Long-Term and Daily Use of Molecular Hydrogen Induces Reprogramming of Liver Metabolism in Rats by Modulating NADP/NADPH Redox Pathways

Yao Mawulikplimi Adzavon^{1,2#}, Fei Xie^{1,2#}, Yang Yi^{1,2}, Xue Jiang^{1,2}, Xiaokang Zhang^{1,2}, Jin He^{1,2}, Pengxiang Zhao^{1,2}, Mengyu Liu^{1,2}, Shiwen Ma^{1,2}, Xuemei MA^{1,2*}

Supplementary figure 1

Effect of long-term H₂ intervention on the level of Uric acid analyzed by metabolomics in the liver (A) and by ELISA in serum (B) of healthy rats. (C-E) Indicators of oxidative stress in liver of H₂-treated rats compared to untreated rats: enzymatic activity of SOD (superoxide dismutase), CAT (catalase), and the concentration of MDA (Malondialdehyde) was measured by ELISA in liver lysates. Data are presented as Mean \pm SEM. * p-value < 0.05; ** p-value <0.01; *** p-value < 0.001