Skip to main content
Log in

Hominin Obstetrics and the Evolution of Constraints

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Birth is significantly more complicated and dangerous in modern humans than in other great apes. This disparity is often hypothesized to be the result of evolutionary constraints on obstetric dimensions related to bipedalism and/or thermoregulation in later hominins. Previous attempts to test such hypotheses have used biomechanical methods and results have been mixed. But evolutionary constraints, restrictions or limitations on the course or outcome of evolution, are the result of an interaction between selective pressures and genetic constraints—the latter revealed in patterns of integration. Integration between traits can result in directional or stabilizing selection on one trait leading to correlated responses in other traits, which can bias and constrain evolutionary trajectories. Therefore, trait evolution may be constrained for reasons separate from those that can be estimated using biomechanical models, and to study evolutionary constraints it is necessary to understand the role genetic constraints play in morphological change. The results presented here show that genetic constraints can significantly reduce the evolutionary potential of the birth canal to evolve in humans, apes, and likely earlier hominins, but also point to an overall reduction in the level of constraints during hominin evolution. These findings suggest that divergent selection pressures for obstetric requirements and other pelvic functions in hominins reduced levels of genetic constraint on birth canal evolution, likely lowering the amount of time needed for evolutionary change, and permitting morphological evolution along a trajectory that might have previously been difficult or impossible to traverse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abitbol, M. M. (1991). Ontogeny and evolution of pelvic diameters in anthropoid primates and in Australopithecus afarensis (A.L. 288–1). American Journal of Physical Anthropology, 85, 135–148.

    Article  CAS  PubMed  Google Scholar 

  • Ackermann, R. (2009). Morphological integration and the interpretation of fossil hominin diversity. Evolutionary Biology, 36, 149–156.

    Article  Google Scholar 

  • Ackermann, R. R., & Cheverud, J. M. (2000). Phenotypic covariance structure in tamarins (genus Saguinus): A comparison of variation patterns using matrix correlation and common principal component analysis. American Journal of Physical Anthropology, 111, 489–501.

    Article  CAS  PubMed  Google Scholar 

  • Ackermann, R. R., & Cheverud, J. M. (2004). Detecting genetic drift versus selection in human evolution. Proceedings of the National Academy of Sciences, 101, 17946–17951.

    Article  CAS  Google Scholar 

  • Arnold, S. J. (1992). Constraints on phenotypic evolution. American Naturalist, 140, S85–S107.

    Article  PubMed  Google Scholar 

  • Arnold, S. J., Pfrender, M. E., & Jones, A. G. (2001). The adaptive landscape as a conceptual bridge between micro- and macroevolution. Genetica, 112–113, 9–32.

    Article  PubMed  Google Scholar 

  • Arthur, W. (2004). The effect of development on the direction of evolution: Toward a twenty-first century consensus. Evolution & Development, 6, 282–288.

    Article  Google Scholar 

  • Beldade, P., Koops, K., & Brakefield, P. M. (2002). Developmental constraints versus flexibility in morphological evolution. Nature, 416, 844–847.

    Article  CAS  PubMed  Google Scholar 

  • Berge, C., Orban-Segebarth, R., & Schmid, P. (1984). Obstetrical interpretation of the australopithecine pelvic cavity. Journal of Human Evolution, 13, 573–587.

    Article  Google Scholar 

  • Cheverud, J. M. (1982). Relationships among ontogenetic, static, and evolutionary allometry. American Journal of Physical Anthropology, 59, 139–149.

    Article  CAS  PubMed  Google Scholar 

  • Cheverud, J. M. (1984). Quantitative genetics and developmental constraints on evolution by selection. Journal of Theoretical Biology, 110, 155–171.

    Article  CAS  PubMed  Google Scholar 

  • Cheverud, J. M. (1988). The evolution of genetic correlation and developmental constraints. In G. de Jong (Ed.), Population genetics and evolution (pp. 94–101). Berlin: Springer.

    Chapter  Google Scholar 

  • Cheverud, J. M. (1995). Morphological integration in the saddle-back tamarin (Saguinus fuscicollis) cranium. American Naturalist, 145, 63–89.

    Article  Google Scholar 

  • Cheverud, J. M. (1996). Developmental integration and the evolution of pleiotropy. American Zoologist, 36, 44–50.

    Google Scholar 

  • Cheverud, J. M., Routman, E. J., Duarte, F. A. M., vanSwinderen, B., Cothran, K., & Perel, C. (1996). Quantitative trait loci for murine growth. Genetics, 142, 1305–1319.

    CAS  PubMed  Google Scholar 

  • Dart, R. A. (1925). Australopithecus africanus: The man-ape of South Africa. Nature, 115, 195–199.

    Article  Google Scholar 

  • Dart, R. A. (1949). The first pelvic bones of Australopithecus prometheus: Preliminary note. American Journal of Physical Anthropology, 7, 255–257.

    Article  CAS  PubMed  Google Scholar 

  • Desilva, J. M. (2011). A shift toward birthing relatively large infants early in human evolution. Proceedings of the National Academy of Sciences of the United States of America, 108, 1022–1027.

    Article  CAS  PubMed  Google Scholar 

  • DeSilva, J., & Lesnik, J. (2006). Chimpanzee neonatal brain size: Implications for brain growth in Homo erectus. Journal of Human Evolution, 51, 207–212.

    Article  PubMed  Google Scholar 

  • Efron, B., & Tibshirani, R. (1993). An introduction to the bootstrap. New York: Chapman & Hall.

    Google Scholar 

  • Eisen, E. J., & Legates, J. E. (1966). Genotype-sex interaction and the genetic correlation between the sexes for body weight in Mus musculus. Genetics, 54, 611–623.

    CAS  PubMed  Google Scholar 

  • Estes, S., & Arnold, S. J. (2007). Resolving the paradox of stasis: Models with stabilizing selection explain evolutionary divergence on all timescales. American Naturalist, 169, 227–244.

    Article  PubMed  Google Scholar 

  • Eyre-Walker, A., & Keightley, P. D. (1999). High genomic deleterious mutation rates in hominids. Nature, 397, 344–347.

    Article  CAS  PubMed  Google Scholar 

  • Franciscus, R. G. (2009). When did the modern human pattern of childbirth arise? New insights from an old neandertal pelvis. Proceedings of the National Academy of Science USA, 106, 9125–9126.

    Article  CAS  Google Scholar 

  • Grabowski, M. W. (2011). Morphological integration and correlated evolution in the hominin pelvis. American Journal of Physical Anthropology, S52, 146.

    Google Scholar 

  • Grabowski, M. W. A hitchhikers guide to morphospace (unpublished manuscript).

  • Grabowski, M. W., Polk, J. D., & Roseman, C. C. (2011). Divergent patterns of integration and reduced constraint in the human hip and the origins of bipedalism. Evolution, 65, 1336–1356.

    Article  PubMed  Google Scholar 

  • Grabowski, M. W., Williams, S. A., O’Connor, C. H., Lawson, H. A., Polk, J. D., Cheverud, J. M., et al. Genetic variation in sexual dimorphism of the mouse hip (in preparation).

  • Hansen, T. F. (2003a). Evolvability and genetic constraint in Dalechampia blossoms: Genetic correlations and conditional evolvability. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 296, 23–39.

    Google Scholar 

  • Hansen, T. F. (2003b). Is modularity necessary for evolvability? Remarks on the relationship between pleiotropy and evolvability. Biosystems, 69, 83–94.

    Article  PubMed  Google Scholar 

  • Hansen, T. F., & Houle, D. (2004). Evolvability, stabilizing selection, and the problem of stasis. In M. Pigliucci & K. Preston (Eds.), Phenotypic integration: studying the ecology and evolution of complex phenotypes (pp. 130–150). Oxford: Oxford University Press.

    Google Scholar 

  • Hansen, T. F., & Houle, D. (2008). Measuring and comparing evolvability and constraint in multivariate characters. Journal of Evolutionary Biology, 21, 1201–1219.

    Article  CAS  PubMed  Google Scholar 

  • Hansen, T. F., PÈlabon, T. F. C., Armbruster, W. S., & Carlson, M. L. (2003). Evolvability and genetic constraint in Dalechampia blossoms: Components of variance and measures of evolvability. Journal of Evolutionary Biology, 16, 754–766.

    Article  PubMed  Google Scholar 

  • Hansen, T. F., Pélabon, C., & Houle, D. (2011). Heritability is not evolvability. Evolutionary Biology, 38, 258–277.

    Article  Google Scholar 

  • Hansen, T. F., & Voje, K. L. (2011). Deviation from the line of least resistance does not exclude genetic constraints: A comment on Berner et al. (2010). Evolution, 65, 1821–1822.

    Article  PubMed  Google Scholar 

  • Hereford, J., Hansen, T. F., & Houle, D. (2004). Comparing strengths of directional selection: How strong is strong? Evolution, 58, 2133–2143.

    PubMed  Google Scholar 

  • Houle, D. (1992). Comparing evolvability and variability of quantitative traits. Genetics Genetics, 130, 195–204.

    CAS  Google Scholar 

  • Kibii, J. M., Churchill, S. E., Schmid, P., Carlson, K. J., Reed, N. D., de Ruiter, D. J., et al. (2011). A partial pelvis of Australopithecus sediba. Science, 333, 1407–1411.

    Article  CAS  PubMed  Google Scholar 

  • Kohn, L. A. P., & Atchley, W. R. (1988). How similar are genetic correlation structures data from mice and rats. Evolution, 42, 467–481.

    Article  Google Scholar 

  • Kruuk, L. E. B., Slate, J., & Wilson, A. J. (2008). New answers for old questions: The evolutionary quantitative genetics of wild animal populations. Annual Review of Ecology Evolution and Systematics, 39, 525–548.

    Article  Google Scholar 

  • Lande, R. (1979). Quantitative genetic analysis of multivariate evolution, applied to brain: Body size allometry. Evolution, 33, 402–416.

    Article  Google Scholar 

  • Lande, R. (1980a). The genetic covariance between characters maintained by pleiotropic mutations. Genetics, 94, 203–215.

    CAS  PubMed  Google Scholar 

  • Lande, R. (1980b). Genetic variation and phenotypic evolution during allopatric speciation. American Naturalist, 116, 463–479.

    Article  Google Scholar 

  • Lande, R., & Arnold, S. J. (1983). The measurement of selection on correlated characters. Evolution, 37, 1210–1226.

    Article  Google Scholar 

  • Leutenegger, W. (1974). Functional aspects of pelvic morphology in simian primates. Journal of Human Evolution, 3, 207–222.

    Article  Google Scholar 

  • Leutenegger, W. (1982). Encephalization and obstetrics in primates with particular reference to human evolution. In E. Armstrong, & D. Falk (Eds.), Primate brain evolution: Methods and concepts (pp. 85–95). New York: Plenum Press.

  • Leutenegger, W. (1987). Neonatal brain size and neurocranial dimensions in Pliocene hominids: Implications for obstetrics. Journal of Human Evolution, 16, 291–296.

    Article  Google Scholar 

  • Lewton, K. L. (2011). Evolvability of the primate pelvic girdle. Evolutionary Biology, 39, 126–139.

    Article  Google Scholar 

  • Lovejoy, C. O. (1988). Evolution of human walking. Scientific American, 259, 118–125.

    Article  CAS  PubMed  Google Scholar 

  • Lovejoy, C. O. (2005). The natural history of human gait and posture: Part 1. Spine and pelvis. Gait & Posture, 21, 95–112.

    Google Scholar 

  • Lovejoy, C. O. (2009). Reexamining human origins in light of Ardipithecus ramidus. Science, 326, 74.

    Article  CAS  Google Scholar 

  • Lovejoy, C. O., Heiple, K. G., & Burstein, A. H. (1973). The gait of Australopithecus. American Journal of Physical Anthropology, 38, 757–779.

    Article  CAS  PubMed  Google Scholar 

  • Lovejoy, C. O., Latimer, B., Suwa, G., Asfaw, B., & White, T. D. (2009a). Combining prehension and propulsion: The foot of Ardipithecus ramidus. Science, 326, 72.

    Article  CAS  Google Scholar 

  • Lovejoy, C. O., Simpson, S. W., White, T. D., Asfaw, B., & Suwa, G. (2009b). Careful climbing in the miocene: The forelimbs of Ardipithecus ramidus and humans are primitive. Science, 326, 70.

    Article  CAS  Google Scholar 

  • Lovejoy, C. O., Suwa, G., Simpson, S. W., Matternes, J. H., & White, T. D. (2009c). The great divides: Ardipithecus ramidus reveals the postcrania of our last common ancestors with African apes. Science, 326, 73.

    Article  CAS  Google Scholar 

  • Lovejoy, C. O., Suwa, G., Spurlock, L., Asfaw, B., & White, T. D. (2009d). The pelvis and femur of Ardipithecus ramidus: The emergence of upright walking. Science, 326, 71.

    Article  CAS  Google Scholar 

  • Lynch, M. (1990). The rate of morphological evolution in mammals from the standpoint of the neutral expectation. American Naturalist, 136, 727–741.

    Article  Google Scholar 

  • Marroig, G., Shirai, L., Porto, A., de Oliveira, F., & De Conto, V. (2009). The evolution of modularity in the mammalian skull ii: Evolutionary consequences. Evolutionary Biology, 36, 136–148.

    Article  Google Scholar 

  • McHenry, H. M. (1975). The ischium and hip extensor mechanism in human evolution. American Journal of Physical Anthropology, 43, 39–46.

    Article  CAS  PubMed  Google Scholar 

  • Pavlicev, M., Cheverud, J. M., & Wagner, G. P. (2011). Evolution of adaptive phenotypic variation patterns by direct selection for evolvability. Proceedings Biological Sciences, 278, 1903–1912.

    Article  Google Scholar 

  • Pearson, O. M. (2000). Activity, climate, and postcranial robusticity: Implications for modern human origins and scenarios of adaptive change. Current Anthropology, 41, 569–607.

    Article  CAS  PubMed  Google Scholar 

  • Pilbeam, D. (1996). Genetic and morphological records of the hominoidea and hominid origins: A synthesis. Molecular Phylogenetics and Evolution, 5, 155–168.

    Article  CAS  PubMed  Google Scholar 

  • Poissant, J., Wilson, A. J., & Coltman, D. W. (2009). Sex-specific genetic variance and the evolution of sexual dimorphism: A systematic review of cross-sex genetic correlations. Evolution, 64, 97–107.

    Article  PubMed  Google Scholar 

  • Porto, A., de Oliveira, F., Shirai, L., De Conto, V., & Marroig, G. (2009). The evolution of modularity in the mammalian skull i: Morphological integration patterns and magnitudes. Evolutionary Biology, 36, 118–135.

    Article  Google Scholar 

  • R Development Core Team. (2011). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.

    Google Scholar 

  • Raaum, R. L., Sterner, K. N., Noviello, C. M., Stewart, C., & Disotell, T. R. (2005). Catarrhine primate divergence dates estimated from complete mitochondrial genomes: Concordance with fossil and nuclear DNA evidence. Journal of Human Evolution, 48, 237–257.

    Article  PubMed  Google Scholar 

  • Robinson, J. T. (1972). Early hominid posture and locomotion. Chicago: University of Chicago Press.

    Google Scholar 

  • Roff, D. A. (1995). The estimation of genetic correlations from phenotypic correlations: A test of cheverud's conjecture. Heredity, 74, 481–490.

    Article  Google Scholar 

  • Roff, D. A. (1996). The evolution of genetic correlations: An analysis of patterns. Evolution, 50, 1392–1403.

    Article  Google Scholar 

  • Roff, D. A., & Mousseau, A. P. (1999). Does natural selection alter genetic architecture? An evaluation of quantitative genetic variation among populations of Allonemobius socius and A. fasciatus. Journal of Evolutionary Biology, 12, 361–369.

    Article  Google Scholar 

  • Rogers, A. R., & Mukherjee, A. (1992). Quantitative genetics of sexual dimorphism in human body size. Evolution, 46, 226–234.

    Article  Google Scholar 

  • Rolian, C. (2009). Integration and evolvability in primate hands and feet. Evolutionary Biology, 36, 100–117.

    Article  Google Scholar 

  • Rolian, C., Lieberman, D. E., & Hallgrímsson, B. (2010). The coevolution of human hands and feet. Evolution, 64, 1558–1568.

    Article  PubMed  Google Scholar 

  • Rolian, C., & Willmore, K. (2009). Morphological integration at 50: Patterns and processes of integration in biological anthropology. Evolutionary Biology, 36, 1–4.

    Article  Google Scholar 

  • Rosenberg, K. R. (1988). The functional significance of neandertal public length. Current Anthropology, 29, 595–617.

    Article  Google Scholar 

  • Rosenberg, K. R. (1992). The evolution of modern human childbirth. Yearbook of Physical Anthropology, 35, 89–124.

    Article  Google Scholar 

  • Rosenberg, K. R., & Trevathan, W. (1995). Bipedalism and human birth: The obstetrical dilemma revisited. Evolutionary Anthropology, 4, 161–168.

    Article  Google Scholar 

  • Rosenberg, K. R., & Trevathan, W. (2002). Birth, obstetrics and human evolution. BJOG: An International Journal of Obstetrics & Gynaecology, 109, 1199–1206.

    Article  Google Scholar 

  • Ruff, C. B. (1991). Climate and body shape in hominid evolution. Journal of Human Evolution, 21, 81–105.

    Article  Google Scholar 

  • Ruff, C. B. (1995). Biomechanics of the hip and birth in early Homo. American Journal of Physical Anthropology, 98, 527–574.

    Article  CAS  PubMed  Google Scholar 

  • Ruff, C. B., Trinkaus, E., & Holliday, T. W. (1997). Body mass and encephalization in Pleistocene homo. Nature, 387, 173–176.

    Article  CAS  PubMed  Google Scholar 

  • Sarmiento, E. E. (2010). Comment on the paleobiology and classification of Ardipithecus ramidus. Science, 328, 1105; author reply 1105.

  • Sayers, K., & Lovejoy, C. O. (2008). The chimpanzee has no clothes: A critical examination of Pan troglodytes in models of human evolution. Current Anthropology, 49, 87–114.

    Article  Google Scholar 

  • Schultz, A. H. (1949). Sex differences in the pelves of primates. American Journal of Physical Anthropology, 7, 401–424.

    Article  CAS  PubMed  Google Scholar 

  • Shirai, L. T., & Marroig, G. (2010). Skull modularity in neotropical marsupials and monkeys: Size variation and evolutionary constraint and flexibility. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 314, 663–683.

    Article  Google Scholar 

  • Sigmon, B. A., & Farslow, D. L. (1986). The primate hindlimb. In D. R. Swindler & J. Erwin (eds.), Systematics, evolution, and anatomy (Comparitive Primate Biology, vol 1). AR Liss.

  • Simpson, S. W., Quade, J., Levin, N. E., Butler, R., Dupont-Nivet, G., Everett, M., et al. (2008). A female Homo erectus pelvis from Gona, Ethiopia. Science, 322, 1089–1092.

    Article  CAS  PubMed  Google Scholar 

  • Sokal, R. R., & Rohlf, F. J. (1995). Biometry: The principles and practice of statistics in biological research. New York: W.H. Freeman.

    Google Scholar 

  • Steiper, M. E., & Young, N. M. (2006). Primate molecular divergence dates. Molecular Phylogenetics and Evolution, 41, 384–394.

    Article  CAS  PubMed  Google Scholar 

  • Steppan, S. J., Phillips, P. C., & Houle, D. (2002). Comparative quantitative genetics: Evolution of the G matrix. Trends in Ecology & Evolution, 17, 320–327.

    Article  Google Scholar 

  • Stern, J. T., & Susman, R. L. (1983). The locomotor anatomy of Australopithecus afarensis. American Journal of Physical Anthropology, 60, 279–317.

    Article  PubMed  Google Scholar 

  • Steudel, K. (1981). Sexual dimorphism and allometry in primate ossa coxae. American Journal of Physical Anthropology, 55, 209–215.

    Article  CAS  PubMed  Google Scholar 

  • Susman, R. L., Stern, J. T., & Jungers, W. L. (1984). Arboreality and bipedality in the Hadar hominids. Folia Primatologica (Basel), 43, 113–156.

    Article  CAS  Google Scholar 

  • Suwa, G., Asfaw, B., Kono, R. T., Kubo, D., Lovejoy, C. O., & White, T. D. (2009a). The Ardipithecus ramidus skull and its implications for hominid origins. Science, 326, 68.

    Article  CAS  Google Scholar 

  • Suwa, G., Kono, R. T., Simpson, S. W., Asfaw, B., Lovejoy, C. O., & White, T. D. (2009b). Paleobiological implications of the Ardipithecus ramidus dentition. Science, 326, 69.

    Article  CAS  Google Scholar 

  • Tague, R. G. (1989). Variation in pelvic size between males and females. American Journal of Physical Anthropology, 80, 59–71.

    Article  CAS  PubMed  Google Scholar 

  • Tague, R. G. (1992). Sexual dimorphism in the human bony pelvis, with a consideration of the neandertal pelvis from kebara cave, Israel. American Journal of Physical Anthropology, 88, 1–21.

    Article  CAS  PubMed  Google Scholar 

  • Tague, R. G. (1995). Variation in pelvic size between males and females in nonhuman anthropoids. American Journal of Physical Anthropology, 97, 213–233.

    Article  CAS  PubMed  Google Scholar 

  • Tague, R. G., & Lovejoy, C. O. (1986). The obstetric pelvis of A.L. 288–1 (Lucy). Journal of Human Evolution, 15, 237–255.

    Article  Google Scholar 

  • Tague, R. G., & Lovejoy, C. O. (1998). Al 288–1—Lucy or Lucifer: Gender confusion in the Pliocene. Journal of Human Evolution, 35, 75–94.

    Article  CAS  PubMed  Google Scholar 

  • Towne, B., Blangero, J., & Mott, G. E. (1992). Genetic analysis of sexual dimorphism in serum apo al and hdl-c concentrations in baboons. American Journal of Primatology, 27, 107–117.

    Article  Google Scholar 

  • Tremblay, M., & Vézina, H. (2000). New estimates of intergenerational time intervals for the calculation of age and origins of mutations. The American Journal of Human Genetics, 66, 651–658.

    Article  CAS  Google Scholar 

  • Trevathan, W., & Rosenberg, K. (2000). The shoulders follow the head: postcranial constraints on human childbirth. Journal of Human Evolution, 39, 583–586.

    Article  CAS  PubMed  Google Scholar 

  • Uyeda, J. C., Hansen, T. F., Arnold, S. J., & Pienaar, J. (2011). The million-year wait for macroevolutionary bursts. Proceedings of the National Academy of Sciences of the United States of America, 108, 15908–15913.

    Article  CAS  PubMed  Google Scholar 

  • Via, S., & Lande, R. (1985). Genotype-environment interaction and the evolution of phenotypic plasticity. Evolution, 39, 505–522.

    Article  Google Scholar 

  • Villmoare, B., & Fish, J. (2011). Selection, morphological integration, and Strepsirrhine locomotor adaptations. Evolutionary Biology, 38, 88–99.

    Article  Google Scholar 

  • Wagner, G. P., & Schwenk, K. (2000). Evolutionarily stable configurations: Functional integration and the evolution of phenotypic stability. Evolutionary Biology, 31, 155–218.

    Article  Google Scholar 

  • Walrath, D. (2003). Rethinking pelvic typologies and the human birth mechanism. Current Anthropology, 44, 5–31.

    Article  Google Scholar 

  • Ward, C. V. (1991). Functional anatomy of the lower back and pelvis of the Miocene hominoid Proconsul nyanzae from Mfangano Island, Kenya. PhD Dissertation. John Hopkins University.

  • Warrener, A. (2011). Pelvic shape, hip abductor mechanics and locomotor energetics in extinct hominins and modern humans. PhD Dissertation, Washington University in St. Louis.

  • Washburn, S. L. (1960). Tools and human evolution. Scientific American, 203, 63–75.

    Article  CAS  PubMed  Google Scholar 

  • Weaver, T. D. (2002). A multi-causal functional analysis of hominid hip morphology . PhD Dissertation. Stanford University.

  • Weaver, T. D. (2003). The shape of the neandertal femur is primarily the consequence of a hyperpolar body form. Proceedings of the National Academy of Science USA, 100, 6926–6929.

    Article  CAS  Google Scholar 

  • Weaver, T. D., & Hublin, J. J. (2009). Neandertal birth canal shape and the evolution of human childbirth. Proceedings of the National Academy of Science USA, 106, 8151–8156.

    Article  CAS  Google Scholar 

  • White, T. D., Asfaw, B., Beyene, Y., Haile-Selassie, Y., Lovejoy, C. O., Suwa, G., et al. (2009). Ardipithecus ramidus and the paleobiology of early hominids. Science, 326, 64.

    Article  CAS  Google Scholar 

  • Williams, S. A. (2011). Variation in anthropoid vertebral formulae: Implications for homology and homoplasy in hominoid evolution. Journal of Experimental Zoology. Part B: Molecular and Developmental Evolution, 314B.

  • Willis, J. H., Coyne, J. A., & Kirkpatrick, M. (1991). Can one predict the evolution of quantitative characters without genetics? Evolution, 45, 441–444.

    Article  Google Scholar 

  • Willmore, K., Roseman, C., Rogers, J., Cheverud, J., & Richtsmeier, J. (2009). Comparison of mandibular phenotypic and genetic integration between baboon and mouse. Evolutionary Biology, 36, 19–36.

    Article  PubMed  Google Scholar 

  • Wilmore, K. E., Roseman, C. C., Rogers, J., Richtmeier, J. T., & Cheverud, J. M. (2009). Genetic variation in baboon craniofacial sexual dimorphism. Evolution, 63, 799–806.

    Article  Google Scholar 

  • Wood, B., & Harrison, T. (2011). The evolutionary context of the first hominins. Nature, 470, 347–352.

    Article  CAS  PubMed  Google Scholar 

  • Young, N. M., Wagner, G. P., & Hallgrímsson, B. (2010). Development and the evolvability of human limbs. Proceedings of the National Academy of Science USA, 107, 3400–3405.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I thank Thomas Hansen, Tim Weaver, Laura Shackelford, Charles Roseman, John Polk, Scott Williams, Milena Shattuck, Petra Jelinek, Krista Milich, and two anonymous reviewers for comments on this manuscript. I thank Emma Berdan for conversations regarding presentation of the results. I am grateful to Judy Chupasko, Linda Gordon, Dave Hunt, Lyman Jellema, Doug Owsley, Kari Bruwelheide, Eileen Westwig, Christoph Zollikofer, Marcia Ponce de León, Marco Milella, Emmanuel Gilissen, Wim Wendelen, Frieder Mayer, Saskia Jancke, and Georges Lenglet for the access to the hominoid material used in this analysis. This work was supported by a National Science Foundation Doctoral Dissertation Improvement Grant (BCS-1028699), National Science Foundation Grant BCS-0962903, a Sigma Xi Grants-in-Aid of Research grant, a Beckman Institute Cognitive Science/AI award, and a University of Illinois Summer Research Assistance award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark W. Grabowski.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grabowski, M.W. Hominin Obstetrics and the Evolution of Constraints. Evol Biol 40, 57–75 (2013). https://doi.org/10.1007/s11692-012-9174-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-012-9174-7

Keywords

Navigation