Skip to main content
Log in

The Evolution of Modularity in the Mammalian Skull I: Morphological Integration Patterns and Magnitudes

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Morphological integration refers to the modular structuring of inter-trait relationships in an organism, which could bias the direction and rate of morphological change, either constraining or facilitating evolution along certain dimensions of the morphospace. Therefore, the description of patterns and magnitudes of morphological integration and the analysis of their evolutionary consequences are central to understand the evolution of complex traits. Here we analyze morphological integration in the skull of several mammalian orders, addressing the following questions: are there common patterns of inter-trait relationships? Are these patterns compatible with hypotheses based on shared development and function? Do morphological integration patterns and magnitudes vary in the same way across groups? We digitized more than 3,500 specimens spanning 15 mammalian orders, estimated the correspondent pooled within-group correlation and variance/covariance matrices for 35 skull traits and compared those matrices among the orders. We also compared observed patterns of integration to theoretical expectations based on common development and function. Our results point to a largely shared pattern of inter-trait correlations, implying that mammalian skull diversity has been produced upon a common covariance structure that remained similar for at least 65 million years. Comparisons with a rodent genetic variance/covariance matrix suggest that this broad similarity extends also to the genetic factors underlying phenotypic variation. In contrast to the relative constancy of inter-trait correlation/covariance patterns, magnitudes varied markedly across groups. Several morphological modules hypothesized from shared development and function were detected in the mammalian taxa studied. Our data provide evidence that mammalian skull evolution can be viewed as a history of inter-module parcellation, with the modules themselves being more clearly marked in those lineages with lower overall magnitude of integration. The implication of these findings is that the main evolutionary trend in the mammalian skull was one of decreasing the constraints to evolution by promoting a more modular architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ackermann, R. R. (2005). Ontogenetic integration of the hominoid face. Journal of Human Evolution, 48, 175–197. doi:10.1016/j.jhevol.2004.11.001.

    Article  PubMed  Google Scholar 

  • Ackermann, R. R., & Cheverud, J. M. (2000). Phenotypic covariance structure in tamarins (genus Saguinus): A comparison of variation patterns using matrix correlation and common principal component analysis. American Journal of Physical Anthropology, 111, 489–501. doi :10.1002/(SICI)1096-8644(200004)111:4<489::AID-AJPA5>3.0.CO;2-U.

    Article  PubMed  CAS  Google Scholar 

  • Ackermann, R. R., & Cheverud, J. M. (2004). Morphological integration in primate evolution. In M. Pigliucci & K. Preston (Eds.), Phenotypic integration: Studying the ecology and evolution of complex phenotypes (pp. 302–319). Oxford: Oxford University Press.

    Google Scholar 

  • Almasy, L., & Blangero, J. (1998). Multipoint quantitative trait linkage analysis in general pedigrees. American Journal of Human Genetics, 62, 1198–1211. doi:10.1086/301844.

    Article  PubMed  CAS  Google Scholar 

  • Asher, R. J. (2007). A database of morphological characters and a combined-data reanalysis of placental mammal phylogeny. BMC Evolutionary Biology, 7, 108. doi:10.1186/1471-2148-7-108.

    Article  PubMed  Google Scholar 

  • Beck, R. M. D., Bininda-Emonds, O. R. P., Cardillo, M., Liu, F.-G. R., & Purvis, A. (2006). A higher-level MRP supertree of placental mammals. BMC Evolutionary Biology, 6, 93.

  • Begin, M., & Roff, D. A. (2005). From micro- to macroevolution through quantitative genetic variation: Positive evidence from field crickets. Journal of Evolutionary Biology, 58(10), 2287–2304.

    Google Scholar 

  • Beldade, P., & Brakefield, P. M. (2003). Concerted evolution and developmental integration in modular butterfly wing patterns. Evolution & Development, 5, 169–179. doi:10.1046/j.1525-142X.2003.03025.x.

    Article  Google Scholar 

  • Berg, R. L. (1960). The ecological significance of correlation pleiades. Evolution; International Journal of Organic Evolution, 14(2), 171–180. doi:10.2307/2405824.

    Google Scholar 

  • Chernoff, B., & Magwene, P. M. (1999). Morphological integration: 40 Years later. In E. C. Olson & R. L. Miller (Eds.), Morphological integration (pp. 316–360). Chicago: University of Chicago Press.

    Google Scholar 

  • Cheverud, J. M. (1982). Phenotypic genetic and environmental morphological integration in the cranium. Evolution; International Journal of Organic Evolution, 36(3), 499–516. doi:10.2307/2408096.

    Google Scholar 

  • Cheverud, J. M. (1984). Quantitative genetics and developmental constraints on evolution by selection. Journal of Theoretical Biology, 110, 155–172. doi:10.1016/S0022-5193(84)80050-8.

    Article  PubMed  CAS  Google Scholar 

  • Cheverud, J. M. (1988). A comparison of genetic and phenotypic correlations. Evolution; International Journal of Organic Evolution, 42, 958–968. doi:10.2307/2408911.

    Google Scholar 

  • Cheverud, J. M. (1989). A comparative analysis of morphological variation patterns in the papionins. Evolution; International Journal of Organic Evolution, 43(8), 1737–1747. doi:10.2307/2409389.

    Google Scholar 

  • Cheverud, J. M. (1995). Morphological integration in the saddle-back tamarin (Saguinus fuscicollis) cranium. American Naturalist, 145, 63–89. doi:10.1086/285728.

    Article  Google Scholar 

  • Cheverud, J. M. (1996). Developmental integration and the evolution of pleiotropy. American Zoologist, 36, 44–50.

    Google Scholar 

  • Cheverud, J. M., Ehrich, T. H., Vaughn, T. T., Koreishi, S. F., Linsey, R. B., & Pletscher, L. S. (2004). Pleiotropic effects on mandibular morphology II: Differential epistasis and genetic variation in morphological integration. Journal of Experimental Zoology Part B, 302(5), 424–435. doi:10.1002/jez.b.21008.

    Article  Google Scholar 

  • Cheverud, J. M., & Marroig, G. (2007). Comparing covariance matrices: Random skewers method compared to the common principal components model. Genetics and Molecular Biology, 30(2), 461–469. doi:10.1590/S1415-47572007000300027.

    Article  Google Scholar 

  • Cheverud, J. M., Wagner, G., & Dow, M. M. (1989). Methods for the comparative analysis of variation patterns. Systematic Zoology, 38(3), 201–213. doi:10.2307/2992282.

    Article  Google Scholar 

  • De Conto, V. (2007). Genética quantitativa e evolução morfológica em Akodon cursor. PhD thesis, Universidade Federal do Rio de Janeiro, RJ.

  • Eble, G. (2004). The macroevolution of phenotypic integration. In M. Pigliucci & K. Preston (Eds.), Phenotypic integration: Studying the ecology and evolution of complex phenotypes (pp. 253–273). Oxford: Oxford University Press.

    Google Scholar 

  • Ehrich, T., Vaughn, T. T., Koreishi, S. F., Linsey, R. B., Pletscher, L. S., & Cheverud, J. M. (2003). Pleiotropic effects on mandibular morphology I. Developmental morphological integration and differential dominance. Journal of Experimental Zoology (Molecular and Developmental Evolution), 296B, 58–79.

    Article  Google Scholar 

  • Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to quantitative genetics (ed. 4). Harlow, Essex, UK: Longmans Green.

  • Gonzalez-Jose, R., van der Molen, S., Gonzalez-Perez, E., & Hernandez, M. (2004). Patterns of phenotypic covariation and correlation in modern humans as viewed from morphological integration. American Journal of Physical Anthropology, 123(1), 69–77. doi:10.1002/ajpa.10302.

    Article  PubMed  Google Scholar 

  • Hansen, T. F., & Houle, D. (2008). Measuring and comparing evolvability and constraint in multivariate characters. Journal of Evolutionary Biology, 21(5), 1201–1219. doi:10.1111/j.1420-9101.2008.01573.x.

    Article  PubMed  CAS  Google Scholar 

  • Helms, J. A., Cordero, D., & Tapadia, M. D. (2005). New insights into craniofacial morphogenesis. Development, 132, 851–861. doi:10.1242/dev.01705.

    Article  PubMed  CAS  Google Scholar 

  • Kenney-Hunt, J. P., Wang, B., Norgard, E. A., Fawcett, G., Falk, D., Pletscher, L. S., et al. (2008). Pleiotropic patterns of quantitative trait loci for seventy murine skeletal traits. Genetics, 178, 2275–2288. doi:10.1534/genetics.107.084434.

    Article  PubMed  Google Scholar 

  • Kitazoe, Y., Kishino, H., Waddell, P. J., Nakajima, N., Okabayashi, T., Watabe, T., et al. (2007). Robust time estimation reconciles views of the antiquity of placental mammals. PLoS ONE, 2, e384. doi:10.1371/journal.pone.0000384.

    Article  PubMed  Google Scholar 

  • Klingenberg, C. P. (2004). Integration, modules and development: Molecules to morphology to evolution. In M. Pigliucci & K. Preston (Eds.), Phenotypic integration: Studying the ecology and evolution of complex phenotypes (pp. 213–230). Oxford: Oxford University Press.

    Google Scholar 

  • Lande, R. (1979). Quantitative genetic analysis of multivariate evolution applied to brain: Body size allometry. Evolution; International Journal of Organic Evolution, 33, 402–416. doi:10.2307/2407630.

    Google Scholar 

  • Marroig, G., & Cheverud, J. M. (2001). A comparison of phenotypic variation and covariation patterns and the role of phylogeny ecology and ontogeny during cranial evolution of New World monkeys. Evolution; International Journal of Organic Evolution, 55(12), 2576–2600.

    PubMed  CAS  Google Scholar 

  • Marroig, G., & Cheverud, J. M. (2005). Size as a line of least evolutionary resistance: Diet and adaptive morphological radiation in New World monkeys. Evolution; International Journal of Organic Evolution, 59, 1128–1142.

    PubMed  Google Scholar 

  • Marroig, G., et al. (2008). Companion paper.

  • Mitteroecker, P., & Bookstein, F. (2008). The evolutionary role of modularity and integration in the hominoid cranium. Evolution; International Journal of Organic Evolution, 62, 943–958. doi:10.1111/j.1558-5646.2008.00321.x.

    PubMed  Google Scholar 

  • Moore, W. J. (1981). The mammalian skull. Cambridge: Cambridge University Press.

    Google Scholar 

  • Morriss-Kay, G. M. (2001). Derivation of the mammalian skull vault. Journal of Anatomy, 199, 143–151. doi:10.1017/S0021878201008093.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, W. J., Eizirik, E., Johnson, W. E., Zhang, Y. P., Ryder, O. A., & O’Brien, S. J. (2001). Molecular phylogenetics and the origins of placental mammals. Nature, 409, 614–618. doi:10.1038/35054550.

    Article  PubMed  CAS  Google Scholar 

  • Oliveira, F. B., Porto, A., & Marroig, G. Similarity of phenotypic covariance and correlation patterns in the skull along the evolution of Old World Monkeys: A case for the G evolutionary stasis. (Submitted to the Journal of Human Evolution).

  • Olson, E. C., & Miller, R. L. (1958). Morphological integration. Chicago: University of Chicago Press.

    Google Scholar 

  • Pavlicev, M., Kenney-Hunt, J. P., Norgard, E. A., Roseman, C. C., Wolf, J. J., & Cheverud, J. M. (2008). Genetic variation in pleiotropy: Differential epistasis as a source of variation in the allometric relationship between long bone lengths and body weight. Evolution; International Journal of Organic Evolution, 62(1), 199–213.

    PubMed  Google Scholar 

  • Preston, K. A., & Ackerly, D. D. (2004). Allometry and evolution in modular organisms. In M. Pigliucci & K. Preston (Eds.), Phenotypic integration: Studying the ecology and evolution of complex phenotypes (pp. 80–106). Oxford: Oxford University Press.

    Google Scholar 

  • Revell, L., Harmon, L. J., Langerhans, R. B., & Kolbe, J. J. (2007). A phylogenetic approach to determining the importance of constraint on phenotypic evolution in the neotropical lizard, Anolis cristatellus. Evolutionary Ecology Research, 9, 261–282.

    Google Scholar 

  • Roff, D. A. (1997). Evolutionary quantitative genetics. New York: Chapman and Hall.

    Google Scholar 

  • Roff, D. A., & Mousseau, T. (2005). The evolution of the phenotypic covariance matrix: Evidence for selection and drift in Melanoplus. Journal of Evolutionary Biology, 18(4), 1104–1114. doi:10.1111/j.1420-9101.2005.00862.x.

    Article  PubMed  CAS  Google Scholar 

  • Shirai, L. T., & Marroig, G. Evolutionary constraint and freedom: A comparison between New World marsupials and monkeys skull (submitted).

  • Smith, K. K. (1996). Integration of craniofacial structures during development in mammals. American Zoologist, 36, 70–79.

    Google Scholar 

  • Smith, K. K. (1997). Comparative patterns of craniofacial development in Eutherian and Metatherian mammals. Evolution; International Journal of Organic Evolution, 51(5), 1663–1678. doi:10.2307/2411218.

    Google Scholar 

  • Smith, K. K. (2001). The evolution of mammalian development. Bulletin of the Museum of Comparative Zoology, 156, 119–135.

    Google Scholar 

  • Sneath, P. H., & Sokal, R. R. (1973). Numerical taxonomy. San Francisco: WH Freeman and Company.

    Google Scholar 

  • Springer, M. S., Stanhope, M. J., Madsen, O., & de Jong, W. W. (2004). Molecules consolidate the placental mammal tree. Trends in Ecology & Evolution, 19(8), 430–438. doi:10.1016/j.tree.2004.05.006.

    Article  Google Scholar 

  • Steppan, S. J., Phillips, P. C., & Houle, D. (2002). Comparative quantitative genetics: Evolution of the G matrix. Trends in Ecology & Evolution, 17(7), 320–327. doi:10.1016/S0169-5347(02)02505-3.

    Article  Google Scholar 

  • Tapadia, M. D., Cordero, D. R., & Helms, J. A. (2005). It’s all in your head: New insights into craniofacial development and deformation. Journal of Anatomy, 207, 461–477.

    PubMed  Google Scholar 

  • Wagner, G. P., & Altenberg, L. (1996). Complex adaptations and the evolution of evolvability. Evolution; International Journal of Organic Evolution, 50(3), 967–976. doi:10.2307/2410639.

    Google Scholar 

  • Wagner, G. P., Kenney-Hunt, J. P., Pavlicev, M., Peck, J. R., Waxman, D., & Cheverud, J. M. (2008). Pleiotropic scaling of gene effects and the “Cost of Complexity”. Nature, 452, 470–473. doi:10.1038/nature06756.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, G. P., Pavlicev, M., & Cheverud, J. M. (2007). The road to modularity. Nature Reviews Genetics, 8, 921–931. doi:10.1038/nrg2267.

    Article  PubMed  CAS  Google Scholar 

  • Wible, J. R., Rougier, G. W., Novacek, M. J., & Asher, R. J. (2007). Cretaceous eutherians and Laurasian origin for placental mammals near the K/T boundary. Nature, 447, 1003–1006. doi:10.1038/nature05854.

    Article  PubMed  CAS  Google Scholar 

  • Willis, J. H., Coyne, J. A., & Kirkpatrick, M. (1991). Can one predict the evolution of quantitative characters without genetics? Evolution; International Journal of Organic Evolution, 45(2), 441–444. doi:10.2307/2409678.

    Google Scholar 

  • Wilson, D. E., & Reeder, D. M. (Eds.). (2005). Mammal species of the world: A taxonomic and geographic reference. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Young, R. L., & Badyaev, A. V. (2006). Evolutionary persistence of phenotypic integration: Influence of developmental and functional relationships on complex trait evolution. Evolution; International Journal of Organic Evolution, 60(6), 1291–1299.

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Campbell Rolian and Katherine Willmore for the opportunity to present this data in the 2008 AAPA meeting. Benedikt Hallgrímsson and 2 anonymous referees made constructive comments on an earlier version of this paper. We are also grateful to the people and institutions that provided generous help and access to mammal collections: E. Westwig, N. Simmons, R. Voss and R. MacPhee (AMNH); L. Tomsett, P. Jenkins and D. Hills (BMNH); B. Paterson, W. Stanley, and L. Heaney (FMNH); J. Chupasko and M. Omura (MCZ); M. Godinot, F. Renoult, C. Lefrève and J. Cuisin (MNHN); L. Salles, J. Oliveira, F. Barbosa, and S. Franco (MNRJ); S. Costa and J. de Queiroz (MPEG); Staff at the Museo de la Universidad Nacional Mayor de San Marcos; M. de Vivo and J. Gualda (MZUSP); H. van Grouw and B. Bekkum-Ansari (Naturalis); R. Thorington, R. Chapman and L. Gordon (NMNH); M. Harman (Powell-Cotton Museum); Georges Lenglet (RBINS); E. Gilissen and W. Wendelen (RMCA); R. Asher, I. Thomas and D. Willborn (ZMB); F. Smith and S. Tardif (University of Tennessee, and the Oak Ridge Associated Universities Marmoset Research Center); C. Zollikofer, M. Ponce de Léon and T. Jashashvili (Zürich Universität); R. Smith (Museu de Anatomia da UNIFESP); E. Liberti (Museu de Anatomia “Professor Alfonso Bovero”). This research was supported by grants and fellowships from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Coordenação de Aperfeiçoamento de Pessoal do Ensino Superior (CAPES), Conselho Nacional de Pesquisas (CNPq), Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Fundação José Bonifácio (FUJB), Projeto de Conservação e Utilização Sustentável da Diversidade Biológica (PROBIO), and an American Museum of Natural History Collections Study Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Marroig.

Appendix

Appendix

Landmark abbreviations and definitions

Landmarks

Abbreviations

Landmarks

Position

IS

lntradentale superior

Midline

PM

Premaxillary-maxillary suture at the alveolus

Both sides

NSL

Nasale

Midline

NA

Nasion

Midline

BR

Bregma

Both sides

PT

Pterion

Both sides

ZS

Zygomaxillare superior

Both sides

ZI

Zygomaxillare inferior

Both sides

MT

Maxillary tuberosity

Both sides

PNS

Posterior nasal spine

Midline

APET

Anterior petrous temporal

Both sides

BA

Basion

Midline

OPI

Opisthion

Midline

EAM

Anterior external auditory meatus

Both sides

PEAM

Posterior external auditory meatus

Both sides

ZYGO

Inferior zygo-temporal suture

Both sides

TSP

Temporo-spheno-parietal junction

Both sides

TS

Temporo-sphenoidal junction at petrous

Both sides

JP

Jugular process

Both sides

LD

Lambda

Midline

AS

Asterion

Both sides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porto, A., de Oliveira, F.B., Shirai, L.T. et al. The Evolution of Modularity in the Mammalian Skull I: Morphological Integration Patterns and Magnitudes. Evol Biol 36, 118–135 (2009). https://doi.org/10.1007/s11692-008-9038-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-008-9038-3

Keywords

Navigation