1	Tertiary remnants and Holocene colonizers: genetic structure and phylogeography of
2	Scots pine reveal higher genetic diversity in young boreal than in relic
3	Mediterranean populations and a dual colonisation of Fennoscandia
4	Monika Dering ¹ , Piotr Kosiński ^{1,2} , Tomasz Wyka ³ , Emilia Pers – Kamczyc ¹ , Adam
5	Boratyński ¹ , Krystyna Boratyńska ¹ , Peter B. Reich ^{4,5} , Angel Romo ⁶ , Marcin Zadworny ¹ ,
6	Roma Żytkowiak ¹ , Jacek Oleksyn ^{1,4}
7	¹ Laboratory of Systematics and Geography, Institute of Dendrology, Polish Academy of
8	Sciences, Parkowa 5, 62-035 Kórnik, Poland
9	² Department of Botany, Poznań University of Life Sciences, Wojska Polskiego 71c, 60-625
10	Poznań, Poland
11	³ General Botany Laboratory, Institute of Experimental Biology, Department of Biology,
12	Adam Mickiewicz University, Umultowska 89, 61 – 614 Poznań, Poland
13	⁴ Department of Forest Resources, University of Minnesota, St. Paul, MN 55 108, USA
14	⁵ Hawkeshury Institute for the Environment Western Sydney University
15	Penrith, NSW 2751, Australia
16	⁶ Institute of Botany, Consejo Superior de Investigaciones Científicas, IBB-CSIC-ICUB,
17	Passeig del Migdia s/n., 08038 Barcelona, Spain
18	mdering@man.poznan.pl
19	kosinski@man.poznan.pl
20	epk@man.poznan.pl
21	twyka@amu.edu.pl
22	borata@man.poznan.pl
23	borkrys@man.poznan.pl
24	preich@umn.edu
25	a.romo@ibb.csic.es
26	mzadworny@wp.pl
27	romazyt@man.poznan.pl
28	oleks001@umn.edu

- 29 Key words: *Pinus sylvestris* L., postglacial migration, hybrid zone, *nad1*, nad7, chloroplast
- 30 microsatellites
- 31 Running title: Range-wide diversity of Scots pine
- 32 Corresponding author: Monika Dering
- 33 Number of words in the Abstract: 299
- 34 Number of words: 6439
- 35 Number of references: 79
- 36

37 Abstract

38 Aim: Scots pine is one of the dominant tree species in forest ecosystems of the temperate and

39 boreal zones in Eurasia. Since the Tertiary it has persisted also in the Mediterranean region,

40 forming relic populations. In this study we investigate range – wide genetic diversity of Scots

41 pine, aiming to provide comprehensive information on the phylogeography and genetic

42 resources of the species.

43 **Location:** Europe and Asia

44 Methods: Thirteen paternally inherited chloroplast microsatellite (cpSSR) loci were used to

45 investigate the genetic structure of 62 populations from Fennoscandia and 30 populations

46 from the Mediterranean. We also surveyed variability of two maternally inherited

47 mitochondrial DNA (mtDNA) regions and additionally included literature data from 156

48 populations (248 populations in total).

49 **Results:** Scots pine retains an overall high genetic diversity in the chloroplast genome but,

50 unexpectedly, the historically younger populations from Fennoscandia showed statistically

- 51 higher mean intra population diversity than the Mediterranean stands (0.807 and 0.750,
- 52 respectively). The latter also contained a lower number of private cpSSR haplotypes.
- 53 Population differentiation with respect to mtDNA was higher ($G_{ST} = 0.628$) than at cpSSR

 $(G_{ST} = 0.015)$ indicating an efficient pollen-mediated gene – flow among refugial population of the species. One novel haplotype mtDNA was found, increasing the number of known mitotypes for the species from 4 to 5. The geographic distribution of mitotypes was structured into 4 groups corresponding to the main refugial areas of the species.

Main conclusions: Genetic impoverishment of the Mediterranean populations may enhance their vulnerability to future environmental changes. The spatial distribution of two mitotypes in Fennoscandia, featuring predominance of mitotype *a* in Norway and Sweden and *b* in Finland, gives strong support for dual colonization of that region from south eastern (Finland) and south – western (Sweden) directions. These results thus provide new insights into both Holocene expansion of Scots pine and the present distribution of species' genetic resources.

64 Introduction

65 Phylogeographic studies demonstrated that the last Pleistocene glaciation and subsequent 66 Holocene migrations were important factors shaping the modern patterns of genetic diversity 67 found in trees of the Mediterranean, temperate and boreal regions in Europe (Magri et al., 68 2006; Dering et al., 2014; Sękiewicz et al., 2015). Both palaeobotanical and molecular data 69 have provided evidence that southern margins of the European continent acted as refugia for 70 many European tree species in Late Pleniglacial (LPG; 24-14.6 ka) during which the most 71 extreme glacial conditions prevailed and the Scandinavian Ice Sheet (SIS) attained its 72 maximal size. However, in the case of some species, a specific set of life – history traits may 73 have enabled them to maintain additional refugial populations sparsely distributed closer to 74 the ice margins (Bhagwat & Willis, 2008). This idea of northern refugia has been a subject of 75 vivid debate for over a decade, during which supporting arguments of enthusiasts and doubts 76 of sceptics have been colliding (Willis & van Andel, 2004; Parducci et al., 2012; Tzedakis et 77 al., 2013; de Lafontaine et al., 2014). However, this concept serves as a reasonable - and 78 compelling in its simplicity – resolution of some peculiarities observed in phylogeographic

patterns. Principally, it helps address Reid's paradox concerning the mismatch between
current migration capacity of most tree species and that reconstructed from palaeobotanical
data (Clark *et al.*, 1998). Additionally, it explains departures from the commonly recognized
Northern Hemisphere 'southern richness and northern purity scenario' which manifests itself
in a lower level of variability in recently colonized areas in comparison with the sources of
colonisation (Hewitt, 2000).

85 Among all pine species, Scots pine (*Pinus sylvestris* L.) has the widest geographic 86 range. Along the west-east axis it spans the 14,000 km long area starting from mountain areas 87 of the Iberian Peninsula (8° W), throughout Caucasus, Altai Mts., Sayan Mts. up to Eastern 88 Siberia (135°E). Along the north – south axis the range is much narrower (ca. 2,700 km) and 89 runs from the northern part of the Scandinavian Peninsula (ca. 69° N) to Pontic Mts. (ca. 40° 90 S) in Asia Minor Peninsula but southernmost stand is located in Sierra Nevada Mts. in Spain 91 (ca. 37° S). Scots pine is a key component of many forest ecosystems in temperate and boreal 92 zones. It also plays an important role in the forests of the Mediterranean where it inhabits 93 isolated mountain ranges. According to the 'rear – edge populations' concept, these 94 southernmost populations represent valuable genetic resources (Hampe & Petit, 2005).

95 Scots pine is also of great economic value in Eurasian forestry. Thus, understanding 96 the spatio-temporal pattern of its genetic variation is of high priority for improved 97 management, especially in the context of ongoing climate changes. In terms of forecasting the 98 probable responses of forest tree species to global climate changes reconstruction of their 99 Pleistocene and Holocene demographic dynamics is of high relevance. Hence, the glacial and 100 postglacial history of Scots pine has been intensively investigated (Sinclair et al., 1999; 101 Cheddadi et al., 2006; Naydenov et al., 2007; Pyhäjärvi et al., 2008; Buchovska et al., 2013). 102 The main Scots pine refugia were located on three European Peninsulas (Cheddadi et al., 103 2006) and in Asia Minor (Naydenov et al., 2007). However, the contribution of some of these

peninsular refugia to the Holocene colonisation was limited and some populations, e.g., those
from Asia Minor or the Iberian Peninsula, had been trapped in their refugia (Naydenov *et al.*,
2007).

107 According to species distribution models, Scots pine is a cold adapted tree species 108 with the ability to grow on permafrost, that could have persisted in mid – latitudes during 109 LPG (Svenning *et al.*, 2008). Palaeobotanical and genetic data do suggest its presence during 110 the LPG in the Hungarian Plains, the Circum – Alpine area, the Carpathians, Central Europe, 111 NW Russian Plains, the Ural Mts. (Willis & van Andel, 2004; Cheddadi et al., 2006; 112 Naydenov et al., 2007; Binney et al., 2009) or even very close to SIS as in western and south-113 western Norway (Parducci et al., 2012). Presumably, during the colonization phase those 114 northernmost refugial populations were the most active in settling the current boreal part of 115 Scots pine range in Europe. The exact location of refugia and the precise colonization routes 116 leading to northern Scandinavia remain unclear, mostly due to limited sampling done in that 117 region. Investigations conducted in Fennoscandia by Naydenov et al. (2007) and Pyhäjärvi et 118 al. (2008) indicated geographically – dependent distribution of mitotypes a and b of 119 mitochondrial marker *nad7*: mitotype *a* prevailed in Sweden while mitotype *b* occurred in 120 especially high frequencies in Finland and Baltic countries. This peculiar distribution suggests 121 that this part of the continent might have become colonized independently from western and 122 eastern directions. This would imply the formation of a contact zone between distinct 123 colonization routes of Scots pine that should be located somewhere in northern Fennoscandia. 124 The current broad distribution of Scots pine implies that populations from the 125 southernmost latitudes and those located at northern latitudes have likely experienced 126 contrasting demographic processes during glacial and postglacial periods. Relatively stable 127 environmental conditions in southern Europe that lasted through the whole Quaternary 128 buffered the impact of numerous climate extremes that occurred in Europe and allowed Scots

129 pine to maintain an extended in situ persistence that likely promoted accumulation of genetic 130 diversity, including unique genetic variation (Taberlet et al., 1998). Holocene warming 131 subsequently encouraged poleward expansion of the species from its refugia. Consistent with 132 theoretical models of migration, postglacial range expansion has likely entailed repeated 133 founding effects leading to loss of genetic diversity with increasing distance from refugial 134 populations. The so called 'southern richness and northern purity scenario' that refers to this 135 phenomenon has been indicated as one of the most important consequences of the ice-ages for 136 organization of intraspecific genetic diversity in European biota (Hewitt, 2000). Boreal 137 populations of Scots pine represent the descendants of post-glacial migrants - the leading 138 edge-populations – and occupy the main part of the species' current range in Europe. Little is 139 known about the genetic resources stored in the northernmost populations of Scots pine 140 despite much discussion focusing on their future growth patterns and adaptation to changing 141 climate, in the context of economic value of the species for European forestry (Reich & 142 Oleksyn, 2008; Savolainen et al., 2011; Zadworny et al., 2016),

In the present study, we investigated genetic structure of the southernmost (rear -143 144 edge) and northernmost (leading - edge) populations of Scots pine. We assessed variation in 145 maternally inherited mtDNA and paternally inherited cpSSR, aiming to answer the following 146 questions: (1) was Fennoscandia colonized by Scots pine from two independent directions? 147 (2) did the two fronts of colonisation meet and form a hybrid zone? And if so, (3) where is it 148 located? (4) does the distribution of cpSSR diversity across the species' European range 149 follow the 'southern richness and northern purity' scenario? (5) do populations from the 150 southern limits exhibit unique genetic variation? Additionally, because plastid and 151 mitochondrial genomes in Pinaceae experience asymmetrical dispersal, they are well suited 152 for evaluation of the contribution of differential gene flow realized with seeds (genes located 153 in mitochondria) and pollen (genes located in chloroplasts) during postglacial range

expansion. We therefore asked (6) if the patterns of differentiation revealed with mtDNA andcpSSR correspond to each other, or are they divergent?

156 Methods

157 Sampling and genetic analysis

158 Ninety – two natural populations of Scots pine were sampled and screened for their mtDNA

159 of which 73 were screened also for their cpSSR polymorphism. Needles were collected from

160 12-17 individuals per population (1384 individuals in total, Table 1). Genomic DNA was

161 extracted from needle tissue using a DNAeasy Plant Mini Kit (Qiagen, Hilden, Germany).

162 Two mitochondrial DNA regions known for their polymorphism in Scots pine: *nad1* 163 intron b/c (Soranzo *et al.*, 2000) and *nad7* intron 1 were used in this study (Pyhäjärvi *et al.*, 164 2008; Naydenov *et al.*, 2007). Regions *nad1* and *nad7* were amplified with fluorescently – 165 labelled primers according to Soranzo *et al.*, (2000) and Buchovska *et al.*, (2013).

Fourteen chloroplast microsatellite markers were chosen for the genetic analysis:
Pt15169, Pt26081, Pt30204, Pt36480, Pt45002, Pt71936 (Vendramin *et al.*, 1996), PCP1289,
PCP26106, PCP30277, PCP36567, PCP41131, PCP4507, PCP87314 and PCP102652 (Provan *et al.*, 1998). They were amplified in two PCR – multiplex reactions in total volume of 10 μl
using Qiagen Multiplex PCR Kits (Qiagen, Hilden, Germany) under conditions recommended
by the manufacturer.

Analysis of PCR products of mtDNA and cpSSR was performed on an ABI PRISM
3130 genetic analyzer with the GeneScan 500 – LIZ size standard and genotypes were scored
using GeneMapper vs. 4.0. (Applied Biosystems).

175 Data analysis

176 Genetic diversity

- 177 Mitotypes were defined according to Naydenov *et al.* (2007) and Pyhäjärvi *et al.*
- 178 (2008). For each population sampled, the effective number of mitotypes (N_E) and unbiased 179 Nei's gene diversity index (H_E) (Nei, 1973) were calculated.

180 The raw data on cpSSRs were processed with Raw2G software in order to bin alleles 181 according to the method of Idury & Cardon (1997). Based on least-squares minimization 182 procedures, this software enables the row allele sizes to be assigned to their appropriate allelic 183 bins, which correspond to discrete alleles. This allowed us to define the rate of allelic 184 dispersion for each of the markers used. Substantial variation in allelic dispersion is expected 185 to generate genotyping errors, especially in cases of single nucleotide SSR. Loci for which 186 mean standard deviation was > 0.25 in allelic bins were excluded from the analysis. 187 We defined different haplotypes as unique combinations of size variants across the 188 cpSSR. Using HAPLOTYPE ANALYSIS 1.05 (Eliades & Eliades, 2009) number of different 189 haplotypes (A), number of private haplotypes (P_H), effective number of haplotypes, Nei's 190 gene diversity index of (H_E) estimated without bias and mean genetic distance between

191 haplotypes (D^2_{sh}) were calculated.

192 Geographical patterns of diversity

193 In range-wide analysis of the distributional pattern of mtDNA variability, additional 194 156 records of mtDNA mitotypes from natural populations of Scots pine were obtained from 195 the papers by Naydenov et al. (2007), Pyhäjärvi et al. (2008), Vidyakin et al. (2012), and 196 Buchovska et al. (2013) and included in our analyses (Appendix S1). Using PERMUT 2.0 197 (Pons & Petit, 1996) population differentiation based on mtDNA was evaluated using two 198 parameters, G_{ST} and N_{ST} . G_{ST} estimates population differentiation considering solely the 199 frequencies of the mitotypes while N_{ST} considers genetic relatedness among mitotypes. 200 Greater value of N_{ST} in comparison to G_{ST} means that closely related mitotypes tend to cluster 201 in the same area suggesting a phylogenetic structure. SAMOVA 2.0 (Dupanloup *et al.*, 2002)

202 was applied to infer the geographic population structure based on mtDNA and cpSSR. To 203 infer the most probable number of K groups, SAMOVA 2.0 was run with number of groups 204 from 2 up to 10 for mtDNA and from 2 to 30 for cpSSR and the result attaining the maximum 205 F_{CT} value was chosen as the indicator of the best grouping. Additionally, geographic structure 206 of cpSSR diversity was tested with a Bayesian approach implemented in BAPS 6.0 (Corander 207 et al., 2008). We applied a spatial genetic mixture analysis to predefined groups of 208 individuals. The software uses Markov chain Monte Carlo simulation to group sampled 209 population into K clusters predefined by the user and the best partitioning is attained based on 210 the highest marginal log – likelihood. After the testing stage, the final analysis was conducted 211 for 10 replicates for *K* ranging from 3 to 19.

212 A hierarchical analysis of molecular variance (AMOVA) was performed for cpSSR 213 data with GenAlEx 6.2 by using the mtDNA grouping revealed by SAMOVA to test for 214 congruence between the mtDNA and cpDNA patterns of differentiations. AMOVA was also 215 conducted for two biogeographic regions, Mediterranean vs. Fennoscandia, that host Tertiary 216 and Holocene populations, respectively. Diversity parameters based on cpSSRs were 217 compared among SAMOVA mtDNA groups and between Mediterranean and Scandinavian 218 populations using multiple comparisons Wilcoxon for each pair and Wilcoxon - Kruskal -219 Wallis tests.

220 **Results**

221 mtDNA and cpSSRs diversity

As a result of the analysis of 1384 individuals of Scots pine, a new combination of size

variants from both mitochondrial regions used allowed us to define a new haplotype,

producing a total of five haplotypes instead of the four described so far (Table 1). Among the

five mitotypes observed, the most abundant was mitotype a (63.4%), followed by b (17.1%),

226 c (10.6%), d (8.3%) and e (0.6%); the latter found exclusively in Turkish population TR7 and

consisting of size variants 248 bp of *nad1* and 268 bp of *nad7*. The mitotype diversity index per population H_{MT} ranged from 0 to 0.533 with an average value of 0.131 (Table 1). Comparison between the relic part of the Scots pine range (Mediterranean) and the Holocene – derived populations from central and northern Europe indicated that the Mediterranean region had significantly lower mitotype diversity (Wilcoxon test – $H_{Med} = 0.0728$: $H_{NCEur} =$ 0.156, p = 0.0366).

233 The allele binning procedure revealed substantial allelic dispersion that existed in most 234 of the cpSSR loci used in this study; thus only four cpSSR loci (PCP1289, PCP87314, 235 PCP102652 and Pt26081) were used for further analysis. A total of 6, 7, 5 and 6 size variants 236 were found at loci PCP1289, PCP87314, PCP102652 and Pt26081, respectively. Their 237 combinations yielded a total of 73 haplotypes, of which only 9 had relative frequencies above 238 1% (Table 2). Thirty six haplotypes (49.3%) were private and attained very low frequencies. 239 The majority of the private haplotypes were found in Scandinavia (28), followed by 240 populations on the Iberian Peninsula (6) and single private haplotypes in populations from 241 Turkey, France and Greece (Table 1). The high number of haplotypes detected was reflected 242 in generally high values of haplotypic diversity ranging from 0.971 (SW30) to 0.533 (FIN3). 243 The effective number of haplotypes ranged from 1.991 (FIN3) to 10.714 (SW30) and mean 244 genetic distance between individuals ranged from 0.176 (FIN3) to 3.062 (TR3). 245 Geographic patterns of differentiation based on mtDNA and cpSSRs 246 Population differentiation based on mtDNA data was high among the 248 populations 247 analysed, with G_{ST} and N_{ST} equalling 0.633 and 0.657, respectively, but the insignificant 248 difference between G_{ST} and N_{ST} (p = 0.537) did not support the existence of a formal 249 phylogeographic structure, which reflects the low polymorphism of the mitochondrial 250 markers. However, the visual inspection of spatial distribution of mitotypes suggests clear 251 geographic pattern (Fig. 1A; Appendix S2), supported further with SAMOVA. Examination

252 of clustering options produced values of F_{CT} ranging from 0.7849 (K = 8) to a maximal value 253 of 0.8202 (K = 4), which indicated number 4 to be the preferred number of genetically 254 homogenous clusters for the whole dataset (Table 3). A comparably high value of F_{CT} = 255 0.8214 was also obtained for K = 7 (Appendix S3). However, this partitioning was less 256 biologically justified because it resulted in separation of three additional clusters that 257 consisted of geographically remote populations. The four thus defined clusters contained the 258 following populations: (I) populations from Norway, Sweden, Russian Plains, Baltic region, 259 central, eastern and western Europe with some populations from the Balkan Peninsula, Asia Minor Peninsula and Iberian Peninsula; (II) population from Finland, Russia and non -260 261 coastal Baltic populations; (III) population from Turkey; and (IV) Spanish populations and 262 single Turkish population. The most abundant cluster I comprised mostly populations 263 carrying the most frequent mitotype a and some populations with low frequency of mitotype 264 b. This cluster included very geographically distant populations. Interestingly, Norwegian 265 populations were almost entirely fixed for the most common mitotype a (Fig. 1A). Cluster II 266 included populations in which mitotype b prevailed. Populations from the Iberian and Asia 267 Minor Peninsulas formed separate and homogenous clusters in which mitotype c and d268 dominated, respectively. In one of the Greek populations, mitotype d specific to Turkish 269 stands was noted, and in one Turkish stand, size variant in the nad 1 b/c, noted almost 270 exclusively in Iberian Peninsula (248 bp), was detected.

In contrast to mtDNA, differentiation of Scots pine populations with respect to cpSSR was weak, with G_{ST} and R_{ST} equalling 0.015 and 0.045 which reflects high polymorphism of the cpSSR markers. Nonetheless, the significant difference (p = 0.03) between G_{ST} and R_{ST} indicated a phylogeographic structure, but SAMOVA analysis was not able to produce any reasonable clustering of populations and resulted mainly in isolation of single populations. Using Bayesian methods the best partition contained 13 clusters which contained populations

originating from different and sometimes geographically very remote regions (Table 4). A
clear geographic structure was not detected but some genetic discontinuity between
populations was noticeable, especially between the Iberian and Anatolian Peninsulas, where
mutually exclusive clusters were noted (Appendix S4). In contrast, populations from the
Scandinavian Peninsula shared clusters with many populations from southern Europe (Table
4; Appendix S4).

283 AMOVA was significant at all hierarchical levels in both configurations tested (Table 284 5). The cpSSR variation attributable to mtDNA clusters (K = 4) accounted for 1% of the total 285 variation noted (PhiRT = 0.014, p = 0.003) while 95% of the total variation was located 286 within populations. In comparison, the differentiation between Mediterranean and 287 Scandinavian populations was higher, accounting for 2% of total variation (PhiRT = 0.017, p 288 = 0.001). Significant differences were also revealed in the diversity parameters. Scandinavian 289 populations had higher number of haplotypes per population (A; p = 0.0226), higher effective 290 number of haplotypes (N_E ; p = 0.0099) and haplotypic diversity (H_{CP} ; p = 0.0120), compared 291 with Mediterranean populations. With respect to SAMOVA clusters, significant differences 292 were noted in the number of alleles per population (A) between cluster I (mainly Sweden and 293 Central Europe) and cluster III (Asia Minor) (p = 0.0337) and between cluster III and IV 294 (Iberian Peninsula) (p = 0.005); in effective number of alleles (N_E) between cluster III and IV 295 (p = 0.0208) and in haplotypic diversity (H_{CP}) between cluster III and IV (p = 0.0331).

296 **Discussion**

297 Genetic diversity and differentiation

Our results confirmed that Scots pine harbours high genetic diversity stored in its chloroplast genome ($H_{CP} = 0.786$), albeit our estimates are somewhat lower than those obtained in previous regional studies for Scottish ($H_{CP} = 0.991$) (Provan *et al.*, 1998), Italian 301 $(H_{CP} = 0.92)$ (Scalfi *et al.*, 2009) and Spanish populations $(H_{CP} = 0.978)$ (Robledo-Arnuncio 302 et al., 2005). The only known lower value comes from the latest study conducted in Romania, 303 that included managed populations ($H_{CP} = 0.44$) (Bernhardsson *et al.*, 2016). Our study is 304 based on very wide representation of populations from different regions, and some of these 305 populations were characterized by very low levels of genetic diversity that affected the 306 average value reported here (e.g., SP12: $H_{CP} = 0.543$, SR: $H_{CP} = 0.571$). Contrary to our 307 expectations on the expected decrease of cpSSR diversity in northern direction, Scots pine 308 populations from Fennoscandia have displayed statistically higher (p = 0.012) haplotypic 309 diversity (0.807) than the south European populations (0.750) (Table 1), that represent the 310 oldest pool of species genetic diversity and the persistence of which likely predates 311 Quaternary glaciations (Sinclair et al., 1999). Populations from Fennoscandia also contained 312 more private cpSSR haplotypes compared to the southern populations. Similar trends have 313 also been reported for other species (Hathaway et al., 2009; Soubani et al., 2014) and such 314 trend is in opposition to the frequently noted phenomenon of 'southern richness and northern 315 purity'. In general, areas of the greatest diversity are assumed to be the origins of postglacial 316 migration. Such departures from this distribution of diversity may result from peculiarities of 317 postglacial history of the species such as mixing of different refugial lineages or cryptic 318 northern refugia (Tzedakis et al., 2013; Havrdová et al., 2015) (see below).

We found that levels of differentiation estimated on the basis of mtDNA and cpSSR are incongruent. Significant mtDNA differentiation among populations ($G_{ST} = 0.633$) was comparable to previous studies (Naydenov *et al.*, 2007; Pyhäjärvi *et al.*, 2008). In contrast, the differentiation assessed with cpSSR was very weak ($G_{ST} = 0.015$). Such discordance is expected in gymnosperms if markers from mitochondrial and chloroplast genomes are used. It is due to the contrasting modes of inheritance of cytoplasmic genomes (maternally transmitted mitochondria and paternally transmitted chloroplasts), higher polymorphism of cpSSR and to

the greater potential for dispersion of chloroplast genes by pollen (Gérardi *et al.*, 2010; Cinget *et al.*, 2015; Bernhardsson *et al.*, 2016). The contrasting levels of genetic differentiation
documented here exemplify the high potential of wind – dispersed pollen to erode the
population genetic structure based on the seed – dispersed mtDNA. Wind – dispersal of
pollen has been shown to be accountable for among – refugial interglacial population gene
flow in *Abies alba* (Liepelt *et al.*, 2002), *Pinus banksiana* (Godbout *et al.*, 2010) and *Picea mariana* (Gérardi *et al.*, 2010).

333 Geographic pattern and its implications for glacial and postglacial history of the species 334 SAMOVA using mtDNA reflected strong spatial genetic structure within the Scots pine 335 range, involving four distinct groups (Table 3) well related to the LPG refugial areas 336 previously defined for this species (Sinclair et al., 1999; Naydenov et al., 2007; Pyhäjärvi et 337 al., 2008). The two most spatially restricted clusters correspond to Scots pine refugia located 338 on the Iberian and Asia Minor Peninsulas. They represent the valuable relic genetic resources 339 that are of high conservation priority, although they appear to have played no role in 340 postglacial recolonization (Naydenov et al., 2007; Pyhäjärvi et al., 2008). Two other clusters 341 included populations with high prevalence of either mitotype *a* or *b*, both of which have much 342 wider distribution.

343 The phylogeographic resolution achieved in this study on the basis of cpSSR markers 344 was low due to the very high polymorphism of these markers and their high pollen-mediated 345 potential for dispersal. Based on four cpSSR loci, 13 clusters were defined, some of which 346 were heterogeneous and consisted of geographically distinct populations inhabiting the 347 Iberian, Anatolian and Scandinavian Peninsulas (Table 4; AppendixS4). This result 348 exemplifies the particularly high rate of pollen – mediated gene flow in wind pollinated 349 species which has a homogenizing effect on genetic structure. However, the patterns of 350 genetic differentiation based on mtDNA and cpSSR were not entirely decoupled. Despite its

351 weakness, the cpSSRs differentiation partly retained the signal of ancient divergence apparent 352 in mtDNA lineages (Table 5). Significant level (1%) of differentiation inferred with cpSSR 353 among SAMOVA clusters suggests partial concordance between both sets of data. Yet higher 354 divergence was reported between the Holocene – derived populations located in Fennoscandia 355 and the Tertiary remnants from the Mediterranean (2%). All together, these results indicate 356 that the gene pool of Scots pine is not fully homogenic and some weak structuring does exist 357 which likely is the consequence of the species' wide range and variety of selective regimes 358 operating in occupied habitats.

359 Our extensive set of populations showed that variants of mtDNA previously thought to 360 be strictly confined to some geographic areas are also noted at low frequencies beyond those 361 locations. The size variant 248 bp of *nad1* b/c noted previously mostly in Spanish 362 populations, was detected in one Turkish and one Greek stand, and Naydenov et al. (2008) 363 also reported it from Bulgaria. Recently, Bernhardsson et al. (2016) has found this variant in 364 one Romanian stand. Mitotype c, restricted to Turkey, was also detected in a single Greek 365 stand. Occurrence of spontaneous mutation, as suggested by Bernhardsson et al. (2016) is 366 possible, but a more parsimonious explanation considers low – frequency pre – existence of 367 these variants in other parts of the species' southern range. A similar situation was observed 368 for a *Fagus sylvatica* haplotype noted in Spanish and Slovenian stands (Magri *et al.*, 2006). 369 This would mean that the polymorphism at investigated mtDNA regions arose prior to the last 370 glacial cycle.

Bilgen & Kaya (2007) have attributed the genetic isolation of the easternmost
population of Scots pine in the Pontic Mts. to the Anatolian diagonal, a series of mountain
ranges extending from the Anti Taurus Mts. toward to the eastern Black Sea, that has been
recognized as an important biogeographic barrier (Ansell *et al.*, 2011). The morphological
distinctiveness of Scots pine populations from the Pontic Mts. has been recently reported by

376 Jasińska et al. (2014). It has been hypothesized that the Pontic Mts. may have been colonized 377 by Scots pine from the Caucasus (Bilgen & Kaya, 2007) which gains no support in the light of 378 the results presented here. The single Caucasus population included in this study (Fig. 1A; 379 Georgia – from Buchovska *et al.*, 2013) was composed of mitotypes a and b – the former 380 widely distributed in the whole of Europe including Turkey, and the latter present at a 381 particularly high frequency in Finland, Central Europe and NW Russia (Fig. 1A); the 382 mitotype d specific to Turkey was not present in the Caucasus population. Thus, based on 383 these limited data there remains uncertainty regarding whether glacial refugia for Scots pine 384 existed in the Caucasus but were not active during re – populating, similar to some other 385 species (Petit et al., 2002; Skrede et al., 2006) or whether this region was colonized from 386 northern direction, as for example in case of common juniper (Juniperus communis L.) 387 (Hantemirova et al., 2016).

388 In comparison with previous studies, better resolution was attained with regard to the 389 distribution of mitotype b. This mitotype reaches high frequencies in north-eastern Europe, especially in Finland, but it was also noted in more remote geographic locations such as the 390 391 Georgia, Czech Republic, Slovakia, Bulgaria, or Asiatic part of Russia (112.00° E) (Fig. 1A). 392 A recent study by Bernhardsson et al. (2016) confirms the occurrence of this mitotype in 393 Romania and Hungary, as well. However, the presence of this mitotype as far west as France 394 (single population) may be of non – autochthonous origin. Historical data on the development of the French Navy since the 16th to 19th century indicate that the Scots pine from north-395 396 eastern Europe, i.e. Baltic countries, Ukraine and Poland, was especially valued in mast 397 construction (Daszkiewicz & Oleksyn, 2005). Scots pine wood for this purpose was imported 398 from the port of Riga and for that reason the imported Scots pine timber was known in 399 western Europe as 'the Riga pine'. Historical sources also contain information on attempts to 400 cultivate 'Riga pine' in France made, among others, by the botanist Henri – Louis Duhamel

401 du Monceau (1700 – 1782), in order to achieve independence from the eastern sources of
402 wood (Daszkiewicz & Oleksyn, 2005).

403 Our study focuses especially on the extensive collection of Scots pine populations 404 inhabiting Fennoscandia with the aim to reconstruct the possible colonization routes and 405 explain the distribution of mitotype b in this part of Europe, which is hypothesized to be 406 related to some northern refugium (Pyhäjärvi et al., 2008; Naydenov et al., 2007; Buchovska 407 *et al.*, 2013). However, the direct correspondence of the distributional pattern of mitotype b to 408 the location of the northern refugium is impossible to deduce from our data, mainly due to the 409 widespread occurrence of mitotype b. The apparent increase in frequency of mitotype b from 410 north-eastern Europe, especially from the NW Russian Plain and Baltic countries toward 411 Finland (Fig. 1A), favours the concept of northern refugia located somewhere in the NW 412 Russian Plain (Buchovska et al. 2013; Tzedakis et al., 2013), in the NE Russian Plain 413 (Väliranta et al., 2011) or maybe also in the Ural Mts. (Naydenov et al., 2007). Genetically 414 distinct refugial populations in NW Russia existed for example for Norway spruce (Tollefsrud et al., 2008; Parducci et al. 2012; Tollefsrud et al. 2015) and mountain avens (Dryas 415 416 octopetala L.) (Skrede et al., 2006) strengthening the hypothesis of refugia for Scots pine in 417 that region. Considering the geographic distribution of mitotype b (Fig. 1A) it is probable that 418 this NW Russian refugium, apart from Fennoscandia, could also be the source for 419 colonisation of Eastern and Central Europe (Fig. 1B), as previously suggested by Buchovska 420 et al. (2013). On the other hand, the contribution to the European part of the species' range 421 the system of eastern refugia located in Western Siberia, Central Siberia, Altai (Western 422 Mongolia) or Yakutia proposed by some authors (Sannikov & Petrova, 2012; Sannikov et al., 423 2014; Semerikov et al., 2014) seems rather limited. Definitely, wider sampling in east 424 European and Asiatic parts of the range is needed for a more precise reconstruction of 425 postglacial migration routes of Scots pine in that region.

426 The peculiar distribution of mitotype a and b in Fennoscandia – the former prevailing 427 in Norway and Sweden and the latter in Finland – strongly supports the hypothesis of dual 428 colonisation of that region, an idea that has appeared in earlier studies (Sinclair et al., 1999; 429 Pyhäjärvi et al., 2008; Savolainen et al., 2011; Buchovska et al., 2013). Comparative study of 430 postglacial recolonization routes in Europe pointed to possible immigration of biota into 431 Fennoscandia from both north-eastern and south-western directions (Taberlet et al., 1998). 432 However, up to now, there has been no strong evidence supporting this scenario for Scots 433 pine. Melting of the Scandinavian ice sheet caused an uplift of the Scandinavian Peninsula 434 leading to the development of Ancylus Lake ca. 10.7 ka cal BP, which filled the Baltic basin 435 and much of the current Baltic coastal areas (Björck, 1995). Culmination of the Ancylus Lake 436 transgression at 10.3 ka cal BP involved not only the large body of fresh water, but also the 437 existence of remnants of the ice cap in northern Sweden (Ojala et al., 2005), that would have 438 hampered the colonisation of southern Sweden from the eastern direction. Early release of the 439 coastal part of south - western Sweden, and southern Sweden in general, from the ice cap (up 440 to 59°N until 13.4 ka cal BP; Lundqvist & Wohlfarth, 2001; Stroeven et al. 2016; Hughes et 441 al., 2016), also affecting central Norway (Paus et al., 2011; Hughes et al., 2016), created the 442 opportunity for colonisation of Scandinavian peninsula from the western direction via Danish 443 Straits that at that time formed a land – bridge (Fig. 8 in Ojala *et al.*, 2005). The immigration 444 of Scots pine into Sweden directly across the Baltic Sea is also likely (Fig. 1B) (Buchovska et 445 al. 2013) as the island of Bornholm could have been deglaciated as early as 18 ka BP (Hughes 446 et al., 2015). The colonisation routes outlined here for Scots pine correspond well to routes 447 proposed previously for other plant species, e.g., Quercus ssp. (Petit et al., 2002), Betula nana (Jadwiszczak, 2012), Cerastium alpinum (Berglund & Westerbergh, 2001) or animals 448 449 (Seddon et al., 2001; Bray et al., 2013).

450 Our results demonstrate a near fixation of the Norwegian population with the mitotype 451 *a*, commonly distributed in western European (Spain, France and Germany) and Scottish 452 populations of the species; only 4 trees carrying mitotype b were noted in Norway (Table 1, 453 Fig. 1A). These findings have important implications for reconstruction of the migratory 454 history of Scots pine in north - western Europe. Based on these observations we propose the 455 following colonization routes in north – western Europe: (1) one running from western 456 Europe across the English Channel into Scotland *via* the terrestrial corridors between 457 continental Europe and Britain and second (2) running from western Europe and passing 458 through Jutland and Danish Straits into Norway. We also hypothesize additional immigration 459 route into Norway running through currently submerged land – bridge located in southern 460 North Sea (Coles, 2000; Ward et al., 2006) (Fig. 1B).

461 Sinclair et al. (1998) reported a distinct character the western – most Scottish 462 populations of *P. sylvestris* using *cox1* marker and postulated a possible dual immigration of 463 Scots pine into Scotland from (1) continental Europe and (2) refugium located in Ireland. 464 However, due to the extinction of the last Irish Scots pine populations ca. 2,000 BP 465 (Bradshaw & Browne, 1987) genetic arguments are not available and palynological data alone 466 are not conclusive with respect to the postulated refugium in Ireland. According to Mitchell 467 (2006), the Irish Sea constituted an impermeable barrier during migration and thus most of the 468 tree species that colonized Ireland from continental Europe arrived from southern direction 469 via the Celtic Sea, rather than from the Britain. This contradicts the idea of immigration of 470 Scots pine into Scotland from Ireland, especially if the latest reconstructions of the extent of 471 British – Irish ice sheet are considered. They clearly show that Ireland was totally covered by 472 the ice up to 21 ka BP while southern Britain was never covered by ice sheet during the last 473 glaciation (Hughes et al., 2016).

474 In terms of possible colonization of Norway, the most likely routes include Danish 475 Straits, southern Sweden and further along the coast into Norway (Fig. 1B). The source 476 population would be located somewhere in Central Europe in which mitotype a and b are 477 present. The genetic homogeneity observed in the Norwegian populations would be then the 478 result of density - dependent processes (i.e. founder effect and/or gene surfing) invoked 479 recently as factor partly responsible for structuring genetic diversity (Waters et al., 2013). 480 However, the genetic pattern found in Norway might reflect also the direct colonization from 481 western Europe (in where mitotype a dominates; Fig. 1A) throughout Jutland (Fig. 1B). This 482 route would assume also the existence of a land - bridge in the area of the current southern 483 North Sea that could have emerged due to a lowering of the sea level. Such land bridge would 484 have extended from southern Britain to Jutland and is referred to as Doggerland (Coles, 485 2000). There are palynological data suggesting the presence of tree species in this area 486 (Betula, Pinus) as early as 9 ky PB and numerous archaeological findings indicate human 487 occupation of Doggerland (Ward et al., 2006). The existence of Doggerland is currently 488 considered to be significant for Mesolithic (early Holocene) dynamics of hunter - gatherers' 489 migrations (Peeters & Momber, 2014). Currently, due to uncertainty in the glacial history of 490 North Sea the role of Doggerland land – bridge in postglacial migrations of biota including 491 Scots pine is elusive but worth consideration in future studies.

The colonisation of Fennoscandia from more than one source implies mixing of previously isolated gene pools that led to formation of a hybrid zone (Hewitt, 2001). The most widely recognized feature of hybrid zones is an increased level of genetic diversity (Rius & Darling, 2014; Havrdová *et al.*, 2015) and that was noted for Scots pine populations from Fennoscandia in our data. Hence, based on these data we postulate that a hybrid zone for Scots pine is located in the northern Scandinavian Peninsula and is formed by merging of two colonisation routes. However, this contact zone is atypical when compared to others that have

499 been described (Dering & Lewandowski, 2009; Gömöry et al., 2012). First, the hybrid zone 500 characterized with mitochondrial marker nad1 b/c reflects the merging of different 501 colonisation fronts and not divergent genetic lineages that evolved in isolated refugia. This 502 result can be due to low resolution of the mtDNA marker used, that does not allow detection 503 of divergent mitochondrial refugial lineages of each colonisation wave. Considering the likely 504 wide and continuous occurrence of Scots pine during LPG (Svenning et al., 2008), gene flow 505 could have been strong enough to prevent divergence in the case of refugial populations from 506 mid – latitudes that were the main sources during colonization of the northernmost areas. This 507 hypothesis is supported by the low genetic differentiation assessed with pollen - dispersed 508 cpSSR and the lack of geographic structure. Secondly, the boundary between the colonisation 509 waves forming the hybrid zone is quite sharp. This in turn suggests that, in northern part of 510 Scots pine range, seed dispersal into already colonized areas was limited.

511

512 Concluding remarks

513 The most striking result of this study is the discovery that the Tertiary relic 514 populations of Scots pine store lower amounts of genetic diversity in comparison to the 515 northern populations established in the LG period and the Holocene. Accordingly, special 516 attention should be paid to those rear – edge populations. They *per se* deserve protection in 517 the context of global biodiversity preservation (Hampe & Petit, 2005). Moreover, those 518 populations represent the oldest part of the species' gene pool that has evolved under the 519 dynamically changing Mediterranean environment, which produced notable diversity of that 520 region (Fady & Conord, 2010). This gene pool can be highly relevant for future performance 521 of Scots pine under ongoing environmental alterations driven by current global climate 522 changes. Although there is no consensus on how these changes will affect individual species 523 or whole ecosystems (Carnicer et al., 2014), the widest spectrum of diversity should be

524 preserved because the rate of adaptation is driven by the amount of available additive genetic 525 variance and selection strength. Accordingly, the rapid adaptation of Scots pine to habitats of 526 the northern latitudes likely relied on standing genetic diversity (Savolainen et al., 2011). In 527 the face of the climate predictions for the Mediterranean region, populations of Scot pine 528 present there may be seriously endangered by progressive contraction, which will pose a risk 529 that the unique gene pool may be lost. In fact, those relic populations contain lower numbers 530 of unique haplotypes in comparison to the northernmost populations. According to predictions 531 made by Benito Garzón et al. (2008), based on modelling of the future range of Pinus 532 sylvestris, a 95% decrease in the current species distribution in Spain is expected by the year 533 2080. Currently, the Iberian Scots pine populations are experiencing decline due to dieback 534 and low level of recruitment principally caused by summer drought (Gea - Izquierdo et al., 535 2015). Accordingly, the performance of rear - edge populations of the species should be the 536 focus of long – term research aimed at monitoring of population dynamics.

537 With regard to the northernmost populations of Scots pine (the leading – edge 538 populations) their large amount of intraspecific diversity invites more complex thinking about 539 the evolution of the Scots pine range after glaciation. A high number of private cpDNA 540 haplotypes found in northernmost populations implies that the process of colonisation can be 541 a possible impulse for the generation of new genetic variants, at least for neutral genetic 542 diversity. With respect to adaptive variation, the situation is undoubtedly more complex, but 543 the impacts of range expansion and co – acting evolutionary processes are important as well 544 (Savolainen et al., 2011; Alberto et al., 2013). We found strong evidence for the existence of 545 a contact zone, which is a notable feature in the diversity pattern of Scots pine for two 546 reasons: (1) it has not yet been detected elsewhere in the species range and (2), due to general 547 evolutionary significance of hybrid zones for adaptive potential of species (Rius & Darling, 548 2014). Mixing of previously isolated lineages may produce novel allelic combinations that

may bring beneficial results for the species in newly colonized areas or under newenvironmental conditions.

Based on the data presented here and investigations of Cheddadi *et al.* (2006), we argue that apart from southernmost areas, Scots pine likely formed a set of patchily distributed populations at mid – latitudes that were connected with gene flow extensive enough to prevent strong genetic divergence. These populations were probably mostly active recolonization. Hence, the classic concept of refugia worked out for thermophilous species is not valid for Scots pine. Deeper examination of the mitochondrial genome could shed more light on the phylogeography of Scots pine in central and north-eastern Europe.

558

559 Acknowledgments

560 We thank A. Chojnicka, A.K. Jasińska and M. Łuczak, J. Kamczyc, S. Marek, T. Ok, M.

561 Sękiewicz, D. Tomaszewski, K. Sobierajska, K. Ufnalski and B. Nihlgard for help in

562 collecting the material and laboratory works. The Authors thank A. Stroeven and B. Reinardy

563 for their helpful comments on the glacial history of Europe. This study was supported by the

564 National Science Centre (2011/02/A/NZ9/00108) and Institute of Dendrology, Polish

565 Academy of Sciences.

566 Biosketch

567 The authors are scientists interested in phylogeography, ecology and distribution of genetic

568 diversity of trees. Our multidisciplinary team investigates also the relationships between plant

traits and the changing climate in order to understand key plant controls of ecosystem

570 functioning, such as nutrient cycling and productivity.

571

572 References

Alberto, F.J., Aitken, S.N., Alía, R., González – Martínez, S.C., Hänninen, H., Kremer, A.,
Lefèvre, F., Lenormand, T., Yeaman, S., Whetten, R. & Savolainen, O. (2013)

575	Potential for evolutionary responses to climate change – evidence from tree
576	populations. Global Change Biology, 19, 1645–1661.
577	Ansell, S.W., Stenoien, H.K., Grundmann, M., Russell, S.J., Koch, M.A., Schneider, H. &
578	Vogel, J.C. (2011) The importance of Anatolian mountains as the cradle of global
579	diversity in Arabis alpina, a key arctic-alpine species. Annals of Botany, 108, 241–
580	252.
581	Benito Garzón, M., Sánchez de Dios, R. & Sainz Ollero, H. (2008) The evolution of the Pinus
582	sylvestris L. area in the Iberian Peninsula from the last glacial maximum to 2100
583	under climate change. <i>The Holocene</i> , 18 , 705–714.
584	Berglund, AB. & Westerbergh, A. (2001). Two postglacial immigration lineages of the
585	polyploid <i>Cerastium alpinum</i> (Caryophyllaceae). <i>Hereditas</i> , 134 , 171–183.
586	Bernhardsson C., Floran V., Ganea S.L. & García-Gil M.R. (2016) Present genetic
587	structure is congruent with the common origin of distant Scots pine populations in its
588	Romanian distribution <i>Forest Ecology and Management</i> 361 131–143
589	Bhagwat S A & Willis K I (2008) Species persistence in northerly glacial refugia of
590	Furone: a matter of chance or biogeographical traits? <i>Journal of Biogeography</i> 35
591	
592	Bilgen B & Kaya N (2007) Allozyme variations in six natural populations of Scots nine
503	(Pinus sylvestris) in Turkey Riologia (Bratislava) 62, 607–703
5975 597	Binney H A Willis K I Edwards M E Bhagwat S A Anderson P.M. Andreev A A
505	Blauw M Damblon E Haesaerts P Kienast E Kremenetski K V Krivonogov
596	SK Lozhkin AV MacDonald GM Novenko EV Oksanen P Sanelko TV
597	Väliranta M & Vazhenina I. (2000) The distribution of late-Ousternary woody tava
508	in northern Eurosia: avidence from a new macrofossil database. <i>Quaternary Science</i>
500	Paviaus 28 2445 2464
599	Reviews, 20, 2443–2404. Biorak S. (1005) A ravious of the history of the Baltic See, 12.0.0.8 ke BD. Quaternamy
601	International 27 10 40
602	Bradshaw P H W & Browno P (1087) Changing patterns in the post glacial distribution of
602	Diausnaw, K.H. w. & Diowne, F. (1987) Changing patients in the post-glacial distribution of <i>Diaus subjectis</i> in Iroland, <i>Journal of Diagogaranty</i> , 14 , 227, 248
604	Prov S C E Austin LL Motoolf LL Østhvo K Louritzon S E Arios Soronson K
605	Maldiogene C. Adler C. L. & Cooper A. (2012) Angient DNA identifies post glacial
606	recolonisation, not recent bottlenecks, as the primary driver of contemporary mtDNA
607	phylogeography and diversity in Scandinavian brown beers. Diversity and
608	Distributions 10 245 256
600	Distributions, 19, 243–230. Ruchovska I. Danusovičius D. Raniulis D. Stanus V. Šikšnianiana I.R. & Kavaliauskas
610	D (2013) The location of the northern glacial refugium of Scots nine based on
611	mitochondrial DNA markers <i>Baltic Forestry</i> 10 , 2, 12
612	Cornicar I Coll M Dong V Ninverela M Vayrada I & Dañuelas I (2014) Large scale
612	Carmicer, J., Con, W., Pons, A., Ninyerora, M., Vayreua, J. & Penueras, J. (2014) Large-scale
015 614	successional advance as leaving including the rate and a pine recruitment limitation
014 615	Clobal Ecology and Biogeography 23 , 271, 284
015	Global Ecology and Biogeography, 23, 5/1–384.
010	Cheddadi, K., Vendramin, G.G., Liu, I., François, L., Kageyama, M., Lorentz, S., Laurent, J
01/ 610	in the modern genetic diversity of Diversity and Lunt, D. (2000) Imprints of glacial feruga
01ð	in the modern genetic diversity of <i>Pinus sylvestris</i> . Global Ecology and Biogeography,
619	13, 2/1-282.
620 621	Unger, B., Gerardi, S., Beauneu, J. & Bousquet, J. (2015) Less pollen-mediated gene flow for
021 622	more signatures of glacial lineages: congruent evidence from balsam fir cpDNA and mtDNA for multiple refusio is costore and control Nexth America, DL CO 10
622	and central North America. <i>PLoSOne</i> , 10,
023	eu122013.

- Clark, J.S., Fastie, C., Hurtt, G., Jackson, S.T., Johnson, C., King, G.A., Lewis, M., Lynch, J.,
 Pacala, S., Prentice, C., Schupp, E.W., Webb III, T. & Wyckoff, P. (1998) Reid's
 paradox of rapid plant migration. Dispersal theory and interpretation of
 paleoecological records. *BioScience*, 48, 13–24.
- Coles, B.J. (2000) Doggerland: the cultural dynamics of a shifting coastline. *Geological Society, London, Special Publications*, 175, 393–401.
- 630 Corander, J., Marttinen, P., Sirén, J. & Tang, J. (2008) Enhanced Bayesian modelling in
 631 BAPS software for learning genetic structures of populations. *BMC Bioinformatics*, 9,
 632 539.
- Daszkiewicz, P. & Oleksyn, J. (2005) Introduction of the "Riga pine" in the 18th and 19th
 century France. *Rocznik dendrologiczny*, 53, 7–40. (In Polish with English Abstract).
- de Lafontaine, G., Amasifuen Guerra, C.A., Ducousso, A. & Petit, R.J. (2014) Cryptic no
 more: soil macrofossils uncover Pleistocene forest microrefugia within a periglacial
 desert. *New Phytologist*, **204**, 715–729.
- 638 Dering, M. & Lewandowski, A. (2009) Finding the meeting zone: Where have the northern
 639 and southern ranges of Norway spruce overlapped? *Forest Ecology and Management*,
 640 259, 229–235.
- 641 Dering, M., Sękiewicz, K., Boratyńska, K., Litkowiec, M., Iszkuło, G., Romo, A. &
 642 Boratyński, A. (2014) Genetic diversity and inter-specific relations of western
 643 Mediterranean relic *Abies* taxa as compared to the Iberian *A. alba. Flora*, 209, 367–
 644 374.
- Dupanloup, I., Schneider, S., Excoffier, L. (2002) A simulated annealing approach to define
 the genetic structure of populations. *Molecular Ecology*, **11**, 2571–2581.
- Eliades, N.-G. & Eliades, D.G. (2009) HAPLOTYPE ANALYSIS: Software for analysis of
 haplotype data. Distributed by the authors. Forest Genetics and Forest Tree Breeding,
 Georg-August University Goettingen, Germany. URL http://www.unigoettingen.de/en/134935.html
- Fady B. & Conord C. (2010). Macroecological patterns of species and genetic diversity in
 vascular plants of the Mediterranean basin. *Diversity and Distributions*, 16, 53–64.
- Gea-Izquierdo, G., Montes, F., Gavilán, R.G., Cañellas, I. & Rubio, A. (2015) Is this the end?
 Dynamics of a relict stand from pervasively deforested ancient Iberian pine forests. *European Journal of Forest Research*, 134, 525–536.
- 656 Gérardi, S., Jaramillo-Correa, J.P., Beaulie, J. & Bousquet, J. (2010) From glacial refugia to
 657 modern populations: new assemblages of organelle genomes generated by differential
 658 cytoplasmic gene flow in transcontinental black spruce. *Molecular Ecology*, 19, 5265–
 659 5280.
- Godbout, J., Beaulieu, J. & Bousquet, J. (2010) Phylogeographic structure of jack pine (*Pinus banksiana*; Pinaceae) supports the existence of a coastal glacial refugium in
 northeastern North America. *American Journal of Botany*, **97**, 1903–1912.
- 663 Gömöry, D., Paule, L., Krajmerová, D., Romšáková, I. & Longauer, R. (2012) Admixture of
 664 genetic lineages of different glacial origin: a case study of *Abies alba* Mill. in the
 665 Carpathians. *Plant Systematics and Evolution*, **298**, 703–712.
- Hantemirova, E.V., Heinze, B., Knyazeva, S.G., Musaev, A.M., Lascoux, M., Semerikov,
 V.L. (2016) A new Eurasian phylogeographical paradigm? Limited contribution of
 southern populations to the recolonization of high latitude populations in *Juniperus communis* L. (Cupressaceae). *Journal of Biogeography*, doi:10.1111/jbi.12867.
- Hampe, A. & Petit, R.J. (2005) Conserving biodiversity under climate change: the rear edge
 matters. *Ecology Letters*, 8, 461–467.

- Hathaway, L., Malm, J.U. & Prentice, H.C. (2009) Geographically congruent large-scale
 patterns of plastid haplotype variation in the European herbs *Silene dioica* and *S. latifolia* (Caryophyllaceae). *Botanical Journal of Linnean Society*, **161**, 153–170.
- Havrdová, A., Douda, J., Krak, K., Vít, P., Hadincová, V., Zákravský, P. & Mandák, B.
 (2015) Higher genetic diversity in recolonized areas than in refugia of *Alnus glutinosa*triggered by continent-wide lineage admixture. *Molecular Ecology*, 24, 4759–4777.
- Hewitt, G.M. (2000) The genetic legacy of the Quaternary ice ages. *Nature*, **405**, 907–913.
- Hewit, G.M. (2001) Speciation, hybrid zones and phylogeography or seeing genes in space
 and time. *Molecular Ecology*, 10, 537–549.
- Hughes, L.C.A., Gyllencreutz, R., Lohne, Ø.S., Mangerund, J. & Snendsen, J.I. (2016) The
 last Eurasian ice sheets a chronological database and time-slice reconstruction,
 DATED-1. *Boreas*, 45, 1–45.
- Idury, R.M. & Cardon, L.R. (1997) A simple method for automated allele binning in
 microsatellite markers. *Genetics Resources*, 7, 1104–1109.
- Jadwiszczak, K. (2012) What can molecular markers tell us about the glacial and postglacial
 histories of European birches? *Silva Fennica*, 46, 733–745.
- Jasińska, A.K., Boratyńska, K., Dering, M., Sobierajska, K., Ok., T., Romo, A. & Boratyński,
 A. (2014) Distance between south-European and south-west Asiatic refugial areas
 involved morphological differentiation: *Pinus sylvestris* case study. *Plant Systematics and Evolution*, **300**,1487–1502.
- Liepelt, S., Bialozyt, R. & Ziegenhagen, B. (2002) Wind-dispersed pollen mediates
 postglacial gene flow among refugia. *PNAS*, **99**,14590 –14594.
- Lundqvist, J. &, Wohlfarth, B. (2001) Timing and east–west correlation of south Swedish ice
 marginal lines during the Late Weichselian. *Quaternary Science Review*, 20, 1127–
 148.
- Magri, D., Vendramin, G.G., Comps, B., Dupanloup, I., Geburek, T., Gömöry, D., Latałowa,
 M., Litt, T., Paule, L., Roure, J.M., Tantau, I., van der Knaap, W.O., Petit, R.J. & de
 Beaulieu, J. (2006) A new scenario for the Quaternary history of European beech
 populations: palaeobotanical evidence and genetic consequences. *New Phytologist*, **171**, 199–221.
- Mitchell, F.J.G. (2006) Where did Ireland's tree come from? *Biology and Environment: Proceedings of the Royal Irish Academy*, **106B**, 251–259.
- Naydenov, K., Senneville, S., Beaulieu, J., Tremblay, F. & Bousquet, J. (2007) Glacial
 vicariance in Eurasia: mitochondrial DNA evidence from Scots pine for a complex
 heritage involving genetically distinct refugia at mid-northern latitudes and in Asia
 Minor. *BMC Evolutionary Biology*, 7, 233.
- Ojala, A.E.K., Heinsalu, A., Saarnisto, M. & Tiljander, M. (2005) Annually laminated
 sediments date the drainage of the Ancylus Lake and early Holocene shoreline
 displacement in central Finland. *Quaternary International*, **30**, 63–73.
- Parducci, L., Jørgensen, T., Tollefsrud, M.M., Elverland, E., Alm, T., Fontana, S.L., Bennett,
 K.D., Haile. J., Matetovici, I., Suyama, Y., Edwards, M.E., Andersen. K., Rasmussen,
 M., Boessenkool, S., Coissac, E., Brochmann, C., Taberlet, P., Houmark-Nielsen, M.,
 Larsen, N.K., Orlando, L., Gilbert, M.T.P., Kjær, K.H., Alsos, I.G. & Willerslev, E.
 (2012) Glacial Survival of Boreal Trees in Northern Scandinavia. *Science*, 335, 1083–
 1086.
- Paus, A., Velle, G. & Berge, J. (2011) The Lateglacial and early Holocene vegetation and
 environment in the Dovre mountains, central Norway, as signaled in two Lateglacial
 nunatak lakes. *Quaternary Science Review*, **30**, 1780–1796.

- Peeters, J.H.M. & Momber, G. (2014) The southern North Sea and the human occupation of
 northwest Europe after the Last Glacial Maximum. *Netherlands Journal of Geosciences*, 93, 55–70.
- Petit, R., Brewer, S., Bordács, S. (2002) Identification of refugia and post-glacial colonisation
 routes of European white oaks based on chloroplast DNA and fossil pollen evidence.
 Forest Ecology and Management, **156**, 49–74.
- Pons, O. & Petit, R.J. (1996) Measuring and testing genetic differentiation with ordered
 versus unordered alleles. *Genetics*, 144, 1237–1245.
- Provan, J., Soranzo, N., Wilson, N.J., McNicol, J.W., Forrest, G.I., Cottrell, J., Powell, W.
 (1998) Gene–pool variation in Caledonian and European Scots pine (*Pinus sylvestris*L.) revealed by chloroplast simple–sequence repeats. *Proceedings of the Royal Society of London. Series B: Biological Sciences*, 265, 1697–1705.
- Pyhäjärvi, T., Salmela, M.J. & Savolainen, O. (2008) Colonization routes of *Pinus sylvestris*inferred from distribution of mitochondrial DNA variation. *Tree Genetics and Genomes*, 4, 247–254.
- Reich, P.B. & Oleksyn, J. (2008) Climate warming will reduce growth and survival of Scots
 pine except in the far north: Scots pine growth and survival following climate transfer.
 Ecology Letters, 11, 588–597.
- Rius, M. & Darling, J.A. (2014) How important is intraspecific genetic admixture to the
 success of colonizing populations? *Trends in Ecology and Evolution*, 29, 233–242.
- Robledo-Arnuncio, J.J., Collada, C., Alía, R. & Gil, L. (2005) Genetic structure of montane
 isolates of *Pinus sylvestris* L. in a Mediterranean refugial area: Genetic structure of
 Scots pine montane isolates. *Journal of Biogeography*, **32**, 595–605.
- Sannikov, S.N., Petrova, I.V., Egorov, E.V. & Sannikova, N.S. (2014) A system of
 Pleistocene refugia for *Pinus sylvestris* L. in the southern marginal part of the species
 range. *Russian Journal of Ecology*, 45, 167–173.
- Sannikov, S.N. & Petrova, I.V. (2012) Phylogenography and genotaxonomy of *Pinus sylvestris* L. populations. *Russian Journal of Ecology*, **43**, 273–280.
- Savolainen, O., Kujala, S.T., Sokol, C., Pyhäjärvi, T., Avia, K., Knürr, T., Kärkkainen, K. &
 Hicks, S. (2011) Adaptive potential of northernmost tree populations to climate
 change, with emphasis on Scots pine (*Pinus sylvestris* L.). *Journal of Heredity*, 102,
 526–536.
- Semerikov, V.L., Semerikova, S.A., Dymshakova, O.S., Zatsepina, K.G., Tarakanov, V.V.,
 Tikhonova, I.V., Ekart, A.K., Vidyakin, A.I., Jamiyansuren, S., Rogovtsev, R.V. &
 Kalchenko, L.I. (2014) Microsatellite loci polymorphism of chloroplast DNA of Scots
 pine (*Pinus sylvestris* L.) in Asia and Eastern Europe. *Russian Journal of Genetics*, 50,
 577–585.
- Scalfi, M., Piotti, A., Rossi, M. & Piovani, P. (2009) Genetic variability of Italian southern
 Scots pine (*Pinus sylvestris* L.) populations: the rear edge of the range. *European Journal of Forest Research*, **128**, 377–386.
- Seddon, J.M., Santucci, F., Reeve, N.J. & Hewitt, G.M. (2001) DNA footprints of European hedgehogs, *Erinaceus europaeus* and *E. concolor*: Pleistocene refugia, postglacial expansion and colonization routes. *Molecular Ecology*, 10, 2187–2198.
- Sękiewicz, K., Dering, M., Sękiewicz, M., Boratyńska, K., Iszkuło, G., Litkowiec, M., Ok, T.,
 Dagher-Kharrat, M.B. & Boratyński, A. (2015) Effect of geographic range
 discontinuity on species differentiation East-Mediterranean *Abies cilicica*: a case
 study. *Tree Genetics and Genomes*, **11**, 1–10.
- Skrede, I., Eidesen, P.B., Piñeiro Portela, R. & Brochman, Ch. (2006) Refugia, differentiation
 and postglacial migration in arctic-alpine Eurasia, exemplified by the mountain avens
 (*Dryas octopetala* L.). *Molecular Ecology*, 15, 1827–1840.

- Sinclair, W.T., Morman, J.D. & Ennos, R.D. (1998) Multiple origins for Scots pine (*Pinus sylvestris* L.) in Scotland: evidence from mitochondrial DNA variation. *Heredity*, 80, 233–240.
- Sinclair, W.T., Morman, J.D. & Ennos, R.A. (1999) The postglacial history of Scots pine
 (*Pinus sylvestris* L.) in western Europe: evidence from mitochondrial DNA variation.
 Molecular Ecology, 8, 83–88.
- Soranzo, N., Alia, R., Provan, J. & Powell, W. (2000) Patterns of variation at a mitochondrial
 sequence-tagged-site locus provides new insights into the postglacial history of
 European *Pinus sylvestris* populations. *Molecular Ecology*, 9, 1205–1211.
- Soubani, E., Hedrén, M. & Widén, B. (2014) Phylogeography of the European rock rose
 Helianthemum nummularium (Cistaceae): incongruent patterns of differentiation in
 plastid DNA and morphology. *Botanical Journal of Linnean Society*, **176**, 311–331.
- Stroeven, A.P., Hättestrand, C., Kleman, J., Heyman, J., Fabel, D., Fredin, O., Goodfellow,
 B.W., Harbor, J.M., Jansen, J.D., Olsen, L., Caffee, M., Fink, D., Lundkvist, J.,
 Rosqvist G.C., Strömberg, B. & Jansson, K.N. (2016) Degleciation of Fennoscandia. *Quaternary Science Reviews*, 147, 91–121.
- Svenning, J.-C., Normand, S. & Kageyama, M. (2008) Glacial refugia of temperate trees in
 Europe: insights from species distribution modelling. *Journal of Ecology*, 96, 1117–
 1127.
- Taberlet, P., Fumagalli, L., Wust-Saucy, A.-G. & Cosson, J.-F. (1998) Comparative
 phylogeography and postglacial colonization routes in Europe. *Molecular Ecology*, 7,
 453–464.
- Tollefsrud, M., Kissling, R., Gugerli, F., Johnsen, Ø., Skroppa, T., Chedaddi, R., Van der
 Knaap, W.O., Latałowa, M., Terhüne-Berson, R., Litt, T., Geburek, T., Brochmann, C.
 & Sperisen, C. (2008) Genetic consequences of glacial survival and postglacial
 colonization in Norway spruce: combined analysis of mitochondrial DNA and fossil
 pollen. *Molecular Ecology*, **17**, 4134–4150.
- Tollefsrud, M., Latałowa M., van der Knaap, P.O., Brochmann, Ch. & Sperisen, Ch. (2015)
 Late Quaternary history of North Eurasian Norway spruce (*Picea abies*) and Siberian
 spruce (*Picea obovata*) inferred from macrofossils, pollen and cytoplasmic DNA
 variation. *Journal of Biogeography*, **42**, 1431–1442.
- Tzedakis, P.C., Emerson, B.C. & Hewitt, G.M. (2013) Cryptic or mystic? Glacial tree refugia
 in northern Europe. *Trends in Ecology and Evolution*, 28, 696–704.
- Väliranta, M., Kaakinen, A., Kuhry, P., Kultti, S., Salonen, J.S. & Seppä, H. (2011) Scattered
 late-glacial and early Holocene tree populations as dispersal nuclei for forest
 development in north-eastern European Russia. *Journal of Biogeography*, 38, 922–
 932.
- Vendramin, G.G., Lelli, L., Rossi, P., Morgante, M. (1996). A set of primers for the
 amplification of 20 chloroplast microsatellites in Pinaceae. *Molecular Ecology*, 5,
 595–598.
- Vidyakin, A.I., Semerikov, V.L., Polezhaeva, M.A. & Dymshakova, O.S. (2012) Spread of
 mitochondrial DNA haplotypes in population of Scots pine (*Pinus sylvestris* L.) in
 northern European Russia. *Russian Journal of Genetics*, 48, 1267–1271.
- Ward, I., Larcombe, P. & Lillie, M. (2006) The dating of Doggerland-post-glacial
 geochronology of the southern North Sea. *Environmantal Archaeology*, **11**, 207–218.
- Waters, J.M., Fraser, C.I. & Hewitt G.M. (2013) Founder takes all: density-dependent
 processes structure biodiversity. *Trends in Ecology and Evolution*, 28, 78–85.
- Willis, K.J. & van Andel, T.H. (2004) Trees or no trees? The environments of central and
 Eastern Europe during the Last Glaciation. *Quaternary Science Reviews*, 23, 2369–
 2387.

- Zadworny, M., McCormack, M.L., Mucha, J., Reich, P.B., Oleksyn, J. (2016) Scots pine fine
 roots adjust along a 2,000 km cold-climate gradient. *New Phytologist*, 212, 389–399.
- 822 823
- 824 Fig. 1. Geographic distribution (A) of European populations of Scots pine (92 originally 825 sampled in this study and others for which data were obtained from Naydenov et al. 826 (2007), Pyhäjärvi et al. (2008), Vidyakin et al. (2012) and Buchovska et al. (2013), 827 see Appendix 1). Pie charts represent mitotypic composition of each population and 828 the frequency of the mitotypes. Each colour represents one of the five mitotypes 829 detected (green – mitotype a, yellow – mitotype b, red – mitotype c, blue – mitotype d 830 and light blue - mitotype e). The species' range is shaded. The distribution map of 831 Scots pine was provided by Euforgen, (B) reconstruction of possible migration routes 832 of Scots pine from its refugial areas located in middle latitudes. White arrows 833 represent the migration routes that need further support.
- 834
- 835 Supporting Information
- 836 Appendix S1
- 837 Data sources for mtDNA analysis.
- 838
- 839 Appendix S2
- 840 Geographic distribution of 248 European and Asiatic population of Scots pine (92 originally
- sampled in this study and others for which data were obtained from Naydenov et al. (2007),
- Pyhäjärvi et al. (2008), Vidyakin et al. (2012) and Buchovska et al. (2013), see Appendix 1)
- analyzed in this study and mitotypes detected. Pie charts represent mitotypic composition of
- each population and the frequency of the mitotypes. Each colour represents one of the five
- 845 mitotypes detected (green mitotype a, yellow mitotype b, red mitotype c, blue –
- 846 mitotype d and light blue mitotype e). The species' range is shaded. The distribution map of
- 847 Scots pine was provided by Euforgen.
- 848
- 849 Appendix S3
- Alternative spatial population structure of 248 populations Scots pine at K=7 inferred with
- 851 SAMOVA based on mtDNA mitotypes.
- 852 Appendix S4
- 853 Geographic distribution of 13 Scots pine population clusters inferred with BAPS based on
- four cpSSR used; each colour denotes one of the 13 clusters.

Fig. 1. Geographic distribution (A) of European populations of Scots pine (92 originally sampled in this study and others for which data were obtained from Naydenov *et al.* (2007), Pyhäjärvi *et al.* (2008), Vidyakin *et al.* (2012) and Buchovska *et al.* (2013), see Appendix 1). Pie charts represent mitotypic composition of each population and the frequency of the mitotypes. Each colour represents one of the five mitotypes detected (green – mitotype *a*, yellow – mitotype *b*, red – mitotype *c*, blue – mitotype *d* and light blue – mitotype *e*). The species' range is shaded. The distribution map of Scots pine was provided by Euforgen, (B) reconstruction of possible migration routes of Scots pine from its refugial areas located in middle latitudes. White arrows represent the migration routes that need further support.

Table 1. Locations of natural Scots pine populations sampled in this study, along with frequencies of mtDNA haplotypes and statistical characteristics of cpSSSR haplotypes for each population (Norwegian populations not included). Regional and range-wide summaries are also shown.

Pop.	Population name			mt hap	lotypes						cpSSRs	haploty	/pes		
code		Lat.	Long.	•							•		•		
				Ν	а	b	С	d	е	Нмт	Α	Р	NE	H _{CP}	D^2_sh
SW1	Sweden. Ővraryd	56.423	14.218	15	12	3				0.343	8	1	3.169	0.733	1.067
SW2	Sweden. Dalem, Askersund	58.857	14.864	15	15					0	11	2	7.759	0.933	1.924
SW3	Sweden. Ekopark Kilsbergen	59.424	15.036	15	12	3				0.343	8	0	4.592	0.838	0.829
SW4	Sweden. Spånsfäbodarna	60.364	15.181	15	15					0	7	0	3.082	0.724	0.610
SW5	Sweden. Furundal, Dalbyn	61.095	15.257	15	10	5				0.476	8	2	5.488	0.876	1.062
SW6	Sweden. Näsberg	61.791	15.647	15	12	3				0.343	7	0	3.689	0.781	0.686
SW7	Sweden. Ånge	62.587	15.631	15	15					0	11	1	9.000	0.952	1.571
SW8	Sweden. Mo	63.270	16.820	15	15					0	8	0	3.814	0.790	0.862
SW9	Sweden. Ő.Gafsele	64.002	17.401	15	10	5				0.476	11	0	7.759	0.933	1.057
SW10	Sweden. Bratten	64.529	18.336	15	13	2				0.247	5	1	3.358	0.752	0.800
SW11	Sweden. Järvträsk	65.127	19.466	15	13	2				0.247	8	1	3.169	0.733	1.019
SW12	Sweden. Maskosel	65.881	19.544	15	11	4				0.419	10	1	6.818	0.914	1.333
SW13	Sweden. Jokkmokk	66.662	19.947	15	8	7				0.533	5	0	4.091	0.810	0.557
SW14	Sweden. Koskullskulle	67.187	20.956	15	9	6				0.514	8	0	5.233	0.867	0.748
SW15	Sweden. Jukkasjärvi	67.969	20.460	15	11	4				0.419	5	0	3.358	0.752	0.367
SW16	Sweden. Abisco	68.350	18.801	15	15					0	9	1	4.787	0.848	1.157
SW17	Sweden. Angesan	66.704	22.334	15	11	4				0.419	9	2	5.488	0.876	0.981
SW18	Sweden. Kamlunge	65.998	22.925	15	12	3				0.343	8	0	5.233	0.867	0.714
SW19	Sweden. Őrbyhus	60.336	17.808	15	15					0	5	0	2.103	0.562	0.205
SW20	Sweden. Hornő	59.539	17.136	15	15					0	5	1	3.689	0.781	0.667
SW21	Sweden. Kloten	59.902	15.297	15	15					0	3	0	2.528	0.648	0.262
SW22	Sweden. Rottneros	59.763	13.047	15	14	1				0.134	9	0	7.258	0.924	1.019
SW23	Sweden. Vålberg	59.430	13.295	15	10	5				0.476	7	0	4.245	0.819	0.771
SW24	Sweden. Berg	57.075	14.689	15	14	1				0.134	6	0	4.412	0.829	0.900
SW25	Sweden. Kvikjokk I	66.894	18.746	15	12	3				0.343	8	2	4.592	0.838	1.038

SW26	Sweden. Kvikjokk II	67.081	18.617	15	15		0	7	1	4.412	0.829	0.886
SW27	Sweden. Stensele	65.068	17.237	15	12	3	0.247	7	0	4.245	0.819	0.657
SW28	Sweden. Jőrn	65.003	20.035	15	15		0	10	0	7.258	0.924	1.238
SW29	Sweden. Stromsund	63.837	14.893	15	15		0	8	0	5.233	0.867	0.762
SW30	Sweden. Asarna	62.670	14.379	15	13	2	0.247	12	4	10.714	0.971	1.890
SW31	Sweden. Fulunas	61.307	13.058	15	14	1	0.134	7	1	5.233	0.867	0.986
FIN1	Finland. Loppi	60.740	24.497	15	13	2	0.247	7	0	4.412	0.829	0.876
FIN2	Finland. Ähtäri	62.546	23.963	15	5	10	0.476	7	0	4.245	0.819	1.071
FIN3	Finland. Leppälahti	63.542	24.932	15	1	14	0.134	3	0	1.991	0.533	0.176
FIN4	Finland. Kestilä	64.561	26.219	15	1	14	0.134	7	2	4.592	0.838	1.519
FIN5	Finland. Metsäla	65.566	27.470	15	4	11	0.419	6	0	2.922	0.705	0.471
FIN6	Finland. Posio	66.073	27.704	15	2	13	0.247	6	0	2.143	0.571	0.610
FIN7	Finland. Paloperä	66.583	28.173	15		15	0	7	1	3.082	0.724	0.700
FIN8	Finland. Näätämö	69.634	29.052	15		15	0	6	0	2.528	0.648	0.367
FIN9	Finland. Inarijärvi	69.107	27.643	15		15	0	7	1	3.082	0.724	0.710
FIN10	Finland. Alajärvi	68.538	27.687	15	3	12	0.343	8	0	4.592	0.838	0.719
FIN11	Finland. Vajunen	67.844	26.416	15		15	0	8	1	6.081	0.895	1.919
FIN12	Finland. Raudanjoki	67.209	26.294	15	1	14	0.134	8	1	6.818	0.914	1.400
FR1	France. Col de la Croix de Morand	45.150	03.350	16	8	7	0.533	8	1	3.459	0.758	1.108
FR2	France. Col de la Croix de Bor	44.760	03.530	15	15		0	7	0	5.769	0.886	0.848
NOR1	Norway. Skibotn I	69.313	20.389	15	15		0	-	-	-	-	-
NOR2	Norway. Skibotn II	69.290	20.438	15	15		0	-	-	-	-	-
NOR3	Norway. Vikran	69.485	18.875	15	15		0	-	-	-	-	-
NOR4	Norway. Rundhaug	68.950	18.937	15	15		0	-	-	-	-	-
NOR5	Norway. Innhavet	67.988	15.971	15	15		0	-	-	-	-	-
NOR6	Norway. Evensgård	66.971	15.369	15	15		0	-	-	-	-	-
NOR7	Norway. Bleiknes	66.971	15.365	15	15		0	-	-	-	-	-
NOR8	Norway. Svenningdal	65.410	13.378	15	15		0	-	-	-	-	-
NOR9	Norway. Trofors	65.511	13.375	15	15		0	-	-	-	-	-
NOR10	Norway. Snåsa	64.296	12.599	15	14	1	0.134	-	-	-	-	-
NOR11	Norway. Namsos I	64.481	11.623	15	13	2	0.247	-	-	-	-	-
NOR12	Norway. Namsos II	64.485	11.700	15	15		0	-	-	-	-	-
NOR13	Norway. Namsos II	64.485	11.623	15	15		0	-	-	-	-	-
NOR14	Norway. Salsnes	64.653	11.445	15	15		0	-	-	-	-	-

NOR15	Norway. Dovre	61.958	09.280	15	15			0	-	-	-	-	-
NOR16	Norway. Kinsarvik	60.374	06.709	15	15			0	-	-	-	-	-
NOR17	Norway. Tyssedal	60.118	06.576	15	14	1		0.134	-	-	-	-	-
NOR18	Norway. Brunkeberg	69.444	08.453	15	15			0	-	-	-	-	-
NOR19	Norway. Passebekk	59.527	09.589	15	15			0	-	-	-	-	-
	Average												
_	Central and northern Europe					_		0.156	7.44	0.622	4.700	0.807	0.914
BG	Bulgaria. Pirin. Bansko-Razlog	41.880	23.360	15	7	8		0.533	4	0	2.848	0.695	0.538
GR1	Greece. Pieria Ori (Elatohori)	40.310	22.200	15	15			0	7	0	3.571	0.771	0.567
GR2	Greece. Ano Vrandou	41.310	23.650	15	14		1	0.134	6	1	3.261	0.743	0.619
SR	Serbia. Divcibare Mts.	44.100	19.990	15	15			0	6	0	2.143	0.571	0.490
А	Andora. St.Miguel d'Engolasters	42.520	01.570	14		15		0	8	0	5.158	0.868	0.780
SP1	Spain. Pyrennees	42.670	00.770	15		15		0	6	1	3.261	0.743	0.933
	Spain. Sierra de Gudar. Puerto de San												
SP2	Rafael	40.360	-00.720	15		15		0	8	0	6.818	0.914	1.281
SP3	Spain. Sierra de Gudar. Valldelinares	40.380	-00.610	15		15		0	7	1	3.082	0.724	1.986
SP4	Spain.Sierra de Neila	42.050	-03.010	15		15		0	8	2	5.233	0.867	1.195
SP5	Spain. Sierra de Cebollera. Lago Negro	42.070	-02.630	15	1	14		0.134	6	0	3.814	0.790	0.510
SP6	Spain. Pyreneese. San Juan de la Pena	42.510	-00.660	15	2	13		0.247	9	1	4.787	0.848	1.133
SP7	Spain. Sierra de Urbion	41.970	-02.830	15	14	1		0.134	4	0	2.368	0.619	0.233
SP8	SpainVirgala Menor. Vitoria-Gasteiz	42.780	-02.810	15	15			0	7	0	3.082	0.724	0.500
SP9	Spain. Puerta de Navafria	40.980	-03.810	15	1	14		0.134	7	0	3.571	0.771	0.500
SP10	Spain. Cuenca. Una	40.220	-01.980	15		15		0	7	0	3.689	0.781	0.762
SP11	Spain. Cuenca. Vega del Codoro	40.440	-01.900	16		16		0	8	1	4.741	0.842	1.365
SP12	Spain. Sierra de Baza	37.370	-02.850	15	15			0	4	0	2.027	0.543	0.229
Р	Portugal. Sierra de Geres	41.800	-08.130	15	15			0	5	0	3.689	0.781	0.943
TR1	Turkey. Gerede-K	40.640	32.410	15	15			0	7	0	3.082	0.724	0.886
TR10	Turkey. Kars-Erzurm	40.180	42.630	15			15	0	7	0	3.429	0.773	0.708
TR2	Turkey. TokatY	39.960	36.52	15			15	0	6	0	3.462	0.762	2.390
TR3	Turkey. Catack	39.960	31.110	15	2		13	0.247	7	0	3.571	0.771	3.062
TR4	Turkey, Tosva Ilgaz	41.120	34.060	15	15			0	8	0	3.169	0.733	2,919
TR5	Turkey, Bayabat-Sinop	41.640	34.830	15			15	0	6	1	3.814	0.790	2.100
TR6	Turkey, Sakaltutan Gecidi	39.870	39.050	15			15	0	6	0	2.528	0.648	0.771
				. 🗸			· •	-	-	-			÷

TR8	Turkey. Artvin	41.150	41.760	15				15		0	4	0	3.169	0.733	0.333
TR9	Turkey. Savsat-Ardahan	41.230	42.430	17				17		0	6	0	3.568	0.765	0.610
	Mediterreanean									0.0728	6.428	0.286	3.569	0.750	1.031
Total	All populations				878	237	148	116	5	0.131		36			
Mean										0.176	7.055		4.267	0.786	0.959
0 4 I															

N – sample size, H_{MT} – mitotype diversity, A – number of haplotypes, P – number of private haplotypes, N_E – effective number of haplotypes, H_{CP} - haplotype diversity, D^2_sh – mean genetic distance between individuals

Table 2. Nine most common haplotypes detected in 73 natural populations of Scots pine analysed in this study with 4 cpSSR loci.

Label	Haplotype	Counts	Frequency
H1	105/112/117/110	459	0.419
H2	105/112/117/109	111	0.101
H3	106/112/117/110	87	0.079
H4	105/113/117/110	70	0.063
H5	104/112/117/110	53	0.048
H6	105/112/117/111	52	0.047
H7	104/113/117/110	27	0.025
H8	105/111/117/110	23	0.021
H9	104/112/117/109	22	0.020
Rare haplotypes		191	0.174

K - groups	Populations	Country	Fcт
K = 4			0.8202, <i>p</i> < 0.001
I	SW1-SW31, NOR1-NOR19, FIN1, FIN2, FR1, FR2,	Sweden, Norway, Finland	
	GR1, GR2, BG, SR, SP6, SP7, SP12, P, TR1, TR4	France, Spain, Greece	
	Naydenov et al. 2007: 1-13, 20-29, 32-51, 53	Bulgaria, Turkey, Russia,	
	Pyhäjärvi et al. 2008: 3, 5, 7-9, 11-13, 15, 17-29, 35- 37	Czech Republic, Poland,	
	Vidyakin et al. 2012 : 1-15	Lithuania, Belarus, Ukraine	
	Buchovska et al. 2013 : 1-12, 14,15,17-32, 34, 35, 37-44, 46-48, 50-54		
II			
	FIN3-FIN12	Finland. Russia	
	Naydenov et al. 2007: 17-19, 30, 31	,	
	Pyhäjärvi et al. 2008: 1, 2, 4, 6, 10, 14, 16		
	Buchovska et al. 2013 : 16, 36, 45, 49		
111			
	TR2, TR5-TR10	Turkev	
	Naydenov et al. 2007: 15, 16		
IV			
	A, SP1-SP6, SP9-SP11, TR3,	Spain, Andorra, Turkev	
	Naydenov et al. 2007: 14, 52, 54	-r- ,,	
	Pyhäjärvi et al. 2008: 30-32, 34		

Table 3. Spatial population structure of 248 Scots pine populations inferred with SAMOVA based on mtDNA mitotypes at K = 4 ($F_{CT} = 0.8202$). The literature data included in this analysis are listed below the names population sampled in this study.

Table 4. Spatial population structure of 73 Scots pine populations inferred with BAPS on the basis of 4 cpSSR loci.

Cluster number	Populations	Geographic origin
	SW10, SW15, SW21	Sweden
	SW9, SW22, SW23, SW26, SW28, SW29, FIN1	Sweden, Finland
III	SW5, SW6, SW17, SW25, SW31, FIN6, TR4, TR6, SP11	Sweden, Finland, Turkey, Spain
IV	SW2, SW12	Sweden
V	SW24, SW27, FIN4, SP3	Sweden, Finland
VI	SW4, SW11, SW19, FIN7-FIN10, A, P, SP6, SP8, SP12, TR10	Sweden, Finland, Portugal, Andora, Spain, Turkey
VII	SW13, FIN3, FIN5, FR1, GR1, TR2	Sweden, Finland, France, Greece, Turkey
VIII	SW1, SW3, SW7, SW8, SW16, SW18, SP2, SP5, SP7, SP9, FR2, BG, GR2, TR1	Sweden, Spain, France, Bulgaria, Greece, Turkey
IX	SP10	Spain
Х	SW14, FIN2, FIN12, TR3, TR5, TR7, TR8, TR9	Sweden, Finland, Turkey
XI	SW20, FIN11, SP4	Sweden, Finland, Spain
XII	SW30, SP1	Sweden, Spain
XIII	SR	Serbia

Degrees of	Sum of	% of total variation	Phi	p-value
freedom	squares			
3	14.624	1	0.012	0.002
69	122.628	4	0.039	0.001
1022	1262.405	95	0.051	0.001
1	12.584	2	0.017	0.001
71	124.704	4	0.038	0.001
1022	1125.153	95	0.055	0.001
	Degrees of freedom 3 69 1022 1 71 1022	Degrees of freedom Sum of squares 3 14.624 69 122.628 1022 1262.405 1 125.84 71 124.704 1022 1125.153	Degrees of freedom Sum of squares % of total variation 3 14.624 1 69 122.628 4 1022 1262.405 95 1 12.584 2 71 124.704 4 1022 1125.153 95	Degrees of freedom Sum of squares % of total variation Phi 3 squares

Table 5. Hierarchical analysis of molecular variance (AMOVA) based on four cpSSRs for 73 Scots pine populations.

Pyhäjärvi et al. 2008							
	Mitotype						
Population	Ν	Latitude	Longitude	а	b	С	d
1. Finland, Utsojki	23	69.850	27.005	0	23	0	0
2. Finland, Inari	19	69.005	27.189	3	16	0	0
3. Finland, Kolari	34	67.173	24.008	16	18	0	0
4. Finland, Salla	15	67.174	29.171	2	13	0	0
5. Sweden, Leiporova	10	67.005	21.185	9	1	0	0
6. Finland, Rovaniemi	12	66.341	26.680	3	9	0	0
7. Russia, Usinsk	15	66.014	57.500	15	0	0	0
8. Russia, Ust-Chilma	15	65.341	52.336	15	0	0	0
9. Russia, Archangiel region	9	64.666-61.170	38.014-46.500	7	2	0	0
10. Finland, Kalvia	29	63.680	24.014	0	29	0	0
11. Sweden, Hede flygplats	7	62.671	13.355	6	1	0	0
12. Russia, Karelia region	5	61.669-62.836	30.017-36.666	3	2	0	0
13. Russia, Surgut	16	61.347	73.333	16	0	0	0
14. Russia, St. Petersburg region	19	61.000-58.669	28.516-33.500	2	17	0	0
15. Finland, Uusikaupunki	35	60.838	21.333	26	9	0	0
16. Finland, Lapinjarvi	17	60.519	26.022	6	11	0	0
17. UK, Eastern Scotland	10	57.008	03.184	10	0	0	0
18. UK, Scotland, Achnashellah	3	57.503	05.519	3	0	0	0
19. Sweden, Norra-Gullabo	30	56.355	15.847	21	9	0	0
20. Russia, Moscow region	20	56.333-54.844	35.336-39.003	8	12	0	0

Appendix 1 – Data sources for mtDNA analysis

21. Lithuania, Nemencine	14	54.833	25.500	12	2	0	0
22. Holland, Gruppenvorst	30	52.017-52.500	05.525-06.352	30	0	0	0
23. Belgium, Sant-Custine, Harre	20	49.852-50.333	04.844'-05.522	20	0	0	0
24. Germany, Teisendorf, Bavaria	18	50.250	10.500	18	0	0	0
25. Poland, Radom	30	50.668	20.014	21	9	0	0
26. Slovakia	30	47.677-49.319	16.833-22.511	25	5	0	0
27. France, Hagenau	30	48.835	07.838	30	0	0	0
28. Austria, Oberloidorf	18	47.346	16.358	8	10	0	0
29. Spain, Baza	26	37.338	-02.833	24	0	2	0
30. Spain, Borau	21	42.667	-00.511	0	0	21	0
31. Spain, Bronchales	7	40.500	-01.525	0	0	7	0
32. Spain, Gudar	22	40.347	-00.669	0	0	22	0
33. Spain, Javierregay	29	42.514	-00.347	0	0	29	0
34. Spain, Morrano	22	42.178	-00.017	0	0	22	0
35. Spain, Publa de Lillo	8	43.003	-05.181	8	0	0	0
36. Spain, Valsain	16	40.691	-04.005	13	0	3	0
37. Turkey, Kalabak	30	39.352	30.192	15	0	0	15
	1					-1	
Naydenov et al. 2007							
				Mitotype			
Population	Ν	Latitude	Longitude	а	b	C	d
1. Bulgaria, Bansko	16	41.688	23.500	16	0	0	0
2. Bulgaria, Borovo	18	41.500	23.847	18	0	0	0
3. Bulgaria, Chehliovo	19	41.841	23.847	19	0	0	0
4. Bulgaria, Chiroka Laka	20	41.684	24.514	20	0	0	0

5. Bulgaria, Dospat	10	41.667	24.500	9	0	1	0
6. Bulgaria, Laki	20	41.850	24.833	18	0	2	0
7. Bulgaria, Nevestino	20	42.017	22.665	20	0	0	0
8. Bulgaria, Pechtera	20	42.008	24.338	19	0	1	0
9. Bulgaria, Simitli	20	41.841	23.170	20	0	0	0
10. Bulgaria, Smolian	20	41.500	25.333	18	0	2	0
11. Bulgaria, Velingrad	20	42.014	24.000	20	0	0	0
12. Austria, Grosser Priel	18	47.672	14.189	18	2	0	0
13. Austria, Merkenstein	19	48.855	16.022	19	0	0	0
14. Turkey, Ilgaz Gakdake	18	41.005	33.519	0	0	0	18
15. Turkey, Eskipazan	20	40.841	32.333	0	0	0	20
16. Turkey, Ulupihar	20	40.841	35.333	1	0	0	19
17. Russia, Zelenoborsk	17	67.170	32.341	4	13	0	0
18. Russia, Sosnovec	20	64.500	34.681	3	17	0	0
19. Russia, Suchoozero	20	63.000	32.341	3	17	0	0
20. Russia, Shala	19	61.686	36.000	17	2	0	0
21. Russia, Sortovala	15	61.684	30.684	7	8	0	0
22. Romania, Cugir seed orchard	14	45.838	23.341	14	0	0	0
23. Czech Republic, Kuřim Tisov	12	49.500	16.500	7	5	0	0
24. Czech Republic, Lužná Olešná	11	50.170	13.700	11	0	0	0
25. France, Murat	9	45.017	02.184	9	0	0	0
26. UK, Balnagowan Wood	14	57.187	03.025	14	0	0	0
27. UK, Morayshire	20	57.508	03.358	20	0	0	0
28. Sweden, Hallestad District	13	58.684	15.514	11	2	0	0
29. Sweden, Rumusulla District	20	57.670	15.514	15	5	0	0

30. Finland, Kiuruvesi	19	63.667	26.667	1	18	0	0
31. Finland, Vehkalahti	20	60.514	27.333	1	19	0	0
32. Russia, Voronezh	19	50.500	40.000	13	6	0	0
33. Russia, Orlovsk	20	52.500	37.000	15	5	0	0
34. Lithunia, Kaunas	20	54.681	24.014	20	0	0	0
35. Latvia, Riga	20	56.841	24.022	11	9	0	0
36. Russia, Krasnoyarsk	20	60.000	90.000	20	0	0	0
37. Russia, Sprinsk	20	54.000	81.000	20	0	0	0
38. Lithuania, Vilnus	20	54.522	25.355	10	10	0	0
39. Russia, Krasnoe	20	54.000	86.333	20	0	0	0
40. Lithuania, Rokiskis	20	55.689	25.508	8	12	0	0
41. Russia, Kaluzhkaya Ob.	20	54.000	35.000	12	8	0	0
42. Russia, Tatarskaya Ob.	20	55.000	50.000	19	1	0	0
43. Lithuania, Dainava	20	53.847	23.667	12	8	0	0
44. Russia, Novosibirsk	20	55.014	82.681	16	4	0	0
45. Ukraine, Kievskaya Ob.	20	50.000	30.000	20	0	0	0
46. Belarus, Groendaal	18	50.833	42.170	18	0	0	0
47. China, Baiyinna-Heilongjiang	17	52.336	125.667	17	0	0	0
48. China, Jilin Prov.	17	43.000	126.000	17	0	0	0
49. China, Sung-Hua-Chiang	17	46.000	127.000	17	0	0	0
50. China, Heilongjiang Prov.	20	47.000	127.000	20	0	0	0
51. Spain, Sierras Peribeticas	18	37.333	-02.833	18	0	0	0
52. Spain, Montes Universales	19	40.333	-01.833	0	0	19	0
53. Spain, Guadarrama	19	40.681	-05.014	18	0	1	0
54. Spain, Alto Tago	18	40.678'	-02.170	0	0	18	0

Buchovska et al. 2013							
				Mitotype	•		
Population	Ν	Latitude	Longitude	а	b	С	d
1. Belarus, Gardin	10	53.347	25.184	8	2	0	0
2. Estonia	11	58.170	26.355	5	6	0	0
3. Lithuania, Kazlų Rūda	10	54.681	23.514	8	2	0	0
4. Lithuania, Ignalina	5	55.187	25.684	4	1	0	0
5. Lithuania, Mažeikiai	7	57.184	22.667	6	1	0	0
6. Lithuania, Neringa	31	55.503	21.017	29	2	0	0
7. Latvia	10	56.672	25.170	7	3	0	0
8. Czech Republic, V. Chvojno	9	50.008	16.858	7	2	0	0
9. Poland, Białystok	10	52.005	21.008	6	4	0	0
10. Ukraine, Lviv	9	48.019	24.500	9	0	0	0
11. Ukraine, Cherkasy	5	49.352	39.008	5	0	0	0
12. Georgia, Boržomsk	9	42.000	44.000	6	3	0	0
13. Russia, Smolensk	10	54.000	33.000	7	3	0	0
14. Russia, Kalinin	9	57.681	36.667	6	3	0	0
15. Russia, Moscow	8	55.667	37.170	3	5	0	0
16. Russia, Vladimir	10	56.336	41.184	6	4	0	0
17.Russia, Kostroma	8	58.000	41.000	8	0	0	0
18. Russia, Riazan	9	54.667	39.681	4	5	0	0
19. Russia, Briansk	10	53.333	34.184	4	6	0	0
20. Russia, Uljanovsk	10	54.181	49.514	9	1	0	0
21. Russia, Tatarstan	6	55.833	48.025	6	0	0	0

22. Russia, Tver	7	56.833	35.850	6	1	0	0
23. Russia, Udmurtia	9	57.000	54.000	9	0	0	0
24. Russia, Bashkiria	16	55.500	54.667	14	2	0	0
25. Russia, Orienburg	8	52.686	52.184	8	0	0	0
26. Russia, Karpinsk	8	60.000	60.000	3	5	0	0
27. Russia, Tiumensk	5	57.000	66.000	4	1	0	0
28. Russia, Chararovsk	10	48.508	135.355	10	0	0	0
29. Russia, Tygdinsk	8	54.000	126.000	8	0	0	0
30. Russia, Tuganski	6	57.000	86.000	6	0	0	0
31. Russia, Ingodinsk	5	51.000	112.00	2	3	0	0
32. Russia, Kozvinsk	3	65.000	57.000	3	0	0	0
33. Russia, Tuusula	8	61.173	26.333	6	2	0	0
34. Russia, Karelia	10	61.667	33.667	7	3	0	0
35. Russia, Karelia	9	61.833	33.355	2	7	0	0
36. Russia, Karelia	10	61.667	36.508	9	1	0	0
37. Russia, Leningrad	10	60.000	30.347	7	3	0	0
38. Russia, Archangesk	10	62.54	40.344	10	0	0	0
39. Russia, Volodga	10	59.184	39.500	10	0	0	0
40. Russia, Tambov	10	53.175	41.333	5	5	0	0
41. Russia, Voronezh	7	51.833	39.333	3	4	0	0
42. Russia, Michailovsk	5	51.000	43.000	4	1	0	0
43. Russia, Magiliov	11	53.192	28.667	2	9	0	0
44. Ukraine, Kijev	7	50.833	31.333	7	0	0	0
45. Ukraine, Sumsk	10	52.003	34.003	10	0	0	0
46. Ukraine, Rovno	10	51.500	26.667	6	4	0	0

47. Belarus, Vitebsk	10	55.347	30.333	6	4	0	0
48. Russia, Pskov	10	57.43	30.503	1	9	0	0
49. Russia, Novograd	10	58.184	33.355	4	6	0	0
50. Sweden, Kalmar	10	57.505	15.681	7	3	0	0
51. Germany, Erfurt	9	50.838	11.189	9	0	0	0
52. UK, Scotland	7	55.341	03.678	7	0	0	0
Vidyakin et al. 2012							
				Mitotype			
Population	N	Latitude	Longitude	а	b	С	d
1. Kirov Region, Kirsinsk forestry	22	59.173	52.352	22	0	0	0
2. Kirov Region, Pischalsk forestry	22	58.000	48.841	22	0	0	0
3. Kirov Region, Nizhne-Ivkino forestry	22	58.170	49.850	22	0	0	0
4. Kirov Region, Mukhinsk forestry	22	58.017	51.017	22	0	0	0
5. Kirov Region, Ezhihinskii forestry	22	58.000	47.667	22	0	0	0
6. Chuvash Republic, Kirovsk forestry	24	55.025	46.847	24	0	0	0
7. Mari El Republic, Kokshaisk forestry	24	56.187	47.688	24	0	0	0
8. Kirov Region, Lalsk forestry	21	60.675	47.338	21	0	0	0
9. Komi Republic, Kadzherom forestry	21	64.675	55.670	21	0	0	0
10. Arkhangelsk Region, Obozersk forestry	22	63.352	40.195	22	0	0	0
11. Arkhangelsk Region, Shulakushskii forestry	24	62.181	40.192	24	0	0	0
12. Arkhangelsk Region, Konoshskii forestry	23	60.847	40.689	23	0	0	0
13. Vologda Region, Vologda forestry	21	59.178	40.000	17	4	0	0

14. Arkhangelsk Region, Pravodvinsk forestry	23	61.850	45.841	23	0	0	0
15. Kostroma Region, Pyschug forestry	23	58.850	45.522	23	0	0	0

Appendix S2

Geographic distribution of 248 European and Asiatic population of Scots pine (92 originally sampled in this study and others for which data were obtained from Naydenov *et al.* (2007), Pyhäjärvi *et al.* (2008), Vidyakin *et al.* (2012) and Buchovska *et al.* (2013), see Appendix 1) analyzed in this study and mitotypes detected. Pie charts represent mitotypic composition of each population and the frequency of the mitotypes. Each colour represents one of the five mitotypes detected (green – mitotype *a*, yellow – mitotype *b*, red – mitotype *c*, blue – mitotype *d* and light blue – mitotype *e*). The species' range is shaded. The distribution map of Scots pine was provided by Euforgen.

Appendix S3. Alternative spatial population structure of 248 populations Scots pine at *K*=7 inferred with SAMOVA based on mtDNA mitotypes.

K-groups	Populations	Country	Fct
K = 7			0.8214, <i>p</i> <0.001
I	NOR 1-NOR13, NOR15, NOR17-NOR19, SW2-SW8, SW10-SW12, SW14-SW31, FIN1, SP7, SP8, SP12, P, GR1, GR2, RS, TR1, TR4	Norway, Sweden, Finland, Austria, Greece, Russia, Holland, Belgium, Spain, Turkey, Poland, Slovakia, Romania, Ukraine, Czech	
	Naydenov et al. 2007: 1-13, 20, 22 -29, 32-34, 36, 37, 39, 42, 44-46, 48-51, 53	Republic, Estonia, Belarus, United Kingdom,	
	Pyhäjärvi et al. 2008: 5, 7, 8, 11, 13, 15, 17-18, 21-27, 29, 35, 36		
	Vidyakin et al. 2012 : 1-15		
	Buchovska et al. 2013: 2, 5-8, 10, 14, 16-18, 21, 23-25, 28-32, 34, 35, 37, 38, 40, 42, 41, 44, 46, 47, 48, 53, 54		
II			
	FIN3-12	Finland, Russia (Karelia), Belarus	
	Naydenov et al. 2007: 17-19, 30, 31		
	Pyhäjärvi et al. 2008: 1, 2, 4, 6, 10, 14		
	Buchovska et al. 2013: 36, 45, 49		
III	SIN(1 SIN(2)		
		Sweden, China, Belarus, Russia	
	Buchovska et al. 2013: 3, 22, 39		
IV	TR2_TR3_TR5_TR10	Turkey	
	Navdenov et al. 2007: 14-16		
	Huydonov ol ul. 2001. 17 10		

V	SP1-SP6, A, SP10-SP11 Naydenov et al. 2007: 52, 54 Pyhäjärvi et al. 2008: 30-32, 34	Spain, Andorra
VI	NOR14, NOR16 Buchovska et al. 2013: 4, 9, 12, 26, 52 Pyhäjärvi et al. 2008: 136	Norway, Russia, Lithuania, Ukraine, Sweden
VII	SW9, SW13, FIN2, FR, BG Naydenov et al. 2007: 21, 35, 38, 40, 41, 43 Pyhäjärvi et al. 2008: 3, 12, 16, 19, 20, 28, 37 Buchovska et al. 2013 : 1, 11, 15, 19, 20, 27, 42, 43, 50, 51	Sweden, Finland, Poland, Lithuania, Estonia, Latvia, Belarus, Russia, Austria, Turkey, France, Bulgaria,

Appendix S4. Geographic distribution of 13 Scots pine population clusters inferred with BAPS based on four cpSSR used; each colour denotes one of the 13 clusters.