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Abstract

Background: Postnatal development of early life microbiota influences immunity, metabolism, neurodevelopment,
and infant health. Microbiome development occurs at multiple body sites, with distinct community compositions
and functions. Associations between microbiota at multiple sites represent an unexplored influence on the infant
microbiome. Here, we examined co-occurrence patterns of gut and respiratory microbiota in pre- and full-term
infants over the first year of life, a period critical to neonatal development.

Results: Gut and respiratory microbiota collected as longitudinal rectal, throat, and nasal samples from 38 pre-term
and 44 full-term infants were first clustered into community state types (CSTs) on the basis of their compositional
profiles. Multiple methods were used to relate the occurrence of CSTs to temporal microbiota development and
measures of infant maturity, including gestational age (GA) at birth, week of life (WOL), and post-menstrual age
(PMA). Manifestation of CSTs followed one of three patterns with respect to infant maturity: (1) chronological, with
CST occurrence frequency solely a function of post-natal age (WOL), (2) idiosyncratic to maturity at birth, with the
interval of CST occurrence dependent on infant post-natal age but the frequency of occurrence dependent on

GA at birth, and (3) convergent, in which CSTs appear first in infants of greater maturity at birth, with occurrence
frequency in pre-terms converging after a post-natal interval proportional to pre-maturity. The composition of CSTs
was highly dissimilar between different body sites, but the CST of any one body site was highly predictive of the
CSTs at other body sites. There were significant associations between the abundance of individual taxa at each
body site and the CSTs of the other body sites, which persisted after stringent control for the non-linear effects of
infant maturity. Canonical correlations exist between the microbiota composition at each pair of body sites, with
the strongest correlations between proximal locations.

Conclusion: These findings suggest that early microbiota is shaped by neonatal innate and adaptive developmental
responses. Temporal progression of CST occurrence is influenced by infant maturity at birth and post-natal age.
Significant associations of microbiota across body sites reveal distal connections and coordinated development of the
infant microbial ecosystem.
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Background
Human life is dependent on a diverse community of sym-
biotic microbiota that have co-evolved with their human
hosts to modulate crucial aspects of normal physiology,
metabolism, immunity, and neurologic function [1]. Our
relationships with microbes begin in utero. Limited micro-
bial communities observed immediately after birth expand
into densely colonized, diverse bacterial ecosystems within
the first weeks of life. Early interactions that occur be-
tween members of the microbial community and between
microbes and their human host are responsible for fea-
tures of postnatal development that influence future
health [2-5]. The newborn infant microbiota is highly dy-
namic and undergoes rapid changes in composition
through the first years of life towards a stable adult-like
structure with distinct microbial communities of unique
composition and functions at specific body sites [5-10].
Relatively little has been reported about longitudinal
microbiota development or compositional differentiation
across multiple body sites during this period. This is
particularly true for high-risk pre-term infants, who
because of immature mucosal and skin barriers, as well as
underdeveloped immunity and suboptimal nutrition, are
at increased risk for invasive infection and dysregulated in-
flammation of critical systems, namely the respiratory and
gastrointestinal tracts. Serious perinatal complications in
these pre-term infants result in prolonged hospitalization,
treatment with antibiotics, and delays in enteral feeding
that influence interactions with microbes and inhibit micro-
bial colonization characteristic of full-term infants [11].
While numerous microbial communities within individ-
ual body sites have been described [3, 9, 11-14], associa-
tions between the microbiota across multiple body sites or
systems are less well studied [11, 15, 16]. A better under-
standing of the microbiota landscape and interactions
across multiple body sites is needed to assess the influ-
ence of perturbations in one system on the microbiota
of other systems. Elucidating the direct and indirect in-
teractions of microbiota across multiple body sites pre-
sents a formidable analytical challenge. Available
statistical methods vary widely in sensitivity and precision,
with no consensus on the best approach [17]. Community
profile data from 16S rRNA amplicon surveys is compos-
itional, high-dimensional, and generally observational.
Limited validation of these interactions through independ-
ent experiments or modeling leaves researchers without
the data needed to reconstruct authentic interaction net-
works and to make meaningful biological conclusions
[18]. The limited body of literature reporting on
cross-body site interactions is a testament to these chal-
lenges [11, 15, 16]. Our study leverages dimension reduc-
tion and longitudinal modeling techniques, allowing for
the effects of within body site temporal development and
cross-body site associations during early life to be
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distinguished and quantified. Furthermore, unlike previ-
ous studies that sampled the microbiome parsimoniously
across body sites, our study sampled multiple body sites
from a large cohort of pre- and full-term infants at fre-
quent and regular intervals throughout their first year of
life, within the crucial window of time when the microbial
community maximally influences immune development
and potential long-term health outcomes, including atopy,
inflammatory bowel diseases, and subtleties of neurodeve-
lopment [19-22].

Here, we describe and compare patterns of development
of the microbiota of the nose, throat, and gut over the first
year of life in 82 pre- and full-term infants (Table 1).
Within the three body sites, we characterized develop-
ment as a pattern of progression through microbiota com-
munity state types (CSTs), each differentiated by the
abundance of specific taxa. Classifying samples into CSTs
based on composition provides a useful summary of the
state of the microbial community within a particular body
site at a given time. The longitudinal pattern of CST oc-
currence represents a conceptually and analytically tract-
able summary narrative of microbiota development, with
occurrence patterns of individual CSTs reflecting facets of
developmental phenotype. Leveraging this framework of
CSTs and their occurrence patterns as a proxy for high
level characteristics of microbiota development, we com-
pared full- and pre-term infants on the basis of their pro-
gression through these CSTs and assessed the associations
between CST prevalence, gestational age (GA) at birth,
post-natal age as measured by week of life (WOL), and de-
velopmental age as indicated by post-menstrual age
(PMA: equal to GA plus WOL). While the occurrence of
all CSTs was associated with time, each CST exhibited
one of three distinct temporal patterns which varied in the
extent to which GA at birth, WOL, and PMA influenced
CST manifestation. First, a chronological pattern in which
CST occurrence was independent of GA at birth and
PMA, but was instead a function of WOL, with a given
CST of this type occurring at a consistent post-natal inter-
val with similar frequency in both pre- and full-term sub-
jects. Second, a pattern idiosyncratic to gestational age at
birth: CSTs occurred during characteristic post-natal in-
tervals, but their frequency was a function of maturity
(GA) at birth. These CSTs are over- or under-represented
in pre-term subjects. Third, a convergent pattern whereby
lower GA at birth typically imposed a delay on the mani-
festation of a CST, with CST occurrence frequency in
pre-term infants reaching parity with full-term infants
after a post-natal interval proportional to prematurity.
While a narrative of typical infant microbiota develop-
ment in terms of progression through archetypal commu-
nity states emerges from these observations, the distinct
types of associations between CST occurrence patterns
and time reveal that prematurity influences different
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Table 1 Demographics and clinical variables
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Variables Pre-term Full-term p value
(N=38) (N=44)
Gestational age at birth (weeks), mean + SD 29.56 + 34 3961+ 1.16 <0.001
Gestational age at birth, N
23-25 weeks 8 -
26-27 weeks 6 -
28-29 weeks 5 -
30-31 weeks 9 -
32-33 weeks 6 _
34-35 weeks 4 -
Full term - 44
Birth weight (kg), mean + SD 1.38+£062 353+056 <0.001
Sex - male, N % 21 (55.3%) 27 (61.4%) 0.738
Race - Caucasian/AA/other*, N % 22/10/6 30/5/9 0377
(57.9/26.3/15.9%) (68.2/5/9%)
Ethnicity - Hispanic or Latino**, N % 4 (10.5%) 8 (20%) 0.349
Delivery method - C-section, N % 24 (63.2%) 21 (47.7%) 0.239

Hospital samples, collected (analyzed), N

Rectal 294 (252) 43 (27)

Nasal 288 (243) 44(19)

Throat 174 (159) 26 (13)
Post-discharge samples, collected (analyzed), N

Rectal 346 (331) 479 (469)

Nasal 350 (318) 483 (433)

Throat 202 (184) 206 (182)
Total acute respiratory visits***, N 51 51
Number of infants had acute respiratory visit***, N 20 24

*Race group “Other” includes those not reported race
**Ethnicity is unknown for four full-terms

***Samples collected during monthly visits where evidence of acute respiratory infection was observed were excluded in this analysis

aspects of microbiota development in unique ways, such
as delaying some components of the developmental
phenotype, permanently altering others, and having no
discernable influence on others still. We demonstrate that
although community composition is dissimilar between
distal body sites, the abundance of various taxa and the
occurrence patterns of CSTs are correlated across body
sites. These associations cannot be entirely accounted for
by the common influence of developmental or post-natal
age on all body sites nor by the direct transmission of bac-
teria between body sites, which suggest the existence of
relationships between infant development and the micro-
biota across body sites that have yet to be defined.

Overall, our results illustrate fundamental interactions
between the gut and respiratory microbiomes in pre-term
and full-term infants and elucidate the dichotomy be-
tween innate host developmental programming driven
solely by post-menstrual age and adaptive host develop-
mental processes driven by post-natal environmental

exposures in terms of their influence on microbiota devel-
opment. Thus, this study will guide the development of
criteria for therapeutic approaches that promote the estab-
lishment of a homeostatic microbiome during the critical
period of neonatal development.

Results

Overview of infant cohort

To characterize the development of the neonatal gut and
respiratory tract microbiota, we collected rectal, nasal,
and throat swabs from 82 pre- and full-term infants over
the first year of life (Table 1). From the 38 pre-term in-
fants, weekly samples were collected while hospitalized
in the neonatal intensive care unit from birth until dis-
charge, and monthly samples were collected from dis-
charge through one year of gestationally corrected age.
From the 44 full-term infants in the cohort, monthly
samples were collected through the first year of life,
starting at birth. Samples collected during monthly visits
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in which evidence of acute respiratory illness was ob-
served were excluded from this analysis (as described in
the “Methods” section). The nasal swabs were selected
as the primary measure of the respiratory microbiota,
with throat swabs as a secondary supplemental indicator.
Because the focus of this study is on microbiota develop-
ment across multiple body sites, we assayed throat sam-
ples from an unbiased random subset of 40 matched
subjects distributed evenly between the pre- and
full-term cohorts. Microbiota from 1079 gut, 1013 nasal,
and 538 throat samples were characterized by 16S rRNA
amplicon sequencing.

Microbiome community state types (CSTs) summarize
archetypal states and developmental narrative

The microbiota community composition of the rectal,
nasal, and throat samples was quantified by 16S rRNA
amplicon sequencing. To develop tractable summary repre-
sentations of typical compositional profiles, samples from
each body site were independently clustered into commu-
nity state types (CSTs) using Dirichlet-Multinomial mixture
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(DMM) models [23]. The DMM model sought to explain
the operational taxonomic unit (OTU) compositional vec-
tor as a sample from a mixture of different canonical
Dirichlet components. For each sample, the DMM model
posterior probabilities indicated which Dirichlet component
the observed vector of OTU counts most likely repre-
sented. On the basis of these probabilities, samples were
assigned to clusters corresponding to CSTs which collapse
the variation in microbiota composition into commonly
observed archetypal states that serve as summary represen-
tations of the microbiota composition at each site
(Additional file 1: Figure S1). The CST of a particular sam-
ple indicates the approximate abundance of characteristic
taxa and the presence of distinct motifs in the overall com-
munity composition profile (Fig. 1 and Additional file 2:
Figure S2). A series of community states observed longitu-
dinally within a given infant therefore summarizes the mi-
crobial community development in that infant over the
course of the study. Additionally, occurrence pattern of
CSTs can be associated with a variety of covariates, reflect-
ing properties of the overall phenotype of microbiota
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Fig. 1 Composition of community state types (CSTs) of the nose (NAS), gut (GUT), and throat (THR). Average composition of each CST was
identified by Dirichlet-Multinomial mixture (DMM) model-based clustering. Samples are grouped by the Dirichlet component that they represent,
with each component corresponding to a CST, and the average composition of all samples in each CST group is represented. The CSTs in each
site are ordered based on their occurrence over time (e.g., CST 2 is the earliest gut CST). The height of each bar is equal, indicating that all total
abundances are normalized to a constant sum. The number of samples in each CST is included at the top of each bar. Within each bar, different
colored bands correspond to different taxa, and the height of a given band is proportional to the average relative abundance of the corresponding
taxon in the given CST. The top ten most abundant taxa within each body site are identified, with the closed circle flanking each taxa name
positioned in the corresponding taxa in each bar. The composition of all samples is listed in Additional file 4: Table S1
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development. These attributes of the CST-based approach
provide an attractive framework for summarizing and char-
acterizing infant microbiota development and for interro-
gating and elucidating the relationships between
phenotypes of development and components of host ma-
turity. A robust resampling procedure (see the “Methods”
section) identified 6 CSTs within the gut, 7 within the nose,
and 6 within the throat (Additional file 3: Figure S3), with
each CST distinguished by the variance (Additional file 2:
Figure S2) and relative abundance of specific OTUs (Fig. 1).
The number assigned to each CST indicates the overall fre-
quency of occurrence at each respective site, with CST 1
being the most frequent. Based on OTU abundance and
the sequence of progression of CSTs over time observed in
each subject (Fig. 2), we concluded that the CSTs consist-
ently exhibited three properties: (1) they had highly dissimi-
lar composition between different body sites, (2) they were
associated with post-menstrual age (PMA), gestational age
(GA) at birth, and/or week of life (WOL), and (3) they dem-
onstrated patterns of co-occurrence such that the observa-
tion of a specific CST at a given body site was predictive of
contemporaneous CSTs at other body sites.

Microbiota composition of community state types and
occurrence through developmental time

The CSTs at all three body sites displayed a range of diver-
sity and abundance of specific OTUs (Additional file 2:
Figure S2, Additional file 4: Table S1). The six throat CSTs
were the least diverse, with types 1 through 5 dominated
by Streptococcus (62—85%) and type 6 by Staphylococcus
(41%). The seven nasal CSTs were substantially more di-
verse, with Streptococcus and Corynebacterium ranging
from 5% to greater than 50% abundance across all CSTs.
The six CSTs of the gut were the most diverse of all three
body sites and were consistently populated with Entero-
bacteriaceae, Veillonella, Ruminococcus, Streptococcus,
Prevotella, Bacteroides, and Bifidobacterium at mean rela-
tive abundances greater than 1%. Patterns of temporal
CST progression are shared across individuals, with the
typical order of gut progression as CST 2,1,3,6,4,5; nasal
progression as CST 1,7,4,2,3,6,5; and throat progression as
CST 6,1,2,54,3 (Fig. 1). The majority of infants manifest
most CSTs in their first year, in a similar sequence and at
similar ages (Fig. 2, Additional file 5: Figure S4). While no
single CST is observed in all 82 infants, common patterns
of sequential CST occurrence at each body site reveal ca-
nonical temporal orderings and a tendency towards
monotonic CST progression over time. Furthermore,
CSTs occurring later in this temporal progression com-
prised relatively more diverse microbial communities
within each body site. Pre- and full-term infants are ini-
tially colonized by distinct CSTs, with CSTs 1, 2, and 6
overrepresented prior to 40 weeks PMA in the nose, gut,
and throat, respectively. Temporal progression after
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50 weeks PMA consists of similar CSTs in both pre- and
full-term infants as they mature beyond 90 weeks PMA.
Notably, individual infants matched by PMA transition
through CSTs at different rates, which suggests additional
factors influence microbiota progression.

In all three body sites, the CSTs most frequently ob-
served at the earliest PMA in both pre-term and
full-term infants contained high levels of Staphylococcus,
which decreased as the infants matured beyond 39 weeks
PMA. This initial transient colonization of infant gut
and respiratory microbiota by Staphylococcus has been
described in other studies and suggests that this bacter-
ium confers early developmental metabolic and immune
benefits to the host [24, 25]. Continued temporal devel-
opmental progression likely reflects adaptation of the
microbiota to corresponding functional changes in the
infant host, including the transition of the gut micro-
biota from an aerobic community in early PMA to an
anaerobic community with increasing abundance of
Ruminococcus, Prevotella, Bacteroides, and other anaer-
obes beyond PMA week 46. The throat and nasal sites
maintain an aerobic microbiota throughout early life,
dominated after week 40 PMA by Streptococcus, with
emergence and stable colonization of Corynebacterium,
Alloiococcus, Moraxella, and Veillonella in the nasal
sites and Veillonella and Neisseria in the throat. Al-
though Moraxella is an opportunistic respiratory patho-
gen, observations from our asymptomatic infant cohort
are similar to previous studies which demonstrate stable
colonization of Moraxella and Alloiococcus in the naso-
pharynx of healthy infants [26].

Predicted functions of community state types

To identify microbiota functions over the first year of
life, the functional potential of all rectal, nasal, and
throat CSTs was predicted using PICRUSt [27], which
infers the functional metagenome of microbial commu-
nities based on marker gene data and reference bacterial
genomes. The top eight KEGG pathways with positive or
negative enrichment in each CST (p value <0.001, FDR
<10%, and linear discriminate analysis (LDA) score >
3.0) were used for evaluation of functional differences
within all CSTs (Additional file 6: Figure S5). The initial
CSTs in all three sites (nasal CSTs 1 and 7, throat CST
6, and gut CST 2), clustered into a functionally distinct
group enriched in multiple pathways, including metabol-
ism of lipids, purines, and pyrimidines. Synthesis of nu-
cleotides from purines and pyrimidines in early neonates
supports chromosomal replication and active microbiota
growth essential for early colonization of epithelial sur-
faces [28, 29]. Energy metabolism in early (nasal CST 7,
throat CST 6, and gut CST 2) and late (nasal CST 6, gut
CST 1, and gut CST 5) CSTs was driven by the pentose
phosphate pathway (PPP) with the production of
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Fig. 2 Sequence index plots indicate the progression of community state types (CSTs) over time for each subject. Subjects are stratified along the
y-axis and sorted in descending order by gestational age at birth. Post-menstrual age (PMA) in weeks is indicated along the x-axis. The period of
sampling for each individual is colored, with colors indicating the observed CST in a given time period. The time point of each observation is rounded
down to the week in which the sample was taken, and the surrounding period of time is colored according to the CST of the sample, with color
changes occurring at the midpoint between consecutive samples in which different CSTs were observed. For each subject, the black region on the left
indicates the period prior to birth and the white region on the right indicates the period after the last sample was taken. In all three body sites, strong
temporal structure and ordered patterns of CST progression are evident. For example, CSTs 1, 2, and 6 are overrepresented during the period prior to
40 weeks PMA in the nose, gut, and throat, respectively

NADPH used for anabolic reactions needed for synthesis
of cellular molecules. As the infant matured and gained
exposure to additional dietary substrates, there was an
enrichment of genes for carbohydrate uptake (PTS), cen-
tral carbon metabolism (glycolysis and pyruvate synthe-
sis), and the TCA cycle with increased production of
ATP as an energy source for microbiota in gut CSTs

1,3,4,5; nasal CSTS 2,3,6; and throat CST 3,4,5. The en-
richment of two-component signal transduction (TCS)
pathways following temporal progression from the clus-
ter of initial CSTs (nasal CSTs 1 and 7, throat CST 6,
and gut CST 2) to all subsequent CSTs suggested in-
creases in communication within the microbiota com-
munity and between microbiota and host as a result of
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changes in the immediate host environment and availabil-
ity of metabolites [30]. We next compared enriched func-
tions in the initial (gut CST 2 and nasal CST 1) and later
(gut CSTs 3,4,6 and nasal CSTs 2,3,6) nasal and gut CSTs
to identify potential microbiota functions that distinguish
these sites. Aside from a limited number of distinct path-
ways in gut CST 1, such as bisphenol degradation, the rec-
tal and nasal microbiota share many functions at this level
of pathway resolution. Taken together, our results suggest
that similar to the longitudinal progression of CSTs, spe-
cific functional pathways emerge in the initial early life
CSTs, with expansion and diversification of microbial
communities in later CSTs occurring as a result of contact
with environmental sources and adaptation to changes in
energy substrates.

Correlations between community state type and PMA in
pre- and full-term infants

In order to elucidate the relationship between the tem-
poral components of host maturity and the progression
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of community types at each body site, we further exam-
ined the associations between CSTs and maturity (GA)
at birth and age, which can be measured developmen-
tally as PMA or postnatally with WOL. We first fit
smoothed curves of the probability of being in a given
CST against WOL and GA at birth (Fig. 3) and the prob-
ability of being in a given CST against PMA and GA at
birth (Additional file 7: Figure S6), stratifying subjects by
GA at birth in both cases. This revealed three distinct
canonical temporal patterns of CST occurrence (see the
“Methods” section). The first pattern, chronological, ob-
served in 6/19 of the CSTs identified, was characterized
by occurrence at consistent post-natal intervals and fre-
quencies which showed no substantive difference over
the first year of life between pre- and full-term infants
(e.g., throat CST 3 and gut CST 1), indicating that the
week of life, a proxy for development shaped by environ-
mental exposure, drives the occurrence of these commu-
nity types. For these CSTs, the occurrence probability
curves in Fig. 3 for each birth stratum overlap. By con-
trast, the second observed occurrence pattern was

GUT 2 GUT 1 GUT 3 GUT6 GUT 4
1.00 1.00 1.00 1.00 1.00
0.75 0.75 0.75 0.75 0.75
0.50 0.50 0.50 0.50 0.50
0.25 0.25 0.25 0.25 0.25
0.00 0.00 0.00 0.00 & 0.00
GUT5 NAS 1 NAS 7 NAS 4 NAS 2
1.00 1.00 1.00 1.00 1.00
0.75 0.75 0.75 0.75 0.75
0.50 0.50 0.50 0.50 0.50
0.25 0.25 0.25 s 0.25 N 0.25 %
__ 000 0.00 0.00 0.00 0.00
s NAS 6 NAS 3 NAS 5 THR 6 THR 1
Q 1.00 1.00 1.00 1.00 1.00
o
0.75 0.75 0.75 0.75 0.75
0.50 0.50 0.50 0.50 0.50
0.25 % 0.25 0.25 0.25 0.25
0.00 0.00 0.00 0.00 0.00
THR5 THR 2 THR 3 THR 4 0 25 50 75
1.00 1.00 1.00 1.00 Gest. age
075 0.75 075 0.75 I%O'rth
24
0.50 0.50 0.50 0.50 IE' 325
0.25 & 0.25 0.25 0.25 : 41
0.00 0.00 /\ 0.00 0.00
0 25 50 75 0 25 50 75 0 25 50 75 0 25 50 75
Week of life
Fig. 3 Associations between community state type membership and time. The posterior probability of membership to each CST (y-axis) is plotted
over weeks of life (x-axis), estimated as a non-parametric function of week of life and gestational age at birth. The CSTs are sorted by post-menstrual
age at which they achieve a maximal probability of occurrence
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idiosyncratic to maturity at birth; whereby CSTs oc-
curred at characteristic post-natal intervals, but their fre-
quency of occurrence was dependent on gestational age
at birth and they were significantly over- or under-repre-
sented in pre-term subjects (e.g., nasal CSTs 2 and 5). In
Fig. 3, these CSTs’ curve for one maturity stratum reaches a
distinctly higher peak than at least one other maturity
stratum. Lastly, a convergent pattern of occurrence was ob-
served in the 9/19 of CSTs. These CSTs showed increased
probabilities of occurrence at earlier post-natal ages in
full-term infants, but their occurrence probabilities in
pre-term infants reached parity after a post-natal interval
approximately equal to their prematurity (e.g., gut CST3,
throat CST1, and nasal CST4). Infants with equal CST
probability tend to have similar post-menstrual ages. The
convergent pattern of occurrence implicates PMA, a proxy
for host innate developmental maturity, as a driving force.
The curves for the most and least mature strata for these
CSTs in Fig. 3 have peaks of similar height that are offset
along the week of life axis.

We then constructed a single index model of age for
each CST, which fit the probability of observing the CST
as a function of a pseudo time index that is learned by
the model. This pseudo time is a weighted average of
GA at birth and WOL (Additional file 8: Figure S7). The
GA at birth and WOL weights that form the pseudo
time index quantify the tradeoff between time spent pre-
and post-natally, with respect to the probability of mani-
festing a given CST. These models confirmed the trends
described above, with three basic patterns being ob-
served (see the “Methods” section).
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Associations between community types and composition
across body sites

Having established a summary narrative of typical micro-
biota development within each body site and identified host
age and developmental maturity as primary driving factors,
we sought to explore the possibility of significant associa-
tions between microbiota across body sites. Given that time
is a common factor driving development host-wide, our
expectations were confirmed in that the co-occurrence
patterns of CSTs across body sites were significantly
non-independent, as assessed by a chi-squared test (p value
<0.001). To further characterize these associations, we cal-
culated the pairwise correlations between CSTs observed at
each site (Fig. 4). Again, co-occurrence patterns between
sites were highly significant, suggesting that the observation
of a given CST at one body site is predictive of the concur-
rent CSTs at other body sites. The greatest degree of CST
correlation between body sites was observed among nasal
CST 1, gut CST 2, and throat CSTs 1 and 6, for which all
cross-body site pairs were positively correlated.

Given the strong associations at all body sites between
CST occurrence and infant developmental and chrono-
logical age, correlations across body sites were expected.
We sought to isolate these correlations resulting from
host-wide temporal influences and assess remaining as-
sociations between community composition across sites.
In order to control for time and other confounding fac-
tors and identify potential associations arising from dir-
ect or indirect interactions across sites, we further
assessed the associations between the CST of each body
site and the microbiota composition of the other body
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sites using a series of linear regression models. As pre-
dictors for the abundance of each taxon in a given body
site, we first used mode of delivery, GA at birth, birth
season, and day of life (which was modeled with a nat-
ural spline to allow for non-linear effects), as well as a
per-subject random effect to account for repeated sam-
pling of the same individuals. After fitting these “null”
models, which contained no information about the com-
position of other body sites, we then added additional
predictive terms for the CSTs of the other body sites and
refit the “full” models. Because we sought to identify the
relationships across body sites that could not be ex-
plained by infant maturity alone, we called significant
only those associations between taxon abundance and
remote CST for which inclusion of the remote CSTs as
terms in the model significantly improved its explana-
tory power, after multiple test corrections (FDR <0.05,
see the “Methods” section). We identified significant as-
sociations across all pairs of body sites (Additional file 9:
Table S2), with the most significant associations identi-
fied between CSTs of the nose and gut and taxa in the
throat. Fewer associations were significant between the
gut and nose. Within each body site, certain taxa were
uniquely associated with the CST of only one of the
other body sites, while other taxa exhibited significant
associations with the CST of both of the other two body
sites. Of the additional variables included in the models,
only those related to maturity were highly significant,
with the day of life splines having the largest number of
significant associations, followed by gestational age at
birth. Mode of delivery had only four significant associa-
tions, all with taxa in the gut, while birth season had no
significant associations (see Additional file 10: Figure S8
and Additional file 11: Table S3).

A number of taxa had significant associations with CSTs
of other body sites at which the taxa themselves were not
observed, ruling out direct exchange of these bacteria as
the sole explanation for the associations. These taxa in-
cluded Bacteroides ovatus, Clostridium perfringens, Acti-
nobaculum, and Faecalibacterium sp. (Additional file 12:
Table S4). Instead, these associations were consistent with
the presence of bacteria in one site impacting, or being
impacted by, development of microbiota at another site
through indirect physiological or metabolic mechanisms.
In order to assess cases where taxa were present in both
associated sites, including Viellonella, Prevotella, and
Dorea, we tested the OTU residuals for correlation after
adjusting for PMA with a spline and each subject with a
random effect. There were approximately fifty shared
OTUs between each pair of sites, which on average were
positively correlated for each site pair. The strongest cor-
relation between shared OTUs was between the nose and
throat, followed by the throat and gut, followed by the
nose and gut (Additional file 13: Figure S9).
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The associations between each set of CSTs and specific
taxa (Additional file 9: Table S2) was visualized in two
ways. First, as a bipartite graph (Fig. 5a—c) in which each
site’s most taxonomically specific significant taxa were
connected to the CSTs of the distal body sites to which
they had significant associations at a FDR of 5%. Edge
color indicates the direction and significance of the
association, either as a decrease or increase in abun-
dance when the associated remote CST is observed.
Second, as a volcano plot (Fig. 5d), this indicates the sig-
nificance (F test p value) and the magnitude of the in-
crease in explanatory power (change in R?) when the
CSTs of distal body sites are added to the regression
models that include as covariates mode of delivery, GA
at birth, birth season, day of life (as a natural spline),
and a per subject random effect, and taxon abundance
as the outcome. We identified 105 taxa with significant
cross-body site associations: 34 in the gut, 34 in the
nose, and 37 in the throat, with some taxa being signifi-
cant in multiple body sites where they occurred. In the
gut, 5 taxa were significantly associated with CSTs in
both the throat and nose, 12 taxa in the nose were asso-
ciated with both gut and throat CSTs, and 23 taxa in the
throat were associated with both nose and gut CSTs.
Among taxa present in the gut, the largest numbers of
associations were identified with nasal CST 1 and throat
CST 2, with 22 and 7 taxa respectively, and the single
most significant association was between Bacteroides ova-
tus and throat CST 2 (Fig. 5b, d). Notably, B. ovatus was
not identified in throat samples but was present in 1% of
nasal samples at a low (<1%) abundance. Among taxa
present in the nose, the largest numbers of associations
were identified with gut CST 1 and throat CST 2, with 12
and 22 taxa respectively, and the single most significant
association was between an OTU of Prevotella and throat
CST 2 (Fig. 5a, d). Among taxa present in the throat, the
largest numbers of associations were identified with nasal
CST 1 and gut CST 1, with 12 and 26 taxa respectively,
and the single most significant association was between
Prevotella pallens and nasal CST 6 (Fig. 5¢, d). In the gut,
an OTU of Dorea exhibited the most significant associa-
tions, with six CSTs from the nose and throat found to be
significant. In the nose, an OTU of Veillonella had the
most associations, with seven CSTs from the gut and the
throat. In the throat, the Lachnospiraceae family and an
OTU of Veillonella had the most associations, each with
six CSTs from the nose and gut.

The microbiome is canonically correlated across body
sites following time and space

These observations prompted us to assess the extent to
which the OTU composition of each body site over time
can be explained as a function of the OTU composition
of the other body sites, without the dimension reduction
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associated with using CSTs. We again paired micro-
biome samples from different body sites that were ac-
quired at the same visit for each participant, resulting in
nasal-gut, nasal-throat, and rectal-throat site pairs. We

then assessed the correlation of taxa between body sites
directly using canonical correlation analysis (CCA) [31],
which transforms two sets of multivariate observations
into a series of canonical correlates (weighted averages)
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that maximize the score cross-correlations, quantifying
the extent to which two sets of multivariate observations
are correlated. Using a cross-validation scheme that held
out blocks of individuals, we found in validation data that
the subspace cross-correlations varied from 0.75
(nasal-throat) to 0.6 (gut-throat), for the first canonical co-
ordinate (CC) (Additional file 14: Figure S10). Since we
previously established that many OTUs vary as a function
of time, we anticipated that temporal variation was re-
sponsible for much of this correlation. As expected, after
adjusting for time by regressing out PMA in each site with
a 14 degree-of-freedom spline, the time-stabilized correla-
tions were attenuated in all site pairs, but still significantly
different from zero in the nasal-gut and nasal-throat pairs
(Additional file 14: Figure S10).

Discussion

Development of the infant microbiome landscape is a crit-
ical factor in overall infant maturation and long-term
health. In this study, we examined the progression of and
spatiotemporal interactions between the gut and respira-
tory microbiota in pre- and full-term infants. We applied
dimension reduction techniques and a longitudinal study
design to reveal a summary narrative of infant microbiota
development in terms of archetypal community states that
have characteristic features of composition, with most
CSTs being observed in most infants and occurring in a
canonical pattern of temporal progression. By decompos-
ing infant maturity into its component parts—post--
menstrual age, post-natal age, and gestational age at
birth—we show that different facets of the developmental
phenotype are influenced in different ways by pre-term
birth: some community states are delayed (convergent);
some are over or under-represented—or even absent—de-
pending on gestational age at birth (idiosyncratic to ma-
turity at birth); and some are entirely unaffected by
pre-maturity, with occurrence depending entirely on
post-natal age (chronological). These findings suggest that
the innate developmental programming of the human
host and adaptive developmental processes shaped by en-
vironmental exposures act as distinct drivers of microbiota
development with exclusive influences on certain aspects
of the phenotype and combined influences on others. Elu-
cidating these nuances of development and establishing a
conceptually and analytically tractable representation of
normal patterns of progression is essential for devising
strategies of care and treatment that facilitate the estab-
lishment and maintenance of healthy respiratory and
gastrointestinal tract microbiota in early life, especially in
pre-term infants.

Knowledge of inter-site interactions between these
anatomical niches forms the basis for understanding
microbiota perturbations in sick infants and potential al-
terations in the microbiota of other sites. We apply an
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analytical framework using summary community state
types combined with longitudinal modeling to identify
significant associations between microbiota across the
nose, throat, and gut during early life development in
pre- and full-term infants. We demonstrate that the
abundance of specific taxa in one body site exhibited
strong associations with the community types of the
other body sites. Using a natural spline function to con-
trol for time and linear regression to control for GA at
birth, mode of delivery, birth season, and within-subject
correlation, we found that incorporating the community
types of the other body sites significantly improved the
explanatory power of our model for the abundances of
105 unique taxa, many of which were present in only
one member of a pair of associated body sites, ruling out
the possibility of direct transmission as the mechanism
of association. We then performed canonical correlation
analysis to validate the explanatory power of the com-
position of each body site for every other body site.
While the effect of time accounted for the majority of
the canonical correlation between sites, a significant de-
gree of correlation was observed even after controlling
for temporal effects. These observations suggest a poten-
tial systemic coordination of microbial abundance and
distribution across the infant microbiota landscape dur-
ing early life development.

Early infant microbiota studies have focused on single
anatomical sites, such as the gut and respiratory micro-
biota, with unique communities and distinct functions.
Studies on pre- and full-term infant gut microbiota have
shown that postnatal microbial colonization initiates
maturation of infant intestinal structures and mediates the
development of the immune system through interactions
with gut epithelial, immune effector, and mucus-produ-
cing cells [32—34]. Deficiency in colonization of pre-term
infant gut microbiota has been associated with delays in
immune development, alterations in host metabolism, and
inflammatory diseases such as necrotizing enterocolitis
(NEC) [11, 35-39]. Longitudinal studies with pre-term in-
fants have shown that the gut microbiota develops in a
series of phases associated with postmenstrual age (PMA),
more so than post-natal age, suggesting possible coordin-
ation between microbiota maturation and functional dif-
ferentiation of the gut epithelium at defined stages of
infant development [25]. Recent reports on neonatal re-
spiratory microbiota have identified similar interactions of
microbiota with mucosal epithelial and immune cells and
an association with respiratory tract infections and
chronic lung disease of prematurity [40-43]. However,
most respiratory microbiome studies have focused on a
limited number of samples from full-term infants. The in-
fluence of the respiratory microbiota on lung immunity
and respiratory diseases in high-risk pre-term infants un-
derscores the need to better understand initial microbial
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colonization and temporal dynamics of respiratory micro-
biota through longitudinal studies as we describe here.

The gut and respiratory tracts in infants share the same
embryonic origin, with mucosal surfaces composed of col-
umnar epithelial cells that sense the commensal micro-
biota and in turn shape local and systemic immunity as
infants mature and as a function of PMA [32—34, 42, 44].
Changes in infant gut and respiratory microbiota that
occur as a result of diet, antibiotics, therapeutics, and en-
vironmental exposures in the NICU are likely to influence
the microbiota at both sites [25, 45, 46]. The effect of
these changes can be illustrated by antibiotic-induced al-
terations of neonatal gut microbiota during the crucial
early postnatal period of immune competence, which in-
crease the risk of developing allergic airway disease and
other atopies in subsequent childhood [47-49]. In adults,
common chronic lung diseases, such as asthma and
chronic obstructive pulmonary disease (COPD), often co-
incide with inflammatory bowel disease (IBD) and other
chronic gastrointestinal syndromes [44, 50, 51]. The oc-
currence of these chronic lung diseases is accompanied by
functional and structural changes in the intestinal mucosa
and increased intestinal permeability, suggesting that in-
teractions between these two distal sites through the
gut-respiratory axis impact adult health and disease [50,
52]. These gut-respiratory interactions likely function on
several levels, ranging from direct transfer of bacteria be-
tween these sites through reflux and aspiration to indirect
effects from bacterial metabolic products or mucosal
immune responses common to both the gut and respira-
tory tract [40, 42, 44, 53]. Taken together, these observa-
tions of common developmental origins for the gut and
respiratory tracts, as well as inflammatory diseases that
affect both sites, support potential systemic mechanisms
that coordinate microbiota development at these distal
sites in infants.

The microbiota samples for our study were collected
as gut, nasal, and throat swabs from pre- and full-term
infants. In a previous study, we established the taxo-
nomic similarity of infant gut microbiota samples col-
lected either as rectal swabs or from fecal material on a
diaper [25]. When evaluating respiratory samples for this
study and their relatedness to lung microbiota, we first
considered potential acquisition routes for respiratory
microbiota. The lung microbiota in healthy individuals is
acquired by direct mucosal dispersion and micro-aspir-
ation from the upper respiratory tract (URT) [54, 55].
The microbiota in these sites are taxonomically similar,
albeit with differences within the URT subcompartments
(nasal cavity, nasopharynx, oropharynx, and trachea) and
lungs, a result of cellular and physiological features, such
as oxygen and carbon dioxide tension, pH, humidity,
and temperature that distinguish these environments
and select for particular taxa [54—56]. The nasopharynx
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and oropharynx are the primary sources of lung micro-
biota in infants, likely due to the anatomy of the infant
URT and increased production of nasal secretions, both
of which enhance dispersal of microbiota to the lungs
[57, 58]. With the infant nasopharynx and oropharynx, a
primary source of colonizing infant lung microbiota, the
nasal and throat samples used in our study as represen-
tative proxies of the neonate lung microbiota identified
significant associations of taxa and CSTs within the
gut-respiratory axis. The substantial degree of statisti-
cally independent variation of the nasal and throat
microbiota is noteworthy, suggesting that additional ana-
lysis of both sites will provide unique insights into
gut-respiratory interactions.

In our initial observations of the CST microbiota con-
tent relative to PMA, we noted that Staphylococcus was
the most abundant taxon in the first CST of all three body
sites (Fig. 1 and Additional file 1: Figure S1). Subsequent
CSTs in all three sites demonstrated a rapid decrease in
Staphylococcus abundance, which was progressively re-
placed by site-specific taxa with cellular and metabolic
capabilities required for adaptation to the developing host
site and interaction with the colonizing microbiota.
Previous studies of infant gut microbiota identified
Staphylococcus as an early microbiota colonizer, with
abundance determined by nutrition and mode of delivery
[8, 59]. With a metabolism biased towards carbohydrate
metabolism, emerging data suggests the potential for a
strong impact of Staphylococcus on disease programming
and obesity in later life [60—62]. In vitro and in vivo ani-
mal experiments assessing transcriptomic and phenotypic
responses of S. aureus to microbiota partners have re-
vealed mechanisms that modulate metabolism, virulence,
and survival in a multi-species bacterial community [63—
65]. Similar experimental approaches to study interactions
between members of the microbiota are needed to assess
the mechanistic foundation of microbiota associations
identified through computational means.

The temporal progression of CSTs and significant as-
sociation between taxa and CST at multiple body sites
suggested the potential for cross-site microbiota interac-
tions during infant development. We identified one
hundred five unique taxa with two forms of significant
cross-body site associations: one with taxa present in the
multiple body sites where the taxa-CST interaction oc-
curred and a second with interacting taxa present only
in one body site. Interactions between taxa present in
both body sites were either proximally or distally related
or both. For example, significant proximal associations
were identified between Veillonella parvulla and dispar
in the nasal-throat CST2 and throat-nasal CST1. Distal
associations occurred between V. dispar nasal-gut CST2,
and throat-gut CST1 and throat-gut CST2. Veillonella
was identified as a core member of early infant
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microbiota in our analysis (Fig. 1, Additional file 4: Table
S1, Additional file 1: Figure S1) and in multiple infant
body sites in previous studies [6, 66]. The shared occur-
rence of Veillonella in proximal nasal and throat sites
may be linked to early co-colonization of these environ-
ments by Streptococcus, which produces lactic acid, a
carbon source for Veillonella [67]. Similar metabolic in-
teractions that contribute to the temporal progression of
CSTs and taxa-CST interactions will likely be identified
through metabolic profiling of communities within each
phase [68]. Significant cross-site associations with inter-
acting taxa present at only one body site were demon-
strated between B. ovatus in the gut and throat CST 2.
These associations were consistent with the presence of
bacteria in one site impacting, or being impacted by, the
development of microbiota at another site through indir-
ect physiological or metabolic mechanisms. Evidence
that B. ovatus, a gut symbiont, digests polysaccharides in
the gut as a carbon source for other members of the
Bacteroides genus, places it at the center of cooperative
ecosystem that is likely a central factor for gut microbiota
functions and potential interactions with microbiota at
distal sites [69-72]. Production of small chain fatty acids
(SCFA) produced by Bacteroides and other enteric bac-
teria have been shown to profoundly affect both mucosal
and systemic antibody responses [73]. Furthermore, the
increased abundance of B. ovatus in the gut has been asso-
ciated with systemic autoimmune diseases and IBD, a dis-
order linked to respiratory diseases as described above
[74]. Overall, the identified taxa-CST associations have the
potential to effect gut-respiratory crosstalk through the
production of bacterial metabolites and ligands. In turn,
dysbiosis of the gut microbiota can be anticipated to affect
the dynamics of respiratory microbiota as well as systemic
metabolic and immune responses [44].

Following observations made by other groups, we
find that the strength of associations between micro-
bial habitats is proportional to their proximity within
the host [16]. The sites that are nearest to one an-
other, such as the nose and throat, have the highest
time-stabilized correlation and are more likely to
share species in the canonical coordinate (CCA) site
loadings. Distal pairs, such as the nose and gut have
lower canonical correlations, with greater heterogen-
eity in the CCA loadings. In other words, body sites
that are closer together have more microbial taxa in
common and exhibit stronger associations between
their microbiota composition than sites that are far-
ther apart. These findings demonstrate that significant
canonical correlations exist between the composition
of microbial communities across body sites which
cannot be entirely attributed to each body site’s inde-
pendent temporal progression or to the repeated sam-
pling of the same individuals.
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Previous studies have demonstrated the influence of sev-
eral external factors on infant microbiota development, in-
cluding parental contact, mode of delivery, date or season
of birth, nutrition, and exposure to the NICU environ-
ment [12, 25, 44, 58—60]. In our study, we included mode
of delivery and season of birth in our analysis, neither of
which had a significant association with CST progression
(Additional file 10: Figure S8). However, we did not collect
microbiota samples from parents or the NICU to assess
the potential contribution of the microbiota background
to CST progression, which is a limitation of our study. Be-
cause we are unable to sample from full-term infants in
utero at PMA < 37 weeks, another potential limitation is
the inability to directly compare pre- and full-term infants
within the PMA 24-36-week window when pre-term in-
fants are exposed to the NICU environment. In our ap-
proach, we avoid the issue of missing comparisons that
arises from using post-menstrual age as the singular
metric of maturity by comparing pre- and full-term sam-
ples using a multivariate representation of age comprised
of gestational age at birth and day of life. Our analyses of
CST occurrence patterns isolates the influence of both as-
pects of host maturity and distinguished between their ex-
clusive and joint effects.

Conclusion

Understanding the variation between and within sub-
jects, conditions, and over time as the manifestation of
compositionally distinct archetypal community state
types provides an attractive conceptual and analytical
framework for studying the microbiome [75]. While the
extent to which community types are discrete or simply
represent dense locations on a continuous gradient ap-
pears to vary depending on the conditions being sam-
pled and the definition of “community type,” both the
theoretical basis for community types and the utility of a
community type-based framework have been established
[75-83]. CST classification provides a conceptually and
analytically tractable representation of the state of the
microbial community within an individual at a particular
body site and a particular time point, which captures in-
formation about the approximate abundance of distin-
guishing taxa as well as the presence of characteristic
motifs of community makeup. The longitudinal series of
observed CSTs provides a readily interpretable and com-
prehensible summary of the narrative of microbiota de-
velopment, preserving information about the temporal
representation of prominent taxa, and serving as a proxy
for microbiota maturity and maturation rate. Such a
framework offers a workable and intelligible representa-
tion of the archetypal features and the course grained
phenotype of the high dimensional microbial community
and its temporal dynamics, which facilitates high-level
characterization, analysis, and understanding of this
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complex and intricate system for which a comprehen-
sive, precise, and nuanced description would be intract-
able and unwieldy. Furthermore, the utility of
community types can be extended to the identification
of associations across body sites. Ding and Schloss used
Dirichlet-Multinomial mixture modeling to define ca-
nonical community types within 18 adult body sites in-
dependently and then demonstrated that while the
community types across different body sites were dis-
similar in composition, they were predictive of one an-
other [76]. The occurrence of community types
simultaneously in different body sites was highly
non-independent, suggesting an unknown mechanism of
coordination or interaction acting at a distance. How-
ever, the community type framework may mask import-
ant biological variability and lack of power to detect
specific taxa that serve as superior phenotypic bio-
markers [75]. The approaches taken in our work re-
ported here largely mitigate these shortcomings, by
employing a sampling scheme that was dense and evenly
distributed over gestational ages at birth, weeks of life,
and modes of delivery, thereby making it unlikely that
apparent community clusters are the result of a failure
to observe intermediate points along a gradient. Our
subsampling procedure to determine the number of
clusters yielded a robust and parsimonious description
of the data. Community types were not confounded
within individuals, but shifted in type over the period of
observation for each individual and were seen across a
plurality of individuals. In this setting, where we sought
to characterize the development of respiratory and
gastrointestinal microbiota over the first year of life,
community types have provided a high-level description
of the state and progression which facilitated the interro-
gation of associations of CSTs with developmental age
(PMA), and post-natal chronological age (WOL) as well
as cross body-site relationships.

In summary, new clinical strategies for establishing
and maintaining a homeostatic microbiota are needed
for neonates at risk for gut and respiratory dysfunction
and immune deficiencies. A greater understanding of in-
fant respiratory microbiota colonization, interactions be-
tween the respiratory and gut microbiota, and possible
developmental coordination between the two body sites
are crucial steps in that direction. Our results demon-
strate the existence of a host-wide network of associa-
tions between microbiota. The fact that these
associations cannot be entirely explained by time, sub-
ject, or direct exchange of bacteria suggest unobserved
factors mediating microbial dynamics and associations
between microbiota across environments and at substan-
tial distances. To our knowledge, these observations dir-
ectly implicate, for the first time, a body-wide systemic
mechanism coordinating the abundance and distribution
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of microbiota during early life development. The
methods employed here may facilitate future efforts to
evaluate disease, developmental maturity, therapeutic in-
terventions, and dynamic interactions between multiple
microbial communities and host systems.

Methods

Clinical methods

All study procedures were approved by the University of
Rochester Medical Center (URMC) Internal Review
Board (IRB) (Protocol # RPRC00045470) and all subject’s
caregivers provided informed consent. The infants in-
cluded in the study were from the University of Roches-
ter Respiratory Pathogens Research Center PRISM study
and cared for in the URMC Golisano Children’s Hospital
Gosnell Family Neonatal Intensive Care Unit (NICU) or
in the normal newborn nurseries and birthing centers.
We sampled 1079 gut (279 from NICU and 800
post-discharge), 1013 nasal (262 from NICU and 751
post-discharge), and 538 throat (172 from NICU and
366 post-discharge) microbiota samples longitudinally
from 38 pre-term and 44 full-term infants. Fecal (rectal),
nasal, and throat material was collected from pre-term
infants from 23 to 37 weeks GA at birth (GAB) weekly
until hospital discharge and then monthly through 1 year
of age, adjusted for prematurity. Rectal, nasal, and throat
samples were collected from full-term infants at enroll-
ment and monthly through 1 year. Each rectal sample
was collected by inserting a sterile, normal saline moist-
ened, Copan® flocked nylon swab (Copan Diagnostics,
Murrieta, CA) beyond the sphincter into the rectum and
twirling prior to removal. Nasal and throat samples were
similarly collected by inserting and twirling a sterile,
moistened swab into the throat or anterior nostril. Each
swab was then immediately placed into sterile buffered
saline and stored at 4 °C for no more than 4 h. Samples
were processed daily, with the extraction of the fecal,
nasal, and throat material from the swabs in a sterile en-
vironment and immediate transfer — 80° C storage until
DNA extraction.

Exclusion of samples in which evidence of acute respiratory
iliness was observed

Samples collected during monthly visits in which evi-
dence of acute respiratory illness was observed by the
parents were excluded from the analysis. Each subject’s
parent or primary caregiver was given a symptom
COAST (Childhood Origins of Asthma) [84] score sheet,
instructed on the use of the score and to notify the study
team if the infant had symptoms that reached a score of
3 or greater. In addition, at every routine visit symptom
questions were asked and if a child had symptoms that
reached a score of 3 or greater the visit was converted
from a well visit to an illness visit.
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Genomic DNA extraction

Total genomic DNA was extracted from the nose, throat,
and rectal samples using a modification of the
Zymo Fecal/Soil Microbe Miniprep Kit (Zymo Research,
Irvine, CA) and FastPrep mechanical lysis (MPBio, Solon,
OH). 16S ribosomal DNA (rRNA) was amplified with
Phusion High-Fidelity polymerase (Thermo Scientific,
Waltham, MA) and dual-indexed primers specific to the
V3-V4 (319F: 5° ACTCCTACGGGAGGCAGCAG 3';
806R: 3" ACTCCTACGGGAGGCAGCAG 5') and V1-V3
(8F: 5 AGAGTTTGATCCTGGCTCAG 3’; 534R: 3’
ATTACCGCGGCTGCTGG 5°) hypervariable regions
[85]. Amplicons were pooled and paired-end sequenced
on an Illumina MiSeq (Illumina, San Diego, CA) in the
University of Rochester Genomics Research Center. Each
sequencing run included (1) positive controls consisting of
a 1:5 mixture of Staphylococcus aureus, Lactococcus lactis,
Porphyromonas  gingivalis, Streptococcus mutans, and
Escherichia coli genomic DNA and (2) negative controls
consisting of sterile saline.

Microbiome background control

The background microbiome was monitored at multiple
stages of sample collection and processing. All sterile sa-
line, buffers, reagents, plasticware, and flocked nylon
swabs used for sample collection, extraction, and amplifi-
cation of nucleic acid were UV irradiated to eliminate pos-
sible DNA background contamination. Elimination of
potential background from the irradiated buffers, reagents,
plasticware, and swabs was confirmed by 16S rRNA amp-
lification. After sample collection, multiple aliquots of
sterile saline with swabs used for sample collection were
carried through our entire sequencing protocol as individ-
ual samples, including DNA extraction, 16S rRNA ampli-
fication, library construction, and sequencing to monitor
potential background microbiome. Data from these
background control samples is deposited in SRA
along with positive controls.

16S rRNA sequence processing

Raw data from the Illumina MiSeq was first converted
into FASTQ format 2 x 300 paired-end sequence files
using the bcl2fastq program, version 1.8.4, provided by
[lumina. Format conversion was performed without
de-multiplexing, and the EAMMS algorithm was dis-
abled. All other settings were default. Sequence pro-
cessing and initial microbial composition analysis were
performed with the Quantitative Insights into Microbial
Ecology (QIIME) software package [86], version 1.9.1.
Reads were multiplexed using a configuration described
previously [85]. Briefly, for both reads in a pair, the first
12 bases were a barcode, which was followed by a pri-
mer, then a heterogeneity spacer, and then the target
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16S rRNA sequence. Using a custom Python script, the
barcodes from each read pair were removed,
concatenated together, and stored in a separate file.
Read pairs were assembled using fastq-join from the
ea-utils package, requiring at least 40 bases of overlap
for V3 V4 sequences and 20 bases of overlap for V1 V3
sequence, while allowing a maximum of 10% mis-
matched bases. Read pairs that could not be assembled
were discarded. The concatenated barcode sequences
were prepended to the corresponding assembled reads,
and the resulting sequences were converted from
FASTQ to FASTA and QUAL files for QIIME analysis.
Barcodes, forward primer, spacer, and reverse primer
sequences were removed during de-multiplexing. Reads
containing more than four mismatches to the known
primer sequences or more than three mismatches to all
barcode sequences were excluded from subsequent pro-
cessing and analysis. Assembled reads were truncated
at the beginning of the first 30 base window with a
mean Phred quality score of less than 20 or at the first
ambiguous base, whichever came first. Resulting
sequences shorter than 300 bases or containing a ho-
mopolymer longer than six bases were discarded. Oper-
ational taxonomic units (OTU) were picked using the
reference-based USEARCH (version 5.2) [87] pipeline
in QIIME, using the May 2013 release of the Green-
Genes 99% OTU database as a closed reference [88,
89]. An indexed word length of 128 and otherwise de-
fault parameters were used with USEARCH. Chimera
detection was performed de novo with UCHIME, using
default parameters [87]. OTU clusters with less than
four sequences were removed, and representative se-
quences used to make taxonomic assignments for each
cluster were selected on the basis of abundance. The
RDP Naive Bayesian Classifier was used for taxonomic
classification with the GreenGenes reference database,
using a minimum confidence threshold of .85 and
otherwise default parameters [90].

CST inference with Dirichlet-Multinomial modeling (DMM)
The DMM model was fit using the R package Diri-
chletMultinomial version 1.16.0, R version 3.3.3. Sam-
ple composition was represented using normalized
counts for each of the most specific operational taxo-
nomic units (OTUs) present in at least 5% of the
samples from a given body site. Normalization was
performed on a per sample basis by taking the rela-
tive abundance of each OTU (after removing OTUs
present in less than 5% of samples) and multiplying
by 5000. Resulting non-integer counts were rounded
down. In the DMM model, the number of Dirichlet
components is a tuning parameter. For each body
site, we used tenfold random subsampling of 80% of
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the samples to assess uncertainty in model fit for one
through ten components, with the model fit being
assessed as the Laplace approximation of the
negative-log model evidence. We selected the number
of components at each body site corresponding to the
lower bound on the standard error of the model fit.
We then fit complete models for each body site using
all samples and the number of components selected
and used the resulting posterior probabilities to assign
each sample to a community state type (CST) corre-
sponding to a Dirichlet component. The CSTs ob-
served in each subject and at each body site over
time are represented in Fig. 2, which was plotted
using the TraMineR package, version 2.0-7. Color
changes occur midway between consecutive samples
of differing CSTs. Observation time points were quan-
tized for plotting purposes only, and this was done by
rounding down to the nearest whole week of
post-menstrual age.

Putative functional profiling and analysis

Putative functional profiles of all samples were generated
using PICRUSt (version 1.1.3) [27] with the May 2013
version of GreenGenes, using default options, including
PICRUSts precalculated files. CST functional enrich-
ment was assessed using a Galaxy implementation of
LEfSe (http://huttenhower.sph.harvard.edu/galaxy/) [91].
Functional relative abundance was normalized on a
per-sample basis to sum to one million. Each CST was
assessed independently by grouping all samples from a
given body site into members of that CST and not mem-
bers of that CST. FDR values of 0.1 and an LDA thresh-
old score of 2.0 were used.

Generalized additive modeling of CST

Generalized additive models (GAMs) were fit using R
package mgcv for each CST and site. The probability of
being in a CST was modeled (on the linear probability
scale) as a smooth function of week of life and GA at
birth, and a random effect for each individual. Formally,
for each CST, for individual i at time ¢, we fit:

P(CST;) = f(WOL, gaBirth,) + participant; + errory,
(1)

where fIWOL;, gaBirth;) is a smooth function of week
of life and GA at birth, participant; is a random intercept
for each participant, and error;, represents independent,
homoscedastic noise. We plotted the fitted CST prob-
ability, under model (1) over a range of weeks-of-life for
several representative gestational ages, and then com-
pared this estimate to a single index model.

The single index model restricts the smooth function f
in model (1) to seek a common “time” variable that
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accounts for both time spent inside and outside the
womb. Symbolically, we require

f(WOLy, gaBirth,) = f(a-WOL, + b-gaBirth,). (2)

For instance, if a=1 and b=0, then GA has no ef-
fect on the CST trajectory, and when a=>b, then time
spent inside the womb has the same effect on the
probability of belonging to a CST as time spent out-
side the womb.

The CST categories of chronological, convergent, and
idiosyncratic were derived by binning the log2 ratio of
b/a in Eq. (2). If |logyb/a| < 1, then we declare the CST
to be convergent. If log,b/a < -1 and a logistic regres-
sion testing for association between any occurrence a
subject and their GA at birth was not significant at p <
0.05, then we declare the CST to be chronological
Otherwise, we consider it to be idiosyncratic. Add-
itional file 15: Table S5 lists the parameters used to
categorize CSTs.

CST and taxa regression

We paired microbiome samples from different body sites
that were acquired at the same visit for each participant. This
generated three pairs of sites. The nasal-rectal sites had the
greatest number of matched sample pairs, with 82 partici-
pants having 951 pairs of samples, while the nasal-throat
sites had the fewest, with 40 participants having 483 sample
pairs. The rectal-throat sites had 491 sample pairs. We ap-
plied arcsine sqrt-transformation to stabilize the variance of
relative abundance and then fit linear mixed effects models
to the abundance using the CST of the other two sites as the
primary variables of interest. We adjusted as potential con-
founders the mode of delivery, GA at birth and 14
degree-of-freedom spline for WOL. The subject ID served as
a random intercept. Associations with the primary variables
of interest were tested for all taxonomic levels and reported
on the most specific taxon (or equally specific taxa) within a
phylogenetic lineage. We report a Wald test for equality
between the abundance in each CST and its grand mean
abundance. Associations significant at 5% FDR, calculated
per site, are shown as edges in Fig. 5, which itself was gener-
ated using R packages GGally version 1.3.2 and network ver-
sion 1.13.0. An overall test for association between a site and
a taxon was derived by conducting an F test of the model
that dropped the CST of that site as predictors and the
full model. The change in pseudo R*> reports the
change in variance explained by the fixed effects in
the null and full models [92].

Canonical correlation analysis
The CCA function implemented in R base was used
for canonical correlation analyses. We employed
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tenfold cross-validation. We fit the CCA on the CSS
normalized [93], species-level OTU vector for each
pair of sites on nine/tenths of the subjects, then cal-
culated the subspace correlations on the 10% of with-
held subjects. Two times the standard error of the
mean of the held-out subspace correlation is shown
in the shaded region of Additional file 14: Figure S10.

Additional files

Additional file 1: Figure S1. Unweighted Unifrac principal coordinate
analysis plots of all samples from each body site, colored by the community
state type of the sample. (PDF 3130 kb)

Additional file 2: Figure S2. Dirichlet-Multinomial diagnostics including
species level OTU relative abundance for each sample and CST. Panels
A-C show the sqrt-transformed relative abundance for each sample,
clustered into its CST group. OTUs were selected to have the largest
between CST-variance. Sites have varying OTU depending if a taxa was
present at a site. Thicker boxes to the right of the thin white lines show
the Dirichlet-Multinomial parameter for the CST and OTU. Panel D shows
the average abundance of selected genera across CST and body sites.
Rows are z-scored. (PDF 719 kb)

Additional file 3: Figure S3. Goodness of fit for Dirichlet multinomial
mixture models in 80% subsamples of data in gut (A), throat (B), and
nasal (C). A series of models that included from 1 to 10 Dirichlet-
Multinomial components were fit 10 times to datasets subsampled
without replacement. The Laplace approximation to the Bayesian evidence
was calculated for each subsample. (PDF 110 kb)

Additional file 4: Table S1. Genus level table indicating the average
relative abundances of all taxa in each community state type. (XLSX 112 kb)

Additional file 5: Figure S4. Distribution of samples into community
state types by PMA for (A) throat, (B) nasal, and (C) gut for pre-term and
full-term infants. (PDF 130 kb)

Additional file 6: Figure S5. Effect sizes of significantly enriched
metagenome pathways. Putative functional profiles of all samples were
generated using PICRUSt. KEGG pathways that were enriched across CST
were ordered by p value across all sites and CST. The top eight pathways
for each site and CST were tabulated, which all had FDR-adjusted p values
below 10%. The LDA effect size, providing a measure of discriminatory
power, was used to perform hierarchical clustering of tabulated pathways
across all sites” CST simultaneously. (PDF 305 kb)

Additional file 7: Figure S6. Associations between CST membership
and post-menstrual age. The posterior probability of membership to each
CST (y-axis) is plotted over PMA (x-axis), as estimated as a non-parametric
function of PMA and gestational age at birth. The CST are sorted by the
post-menstrual age at which they achieve maximal probability of occurrence.
(PDF 349 kb)

Additional file 8: Figure S7. Visualizations of models relating CST
occurrence probability to post-natal and gestational age. (A) A bivariate
probability model (model 1; see Methods) of observing each CST was fit
for all gestational ages at birth between 24 and 43 weeks and the first
88 weeks of life. Each panel indicates the residual probability of observing
a specific CST as a function of gestational age at birth (y-axis) and week
of life (x-axis). Probabilities are represented as colored topographic maps,
where whiter hues indicate higher probability of observing a CST relative
to the overall mean. Contour lines are periodically labeled to provide the
precise residual probabilities. Black dots indicate sample collection points,
with time points beyond the final observations left blank (upper right of
each plot). The black, dashed, diagonal lines indicate post-natal intervals
at which CST occurrence probabilities are equivalent for all gestational
ages at birth according to a single index model (model 2) relating maturity
to CST occurrence probability. The single index model fits the probability of
CST occurrence as a function of a linear combination of gestational age at
birth and week of life, yielding a “single index” of maturity that accounts for
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dashed lines and the topographical contour lines corresponds to the good-
ness of fit of the single index model. (B) Each CST (arrayed along the

y-axis) has a distinct single index of maturity, which combines time spent in
and outside the womb in a ratio that best explains the observed patterns
of occurrence. This ratio of post-natal age (week of life) to gestational age
at birth is plotted along the x-axis. A ratio of one (vertical dashed line)
would indicate that time spent in utero is equivalent to time since birth
(ie, CST occurrence depends only on post menstrual age). (PDF 1247 kb)

Additional file 9: Table S2. Significant associations between taxon
abundance at one body site and the CSTs of other body sites. NA's
represent instances where the full model including terms for CSTs from
other body sites did not significantly improve the explanatory power of
the null model, which did not include CST terms, at an FDR threashold of
0.05. Only associations in which at least one CST term had a p value of
less than or equal to 0.05 are included. The values in the CST columns
are the -log10(p value). Only associations at the most taxonomically
specific level found are reported. (XLSX 29 kb)

Additional file 10: Figure 8. Coefficients versus p values for models
that test OTU for associations with subject-level covariates. The taxa OTU
regressions (see Methods “CST and Taxa regression”) included baseline
models that contained the covariates mode of delivery (c-section vs vaginal
delivery), gestational age at birth (gaBirth), and birth season as covariates.
Coefficient estimates are shown versus the —log10 false discovery rate
adjusted p values, adjusted jointly across all sites, coefficients and taxonomic
levels. (PDF 148 kb)

Additional file 11: Table S3. Taxa associated with other covariates.
(XLSX 477 kb)

Additional file 12: Table S4. Operational taxonomic units (OTUs)
exhibiting a significant association with the CST of a body site in which
they are not observed. (XLSX 10 kb)

Additional file 13: Figure S9. Distribution of correlations of OTU shared
in common between body sites. PMA and a subject-level intercept are
regressed out before calculating the Pearson sample correlation of each
matched OTU. (PDF 67 kb)

Additional file 14: Figure S10. Canonical correlations between body
sites. 10-fold crossvalidation allowed unbiased evaluation of the correlation
(y-axis) in the first ten subspaces (xaxis) in held-out data (red) and the
training data (blue). The correlation is attenuated after adjusting for PMA
with a 14 and 25 degree-of-freedom natural spline. The 2 times the standard
error of the mean of the cross-validation shows the sampling variability of
the correlations. (PDF 43 kb)

Additional file 15: Table S5. Parameters for classifying CSTs into one of
the three occurrence patterns. (XLSX 11 kb)

time spent in and outside the womb. Concordance between the diagonal
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