ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVAccelerated Publicat...Accelerated PublicationNEXT

Mechanism of DNA Release from Cationic Liposome/DNA Complexes Used in Cell Transfection,

View Author Information
Department of Biophysics, State University of New York, Buffalo, New York 14214, and Department of Biopharmaceutical Sciences and Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, California 94143-0446
Cite this: Biochemistry 1996, 35, 18, 5616–5623
Publication Date (Web):May 7, 1996
https://doi.org/10.1021/bi9602019
Copyright © 1996 American Chemical Society

    Article Views

    7814

    Altmetric

    -

    Citations

    920
    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    To understand how DNA is released from cationic liposome/DNA complexes in cells, we investigated which biomolecules mediate release of DNA from a complex with cationic liposomes. Release from monovalent[1,2-dioleoyl-3-(trimethylammonio)propane] or multivalent (dioctadecylamidoglycylspermine) lipids was quantified by an increase of ethidium bromide (EtBr) fluorescence. Plasmid sensitivity to DNAse I degradation was examined using changes in plasmid migration on agarose gel electrophoresis. Physical separation of the DNA from the cationic lipid was confirmed and quantified on sucrose density gradients. Anionic liposomes containing compositions that mimic the cytoplasmic-facing monolayer of the plasma membrane (e.g. phosphatidylserine) rapidly released DNA from the complex. Release occurred near a 1/1 charge ratio (−/+) and was unaffected by ionic strength or ion type. Water soluble molecules with a high negative linear charge density such as dextran sulfate or heparin also released DNA. However, ionic water soluble molecules such as ATP, tRNA, DNA, poly(glutamic acid), spermidine, spermine, or histone did not, even at a 100-fold charge excess (−/+). On the basis of these results, we propose that after the cationic lipid/DNA complex is internalized into cells by endocytosis it destabilizes the endosomal membrane. Destabilization induces flip-flop of anionic lipids from the cytoplasmic-facing monolayer, which laterally diffuse into the complex and form a charge neutral ion pair with the cationic lipids. This results in displacement of the DNA from the cationic lipid and release of the DNA into cytoplasm. This mechanism accounts for a variety of observations on cationic lipid/DNA complex−cell interactions.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     This work was partially supported by NIH DK46052 and P50 HL42368.

     This work is dedicated to Demetrios Papahadjopoulos on his 60th birthday for his contributions to elucidating the role of anionic lipids in membrane function.

    §

     State University of New York.

    *

     To whom correspondence should be addressed. Telephone:  415-476-3895. Fax:  415-476-0688. E-mail:  [email protected].

     University of California.

     Abstract published in Advance ACS Abstracts, May 1, 1996.

    Cited By

    This article is cited by 920 publications.

    1. Francesca Giulimondi, Luca Digiacomo, Serena Renzi, Chiara Cassone, Andrea Pirrottina, Rosa Molfetta, Ilaria Elena Palamà, Gabriele Maiorano, Giuseppe Gigli, Heinz Amenitsch, Daniela Pozzi, Alessandra Zingoni, Giulio Caracciolo. Optimizing Transfection Efficiency in CAR-T Cell Manufacturing through Multiple Administrations of Lipid-Based Nanoparticles. ACS Applied Bio Materials 2024, Article ASAP.
    2. Daniela Pozzi, Giulio Caracciolo. Looking Back, Moving Forward: Lipid Nanoparticles as a Promising Frontier in Gene Delivery. ACS Pharmacology & Translational Science 2023, 6 (11) , 1561-1573. https://doi.org/10.1021/acsptsci.3c00185
    3. Erica Quagliarini, Junbiao Wang, Serena Renzi, Lishan Cui, Luca Digiacomo, Gianmarco Ferri, Luca Pesce, Valentina De Lorenzi, Giulia Matteoli, Heinz Amenitsch, Laura Masuelli, Roberto Bei, Daniela Pozzi, Augusto Amici, Francesco Cardarelli, Cristina Marchini, Giulio Caracciolo. Mechanistic Insights into the Superior DNA Delivery Efficiency of Multicomponent Lipid Nanoparticles: An In Vitro and In Vivo Study. ACS Applied Materials & Interfaces 2022, 14 (51) , 56666-56677. https://doi.org/10.1021/acsami.2c20019
    4. Yuichi Yamasaki, Daiki Kumekawa, Satoshi Yamauchi, Hodaka Omuro. Re-examination of Peptide-Sequence-Dependent Gene Expression of Cysteine-Installed Pegylated Oligolysine/DNA Complexes. ACS Omega 2022, 7 (18) , 15478-15487. https://doi.org/10.1021/acsomega.2c00122
    5. Bappa Maiti, Krishan Kumar, Subhasis Datta, Santanu Bhattacharya. Physical–Chemical Characterization of Bilayer Membranes Derived from (±) α-Tocopherol-Based Gemini Lipids and Their Interaction with Phosphatidylcholine Bilayers and Lipoplex Formation with Plasmid DNA. Langmuir 2022, 38 (1) , 36-49. https://doi.org/10.1021/acs.langmuir.1c01039
    6. Dipanjan Mukherjee, Debashish Paul, Sushmita Sarker, Md. Nur Hasan, Ria Ghosh, Sujanthi Easwara Prasad, Praveen K. Vemula, Ranjan Das, Arghya Adhikary, Samir Kumar Pal, Tatini Rakshit. Polyethylene Glycol-Mediated Fusion of Extracellular Vesicles with Cationic Liposomes for the Design of Hybrid Delivery Systems. ACS Applied Bio Materials 2021, 4 (12) , 8259-8266. https://doi.org/10.1021/acsabm.1c00804
    7. Yuebao Zhang, Changzhen Sun, Chang Wang, Katarina E. Jankovic, Yizhou Dong. Lipids and Lipid Derivatives for RNA Delivery. Chemical Reviews 2021, 121 (20) , 12181-12277. https://doi.org/10.1021/acs.chemrev.1c00244
    8. Kenichi Aburai, Kentaro Hatanaka, Shin Takano, Shota Fujii, Kazuo Sakurai. Characterizing an siRNA-Containing Lipid-Nanoparticle Prepared by a Microfluidic Reactor: Small-Angle X-ray Scattering and Cryotransmission Electron Microscopic Studies. Langmuir 2020, 36 (42) , 12545-12554. https://doi.org/10.1021/acs.langmuir.0c01079
    9. Sumon Pratihar, Yelisetty Venkata Suseela, Thimmaiah Govindaraju. Threading Intercalator-Induced Nanocondensates and Role of Endogenous Metal Ions in Decondensation for DNA Delivery. ACS Applied Bio Materials 2020, 3 (10) , 6979-6991. https://doi.org/10.1021/acsabm.0c00870
    10. Isabelle M. S. Degors, Cuifeng Wang, Zia Ur Rehman, Inge S. Zuhorn. Carriers Break Barriers in Drug Delivery: Endocytosis and Endosomal Escape of Gene Delivery Vectors. Accounts of Chemical Research 2019, 52 (7) , 1750-1760. https://doi.org/10.1021/acs.accounts.9b00177
    11. Jonas Buck, Philip Grossen, Pieter R. Cullis, Jörg Huwyler, Dominik Witzigmann. Lipid-Based DNA Therapeutics: Hallmarks of Non-Viral Gene Delivery. ACS Nano 2019, 13 (4) , 3754-3782. https://doi.org/10.1021/acsnano.8b07858
    12. Dakota J. Brock, Helena M. Kondow-McConaghy, Elizabeth C. Hager, Jean-Philippe Pellois. Endosomal Escape and Cytosolic Penetration of Macromolecules Mediated by Synthetic Delivery Agents. Bioconjugate Chemistry 2019, 30 (2) , 293-304. https://doi.org/10.1021/acs.bioconjchem.8b00799
    13. Juan M. Priegue, Irene Lostalé-Seijo, Daniel Crisan, Juan R. Granja, Francisco Fernández-Trillo, Javier Montenegro. Different-Length Hydrazone Activated Polymers for Plasmid DNA Condensation and Cellular Transfection. Biomacromolecules 2018, 19 (7) , 2638-2649. https://doi.org/10.1021/acs.biomac.8b00252
    14. Yi Zhao, Zhiyu He, Hai Gao, Haoyu Tang, Jianhua He, Qing Guo, Wenli Zhang, Jianping Liu. Fine Tuning of Core–Shell Structure of Hyaluronic Acid/Cell-Penetrating Peptides/siRNA Nanoparticles for Enhanced Gene Delivery to Macrophages in Antiatherosclerotic Therapy. Biomacromolecules 2018, 19 (7) , 2944-2956. https://doi.org/10.1021/acs.biomac.8b00501
    15. Michela Barattin, Andrea Mattarei, Anna Balasso, Cristina Paradisi, Laura Cantù, Elena Del Favero, Tapani Viitala, Francesca Mastrotto, Paolo Caliceti, Stefano Salmaso. pH-Controlled Liposomes for Enhanced Cell Penetration in Tumor Environment. ACS Applied Materials & Interfaces 2018, 10 (21) , 17646-17661. https://doi.org/10.1021/acsami.8b03469
    16. Meike N. Leiske, Fabian H. Sobotta, Friederike Richter, Stephanie Hoeppener, Johannes C. Brendel, Anja Traeger, Ulrich S. Schubert. How To Tune the Gene Delivery and Biocompatibility of Poly(2-(4-aminobutyl)-2-oxazoline) by Self- and Coassembly. Biomacromolecules 2018, 19 (3) , 748-760. https://doi.org/10.1021/acs.biomac.7b01535
    17. Indu Verma, Sumyra Sidiq, and Santanu Kumar Pal . Poly(l-lysine)-Coated Liquid Crystal Droplets for Sensitive Detection of DNA and Their Applications in Controlled Release of Drug Molecules. ACS Omega 2017, 2 (11) , 7936-7945. https://doi.org/10.1021/acsomega.7b01175
    18. Ashley M. Nelson, Allison M. Pekkanen, Neil L. Forsythe, John H. Herlihy, Musan Zhang, and Timothy E. Long . Synthesis of Water-Soluble Imidazolium Polyesters as Potential Nonviral Gene Delivery Vehicles. Biomacromolecules 2017, 18 (1) , 68-76. https://doi.org/10.1021/acs.biomac.6b01316
    19. Chieh-Cheng Huang, Zi-Xian Liao, Hsiang-Ming Lu, Wen-Yu Pan, Wei-Lin Wan, Chun-Chieh Chen, and Hsing-Wen Sung . Cellular Organelle-Dependent Cytotoxicity of Iron Oxide Nanoparticles and Its Implications for Cancer Diagnosis and Treatment: A Mechanistic Investigation. Chemistry of Materials 2016, 28 (24) , 9017-9025. https://doi.org/10.1021/acs.chemmater.6b03905
    20. Keishi Suga, Kei Akizaki, and Hiroshi Umakoshi . Quantitative Monitoring of Microphase Separation Behaviors in Cationic Liposomes Using HHC, DPH, and Laurdan: Estimation of the Local Electrostatic Potentials in Microdomains. Langmuir 2016, 32 (15) , 3630-3636. https://doi.org/10.1021/acs.langmuir.5b04682
    21. Damien Habrant, Pauline Peuziat, Thibault Colombani, Laurence Dallet, Johan Gehin, Emilie Goudeau, Bérangère Evrard, Olivier Lambert, Thomas Haudebourg, and Bruno Pitard . Design of Ionizable Lipids To Overcome the Limiting Step of Endosomal Escape: Application in the Intracellular Delivery of mRNA, DNA, and siRNA. Journal of Medicinal Chemistry 2016, 59 (7) , 3046-3062. https://doi.org/10.1021/acs.jmedchem.5b01679
    22. Stephen M. Bromfield and David K. Smith . Heparin versus DNA: Chiral Preferences in Polyanion Binding to Self-Assembled Multivalent (SAMul) Nanostructures. Journal of the American Chemical Society 2015, 137 (32) , 10056-10059. https://doi.org/10.1021/jacs.5b04344
    23. Francesca Ercole, Michael R. Whittaker, John F. Quinn, and Thomas P. Davis . Cholesterol Modified Self-Assemblies and Their Application to Nanomedicine. Biomacromolecules 2015, 16 (7) , 1886-1914. https://doi.org/10.1021/acs.biomac.5b00550
    24. Deniz Meneksedag-Erol, Tian Tang, and Hasan Uludağ . Probing the Effect of miRNA on siRNA–PEI Polyplexes. The Journal of Physical Chemistry B 2015, 119 (17) , 5475-5486. https://doi.org/10.1021/acs.jpcb.5b00415
    25. Stephanie J. Mattingly, Martin G. O’Toole, Kurtis T. James, Geoffrey J. Clark, and Michael H. Nantz . Magnetic Nanoparticle-Supported Lipid Bilayers for Drug Delivery. Langmuir 2015, 31 (11) , 3326-3332. https://doi.org/10.1021/la504830z
    26. Tony Le Gall, Julie Barbeau, Sylvain Barrier, Mathieu Berchel, Loïc Lemiègre, Jelena Jeftić, Cristelle Meriadec, Franck Artzner, Deborah R. Gill, Stephen C. Hyde, Claude Férec, Pierre Lehn, Paul-Alain Jaffrès, Thierry Benvegnu, and Tristan Montier . Effects of a Novel Archaeal Tetraether-Based Colipid on the In Vivo Gene Transfer Activity of Two Cationic Amphiphiles. Molecular Pharmaceutics 2014, 11 (9) , 2973-2988. https://doi.org/10.1021/mp4006276
    27. Xiahui Liu, Dongmei Ma, Hao Tang, Liang Tan, Qingji Xie, Youyu Zhang, Ming Ma, and Shouzhuo Yao . Polyamidoamine Dendrimer and Oleic Acid-Functionalized Graphene as Biocompatible and Efficient Gene Delivery Vectors. ACS Applied Materials & Interfaces 2014, 6 (11) , 8173-8183. https://doi.org/10.1021/am500812h
    28. Koen Rombouts, Thomas F. Martens, Elisa Zagato, Jo Demeester, Stefaan C. De Smedt, Kevin Braeckmans, and Katrien Remaut . Effect of Covalent Fluorescence Labeling of Plasmid DNA on Its Intracellular Processing and Transfection with Lipid-Based Carriers. Molecular Pharmaceutics 2014, 11 (5) , 1359-1368. https://doi.org/10.1021/mp4003078
    29. Megan C. Terp, Yun Wu, Bo Yu, Kwang Joo Kwak, and L. James Lee . Microwell Array Guided Assembly of Lipoplex Nanoparticles Containing siRNA. Langmuir 2014, 30 (10) , 2873-2878. https://doi.org/10.1021/la404366p
    30. D. Pozzi, C. Marchini, F. Cardarelli, A. Rossetta, V. Colapicchioni, A. Amici, M. Montani, S. Motta, P. Brocca, L. Cantù, and G. Caracciolo . Mechanistic Understanding of Gene Delivery Mediated by Highly Efficient Multicomponent Envelope-Type Nanoparticle Systems. Molecular Pharmaceutics 2013, 10 (12) , 4654-4665. https://doi.org/10.1021/mp400470p
    31. Charles H. Jones, Chih-Kuang Chen, Anitha Ravikrishnan, Snehal Rane, and Blaine A. Pfeifer . Overcoming Nonviral Gene Delivery Barriers: Perspective and Future. Molecular Pharmaceutics 2013, 10 (11) , 4082-4098. https://doi.org/10.1021/mp400467x
    32. Sanyog Jain, Sandeep Kumar, Ashish Kumar Agrawal, Kaushik Thanki, and Uttam Chand Banerjee . Enhanced Transfection Efficiency and Reduced Cytotoxicity of Novel Lipid–Polymer Hybrid Nanoplexes. Molecular Pharmaceutics 2013, 10 (6) , 2416-2425. https://doi.org/10.1021/mp400036w
    33. Zia ur Rehman, Dick Hoekstra, and Inge S. Zuhorn . Mechanism of Polyplex- and Lipoplex-Mediated Delivery of Nucleic Acids: Real-Time Visualization of Transient Membrane Destabilization without Endosomal Lysis. ACS Nano 2013, 7 (5) , 3767-3777. https://doi.org/10.1021/nn3049494
    34. Xi Xie, Alexander M. Xu, Sergio Leal-Ortiz, Yuhong Cao, Craig C. Garner, and Nicholas A. Melosh . Nanostraw–Electroporation System for Highly Efficient Intracellular Delivery and Transfection. ACS Nano 2013, 7 (5) , 4351-4358. https://doi.org/10.1021/nn400874a
    35. Nathalie Symens, Joanna Rejman, Bart Lucas, Joseph Demeester, Stefaan C. De Smedt, and Katrien Remaut . Noncoding DNA in Lipofection of HeLa Cells—A Few Insights. Molecular Pharmaceutics 2013, 10 (3) , 1070-1079. https://doi.org/10.1021/mp300569j
    36. Keishi Suga, Tomoyuki Tanabe, and Hiroshi Umakoshi . Heterogeneous Cationic Liposomes Modified with 3β-{N-[(N′,N′-Dimethylamino)ethyl]carbamoyl}cholesterol Can Induce Partial Conformational Changes in Messenger RNA and Regulate Translation in an Escherichia coli Cell-Free Translation System. Langmuir 2013, 29 (6) , 1899-1907. https://doi.org/10.1021/la3050576
    37. Colin L. Walsh, Juliane Nguyen, Matthew R. Tiffany, and Francis C. Szoka . Synthesis, Characterization, and Evaluation of Ionizable Lysine-Based Lipids for siRNA Delivery. Bioconjugate Chemistry 2013, 24 (1) , 36-43. https://doi.org/10.1021/bc300346h
    38. Eunjung Kim, Jaemoon Yang, Joseph Park, Soonhag Kim, Nam Hee Kim, Jong In Yook, Jin-Suck Suh, Seungjoo Haam, and Yong-Min Huh . Consecutive Targetable Smart Nanoprobe for Molecular Recognition of Cytoplasmic microRNA in Metastatic Breast Cancer. ACS Nano 2012, 6 (10) , 8525-8535. https://doi.org/10.1021/nn300289u
    39. Winni De Haes, Greet Van Mol, Céline Merlin, Stefaan C. De Smedt, Guido Vanham, and Joanna Rejman . Internalization of mRNA Lipoplexes by Dendritic Cells. Molecular Pharmaceutics 2012, 9 (10) , 2942-2949. https://doi.org/10.1021/mp3003336
    40. Zhong-Kai Cui, Anne Bouisse, Nicolas Cottenye, and Michel Lafleur . Formation of pH-Sensitive Cationic Liposomes from a Binary Mixture of Monoalkylated Primary Amine and Cholesterol. Langmuir 2012, 28 (38) , 13668-13674. https://doi.org/10.1021/la302278q
    41. Quynh-Phuong Luu, Ji-Young Shin, You-Kyoung Kim, Mohammad Ariful Islam, Sang-Kee Kang, Myung-Haing Cho, Yun-Jaie Choi, and Chong-Su Cho . High Gene Transfer by the Osmotic Polysorbitol-Mediated Transporter through the Selective Caveolae Endocytic Pathway. Molecular Pharmaceutics 2012, 9 (8) , 2206-2218. https://doi.org/10.1021/mp300072r
    42. Jean-Paul Behr . Synthetic Gene Transfer Vectors II: Back to the Future.. Accounts of Chemical Research 2012, 45 (7) , 980-984. https://doi.org/10.1021/ar200213g
    43. Juliane Nguyen and Francis C. Szoka . Nucleic Acid Delivery: The Missing Pieces of the Puzzle?. Accounts of Chemical Research 2012, 45 (7) , 1153-1162. https://doi.org/10.1021/ar3000162
    44. Nathalie Symens, Alejandro Méndez-Ardoy, Alejandro Díaz-Moscoso, Elena Sánchez-Fernández, Katrien Remaut, Joseph Demeester, José M. García Fernández, Stefaan C. De Smedt, and Joanna Rejman . Efficient Transfection of Hepatocytes Mediated by mRNA Complexed to Galactosylated Cyclodextrins. Bioconjugate Chemistry 2012, 23 (6) , 1276-1289. https://doi.org/10.1021/bc3001003
    45. Li Gao and Nan Ma . DNA-Templated Semiconductor Nanocrystal Growth for Controlled DNA Packing and Gene Delivery. ACS Nano 2012, 6 (1) , 689-695. https://doi.org/10.1021/nn204162y
    46. Wei Zhao, Andrey A. Gurtovenko, Ilpo Vattulainen, and Mikko Karttunen . Cationic Dimyristoylphosphatidylcholine and Dioleoyloxytrimethylammonium Propane Lipid Bilayers: Atomistic Insight for Structure and Dynamics. The Journal of Physical Chemistry B 2012, 116 (1) , 269-276. https://doi.org/10.1021/jp210619q
    47. Bhavani Kedika and Srilakshmi V. Patri . Influence of Minor Backbone Structural Variations in Modulating the in Vitro Gene Transfer Efficacies of α-Tocopherol Based Cationic Transfection Lipids. Bioconjugate Chemistry 2011, 22 (12) , 2581-2592. https://doi.org/10.1021/bc2004395
    48. Anja Schallon, Christopher V. Synatschke, Dmitry V. Pergushov, Valérie Jérôme, Axel H. E. Müller, and Ruth Freitag . DNA Melting Temperature Assay for Assessing the Stability of DNA Polyplexes Intended for Nonviral Gene Delivery. Langmuir 2011, 27 (19) , 12042-12051. https://doi.org/10.1021/la201803c
    49. Yun Wu, Yi-Ping Ho, Yicheng Mao, Xinmei Wang, Bo Yu, Kam W. Leong, and L. James Lee . Uptake and Intracellular Fate of Multifunctional Nanoparticles: A Comparison between Lipoplexes and Polyplexes via Quantum Dot Mediated Förster Resonance Energy Transfer. Molecular Pharmaceutics 2011, 8 (5) , 1662-1668. https://doi.org/10.1021/mp100466m
    50. Nathalie Symens, Rudolf Walczak, Joseph Demeester, Iain Mattaj, Stefaan C. De Smedt, and Katrien Remaut . Nuclear Inclusion of Nontargeted and Chromatin-Targeted Polystyrene Beads and Plasmid DNA Containing Nanoparticles. Molecular Pharmaceutics 2011, 8 (5) , 1757-1766. https://doi.org/10.1021/mp200120v
    51. Jingtao Zhang, Haihong Fan, Dorothy A. Levorse, and Louis S. Crocker . Interaction of Cholesterol-Conjugated Ionizable Amino Lipids with Biomembranes: Lipid Polymorphism, Structure–Activity Relationship, and Implications for siRNA Delivery. Langmuir 2011, 27 (15) , 9473-9483. https://doi.org/10.1021/la201464k
    52. Giulio Caracciolo, Daniela Pozzi, Anna Laura Capriotti, Carlotta Marianecci, Maria Carafa, Cristina Marchini, Maura Montani, Augusto Amici, Heinz Amenitsch, Michelle A. Digman, Enrico Gratton, Susana S. Sanchez, and Aldo Laganà . Factors Determining the Superior Performance of Lipid/DNA/Protammine Nanoparticles over Lipoplexes. Journal of Medicinal Chemistry 2011, 54 (12) , 4160-4171. https://doi.org/10.1021/jm200237p
    53. Voshavar Chandrashekhar, Marepally Srujan, Rairala Prabhakar, Rakesh C. Reddy, Bojja Sreedhar, Kiran K. R. Rentam, Sanjit Kanjilal, and Arabinda Chaudhuri . Cationic Amphiphiles with Fatty Acyl Chain Asymmetry of Coconut Oil Deliver Genes Selectively to Mouse Lung. Bioconjugate Chemistry 2011, 22 (3) , 497-509. https://doi.org/10.1021/bc100537r
    54. Tiia-Maaria Ketola, Martina Hanzlíková, Arto Urtti, Helge Lemmetyinen, Marjo Yliperttula, and Elina Vuorimaa . Role of Polyplex Intermediate Species on Gene Transfer Efficiency: Polyethylenimine−DNA Complexes and Time-Resolved Fluorescence Spectroscopy. The Journal of Physical Chemistry B 2011, 115 (8) , 1895-1902. https://doi.org/10.1021/jp109984c
    55. Jingtao Zhang, Haihong Fan, Dorothy A. Levorse, and Louis S. Crocker . Ionization Behavior of Amino Lipids for siRNA Delivery: Determination of Ionization Constants, SAR, and the Impact of Lipid pKa on Cationic Lipid−Biomembrane Interactions. Langmuir 2011, 27 (5) , 1907-1914. https://doi.org/10.1021/la104590k
    56. Bhavani Kedika and Srilakshmi V. Patri . Design, Synthesis, and inVitro Transfection Biology of Novel Tocopherol Based Monocationic Lipids: A Structure−Activity Investigation. Journal of Medicinal Chemistry 2011, 54 (2) , 548-561. https://doi.org/10.1021/jm100704u
    57. Marc A. Ilies Tiffany V. Sommers Li Ching He Adrian Kizewski Vishnu Dutt Sharma . Pyridinium Amphiphiles in Gene Delivery – Present and Perspectives. 2011, 23-38. https://doi.org/10.1021/bk-2011-1070.ch002
    58. Maria Arsianti, May Lim, Christopher P Marquis, and Rose Amal . Polyethylenimine Based Magnetic Iron-Oxide Vector: The Effect of Vector Component Assembly on Cellular Entry Mechanism, Intracellular Localization, and Cellular Viability. Biomacromolecules 2010, 11 (9) , 2521-2531. https://doi.org/10.1021/bm100748p
    59. Rongzuo Xu, Xu-Li Wang and Zheng-Rong Lu . New Amphiphilic Carriers Forming pH-Sensitive Nanoparticles for Nucleic Acid Delivery. Langmuir 2010, 26 (17) , 13874-13882. https://doi.org/10.1021/la1024185
    60. Takehisa Dewa, Tomohiro Asai, Yuka Tsunoda, Kiyoshi Kato, Daisuke Baba, Misa Uchida, Ayumi Sumino, Kayoko Niwata, Takuya Umemoto, Kouji Iida, Naoto Oku and Mamoru Nango. Liposomal Polyamine−Dialkyl Phosphate Conjugates as Effective Gene Carriers: Chemical Structure, Morphology, and Gene Transfer Activity. Bioconjugate Chemistry 2010, 21 (5) , 844-852. https://doi.org/10.1021/bc900376y
    61. DeFu Zhi, ShuBiao Zhang, Bing Wang, YiNan Zhao, BaoLing Yang and ShiJun Yu. Transfection Efficiency of Cationic Lipids with Different Hydrophobic Domains in Gene Delivery. Bioconjugate Chemistry 2010, 21 (4) , 563-577. https://doi.org/10.1021/bc900393r
    62. Martin Heinze, Gerald Brezesinski, Bodo Dobner and Andreas Langner . Novel Cationic Lipids Based on Malonic Acid Amides Backbone: Transfection Efficacy and Cell Toxicity Properties. Bioconjugate Chemistry 2010, 21 (4) , 696-708. https://doi.org/10.1021/bc9004624
    63. Emmanuel Klein, Miahala Ciobanu, Jérôme Klein, Valérie Machi, Christian Leborgne, Thierry Vandamme, Benoît Frisch, Françoise Pons, Antoine Kichler, Guy Zuber and Luc Lebeau . “HFP” Fluorinated Cationic Lipids for Enhanced Lipoplex Stability and Gene Delivery. Bioconjugate Chemistry 2010, 21 (2) , 360-371. https://doi.org/10.1021/bc900469z
    64. Daniela Pozzi, Giulio Caracciolo, Ruggero Caminiti, Sofia Candeloro De Sanctis, Heinz Amenitsch, Cristina Marchini, Maura Montani and Augusto Amici. Toward the Rational Design of Lipid Gene Vectors: Shape Coupling between Lipoplex and Anionic Cellular Lipids Controls the Phase Evolution of Lipoplexes and the Efficiency of DNA Release. ACS Applied Materials & Interfaces 2009, 1 (10) , 2237-2249. https://doi.org/10.1021/am900406b
    65. Kun Gao and Leaf Huang. Nonviral Methods for siRNA Delivery. Molecular Pharmaceutics 2009, 6 (3) , 651-658. https://doi.org/10.1021/mp800134q
    66. Rumiana Koynova, Boris Tenchov, Li Wang and Robert C. MacDonald . Hydrophobic Moiety of Cationic Lipids Strongly Modulates Their Transfection Activity. Molecular Pharmaceutics 2009, 6 (3) , 951-958. https://doi.org/10.1021/mp8002573
    67. Yu-Chuan Liu, Anne-Laure M. Le Ny, Judith Schmidt, Yeshayahu Talmon, Bradley F. Chmelka and C. Ted Lee, Jr. . Photo-Assisted Gene Delivery Using Light-Responsive Catanionic Vesicles. Langmuir 2009, 25 (10) , 5713-5724. https://doi.org/10.1021/la803588d
    68. Thida Phoeung, Liliana Morfin Huber and Michel Lafleur. Cationic Detergent/Sterol Mixtures Can Form Fluid Lamellar Phases and Stable Unilamellar Vesicles. Langmuir 2009, 25 (10) , 5778-5784. https://doi.org/10.1021/la804222w
    69. Giulio Caracciolo and Ruggero Caminiti, Michelle A. Digman, Enrico Gratton and Susana Sanchez. Efficient Escape from Endosomes Determines the Superior Efficiency of Multicomponent Lipoplexes. The Journal of Physical Chemistry B 2009, 113 (15) , 4995-4997. https://doi.org/10.1021/jp811423r
    70. Meredith A. Mintzer and Eric E. Simanek. Nonviral Vectors for Gene Delivery. Chemical Reviews 2009, 109 (2) , 259-302. https://doi.org/10.1021/cr800409e
    71. Charudharshini Srinivasan, Shafiuddin Siddiqui, Lawrence K. Silbart, Fotios Papadimitrakopoulos and Diane J. Burgess . Dual Fluorescent Labeling Method to Visualize Plasmid DNA Degradation. Bioconjugate Chemistry 2009, 20 (1) , 163-169. https://doi.org/10.1021/bc800184j
    72. Meiwen Cao, Manli Deng, Xiao-Ling Wang and Yilin Wang . Decompaction of Cationic Gemini Surfactant-Induced DNA Condensates by β-Cyclodextrin or Anionic Surfactant. The Journal of Physical Chemistry B 2008, 112 (43) , 13648-13654. https://doi.org/10.1021/jp803244f
    73. Giulio Caracciolo, Daniela Pozzi and Ruggero Caminiti, Cristina Marchini, Maura Montani and Augusto Amici, Heinz Amenitsch. Enhanced Transfection Efficiency of Multicomponent Lipoplexes in the Regime of Optimal Membrane Charge Density. The Journal of Physical Chemistry B 2008, 112 (36) , 11298-11304. https://doi.org/10.1021/jp803077n
    74. Avinash Bajaj, Paturu Kondaiah and Santanu Bhattacharya . Synthesis and Gene Transfection Efficacies of PEI−Cholesterol-Based Lipopolymers. Bioconjugate Chemistry 2008, 19 (8) , 1640-1651. https://doi.org/10.1021/bc700381v
    75. Avinash Bajaj, Bishwajit Paul, Paturu Kondaiah and Santanu Bhattacharya . Structure−Activity Investigation on the Gene Transfection Properties of Cardiolipin Mimicking Gemini Lipid Analogues. Bioconjugate Chemistry 2008, 19 (6) , 1283-1300. https://doi.org/10.1021/bc700474r
    76. Yosuke Obata, Daisuke Suzuki and Shinji Takeoka. Evaluation of Cationic Assemblies Constructed with Amino Acid Based Lipids for Plasmid DNA Delivery. Bioconjugate Chemistry 2008, 19 (5) , 1055-1063. https://doi.org/10.1021/bc700416u
    77. Luis Brito, Steven Little, Robert Langer and Mansoor Amiji . Poly(β-amino ester) and Cationic Phospholipid-Based Lipopolyplexes for Gene Delivery and Transfection in Human Aortic Endothelial and Smooth Muscle Cells. Biomacromolecules 2008, 9 (4) , 1179-1187. https://doi.org/10.1021/bm7011373
    78. Avinash Bajaj, Paturu Kondaiah and Santanu Bhattacharya . Effect of the Nature of the Spacer on Gene Transfer Efficacies of Novel Thiocholesterol Derived Gemini Lipids in Different Cell Lines: A Structure–Activity Investigation. Journal of Medicinal Chemistry 2008, 51 (8) , 2533-2540. https://doi.org/10.1021/jm7010436
    79. Molinda D. Kearns, Addai-Mensah Donkor and Michalakis Savva. Structure−Transfection Activity Studies of Novel Cationic Cholesterol-Based Amphiphiles. Molecular Pharmaceutics 2008, 5 (1) , 128-139. https://doi.org/10.1021/mp700131c
    80. Kewei Wang, Xuehai Yan, Yue Cui, Qiang He and Junbai Li. Synthesis and in vitro Behavior of Multivalent Cationic Lipopeptide for DNA Delivery and Release in HeLa Cells. Bioconjugate Chemistry 2007, 18 (6) , 1735-1738. https://doi.org/10.1021/bc060315p
    81. Avinash Bajaj, Bishwajit Paul, S. S. Indi, Paturu Kondaiah and Santanu Bhattacharya . Effect of the Hydrocarbon Chain and Polymethylene Spacer Lengths on Gene Transfection Efficacies of Gemini Lipids Based on Aromatic Backbone. Bioconjugate Chemistry 2007, 18 (6) , 2144-2158. https://doi.org/10.1021/bc700181k
    82. Giulio Caracciolo,, Daniela Pozzi,, Heinz Amenitsch, and, Ruggero Caminiti. Interaction of Lipoplexes with Anionic Lipids Resulting in DNA Release is a Two-Stage Process. Langmuir 2007, 23 (17) , 8713-8717. https://doi.org/10.1021/la7017665
    83. Giulio Caracciolo,, Cristina Marchini,, Daniela Pozzi,, Ruggero Caminiti,, Heinz Amenitsch,, Maura Montani, and, Augusto Amici. Structural Stability against Disintegration by Anionic Lipids Rationalizes the Efficiency of Cationic Liposome/DNA Complexes. Langmuir 2007, 23 (8) , 4498-4508. https://doi.org/10.1021/la063456o
    84. Hiroyuki Isobe,, Waka Nakanishi,, Naoki Tomita,, Shigeki Jinno,, Hiroto Okayama, and, Eiichi Nakamura. Nonviral Gene Delivery by Tetraamino Fullerene. Molecular Pharmaceutics 2006, 3 (2) , 124-134. https://doi.org/10.1021/mp050068r
    85. Christian Symietz,, Marc Schneider,, Gerald Brezesinski, and, Helmuth Möhwald. DNA Alignment at Cationic Lipid Monolayers at the Air/Water Interface. Macromolecules 2004, 37 (10) , 3865-3873. https://doi.org/10.1021/ma0348425
    86. P. C. A. Barreleiro and, B. Lindman. The Kinetics of DNA−Cationic Vesicle Complex Formation. The Journal of Physical Chemistry B 2003, 107 (25) , 6208-6213. https://doi.org/10.1021/jp0277107
    87. David Llères,, Jean-Pierre Clamme,, Emmanuel Dauty,, Thomas Blessing,, Guruswamy Krishnamoorthy,, Guy Duportail, and, Yves Mély. Investigation of the Stability of Dimeric Cationic Surfactant/DNA Complexes and Their Interaction with Model Membrane Systems. Langmuir 2002, 18 (26) , 10340-10347. https://doi.org/10.1021/la025845y
    88. Ye Fang and, Jie Yang. Two-Dimensional Condensation of DNA Molecules on Cationic Lipid Membranes. The Journal of Physical Chemistry B 1997, 101 (3) , 441-449. https://doi.org/10.1021/jp962382u
    89. Natascha Hartl, Bettina Gabold, Philipp Uhl, Adrian Kromer, Ximian Xiao, Gert Fricker, Walter Mier, Runhui Liu, Olivia M. Merkel. ApoE—functionalization of nanoparticles for targeted brain delivery—a feasible method for polyplexes?. Drug Delivery and Translational Research 2024, 14 (6) , 1660-1677. https://doi.org/10.1007/s13346-023-01482-w
    90. Jianzhou Feng, Yanli Gong, Qianqian Li, Chaoyong Yang, Yu An, Lingling Wu. In Situ Detection of Nucleic Acids in Extracellular Vesicles via Membrane Fusion. Chemistry – A European Journal 2024, 164 https://doi.org/10.1002/chem.202304111
    91. Simone Berger, Ulrich Lächelt, Ernst Wagner. Dynamic carriers for therapeutic RNA delivery. Proceedings of the National Academy of Sciences 2024, 121 (11) https://doi.org/10.1073/pnas.2307799120
    92. Milky Mittal, Annu Kumari, Bhashkar Paul, Adya Varshney, Bhavya ., Ashok Saini, Chaitenya Verma, Indra Mani. Challenges and Opportunities of Gene Therapy in Cancer. OBM Genetics 2024, 08 (01) , 1-501. https://doi.org/10.21926/obm.genet.2401219
    93. Anwesha Kanungo, Nigam Sekhar Tripathy, Liza Sahoo, Sarbari Acharya, Fahima Dilnawaz. Theranostic siRNA loaded mesoporous silica nanoplatforms: A game changer in gene therapy for cancer treatment. OpenNano 2024, 15 , 100195. https://doi.org/10.1016/j.onano.2023.100195
    94. Delphine Maze, Chantal Pichon, Patrick Midoux. Reversible stabilization of DNA/PEI complexes by reducible click-linkage between DNA and polymer. A new polyplex concept for lowering polymer quantity. Gene Therapy 2023, 30 (12) , 783-791. https://doi.org/10.1038/s41434-023-00386-1
    95. Hua Sun, Huibo Qi, Wanting Hu, Liandi Guan, Jianfeng Xue, Yongjian Ai, Yu Wang, Mingyu Ding, Qionglin Liang. Single Nanovesicles Tracking Reveals Their Heterogeneous Extracellular Adsorptions. Small 2023, 19 (45) https://doi.org/10.1002/smll.202301888
    96. Marzena Mach, Łukasz Płachta, Paweł Wydro. Study of the correlation between the structure of selected triester of phosphatidylcholine and their impact on physicochemical properties of model mammalian membranes. Biochimica et Biophysica Acta (BBA) - Biomembranes 2023, 253 , 184254. https://doi.org/10.1016/j.bbamem.2023.184254
    97. Chopaka Thongbamrer, Boon-ek Yingyongnarongkul, Uthai Sakee, Wang Nguitragool, Widchaya Radchatawedchakoon. Synthesis, gene transfection efficiency, and serum compatibility of β-sitosterol-based cationic lipids with different headgroups. New Journal of Chemistry 2023, 47 (42) , 19389-19403. https://doi.org/10.1039/D3NJ02503A
    98. Isaac Benavides, Wendell A. Scott, Xiaoying Cai, Z. Hong Zhou, Timothy J. Deming. Preparation and stability of pegylated poly(S-alkyl-L-homocysteine) coacervate core micelles in aqueous media. The European Physical Journal E 2023, 46 (9) https://doi.org/10.1140/epje/s10189-023-00339-x
    99. Sri Vidhya Chandrasekar, Akansha Singh, Ashish Ranjan. Overcoming Resistance to Immune Checkpoint Inhibitor Therapy Using Calreticulin-Inducing Nanoparticle. Pharmaceutics 2023, 15 (6) , 1693. https://doi.org/10.3390/pharmaceutics15061693
    100. Sophie Thalmayr, Melina Grau, Lun Peng, Jana Pöhmerer, Ulrich Wilk, Paul Folda, Mina Yazdi, Eric Weidinger, Tobias Burghardt, Miriam Höhn, Ernst Wagner, Simone Berger. Molecular Chameleon Carriers for Nucleic Acid Delivery: The Sweet Spot between Lipoplexes and Polyplexes. Advanced Materials 2023, 35 (25) https://doi.org/10.1002/adma.202211105
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect