ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Origin of Dual Photoluminescence States in ZnS–CuInS2 Alloy Nanostructures

View Author Information
Notre Dame Radiation Laboratory, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
Advanced Technology Division, Toyota Motor Europe, Hoge Wei 33, B-1930 Zaventem, Belgium
*E-mail: [email protected]. Website: www3.nd.edu/~kamatlab/.
Cite this: J. Phys. Chem. C 2016, 120, 19, 10641–10646
Publication Date (Web):April 26, 2016
https://doi.org/10.1021/acs.jpcc.6b01905
Copyright © 2016 American Chemical Society

    Article Views

    1336

    Altmetric

    -

    Citations

    36
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    ZnS–CuInS2 (ZCIS) alloy nanostructures are becoming increasingly important materials because of their photoluminescence properties. Here we explore the emission properties of ZCIS quantum dots (QDs) capped with dodecanethiol, which exhibit Zn:Cu-dependent emission properties. Absorption and photoluminescence excitation spectra indicate a single, composition-independent light absorbing state. The emission spectra point out the existence of two emissive states with lifetimes of ∼10 ns and ∼100 ns. The photoluminescence and time-resolved emission analysis provide insight into the synergy between the two intraband states and the possibility of modulating the emission through variation in the Zn/Cu ratio. Better understanding of light absorbing and emission mechanisms in alloyed nanostructures is essential for future development of photoelectric and display devices.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.6b01905.

    • Results of XPS analysis, time-resolved photoluminescence decay traces, summary of fitting parameter for photoluminescence decay traces, and deconvolution of photoluminescence peaks and TEM images are presented (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 36 publications.

    1. Taro Uematsu, Manunya Tepakidareekul, Tatsuya Hirano, Tsukasa Torimoto, Susumu Kuwabata. Facile High-Yield Synthesis of Ag–In–Ga–S Quaternary Quantum Dots and Coating with Gallium Sulfide Shells for Narrow Band-Edge Emission. Chemistry of Materials 2023, 35 (3) , 1094-1106. https://doi.org/10.1021/acs.chemmater.2c03023
    2. Brener R. C. Vale, Etienne Socie, Leticia R. C. Cunha, Andre F. V. Fonseca, Roberto Vaz, Jefferson Bettini, Jacques-E. Moser, Marco A. Schiavon. Revealing Exciton and Metal–Ligand Conduction Band Charge Transfer Absorption Spectra in Cu-Zn-In-S Nanocrystals. The Journal of Physical Chemistry C 2020, 124 (50) , 27858-27866. https://doi.org/10.1021/acs.jpcc.0c09681
    3. Tatsuya Kameyama, Hiroki Yamauchi, Takahisa Yamamoto, Toshiki Mizumaki, Hiroshi Yukawa, Masahiro Yamamoto, Shigeru Ikeda, Taro Uematsu, Yoshinobu Baba, Susumu Kuwabata, Tsukasa Torimoto. Tailored Photoluminescence Properties of Ag(In,Ga)Se2 Quantum Dots for Near-Infrared In Vivo Imaging. ACS Applied Nano Materials 2020, 3 (4) , 3275-3287. https://doi.org/10.1021/acsanm.9b02608
    4. Ting Wang, Xin Guan, Hanzhuang Zhang, Wenyu Ji. Exploring Electronic and Excitonic Processes toward Efficient Deep-Red CuInS2/ZnS Quantum-Dot Light-Emitting Diodes. ACS Applied Materials & Interfaces 2019, 11 (40) , 36925-36930. https://doi.org/10.1021/acsami.9b13108
    5. Arup K. Kunti, Nirmalendu Patra, Richard A. Harris, Shailendra K. Sharma, Dibyendu Bhattacharyya, Sambhu N. Jha, Hendrik C. Swart. Local Structure and Spectroscopic Properties of Eu3+-Doped BaZrO3. Inorganic Chemistry 2019, 58 (5) , 3073-3089. https://doi.org/10.1021/acs.inorgchem.8b03088
    6. Tatsuya Kameyama, Marino Kishi, Chie Miyamae, Dharmendar Kumar Sharma, Shuzo Hirata, Takahisa Yamamoto, Taro Uematsu, Martin Vacha, Susumu Kuwabata, Tsukasa Torimoto. Wavelength-Tunable Band-Edge Photoluminescence of Nonstoichiometric Ag–In–S Nanoparticles via Ga3+ Doping. ACS Applied Materials & Interfaces 2018, 10 (49) , 42844-42855. https://doi.org/10.1021/acsami.8b15222
    7. Heidi D. Nelson, Daniel R. Gamelin. Valence-Band Electronic Structures of Cu+-Doped ZnS, Alloyed Cu–In–Zn–S, and Ternary CuInS2 Nanocrystals: A Unified Description of Photoluminescence across Compositions. The Journal of Physical Chemistry C 2018, 122 (31) , 18124-18133. https://doi.org/10.1021/acs.jpcc.8b05286
    8. Melinda J. Shearer, Ming-Yang Li, Lain-Jong Li, Song Jin, Robert J. Hamers. Nanoscale Surface Photovoltage Mapping of 2D Materials and Heterostructures by Illuminated Kelvin Probe Force Microscopy. The Journal of Physical Chemistry C 2018, 122 (25) , 13564-13571. https://doi.org/10.1021/acs.jpcc.7b12579
    9. Tatsuya Kameyama, Seiya Koyama, Takahisa Yamamoto, Susumu Kuwabata, Tsukasa Torimoto. Enhanced Photocatalytic Activity of Zn–Ag–In–S Semiconductor Nanocrystals with a Dumbbell-Shaped Heterostructure. The Journal of Physical Chemistry C 2018, 122 (25) , 13705-13715. https://doi.org/10.1021/acs.jpcc.8b00255
    10. Steven M. Kobosko, Danilo H. Jara, and Prashant V. Kamat . AgInS2–ZnS Quantum Dots: Excited State Interactions with TiO2 and Photovoltaic Performance. ACS Applied Materials & Interfaces 2017, 9 (39) , 33379-33388. https://doi.org/10.1021/acsami.6b14604
    11. Natalia Razgoniaeva, Mingrui Yang, Cooper Colegrove, Natalia Kholmicheva, Pavel Moroz, Holly Eckard, Abigail Vore, and Mikhail Zamkov . Double-Well Colloidal Nanocrystals Featuring Two-Color Photoluminescence. Chemistry of Materials 2017, 29 (18) , 7852-7858. https://doi.org/10.1021/acs.chemmater.7b02585
    12. Gary Zaiats, Shingo Ikeda, Sachin Kinge, and Prashant V. Kamat . Quantum Dot Light-Emitting Devices: Beyond Alignment of Energy Levels. ACS Applied Materials & Interfaces 2017, 9 (36) , 30741-30745. https://doi.org/10.1021/acsami.7b07893
    13. Claudia Coughlan, Maria Ibáñez, Oleksandr Dobrozhan, Ajay Singh, Andreu Cabot, and Kevin M. Ryan . Compound Copper Chalcogenide Nanocrystals. Chemical Reviews 2017, 117 (9) , 5865-6109. https://doi.org/10.1021/acs.chemrev.6b00376
    14. Svenja Wepfer, Julia Frohleiks, A-Ra Hong, Ho Seong Jang, Gerd Bacher, and Ekaterina Nannen . Solution-Processed CuInS2-Based White QD-LEDs with Mixed Active Layer Architecture. ACS Applied Materials & Interfaces 2017, 9 (12) , 11224-11230. https://doi.org/10.1021/acsami.6b15660
    15. Qiong Liu, Fengren Cao, Fangli Wu, Shimou Chen, Jie Xiong, and Liang Li . Partial Ion Exchange Derived 2D Cu–Zn–In–S Nanosheets as Sensitizers of 1D TiO2 Nanorods for Boosting Solar Water Splitting. ACS Applied Materials & Interfaces 2016, 8 (39) , 26235-26243. https://doi.org/10.1021/acsami.6b08648
    16. Yuri Kim, Ali Imran Channa, YuJin Lee, Yubeen Kong, Hyun-Min Kim, Yang-Hee Kim, Seong Min Park, Dongho Kim, Heesun Yang. Green Ag–In–Ga–S quantum dots as highly absorption-capable, efficient, and color-pure emitters. Chemical Engineering Journal 2024, 116 , 150219. https://doi.org/10.1016/j.cej.2024.150219
    17. Xiaolin Guan, Liyuan Zhang, Shoujun Lai, Jiaming Zhang, Jingyu Wei, Kang Wang, Wentao Zhang, Chenghao Li, Jinhui Tong, Ziqiang Lei. Green synthesis of glyco-CuInS2 QDs with visible/NIR dual emission for 3D multicellular tumor spheroid and in vivo imaging. Journal of Nanobiotechnology 2023, 21 (1) https://doi.org/10.1186/s12951-023-01859-6
    18. Rahul Banyal, Aftab Aslam Parwaz Khan, Anita Sudhaik, Sonu, Pankaj Raizada, Anish Khan, Pardeep Singh, Malik A. Rub, Naved Azum, Maha M. Alotaibi, Abdullah M. Asiri. Emergence of CuInS2 derived photocatalyst for environmental remediation and energy conversion. Environmental Research 2023, 238 , 117288. https://doi.org/10.1016/j.envres.2023.117288
    19. Bing Chen, Weilin Zheng, Fengjun Chun, Xiuwen Xu, Qiang Zhao, Feng Wang. Synthesis and hybridization of CuInS 2 nanocrystals for emerging applications. Chemical Society Reviews 2023, 52 (23) , 8374-8409. https://doi.org/10.1039/D3CS00611E
    20. Taro Uematsu. Quantum Dots: From Surface Science of Nanoparticles to Cadmium-free Alternatives. Review of Polarography 2023, 69 (2) , 77-90. https://doi.org/10.5189/revpolarography.69.77
    21. Seigo Tateo, Hiroyuki Shinchi, Hikaru Matsumoto, Nonoka Nagata, Masahito Hashimoto, Masahiro Wakao, Yasuo Suda. Optimized immobilization of single chain variable fragment antibody onto non-toxic fluorescent nanoparticles for efficient preparation of a bioprobe. Colloids and Surfaces B: Biointerfaces 2023, 224 , 113192. https://doi.org/10.1016/j.colsurfb.2023.113192
    22. Tsukasa Torimoto, Tatsuya Kameyama, Taro Uematsu, Susumu Kuwabata. Controlling optical properties and electronic energy structure of I–III–VI semiconductor quantum dots for improving their photofunctions. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2023, 54 , 100569. https://doi.org/10.1016/j.jphotochemrev.2022.100569
    23. Shanna-Kay Ming, Richard A. Taylor, Paul O'Brien, Paul D. McNaughter, David J. Lewis. Tunable structural, morphological and optical properties of undoped, Mn, Ni and Ag-doped CuInS2 thin films prepared by AACVD. Materials Science in Semiconductor Processing 2022, 137 , 106224. https://doi.org/10.1016/j.mssp.2021.106224
    24. Gary Zaiats, Shingo Ikeda, Prashant V. Kamat. Optimization of the electron transport layer in quantum dot light-emitting devices. NPG Asia Materials 2020, 12 (1) https://doi.org/10.1038/s41427-020-00237-0
    25. Jubaraj B. Baruah. Inorganic Molecular Complexes: Potential for Growth of a New Subject Area in Self-Assembly. Topics in Current Chemistry 2020, 378 (2) https://doi.org/10.1007/s41061-020-0294-8
    26. Jinpu Zhang, Jiaming Wu, Xiaolei Lu, Shuwei Ma, Tianyu Lei, Shuxian Wang, Zhengmao Ye, Xin Cheng. Studying crystal-field splitting difference of Eu3+ ions from orthorhombic to cubic Ca4Al6SO16. Ceramics International 2020, 46 (5) , 5998-6005. https://doi.org/10.1016/j.ceramint.2019.11.056
    27. James Cassidy, Mikhail Zamkov. Nanoshell quantum dots: Quantum confinement beyond the exciton Bohr radius. The Journal of Chemical Physics 2020, 152 (11) https://doi.org/10.1063/1.5126423
    28. M Senthilkumar, C Imla Mary, M Pandiyarajan, G Manobalaji, S Moorthy Babu. Copper indium sulphide:zinc sulphide (CIS:ZnS)-alloyed quantum dots as an eco-friendly absorber in solar cells. Bulletin of Materials Science 2019, 42 (6) https://doi.org/10.1007/s12034-019-1957-3
    29. Arup Kumar Kunti, Shailendra Kumar Sharma, Ram Janay Choudhary, Hendrik Christoffel Swart. Structural and luminescence properties of laser assisted Eu3+ doped BaZrO3 thin films. Journal of Alloys and Compounds 2019, 801 , 99-111. https://doi.org/10.1016/j.jallcom.2019.06.063
    30. N.J. Simi, Ison V. Vanchipurackal. Structural and Optical Characterization of CuInS2-In2Se3 Green Nanostructures Synthesized by Hot Injection Method. Materials Today: Proceedings 2019, 8 , 203-206. https://doi.org/10.1016/j.matpr.2019.02.101
    31. Senthilkumar Muthu, Gary Zaiats, Moorthy Babu Sridharan, Prashant V. Kamat. Influence of Plasmonic Cu x S Interfacing Layer on Photovoltaic Performance of CIZS Quantum Dot Sensitized Solar Cells. Journal of The Electrochemical Society 2019, 166 (5) , H3133-H3137. https://doi.org/10.1149/2.0221905jes
    32. Taro Uematsu, Kazutaka Wajima, Dharmendar Kumar Sharma, Shuzo Hirata, Takahisa Yamamoto, Tatsuya Kameyama, Martin Vacha, Tsukasa Torimoto, Susumu Kuwabata. Narrow band-edge photoluminescence from AgInS2 semiconductor nanoparticles by the formation of amorphous III–VI semiconductor shells. NPG Asia Materials 2018, 10 (8) , 713-726. https://doi.org/10.1038/s41427-018-0067-9
    33. Jian Feng, Xiaosheng Yang, Guangwei Feng, Hong Xu. The experimental determination of composition-dependent molar extinction coefficient of nonstoichiometric Zn–Cu–In–S nanocrystals. Materials Research Express 2018, 5 (7) , 075030. https://doi.org/10.1088/2053-1591/aad14d
    34. Liang Yue, Huashang Rao, Jun Du, Zhenxiao Pan, Juan Yu, Xinhua Zhong. Comparative advantages of Zn–Cu–In–S alloy QDs in the construction of quantum dot-sensitized solar cells. RSC Advances 2018, 8 (7) , 3637-3645. https://doi.org/10.1039/C7RA12321C
    35. Dharmendar Kumar Sharma, Shuzo Hirata, Lukasz Bujak, Vasudevanpillai Biju, Tatsuya Kameyama, Marino Kishi, Tsukasa Torimoto, Martin Vacha. Influence of Zn on the photoluminescence of colloidal (AgIn) x Zn 2(1−x) S 2 nanocrystals. Physical Chemistry Chemical Physics 2017, 19 (5) , 3963-3969. https://doi.org/10.1039/C6CP07550A
    36. Dharmendar Kumar Sharma, Shuzo Hirata, Lukasz Bujak, Vasudevanpillai Biju, Tatsuya Kameyama, Marino Kishi, Tsukasa Torimoto, Martin Vacha. Single-particle spectroscopy of I–III–VI semiconductor nanocrystals: spectral diffusion and suppression of blinking by two-color excitation. Nanoscale 2016, 8 (28) , 13687-13694. https://doi.org/10.1039/C6NR03950B

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect