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Abstract Genotype by environment interaction (G×E) refers
to the comparative performances of genotypes differing
among environments, representing differences in genotype
rankings or differences in the level of expression of genetic
differences among environments. G×E can reduce heritability
and overall genetic gain, unless breeding programmes are
structured to address different categories of environments.
Understanding the impact of G×E, the role of environments
in generating G×E and the problems and opportunities is vital
to efficient breeding programme design and deployment of
genetic material. We review the current main analytical
methods for identifying G×E: factor analytic models, biplot
analysis and reaction norm. We also review biological and
statistical evidence of G×E for growth, form and wood prop-
erties in forest species of global economic importance, includ-
ing some pines, eucalypts, Douglas-fir, spruces and some pop-
lars. Among these species, high levels of G×E tend to be
reported for growth traits, with low levels of G×E for form
traits and wood properties. Finally, we discuss possible ways
of exploiting G×E to maximise genetic gain in forest tree
breeding. Characterising the role of environments in generat-
ing interactions is seen as the basic platform, allowing effi-
cient testing of candidate genotypes. We discuss the impor-
tance of level-of-expression interaction, relative to rank-
change interaction, as being greater than in many past reports,
especially for deployment decisions. We examine the impacts
of G×E on tree breeding, some environmental factors that

cause G×E and the strategies for dealing with G×E in tree
breeding, and the future role of genomics.
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Introduction

The phenotype of an individual is controlled by its genotype,
the environment and any interactions between genotype and
environment (G×E interactions, or G×E). Such interactions
are said to exist when the comparative performances of geno-
types vary according to the environment. The performance of
one genotype that is superior in one environment might be
inferior in another environment (de Jong 1990; Falconer and
Mackay 1996). In forestry, G×E can lead to unpredictability of
some genotypes’ performance across certain sets of environ-
ments. Characterising and understanding G×E in order to re-
duce or even remove such unpredictability has, therefore, been
an overarching goal. Where it occurs, G×E complicates the
design of breeding programmes but it also provides opportu-
nities for matching the most appropriate planting stocks to
targeted deployment conditions to optimise forest health,
growth and wood quality in intensively managed forests.

G×E can be categorised into two major types (Lynch and
Walsh 1998; White et al. 2007): (1) rank-change interaction,
whereby genotypes are ranked in different orders in different
environments; and (2) level-of-expression interaction,1

1 We distinguish between level-of-expression and scale-effect interaction, re-
serving the latter term for the subset of cases in which interaction can be
eliminated simply by data transformation.
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whereby the expression of genotypic differences (e.g. the
spread of the breeding values) varies across environments,
not necessarily with any change in the order of the genotype
rankings. Breeders, therefore, need to determine the patterns
and magnitude of G×E in order to obtain the best genetic gain
for the forest industry (Muir et al. 1992; Raymond and
Namkoong 1990). Since breeders are primarily concerned
with evaluation and selection among candidate genotypes,
rank-change interaction will generally be of greater interest
for them. While level-of-expression interaction is generally
less important for breeding, it may be of major interest for
helping to decide what genetic material is chosen for deploy-
ment in particular growing environments and for particular
end-products.

In forest tree breeding, G×E can often be substantial and
create problems in finding consistently superior genotypes, espe-
cially for broad adaptation. Breeders often address G×E either by
selecting stable genotypes that are not sensitive to environmental
changes, or selecting genotypes for specific environments in or-
der to maximise genetic gain on that site (Raymond and
Namkoong 1990). In trees, significant G×E has been reported
in almost all commercially important species such as radiata pine
(Pinus radiata D. Don; Raymond 2011; Wu and Matheson
2005), loblolly pine (Pinus taeda L.; McKeand et al. 1997;
Paul et al. 1997), Scots pine (Pinus sylvestris L.; Gullberg and
Vegerfors 1987; Haapanen 1996), slash pine (Pinus elliottii
Englem. var. elliottii; Hodge and White 1992; Roth et al.
2007), eucalypts (Eucalyptus spp.; e.g. Costa e Silva et al.
2006; Hardner et al. 2010), Douglas-fir (Pseudotsuga menziesii
(Mirb.) Franco; Campbell 1992; Dungey et al. 2012), spruces
(Picea spp.; Bentzer et al. 1988) and poplars (Populus spp.;
Rae et al. 2008; Yu and Pulkkinen 2003).

Increased awareness of the magnitude and nature of G×E
helps tree breeders and foresters to see the opportunities to
increase genetic gain in the forests (Cullis et al. 2014;
Ivković et al. 2013a, b). With this awareness comes a transi-
tion from thinking about G×E mainly in relation to selection
and structuring of breeding populations to thinking more
about G×E also in relation to deployment. For breeding, the
expected benefits of capturing additional genetic gain may not
outweigh the complexity and additional costs of a multi-
environment breeding programme (Carson 1991). For deploy-
ment, however, concern among tree-growing businesses in
New Zealand over the realisation of genetic gain on some sites
led to a reappraisal of the situation by the Radiata Pine
Breeding Company (RPBC) (Butcher, 2015, personal com-
munication). Application of multi-environment factor analytic
models has also given a new level of statistical efficiency and
evidence that there are additional genetic gains possible by
deploying the right genotypes on the right sites (Cullis et al.
2014).

In this review, we examine the available analytical methods
for identifying G×E and their properties, the empirical

evidence of the importance and pattern of G×E in forest trees
for selected commercially important species, information on
the environmental variables that drive G×E in forestry and
strategies for dealing with G×E in tree breeding programmes.
Based on this information, the implications and challenges in
exploring G×E to optimise genetic gain in forest tree breeding
are discussed. The importance of genomic selection in identi-
fying G×E in forest tree breeding is also discussed. Our focus
in reviewing the statistical methodology is on the analysis of
data from existing trials for selection and other breeding deci-
sions. The aspect of identifying the environmental drivers of
G×E for future choices of screening environments is given
only limited attention, being seen as a topic for separate
review.

Analytical methodology for the estimation of G×E
interactions

A number of analytical methods have been proposed to
measure the extent of G×E for traits in tree breeding, in-
cluding ratio of interaction to genetic variance, stability
analysis, type-B genetic correlation biplot analysis, factor
analytic models and reaction norm. All these methods can
be implemented as special cases of mixed linear models.
The ratio of interaction to genetic variance can be estimat-
ed using analysis of variance (e.g. Shelbourne 1972).
Stability analysis has been used to identify stable or sensi-
tive genotypes across multiple environments (e.g. Eberhart
and Russell 1966; Finlay and Wilkinson 1963; Huehn
1990). Type-B genetic correlation (Burdon 1977) and fac-
tor analytic models characterise patterns of ranking chang-
es of genotypes across multiple environments (Cullis et al.
2014). Likelihood ratio tests now provide robust tests of
interaction in departures from perfect type-B correlations.
Biplot analysis combines analysis of variance (ANOVA)
and principal component analysis (PCA) and allows visu-
alisation of results (Gauch 1992; Mandel 1971; Yan et al.
2007). Reaction norm describes a range of responses or
phenotypes produced by a single genotype across a range
of environments (Lynch and Walsh 1998; Pierce 2005;
Woltereck 1909). The first three methods have well been
covered in books or review articles for G×E in crop and
forest tree breeding (Freeman 1973; Kang and Gauch
1996; Zobel et al. 1988). This review will cover biplot
analysis, factor analytic models and reaction norm.

Biplot analyses

Biplot analysis is most commonly applied in plant breeding,
with the aim of developing crops with high yield and good
quality. Cultivars selected from one environment might not
maintain their high performance in another environment due
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to G×E. Identifying cultivars with high performance and wide
adaptability in multiple environments is the ultimate aim. A
biplot analysis uses singular-value decomposition to break
down data into a component matrix and displays both
column and row information simultaneously (Gabriel
1971). The additive main effects and multiplicative inter-
action (AMMI) and the genotype main effects and G×E
effects (GGE) are the two main biplot analysis methods to
identify G×E patterns in plant and forest tree breeding.
AMMI and GGE biplot analyses test the significance of
G×E and the relative size of G×E variance to genetic
variance and visualise stability of genotypes and environ-
ments where genotypes are best performed.

AMMI is a statistical approach that combines ANOVA and
PCA (Gauch 1992; Mandel 1971; Mrode 2014). It decom-
poses the source of variation, first into the additive effects of
genotypes and environments using ANOVA, and then into
multiplicative effects for G×E using PCA (Zobel et al.
1988). The interaction effects are decomposed into a portion
representing real responses to G×E and a portion due to ran-
dom variation (Crossa et al. 1990). The linear model used for
the AMMI analysis is as follows (Gauch 1992):

yij ¼ μþ αi þ β j þ ∑
n

k¼1
λkξikηjk þ ρij þ εij

where yij is the observed phenotype of genotype i in environ-
ment j, μ is the grand mean, αi is the genotype main effects as
deviations from μ, βj is the environment main effects as devi-
ation from μ, λk is the singular value for the interaction prin-
cipal component (IPC) axis k, ξik and ηjk are the genotype and
environment IPC scores (i.e. the left and right singular vec-
tors) for axis k, and ρij is the interaction residual containing all
multiplicative terms that are not included in the model; n is the
number of axes or principal components retained by the mod-
el, and εij is the residual associated to the genotype i at envi-
ronment j, assumed independent with identical distribution.
The additive part of the AMMI model (μ, αi and βj) is esti-
mated from ANOVA and the multiplicative part (λk, ξik and
ηjk) from PCA.

The GGE methodology is also based on ANOVA and
PCA, using a sites regression model (SREG) with two princi-
pal components. The linear model used in GGE analysis is as
follows (Yan and Hunt 2001):

yij−β j ¼ ∑
2

k¼1
λkξikηjk þ εij

where yij is the average performance of genotype i in environ-
ment j, βj is the average performance of all genotypes planted
at environment j, λk is the singular value for the principal
component k, ξik and ηjk are the scores for genotype i and
environment j for principal component k, respectively, and
εij is the residual associated to genotype i and environment j.

The GGEmethodology removes the environmental main effects
through ANOVA and retains the genotypic main effect (G) and
interaction effect (G×E) in the environment-centred data (Yan
et al. 2000). It allows direct visualisation of the performance
and stability of genotypes across multiple environments through
PCA. This model is recommended when the environments are
the main source of variation in relation to the contributions of the
genotypes and the G×E with respect to the total variability
(Kandus et al. 2010). In the GGE biplot, the lines that connect
the biplot origin and the markers for the environments are envi-
ronment vectors. The angle between the vectors of two environ-
ments is related to the correlation coefficient between them. The
cosine of the angle approximates the correlation coefficient (Yan
2002), which is equivalent to the type-B genetic correlation in the
study carried out by Ding et al. (2008b). A limitation of the GGE
biplot is that it may explain only a small proportion of the total
GGEwhen the genotypemain effect is considerably smaller than
the interaction effects or when the G×E pattern is complex (Ding
et al. 2008b). The GGE biplot approach is not amenable to rig-
orous hypothesis testing, so it is better as a hypothesis-generator
rather than as a decision-maker (Ding et al. 2008b).

Both the AMMI and GGE methods use linear models and
treat the main and interaction effects as fixed effects (Crossa
2012). The residual variance has a normal distribution and is
homogeneous and independent across environments (Gauch
1992; Kang and Gauch 1996; Piepho 1995). A biplot procedure
is used to provide a graphical interpretation of results through
plotting PCA scores of interaction effects for each genotype and
environment (Crossa 1990; Crossa et al. 1990; Kempton 1984;
Yan et al. 2000). The difference between them is that GGE biplot
analysis is based on environment-centred PCA, whereas AMMI
analysis refers to double-centred PCA (Kroonenberg 1995; Rad
et al. 2013). The GGE biplot has many visual interpretations that
AMMI does not have when presenting for ‘which-won-where’,
particularly when visualising any crossover G×E (Ding et al.
2008b).

The AMMI analysis methodology has been extensively ap-
plied in the statistical analysis of multi-environment cultivar trials
in crop breeding (Annicchiarico 1997; Crossa et al. 1990, 1999;
Table 1; Gauch and Zobel 1989; Gauch and Zobel 1997;
Hassanpanah 2010). AMMI has also been used for characterising
G×E in forest trees, e.g. in Eucalyptus (Baril et al. 1997a;
Karuntimi 2012; Lavoranti et al. 2007), pines (Pinus spp.;
Chambel et al. 2008; Falkenhagen 1996; Kim et al. 2008), pop-
lars (Populus spp.; Rae et al. 2008), white spruce (Picea glauca
(Moench) Voss; Rweyongeza 2011), birch (Betula spp.; Zhao
et al. 2014) and lodgepole pine (Pinus contorta Douglas; Wu
and Ying 2001).

The GGE method has been used to investigate G×E in
many agronomic trials (Yan et al. 2000, 2007) and also in tree
breeding (Correia et al. 2010; Ding et al. 2008b; Sixto et al.
2011). Correia et al. (2010) used GGE biplot analysis to study
G×E for total height, diameter, stem form and survival of 30
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Table 1 Examples of evidence of G×E in various forest tree studies in the literature

Species Experiment Statistical method and the magnitude of G×Ea Reference

Pinus radiata 27 families planted in 4 sites in Australia GE/G: 1.17–1.25 (DBH) [FS] Pederick (1990)

A progeny test with 170 OP families planted in 4
sites in New Zealand

rg: 0.16–0.96 (VOL) [FS] Johnson and
Burdon (1990)

Progeny test with 25 parents planted in 11 widely
diverse sites in New Zealand

GE/G: 0.70 (DBH) Carson (1991)

Provenance test at 5 sites in South Africa AMMI: significant G×E for HT, DBH and stem form
[PS]

Falkenhagen
(1996)

A diallel experiment at 10 sites in Australia GE/G: >0.5 (DBH), rg: 0.39 (DBH) Wu and Matheson
(2005)

A diallel experiment at 5 sites in Australia rg: 0.34–0.38 (DBH) Ding et al. (2008a)

216 families across 5 environments in Australia GGE, rg: −0.34 to 0.98 (DBH) Ding et al. (2008b)

76 trials across New Zealand rg: −0.8 to 1 (DBH) with nearly two thirds of pairwise rg
being below 0.60

McDonald and
Apiolaza (2009)

Clonal trials planted in 6 sites in Australia rg: 0.37 (DBH), 0.47 (HT) Baltunis and
Brawner (2010)

26 trials, established in 9 separate sets in
Australia

rg: −0.61 to 1 (DBH) Raymond (2011)

Three provenance/progeny trials located
at 3 sites in Australia

rg: 0.57–0.69 (DBH), 0.92 (BD), 0.84–0.89 (DEN),
0.92–0.95 (MoE), 0.87–0.92 (MfA), 0.90 (STR)

Gapare et al.
(2012a)

Three provenance/progeny trials located
at 3 sites in Australia

rg: 0.19–0.97 (DBH) [FS] Gapare et al.
(2012b)

77 trials across New Zealand and Australia,
each trial having 9–942 families

FA: 0.54 (−0.5 to 1.00, DBH) Cullis et al. (2014)

20 genetically connected CP trials in Australia FA: −0.52 to 0.98 (DBH), 48% of pairwise rg
were significantly different from 1

Ivković et al.
(2015)

Pinus taeda Sets of intra- and inter-populations crosses were
tested in several locations

GE/G: 0.048–2.40 (HT) Owino et al.
(1977)

43OP loblolly pine families from first-generation
seed orchards in the USA

ANOVA: highly significant G×E for DBH, HT
and VOL [FS]

Li and McKeand
(1989)

OP families and 4 bulked seed lots planted in 7
locations in US, each site having 30–50
families

ANOVA: highly significant G×E for wood specific
gravity

Jett et al. (1991)

Four sites in Zimbabwe rg: 0.18–0.95 (HT) Gwaze et al.
(2001)

Seven provenance-progeny tests located in 4
states in the USA

rg: 0.27 (VOL) Sierra-Lucero et al.
(2003)

14 full-sib families generated from 6 parents in a
half-diallel mating design and planted at 4 sites
in the USA

rg: 1.00 (α-cellulose), 0.51–0.53 (lignin), 0.72–0.95
(fibre length), 0.56–1.00 (coarseness)

Sykes et al. (2006)

Six elite full-sib families in 2 locations in the
USA

ANOVA: highly significant G×E for basal
area and VOL [FS]

Roth et al. (2007)

One set of progeny tests in the USA rg: 0.39–0.84 (VOL) Dieters and Huber
(2007)

28 parents were used to produce 23 full-sib
families and 2 open-pollinated families
in the USA

FA: 0.86 (0.65–0.99, DBH) Zapata-Valenzuela
(2012)

520 progeny from 38 full-sib families of 33 par-
ents in a circular mating design, planted at 4
environments in the USA

rg: 0.5–0.9 (resin canal number), 0.4–0.8 (xylem
growth), 0.7–0.95 (resin canal density), 0.10–0.95
(resin canal late wood proportion)

Westbrook et al.
(2014)

Pinus elliottii 57 OP progeny tests with 585 families in the
USA

rg: 0.46–0.67 (DBH), 0.50–0.67 (HT), 0.59–0.67 (VOL) Hodge and White
(1992)

171 progeny tests with over 700 families, planted
at 5 states in the USA

rg: 0.60–0.80 (VOL) Dieters et al.
(1995)

20 OP progeny tests planted in Australia rg: 0.78–0.79 (DBH), 0.90–0.91 (HT), 0.81–0.82 (VOL) Dieters (1996)

Six elite full-sib families in 2 locations in the
USA

ANOVA, P value: 0.016 (VOL), 0.013 (basal area),
0.016 (above-ground biomass) [FS]

Roth et al. (2007)
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Table 1 (continued)

Species Experiment Statistical method and the magnitude of G×Ea Reference

Pinus kesiya Seven international provenance trials established
in Colombia, South Africa, Swaziland,
Vietnam and Zimbabwe

FA: 1.00 (survival), 0.42 (VOL), −0.06 (wood density),
0.90 (straightness), 0.90 (branch diameter), 0.83
(forking), 0.34 (foxtailing) [PS]

Costa e Silva
(2007)

Pinus sylvestris 10 test orchard trials and 20 conventional trials
planted in Finland

rg: 0.58 (0.42–0.73) (HT) [FS] Haapanen (1996)

Pinus pinaster 30 populations planted at 5 sites in Europe GGE: significant population × site interaction for HT,
diameter, stem form and survival

Correia et al.
(2010)

Pinus pinaster, Pinus
sylvestris and
Pinus halepensis

Three multi-site provenance trials AMMI: highly significant G×E for HT in 3 species Chambel et al.
(2008)

Pseudotsuga
menziesii

Six sets of families in 10 plantation sites in
western Oregon

GE/G: above 1 in 91% of sets (HT) [FS] Campbell (1992)

Six G×E studies in the USA ANOVA: not significant G×E for DBH and HT [FS] Stonecypher et al.
(1996)

39 OP families planted at 4 testing locations in
the USA

rg: 0.71 (DBH), 0.56 (HT), 0.62 (moisture content), 0.71
(taper), 0.79 (MoE), 0.85 (velocity), 0.86 (DEN), 0.84
(green density)

Johnson and
Gartner (2006)

Two series of provenance trials planted in the
areas from British Columbia to Oregon

ANOVA: not significant G×E for VOL [PS] Krakowski and
Stoehr (2009)

144 polymix families at 6 genetic tests in the
USA

ANOVA: not significant G×E for DBH [FR] Dean (2009)

55 families at 2 contrasting sites in Canada rg: 0.21 (HT) [FS] Stoehr et al. (2011)

347 OP families at 14 sites in the north Oregon rg: 0.60–0.74 (DBH), 0.62–0.83 (HT), 0.67–0.78 (VOL) Jayawickrama
et al. (2011)

34 families at four sites in New Zealand rg: 0.55–0.77 (DBH) [PS], 0.61–0.75 (DBH) [FSWP] Dungey et al.
(2012)

Picea abies
(Norway spruce)

913 clones tested in 2 series on 6 and 3 sites in
Sweden

rg: 0.59–0.99 (HT) Bentzer et al.
(1988)

Two CP progeny trials (15 fathers and 50
mothers) and 6 OP progeny trials (87 mothers)
in Denmark

rg: 0–1.13 (DBH) Costa e Silva et al.
(2000)

24 clones planted at 11 sites in Denmark and
Sweden

rg: 0.43–0.64 (HT) Karlsson et al.
(2001)

483 clones at 2 clonal trials in Sweden rg: >0.73 (DBH), >0.73 (HT) Hannrup et al.
(2003)

Three CP progeny tests with 309 families at 3
sites in Sweden

rg: 0.64–0.93 (DBH) Hallingbäck et al.
(2008)

20 OP progeny trials from 6 test series, planted in
Sweden within 3 seed orchard zones

FA, rg: 0.76 (HT, within test series), 0.44
(HT, between test series)

Chen et al. (2017)

Picea mariana 720 OP families at 6 sites in 3 breeding zones in
Canada

rg: 0.83 (DBH), 0.74–0.83 (HT), 0.74 (VOL) Lu and Charrette
(2008)

Picea glauca 19 provenances planted on 8 sites in Canada AMMI, rg: −0.49 to 0.96 (DBH), −0.12 to 0.96 (HT)
[PS]

Rweyongeza
(2011)

Eucalyptus globulus 15 progeny trials planted in 4 states of Australia,
with 22 subraces and 179–578 families in each
trial

FA: 0.85 (DBH) between sites within states [SS FS],
0.73 (DBH) [SS], 0.76 (DBH) [FS] between sites
from different states

Costa e Silva et al.
(2006)

Eucalyptus fastigata 440 OP families planted at 4 sites in New
Zealand

rg: over 0.80 (DBH, HT, straightness, form score),
0.49 (malformation)

Kennedy et al.
(2011)

Eucalyptus grandis 65 clones tested at 7 sites in Columbia rg: 0.20–0.56 (HT), 0.34–0.65 (VOL), −0.49 to 0.02
(MAI), 0.63–0.88 (DEN)

Osorio et al.
(2001)

20 families planted at 7 environments AMMI: significant G×E for HT Lavoranti et al.
(2007)

Eucalyptus pellita Three seedling seed orchards in Indonesia, each
having 34–48 families

GE/G: 0.88 (HT), 0.80 (DBH); rg: 0.38–0.85 (HT),
0.32–0.68 (DBH) [FS]

Leksono (2009)

Eucalyptus regnans Suontama et al.
(2015)
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maritime pine (Pinus pinaster Aiton) populations sourced
from Portugal, Spain, France and Australia, in a multiple en-
vironment provenance trial in Spain. The GGE biplot analyses
were used to analyse the biomass production and stability of
poplar clones, which were ranked according to mean perfor-
mance and stability in southwest Europe (Sixto et al. 2011).
Ding et al. (2008b) usedGGE biplot to investigate G×E of 216
radiata pine families across five environments in Australia.
The biplot analysis allowed different groups of clones to be
identified according to their performance and degree of inter-
action displayed, thus providing useful information for the
selection process in radiata pine.

Factor analytic models

Factor analytic (FA) models can provide a reliable, parsimo-
nious and holistic approach for estimation of genetic

correlations between all pairs of trials (Cullis et al. 2014;
Smith et al. 2015) and provide a natural framework for model-
ling G×E patterns in complex multi-environment experiments
(Meyer 2009). The FA model is the most useful for making
decisions of selection for breeding populations and decisions
of deployment for production populations.

The use of FA models in multi-environment trials is based
on the use of eigenvectors from PCA (Jolliffe 1986; Smith
et al. 2001) and extended to accommodate both additive and
non-additive effects (Oakey et al. 2006a, b). Cullis et al.
(2014) used FA models to accommodate a large number of
environments and poor connectivity between environments
with a reduced animal model. The FA models aim to identify
the statistical common factors that give rise to correlations
between variables (Mrode 2014). They represent traits
assessed under multiple environments as linear combinations
of a few latent variables (Cullis et al. 2014; Smith et al. 2001),
referred to as common factors (Hardner et al. 2010; Meyer

Table 1 (continued)

Species Experiment Statistical method and the magnitude of G×Ea Reference

OP breeding trials across 3 breeding cycles with
713 families planted at 6 sites, with G×E
estimated within breeding cycle

rg: 0.72–0.75 (HT), 0.83 (DBH), −0.09 to 0.70
(branching), 0.88–0.89 (foliage disease), 0.68–0.77
(frost tolerance), 0.36–0.44 (straightness)

49 provenances planted at 12 sites in Australia ANOVA: significant G×E for DBH and survival Raymond et al.
(1997)

Eucalyptus
camaldulensis

96 seedlots from 29 Australian provenances
including 82 OP families, planted in 2 sites in
Australia

rg: 0.88 (DBH), 0.64 (HT) [FS] Bush et al. (2013)

Eucalyptus hybrid 841 genotypes from 10 hybrid families assessed
in 21 trials in Australia

rg: 0.55 (0.05–0.88, DBH) Hardner et al.
(2010)

892 clones 10 families planted at 22 trials in
Australia

FA: 0.58 (0.09–0.99, DBH) Hardner et al.
(2011)

Eucalyptus clones planted at 4 highland sites and
3 lowland sites

AMMI: highly significant G×E for DBH at the age of
24 months in highland trials; significant G×E for
DBH at ages of 24 and 36 months

Karuntimi (2012)

Populus davidiana 24/38 clones tested at 7 sites in Korea ANOVA: highly significant G×E for VOL Koo et al. (2007)

Populus deltoides 60 poplar hybrids planted at 3 sites ANOVA, GE/G: 2.21 (DBH), 0.2 (HT) Riemenschneider
et al. (2001)

Populus densiflora 36 provenances tested at 11 sites in Korea AMMI: significant provenance × site interaction for HT Kim et al. (2008)

Populus hybrids Hybrid aspen seedlings planted in 2 contrasting
environments in the USA

rg: 0.23–0.54 (DBH), 0.04–0.64 (HT), 0.30–0.35 (VOL)
[FS]

Li and Wu (1997)

25 aspen hybrid clones planted at 4 field trials in
Finland

GE/G: 2.00 (HT), 2.00 (basal diameter) Yu and Pulkkinen
(2003)

210 F2 genotypes planted at 3 sites across Europe AMMI: significant G×E interactions for biomass Rae et al. (2008)

Nine clones from hybridization of 3 Populus
species planted in Europe

GGE: showing stability of biomass production Sixto et al. (2011)

Betula spp. 18 families planted at 5 sites in China AMMI: significant G×E for HTand basic stem diameter Zhao et al. (2014)

a Statistical method used: rg: genetic correlation between pair of environments, trait in the parentheses; FA: genetic correlation estimated using FAmodel;
ANOVA: analysis of variance; AMMI, rg: AMMI was used and genetic correlation between pair of sites was estimated; GE/G: ratio of interaction
variance to additive genetic variance; GGE: the genotype main effects and G×E effect; [FS]: family × site interaction, [FSWP]: family × site interaction
within provenance, [PS]: provenance × site interaction, otherwise: genotype × site interaction

DBH diameter-at-breast-height, HT height, VOL volume, BD basic density, MoE modulus of elasticity, MfA microfibril angle, STR stem straightness,
DEN wood density, MAI mean annual increment, OP open-pollinated, CP control-pollinated
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2009), thereby reducing the dimensionality of the among-sites
variation with respect to G×E. The number of factors is called
the order of the model and an FA model of order k is denoted
as FAk. Assuming a linear mixed model

y ¼ Xβþ Zuþ e

where y is the vector of observations for t sites; β is the
vector of fixed effects; u is the vector of random additive

genet ic effects wi th u ∼ N (0, G ⊗ A ) , where G ¼
σ2
a1 ⋯ σa1at

�
⋮⋱⋮ σata1⋯σ2

at �, where σ2
ai is the addi-

tive genetic variance for site i, σaia j is the additive genetic

covariance between site i and site j, A is the numerical rela-
tionship matrix and⊗ denotes the Kronecker product; and e is
the vector of random res idual effec ts wi th e∼N
0; σ2

e1 ⋯ 0
��

⋮⋱⋮ 0⋯σ2
et �Þ, where σ2

ei is the residual

variance for site i, X and Z the design matrices associated
phenotypes with β and u, and t is the number of trials. The
FAk model for the additive genetic effects of m genotypes in t
trials can bemodelled as u = (Λ⨂ Im)f + δ (Costa e Silva et al.
2006; Cullis et al. 2014), where Λ is the t × k matrix of trial
loadings, f is the mk × 1 vector of scores and δ is the mt × 1
vector of genetic regression residuals. Var(u)=(ΛΛ′ +Ψ) ⨂Im
with assumptions of var(f) = Imk, var(δ) =ψ⨂ Im, where ψ is
a t × t diagonal matrix with a variance (called a specific var-
iance) for each environment, and the vectors of random effects
f and δ are mutually independent as multivariate Gaussian
distribution with zero means. The between-environment ge-
netic variance matrix is defined as Ge = (ΛΛ′ +ψ). Ge can be

estimated with the REML algorithms as Ge ¼ ΛΛ
0 þψ

� �

and can be converted to a correlation matrix Ce ¼ DeGeDe,
where De is a diagonal matrix with elements given by the
inverse of the square roots of the diagonal elements of Ge.
The FA models outlined above are equivalent to the extended
factor analytic models specified by Meyer (2009).

Latent regression plots were used to show genetic re-
sponses to trial loadings, indicating the magnitude of G×E
(or stability) of selection candidates across multiple environ-
ments in the FA models (Chen et al. 2017; Cullis et al. 2014;
Smith et al. 2015; Table 1). A latent regression of a selection
candidate with a higher slope means that the candidate is more
sensitive to the environment. A latent regression with a zero
slope indicates that the performance of the candidate is stable
across multiple environments.

This approach has been applied to investigate G×E across
multiple environments in barley (Smith et al. 2001), potato
(Burgueño et al. 2011), maize (Burgueño et al. 2011) and
wheat (Burgueño et al. 2011; Oakey et al. 2006a, b), and also
in livestock breeding (Meyer 2009). In tree breeding, this ap-
proach has been successfully applied to the studies of G×E in
Khasi pine (Pinus kesiya Royle ex Gordon; Costa e Silva
2007), radiata pine (Cullis et al. 2014; Ivković et al. 2015),

loblolly pine (Zapata-Valenzuela 2012), Eucalyptus and
Eucalyptus hybrid clones (Costa e Silva et al. 2006; Hardner
et al. 2010) and Norway spruce (Picea abies (L.) H. Karst.;
Chen et al. 2017). Despite its statistical power, the FA ap-
proach has not yet delivered in identifying the roles of specific
environmental factors in driving G×E (B. Cullis, 2016, per-
sonal communication).

Reaction norm

Reaction norm, also called a norm of reaction, describes a
range of responses or phenotypes produced by a single geno-
type across a range of environments (Lynch and Walsh 1998;
Pierce 2005; Woltereck 1909). It is suitable for analysing data
on traits that vary gradually and continuously over an envi-
ronmental gradient (e.g. temperature) (Kolmodin and Bijma
2004). A linear reaction norm for a single trait has a model
(Kolmodin and Bijma 2004; Strandberg et al. 2000):

yik ¼ b0 þ b1xk þ a0i þ a1i xk þ e0i þ e1i xk

where yik is the phenotypic value of genotype i in environ-
ment k; b0 and b1 are the fixed effects of the intercept and
slope of the reaction norm for genotype, respectively; a0i and
a1i are the random additive genetic effects of the intercept
(corresponding to the classical EBV for performance poten-
tial) and the slope (equivalent to the EBVs for environmental
sensitivity) of the reaction norm for genotype i, respectively;
e0i and e1i are the random residual effects of the intercept and
slope of the reaction norm for genotype i; and xk is the effect
of environment k on the phenotype. The random additive ge-
netic effects a0 and a1 were assumed to be normally distribut-
ed with expectation zero and variances σ2

a0 and σ2
a1 , respec-

tively, and covariance σa0a1 :

The advantage of the reaction norm is that selection re-
sponse can be predicted not only in the phenotypic expression
in any environment but also in quantifying the environmental
sensitivity of the trait through the slope of a linear reaction
norm (robustness or responsiveness to changes in the environ-
ment) (Kolmodin and Bijma 2004). Disease exposure, stock-
ing density and nutrient quality are thought to be included as
environmental factors affecting livestock production when
conducting reaction norm analysis (Rauw and Gomez-Raya
2015). Similarly, environmental factors related to forest tree
breeding, such as temperature, rainfall and soil nutrition, can
be applied to reaction norm analysis to identify the drivers of
G×E in forest tree breeding. The limitations of the reaction
norm are that any environmental variables included in the
analysis need to clearly identified and the G×E patterns iden-
tified are valid only within the range of the modelled environ-
mental conditions (Gregorius and Kleinschmit 2001). The
stability of a given genotype in the reaction norm model can
be visualised by plotting observed phenotypic values against
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one or more environmental variables. A flat slope of the reac-
tion norm means that the phenotype produced over the entire
range of environments is constant. Any divergence between a
genotype’s reaction norm and that of the population as a whole
constitutes a component of G×E. For instance, a particularly
steep reaction norm slope for a given genotype means that its
phenotype is more sensitive to environments, and the genotype
will contribute strongly to G×E. The level of G×E can also be
expressed as the ratio of variances in the additive genetic slope
(σ2

a1 ) to the additive genetic intercept (σ2
a0 ) (Kolmodin and

Bijma 2004) or by genetic correlation (rg) between the additive

genetic slope and intercept with rg ¼ σa0a1ffiffiffiffiffiffiffiffiffiffiffi
σ2
a0
σ2
a1

p (Strandberg et al.

2000).
The reaction norm approach has been applied in forest trees

(Gregorius and Kleinschmit 2001), including species that are
widely distributed with clinal ranges, notably Norway spruce
(Oleksyn et al. 1998) and Scots pine (Abraitiene et al. 2002) in
Sweden, and lodgepole pine (Rehfeldt et al. 1999; Wang et al.
2006) and its hybrids (Wu and Ying 2001) in Canada. Oleksyn
et al. (1998) examined plant growth, partitioning, net CO2 ex-
change rate, tissue chemistry and phenology of 54 Norway
spruce populations to quantify differences in growth and
associated plant traits among populations from altitudinal
gradients and better understand their relationships. This study
showed that Norway spruce populations from cold mountain
environments can be characterised by several potential adaptive
features, such as mean annual temperature and altitude.
Abraitiene et al. (2002) studied genetic variation of pollen viabil-
ity and susceptibility to ozone in Scots pine. Significant genetic
variation in susceptibility of pollen to increased ozone concentra-
tion was found, but only 5% of variation was attributed to G×E.

A reaction norm concept was used to derive response func-
tions for incorporating climate variables into analytic models,
and considerably improved their reliability in lodgepole pine
populations (Wang et al. 2006) and structure of the specific com-
bining ability between two species of Eucalyptus (Baril et al.
1997b). Response functions predicted that small changes in cli-
mate greatly affected growth and survival of forest populations
and that maintaining contemporary forest productivities during
global warming requires a wholesale redistribution of genotypes
across the landscape (Rehfeldt et al. 1999). Significant popula-
tion by site interactions among 10 natural lodgepole pine popu-
lations sampled from three lodgepole pine subspecies (Pinus
contorta ssp. contorta, ssp. latifolia and ssp. murrayana) were
found for 20-year heights measured in 57 provenance test sites
across interior British Columbia (Wu and Ying 2001).

Evidence of G×E in forest trees

In forest trees, G×E has been studied in various economically
important species, notably in New Zealand, Australia, USA,

Europe, Asia and Africa (Table 1). Most studies investigated
G×E for growth and form traits with some investigation of
G×E for wood density traits and wood property traits.
Table 1 presents examples of evidence of G×E in various
forest tree studies in the literature. The criteria to measure
the magnitude of G×E in forest tree breeding were proposed
in two studies. Robertson (1959) suggested as a guideline that
a genetic correlation of 0.8 or higher could be interpreted as
G×E with less biological importance. Shelbourne (1972) sug-
gested that interactions have a serious effect on genetic gains
from selection and testing when the interaction variance
reaches 50% or more of the genetic variance.

High G×E is normally found for tree growth (e.g. radiata
pine; Carson 1991; Johnson and Burdon 1990; Table 1; Wu
and Matheson 2005). The ratio of estimated interaction to
genetic variance for diameter-at-breast-height (DBH) was
above 0.50 in a diallel experiment covering 10 sites in
Australia (Wu and Matheson 2005). The genetic correlation
estimate between pairs of environments for DBH was 0.39
(Wu and Matheson 2005), 0.34–0.38 (Ding et al. 2008a) and
−0.60 to 1.0 (Raymond 2011). Type-B genetic correlations
were 0.27–0.84 for volume (Dieters and Huber 2007; Li and
Mckeand 1989; Roth et al. 2007; Sierra-Lucero et al. 2003),
0.18–0.95 for height (Gwaze et al. 2001; Li and Mckeand
1989; Owino et al. 1977; Paul et al. 1997) and 0.27 for mean
annual increment for volume per hectare (Sierra-Lucero et al.
2003). Baltunis and Brawner (2010) reported high G×E for
growth traits in clonal trials among Australian sites but not
among New Zealand sites. Nearly two-thirds of genetic cor-
relation estimates for DBH between paired sites were below
0.6 in an analysis using data covering 76 sites across the whole
of New Zealand (McDonald and Apiolaza 2009). Ivković
et al. (2015) reported that pairwise genetic correlations for
DBH among 20 control-pollinated trials ranged from −0.51
to 0.98, 48% of which were significantly different from the
perfect genetic correlation of 1 with an average of 0.35.
Estimates of type-B genetic correlations between trials in-
creased with age, indicating that the importance of G×E ap-
pears to decline with age and early growth data may be unre-
liable for evaluating G×E at maturity (Dieters et al. 1995;
Gwaze et al. 2001; Roth et al. 2007; Zas et al. 2003).

Tree form is often an important trait in tree breeding
programmes. Traits such as stem straightness and branching
confer value in trees at rotation age (Cown et al. 1984; Ivković
et al. 2006). The extent of G×E in these traits variesmuchmore
among studies. Low levels of G×E have been reported in most
studies for stem straightness (Carson 1991; Gapare et al.
2012b; Johnson and Burdon 1990; Pederick 1990), branch
angle (Gapare et al. 2012b), branch size (Gapare et al. 2012b;
Pederick 1990), branch habit (Carson 1991; Johnson and
Burdon 1990) and malformation (Johnson and Burdon
1990). This contrasts with some evidence of G×E in form traits
for branch size, numbers of forks and ramicorn branches
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(Wu andMatheson 2005) and for stem straightness and branch
quality among some sites across Australia and New Zealand
(Baltunis and Brawner 2010). Similarly, Gwaze et al. (2001)
reported high levels of G×E for stem straightness in Zimbabwe
for stem straightness and Suontama et al. (2015) reported high
levels of G×E for branching in New Zealand. Conflicting G×E
was found in two New Zealand studies: Dungey et al. (2012)
reported a high level of provenance × site interaction for stem
straightness but a low level of family-within-provenance × site
interaction in Douglas-fir; Kennedy et al. (2011) found a high
type-B genetic correlation (over 0.80) for straightness and form
score and a low type-B genetic correlation (0.49) for
malformation.

Traits associated with wood structure and quality generally
appear to have low G×E in conifers, e.g. wood basic density
(Apiolaza 2012; Baltunis et al. 2010; Gapare et al. 2010, 2012a;
Johnson and Gartner 2006; Muneri and Raymond 2000),
acoustic velocity or modulus of elasticity (Dungey et al. 2012;
Gapare et al. 2012a; Jayawickrama et al. 2011; Johnson and
Gartner 2006), wood chemical properties (Sykes et al. 2006),
wood specific gravity (Jett et al. 1991) and resin canal traits
(Westbrook et al. 2014). Osorio et al. (2001) reported minimal
G×E for wood density in Eucalyptus grandis in Colombia.
Eucalypt hybrid clones (Eucalyptus grandis × Eucalyptus
urophylla) in Brazil were, however, found to have significant
G×E for wood basic density across four sites (Lima et al. 2000).

Statistically significant type-B genetic correlations may not
reflect the true magnitude of G×E. Good experimental design
is essential at all stages of testing when estimating genetic
parameters. The lack of randomization for the seedling popu-
lation apparently resulted in a problem with partitioning of the
genetic variance, causing among-family variance to be inflat-
ed (Baltunis et al. 2007). Poor (i.e. very imprecise) estimates
of genetic correlations between environments are often related
to a limited number of parents in common between environ-
ments (Apiolaza 2012; Raymond 2011). A propagation effect
may be relating to the season when cuttings are rooted. The
worst genetic correlations were observed between the trial
established with rooted cuttings from the winter setting and
any of the other trials, while the best genetic correlations were
obtained from the field trials that included rooted cuttings
originating from the spring settings (Baltunis et al. 2005,
2007).

Impacts of G×E in tree breeding

The overall impact that G×E has for tree breeders is to com-
plicate breeding programme design. The efficiency of
selecting for a trait in one environment in pursuing genetic
gain in another environment is proportional to the genetic
correlation between the two environments and the overall her-
itability of the trait across the two environments (Falconer and

Mackay 1996). Overall heritability across environments is

calculated as h2 ¼ σ2
a

σ2
aþσ2

geþσ2
e

, whereσ2
a is the additive genetic

variance, σ2
ge is the interaction variance and σ

2
e is the residual

variance. High G×E, therefore, reduces overall heritability
across sites in two aspects. Firstly, large G×E variance in the
denominator directly reduces the overall heritability.
Secondly, G×E also compromises the estimation of genetic
variance across multiple environments, further reducing the
size of the heritability estimate. For example, heritability of
mean annual increment in volume was 0.08 in an analysis
across seven sites, whereas it was over 0.20 within each of
two regions (Sierra-Lucero et al. 2003). G×E can also inflate
estimation of heritability if estimated in one environment.
When G×E is present and the estimates from a single location
test are used for a general genetic prediction, the heritability
estimate is inflated as part of G×E variance is partitioned into
the additive genetic variance. For example, the additive G×E
was found to be large enough to cause upward biases on her-
itability estimates and genetic gain predictions of up to 60–
100% (Owino et al. 1977). Family-mean heritability was over-
estimated by about 15% when estimated from a single site,
compared with that estimated from across-site analysis, and
even a type-B genetic correlation for acoustic velocity was
0.85 among sites.

G×E can affect estimation of predicted genetic gain in sce-
narios for testing and selection as it reduces overall heritability
or accuracy across environments. Sierra-Lucero et al. (2003)
found that selecting families in region 1 for deployment in
region 2 resulted in a 4–8% reduction in mean annual incre-
ment in volume per hectare. Loss of genetic gain reachedmore
than 10% in a scenario ignoring G×E when compared with a
scenario considering G×E when type-B genetic correlation
between sites was less than 0.80 (Diaz Solar et al. 2011).
Leksono (2009) reported that genetic gains resulting from
direct selection were apparently greater than those resulting
from indirect selection, with a decrease of 24–60% in genetic
gains if breeding populations were transferred between breed-
ing zones. Diameters at the northern-most site in Queensland,
Australia, were poorly correlated with those at other sites (r-
g = 0.39), and if individual selection was based on this site for
planting at any other sites, the estimated genetic gain was only
29–57% as efficient as a selection programme based on the
plantation site (Woolaston et al. 1991).

Xie (2003) found considerable G×E for height in interior
spruce, a white spruce (Picea glauca (Moench) Voss) and
Engelmann spruce (Picea engelmannii Parry ex Engelm.)
complex (Xie and Yanchuk 2002), among five seed planning
zones located in north-central interior British Columbia with
an average between-sites genetic correlation of 0.64. The five
seed planning zones were clustered into two new seed zones,
with genetic correlations within the new seed zones of 0.97
and 0.84, respectively, and a genetic correlation between the
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two new zones of 0.41. When selecting the best 25% of tested
parents within each zone, the expected genetic gain was 19%
when considering the entire region as one zone, 24% when
considering the five original zones and 26% when consolidat-
ing the five original zones into the two new zones. Despite the
apparently modest enhancements of expected gains from
regionalised breeding, failure to evaluate genotypes on sites
where performance is poorly correlated with that elsewhere
would inevitably sacrifice around half or more of the potential
genetic gain on such sites.

Significant G×E does not always result in considerable loss
of genetic gain. Jett et al. (1991) found significant G×E for
specific wood gravity in loblolly pine. Four of 18 families
were classified as unstable for the trait, accounting for half
the observed G×E variance. However, this G×E only caused
a negligible effect on potential genetic gain. Dieters et al.
(1996) reported that type-B genetic correlations were over
0.67 for fusiform rust resistance and G×E did not appear to
be important in the rust resistance of slash pine in the USA.
Carson (1991) found significant G×E for diameter in radiata
pine but genetic gains predicted for several regionalisation
options suggested the size of G×E in radiata pine in New
Zealand appeared to be too small to warrant regionalised
breeding populations.

A measure of loss of potential gain (C) has been used as a
criterion to evaluate the impact of G×E on breeding
programmes for family selection (Matheson and Raymond
1984, 1986) with

C ¼ 1− V f þ Ve
NBS

� ���
= V f þ Vi

S þ Ve
NBS

� � �12Þ �100,
where Vf is the phenotypic variance, Vi is the variance due

to interaction and Ve is the error mean square; S is the number
of sites, B is the number of replications at each site andN is the
number of trees per plot. This assumes that the intensities of
selection remain the same and that the residual and genetic
components remain the same in the models including or not
including the interaction term. Using the preceding relation-
ships, a 2% loss of potential gain corresponds to an approxi-
mate reduction of 5% of the numerical value of heritability.

Drivers of G×E in tree breeding

Identifying what environmental factors are the key drivers of
G×E is important for both breeding and deployment purposes.
It informs the choice of environments in which the candidate
genotypes are to be tested and evaluated. It is also important
for knowing what the performance of genotypes in a particular
environment can tell us about their expected performance in
other environments, which may have their attributes
characterised, but not necessarily by empirical G×E data.

Various studies have been conducted for characterising the
roles of environments in generating G×E in radiata pine. G×E

has often been found to reflect differential stress responses
among genotypes when an environmental factor is at either a
sub-optimal or a strongly sub-optimal level for at least some
genotypes (Kang 2002). Stress may be either biotic (diseases
or pests) or abiotic (e.g. temperature, salinity and excess or
deficiency of water or nutrients). For a given set of genotypes,
the more diverse the environments are, the larger the magni-
tude of possible G×E (Li et al. 2015). G×E may result from
different adaptability of subraces or individual genotypes to
environmental conditions promoting water and light stresses
during the summer and, in some extent, from differential sus-
ceptibility to the biotic factors observed (Costa e Silva et al.
2006).

Johnson and Burdon (1990) obtained excellent discrimina-
tion between two site categories in New Zealand, representing
Northland clays (which are naturally phosphorus-deficient)
and pumiceland sites, a pattern that parallels some earlier re-
sults in both Australia (Fielding and Brown 1961) and New
Zealand (Burdon 1971; Burdon 1976). Wu and Matheson
(2005) found that prior land use created some grouping of
sites according to interactive behaviour. Since then, the study
by Raymond (2011) of G×E for diameter growth in radiata
pine in New South Wales found elevation to be the prime
driver of G×E, with lesser roles for prior land use and geolog-
ical parent material. Elevation, however, was associated with a
suite of important bioclimatic factors, including rainfall, its
seasonality and temperature variables. High-latitude prove-
nances and sites with cool winters and dry summers and
high-elevation provenances and sites with high precipitation
and short growing seasons contributed the greatest to G×E for
height and DBH in white spruce (Rweyongeza 2011).

Wu and Matheson (2005) reported that a large genotype by
region interaction in radiata pine was attributed to the exten-
sive snow loading at the two higher-elevation sites. G×E for
DBH was found to be possibly driven by extreme maximum
temperatures in an analysis of data collected from 76 radiata
pine trials across the whole of New Zealand (McDonald and
Apiolaza 2009) and by minimum temperature in both prove-
nance and progeny levels (Gapare et al. 2015). A mean daily
temperature less than 3.2 °C in May and June explained
27.8% G×E interaction, and it was moderately correlated with
the first factor in the FA model, indicating that spring or au-
tumn frost weather conditions could be a main driver for G× E
in Norway spruce (Chen et al. 2017). Ivković et al. (2013a)
reported that high rainfall and cold temperature explained
25% of G×E variance and they are likely drivers of G×E in
New Zealand, based on breeding values of DBH estimated by
Cullis et al. (2014).

On the other hand, biotic factors such as foliage diseases,
which tend to be strongly related to rainfall and its seasonality,
are an obvious potential driver of G×E for stem diameter and
volume growth (cf. Ades and Garnier-Géré 1997). G×E
caused by differential exposure to Swiss needle cast in
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Douglas-fir is also a good example, as the needle disease is
more prevalent in warmer temperatures and sites can have
radically different disease loads and differential growth re-
sponses in the host tree population as a result (Dungey et al.
2012).

Li et al. (2015) reported that G×E levels for growth traits
were significantly associated with site differences in soil nu-
trient levels of nitrogen and total phosphorus and mean annual
temperature and that G×E levels for foliar calcium content and
fascicle weight were significantly associated with site differ-
ences in soil levels of magnesium and potassium, respectively.
At the broadest scale (across New Zealand and Australia),
climatic variables such as temperature and rainfall were the
most significant factors driving observed G×E; however, at a
local regional scale, soils and topographical factors were of
more significance (Ivković et al. 2013a).

Strategies for dealing with G×E in tree breeding
programmes

Two main strategies have been proposed for dealing with the
presence of strong G×E (Kang 2002; Raymond 2011): (1)
select individuals that perform stably across sites; or (2) select
individuals that are well suited to each individual environment
to maximise genetic gain. The first strategy is applicable when
no obvious source of the observed G×E can be found and the
interactions are regarded as essentially ‘noise’. The strategy
aims to select genotypes with broad adaptation which would
be expected to yield dependably across a wide range of envi-
ronments. Selection for stability is the approach that has been
recommended in G×E studies for radiata pine in Australia
(Ding 2008; Matheson and Raymond 1984), New Zealand
(Carson 1991) and Spain (Codesido and Fernández-López
2009); for loblolly pine in the USA (Owino 1977; Paul et al.
1997); and for Norway spruce in Sweden (Bentzer et al.
1988). This approach aims to eliminate the genotypes that
are the most interactive with environments. However, for this
to succeed well, the breeder needs to use an appropriate set of
test environments that exposes both the interactive and stable
genotypes.

The second strategy is to exploit the interactions by
analysing and interpreting genetic and environmental differ-
ences (Raymond 2011). This strategy would be expected to
maximise heritability and genetic gain within each environ-
ment individually, and accordingly, this requires the creation
of separate breeding populations and seed production with
consequent problems of cost, management, recording and an-
cestry control (Barnes et al. 1984). This strategy might be
impracticable when the number of environments is large and
spans different climatic and geographic regions and different
soil types. A practical adaptation of this strategy is to group
similar environments into regions. Application of this strategy

relies on the ability to identify which site or environmental
factors are causing the interaction (Raymond 2011).
Regionalisation is commonly used for Northern Hemisphere
species growing in their natural range where a single environ-
mental factor, usually related to temperature gradients, deter-
mines seedlot performance. As an example, for Scots pine in
Sweden, breeding and seed zones have been established based
on the latitudinal temperature gradient, and G×E within these
zones for growth traits is very low (Hannrup et al. 2008;
Raymond 2011).

Research results from a diallel mating design experiment in
radiata pine seem to favour regionalisation of radiata pine
breeding for DBH into two main regions in Australia: the
high-elevation Tumut region in New SouthWales, and regions
of Victoria, South Australia and Western Australia (Wu and
Matheson 2005). In New Zealand, however, Carson (1991)
had reported that the magnitude of G×E in radiata pine ap-
peared to be too small to warrant regionalised breeding popu-
lations. Matheson and Raymond (1984) proposed that a better
solution to the G×E problem is not to attempt to regionalise
the breeding but to omit families that seem to be particularly
susceptible to environmental variation. Trade-offs need to be
fully evaluated as these approaches have serious implications
for operational breeding and a cost/benefit analysis may be
needed. A regionalised breeding programme with separate
breeding populations might have smaller breeding popula-
tions in each environment, lower selection intensities and
therefore lower genetic gains than one national programme
of the same size (Carson 1991). While extra gain might be
available through regionalisation, further costs for land use,
operation of multiple seed orchards, additional records and
extension in the progeny-testing would increase proportional-
ly (Barnes et al. 1984; Carson 1991).

Towards applications and future research

The multi-trait context

We have reviewed statistical methodologies for studying G×E
primarily in relation to the single-trait case. However, quanti-
tative geneticists and breeders almost always have to consider
G×E in the context of multiple traits for selection and deploy-
ment. Among the methodologies, the study of type-B genetic
correlations (Burdon 1977) can readily be extended to multi-
ple traits between multiple environments. With multiple traits,
several more complicated manifestations of G×E can arise.
Different traits may exhibit different patterns of G×E.
Moreover, genetic and phenotypic between-trait (type-A) cor-
relation matrices can differ between environments as another
form of G×E. Correlations between different traits expressed
in different environments (for which the term type-AB corre-
lations is proposed) can differ between pairs of environments,
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in a complex manifestation of G×E, likely to be relevant for
traits related to health and frost or drought tolerance.

The multi-trait case creates interplays between rank-change
and level-of-expression G×E for both selection and deploy-
ment. As indicated above, level-of-expression interaction can
generate rank-change interaction, some classic examples be-
ing the effects of disease expression which, by influencing tree
growth or tree form, can certainly influence genotypic rank-
ings for the latter traits, with obvious implications for stability
of genotype performance. One such example involves prove-
nance trials of radiata pine in New Zealand, where the
Cambria provenance, which is less resistant to needle-cast
diseases, gave much worse relative performance for growth
on disease-prone sites (Burdon et al. 1997). Another involves
provenance trials of coastal Douglas-fir in New Zealand, in
which comparative growth performance was strongly affected
by Swiss needle cast (caused by Phaeocryptopus
gaeumannii), with the susceptible lowest-latitude native prov-
enance doing comparatively better at a highest-latitude site
(46° S), where disease risk was much lower than at the
lower-latitude site (38° S) (Dungey et al. 2012). Such
disease-related influences are of interest for both breeding
and deployment.

Level-of-expression interaction

Level-of-expression G×E does not cause rank change of se-
lection candidates and is generally less important for breeding
(Muir et al. 1992), but it is important for deployment across
multiple environments (Burdon et al. 2017). If there is no
rank-change interaction, testing in one environment should
be sufficient. If selection for deployment involves a range of
environments and multi-trait selection, level-of-expression in-
teraction may require deployment of quite different sets of
genotypes to different environments without there necessarily
being rank-change interaction. In this situation, evaluation on
several environments may be needed to give good resolution
of genetic differences for all the traits of interest. Classic ex-
amples of level-of-expression interaction can arise with dis-
ease resistance, in which resolution of genotypic differences
can depend greatly on disease incidence (e.g. Dieters et al.
1996; Sohn and Goddard 1979). Typically, resolution tends
to be best at moderate to severe levels of disease, especially
among the most resistant genotypes. Nevertheless, there may
be cases in which a disease may be present at levels that are of
no direct practical importance, but resolution of genetic differ-
ences in that environment may still be good. Resistance to that
disease does not need to figure as a deployment criterion in
such an environment, yet disease resistance expressed there
may still be a valuable selection criterion for deployment in
other environments, where the disease is troublesome but in-
cidence not highly heritable because of high levels of ‘noise’
variation.

Genomics will help tackle G×E

Genomic selection is being increasingly explored as a major
tool for selection in forest tree breeding (Grattapaglia and
Resende 2011; Isik et al. 2011, 2016; Lexer and Stölting
2012; Ratcliffe et al. 2015; Resende et al. 2011, 2012a, b).
The major benefit of genomic selection is that selection can
be undertaken well before the normal age of phenotyping—
around age 8 in radiata pine. DNA can be extracted and
genotyping undertaken on only a few needles, before the age
of 6 months. This means that generation intervals for breeding
can be greatly reduced and the expected genetic gains per unit
of time can be increased (Grattapaglia and Resende 2011; Isik
2014).

G×E in genomic selection has been studied for several
forest species. When G×E interactions exist for a trait, ob-
served SNP effects for the trait changed across environments,
and their association with the trait might be significant in one
environment but not significant in other environments, as
shown in radiata pine (Li et al. 2016). Significant QTL by
environment interaction was found for QTLs associated with
DBH, basic wood density, Kraft pulp yield, and wood chem-
ical compounds of cellulose, klason lignin and extractives,
and lignin syringyl to guaiacyl ratio using 663 individuals of
one F2 family and three F1 families of Eucalyptus globulus
planted in Tasmania, Victoria andWestern Australia (Freeman
et al. 2011, 2013). Accuracies of genomic selection, however,
have been shown to decline drastically when a model was
developed using a dataset of one population to predict pheno-
types of another population in Eucalyptus (Resende et al.
2012a). In loblolly pine in the USA, G×E severely affects
the transferability of models across breeding zones (Resende
et al. 2012b). In interior spruce planted in the western coast of
Canada, genomic selection accuracy for growth and wood
attributes was higher in a multi-site model (where the G×E
term was fitted) than in a single-site model when predicting
phenotypes for different sites (El-Dien et al. 2015).

To characterise the roles of genotypes and environments in
driving G×E in forest tree breeding, we may need to collect
data of genotypes at the molecular level, assess even broader
number of phenotypes and collect climatic and geographical
data together with edaphic data across all seasons and all years
during which tested genotypes grow. Functional genomics
(Pevsner 2009), genome sequence annotation (Ouzounis and
Karp 2002; Wolf et al. 2001) and high-resolution phenotyping
(Crowell et al. 2016) can be useful for characterising the roles
of genotypes and environments in driving G×E. Developing
environment-specific genomic breeding values is the next
challenge to maximise genetic gain in multiple environments
when using genomic selection in forest tree breeding. Among
the analytical methodologies mentioned above, factor analytic
models (Cullis et al. 2014; Smith et al. 2015) are a parsimo-
nious and holistic approach for estimation of genetic
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correlations between all pairs of environments and can even-
tually play an important role to develop the environment-
specific genomic breeding values for a large number of
environments.

Overview

Statistical methods, AMMI, GGE biplot analysis, FA and re-
action norm, are reviewed in this paper. Table 2 summarises
the strengths and weaknesses of these methods. They are tools
for identifying the patterns and magnitude of G×E in forest
tree breeding. The first three methods infer groupings of en-
vironments and genotypes, based purely on phenotypic data
and using PCA to reduce dimensionality. AMMI and GGE
biplot analyses test the significance of G×E and the relative
size of G×E variance to genetic variance and allow visualisa-
tion of stability and environments where genotypes are best
performed. These methods are most suitable for making deci-
sions around the deployment of genotypes across multiple
environments. They would certainly be useful in the visuali-
sation of forest data to help make informed decisions for
deployment.

The FA model has the ability to estimate the unstructured
genetic variance-covariance matrix for a large number of en-
vironments without the use of an excessive number of vari-
ance parameters. This type of model can be easily used to
explain the nature and the extent of G×E. Type-B genetic
correlations estimated from FA models can clearly show if
there are rank changes of genotypes among environments.
FA models are statistically efficient for breeding value estima-
tions and provide a reliable, holistic approach to estimate ge-
netic correlations between all pairs of environments (Cullis
et al. 2014). FA models are most useful for making decisions
of selection for breeding populations and decisions of deploy-
ment for production populations. The reaction norm approach
uses a combination of phenotypic and environmental data to
make inferences on the environmental drivers of G×E. It is
suitable for analysing traits that vary gradually and continu-
ously over an environmental gradient and needs environmen-
tal variables included to be clearly defined. Stability analysis
has intuitive appeal in forest tree breeding, helping forest
growers identify stable genotypes and reduce long-term risks.

All of these statistical methods provide solutions to the
identification of high-performing stable genotypes in forest
tree breeding programmes. However, pursuing stability of per-
formance does not take full advantage of potential genetic

Table 2 Summary of utility of G×E methodologies: the additive main effects and multiplicative interaction (AMMI), the genotype main effects and
G×E effects (GGE), factor analytic model (FA) and reaction norm

Methodology Strength Weakness

AMMI Identifies genotypes that have high performance and wide
stability across multi-environments

Treats G×E effects as fixed effects
Assumes homogeneous variance structure
Visually presents the best genotypes for particular environment
Suitable for making decisions regarding genotype deployment

Requires balanced data
Does not show the underlying causes of G×E

GGE biplot Identifies genotypes that have high performance and wide stability
across multiple environments

Treats G×E effects as fixed effects
Great for visualisation and picks the best genotypes for the right

environments
Recommended when environment is the main source of variation
Suitable for making decisions regarding genotype deployment

Requires balanced data
Does not show the underlying causes of G×E
No hypothesis testing is available

FA Estimates genetic correlations between all pairs of environments
simultaneously

Uses mixed linear models and treats G×E effects as random
Models heterogeneous variance structures for environments
Accommodates pedigree in the model to estimate breeding values
Easily handles unbalanced data and poor connectedness between

trials
Suitable for making decisions regarding selection for breeding and

deployment

Hard to explain the role of the latent variables in driving G×E
Does not show the role of latent variables in driving G×E

Reaction
norm

Suitable for analysing data on traits that vary gradually and
continuously over an environmental gradient

Links environmental variable with G×E and identifies the underlying
cause of G×E

Can be visualised by plotting observed phenotypic values against
environmental variables

Does not work when environmental variables are not clearly
identified

Only identifies G×E pattern related to the environmental
variables that are included in the analysis
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gain in specific environments. In order to maximise potential
genetic gains for all environments, selecting the right individ-
uals best adapted to specific environments is likely to be the
best approach.

Most G×E studies in forest tree breeding investigated the
patterns and magnitude of G×E for growth traits. High levels
of G×E were reported for these traits, especially in radiata
pine, loblolly pine, Eucalyptus and Populus species. Some
studies also investigated the patterns and magnitude of G×E
for form traits and wood property traits. Half the studies in-
cluded in this review reported a high level of G×E for form
traits whereas no G×E or minimal G×E was reported for wood
property traits.

In summary, G×E can be quantified in a number of ways,
and taking several different approaches will likely give com-
plementary insights to help understand the interactions in-
volved, and ensure the best outcome. For New Zealand and
for forestry in general, breeding value estimation is clearly
most effective using new methods such as factor analytic
models. For understanding and quantifying the detailed roles
of environments, more work is still required. We believe that
genomics technologies (e.g. Elshire et al. 2011; Neves et al.
2013) and genome sequence annotation (Ouzounis and Karp
2002; Wolf et al. 2001) will provide more information and
help unravel the cause and effect at the genetic level. To max-
imise genetic gains and economic benefits from forest planta-
tions, the strategy of selecting individuals for specific and
known environments should be applied. The end result will
be advances in forest productivity and forest management
systems that will ensure the long-term sustainability and en-
hanced profitability of the forest industry.

Data archiving statement This review manuscript does not use any
data. There are no data uploaded to any database.
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