes. Circ Res 92:1049–1055

    CAS  PubMed  Google Scholar 

  102. Spyridopoulos I, Haendeler J, Urbich C, Brummendorf TH, Oh H, Schneider MD, Zeiher AM, Dimmeler S (2004) Statins enhance migratory capacity by upregulation of the telomere repeat-binding factor TRF2 in endothelial progenitor cells. Circulation 110:3136–3142

    CAS  PubMed  Google Scholar 

  103. Baerlocher GM, Vulto I, de Jong G, Lansdorp PM (2006) Flow cytometry and FISH to measure the average length of telomeres (flow FISH). Nat Protoc 1:2365–2376

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank C. Martin-Ruiz for providing the image of RT-PCR in Fig. 1. The images of Telomere Q-FISH were adapted by permission from Macmillan Publishers Ltd: Nature Protocols [103]. We thank Nathan Susnik for critically reading and improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anette Melk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobi, C., Hömme, M. & Melk, A. Is cellular senescence important in pediatric kidney disease?. Pediatr Nephrol 26, 2121–2131 (2011). https://doi.org/10.1007/s00467-010-1740-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-010-1740-6

Keywords

Navigation