ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVResearch ArticleNEXT

Small GSH-Capped CuInS2 Quantum Dots: MPA-Assisted Aqueous Phase Transfer and Bioimaging Applications

View Author Information
Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Materials Science & Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Beijing 100081, P. R. China
Cancer Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, United States
§ Micro Nano Technology Center, Beijing Institute of Technology, 5 Zhongguancun South Street, Beijing 100081, P. R. China
*E-mail: [email protected]. Fax: +86-10-68918188. Tel: +86-10-68918188.
Cite this: ACS Appl. Mater. Interfaces 2015, 7, 32, 17623–17629
Publication Date (Web):July 27, 2015
https://doi.org/10.1021/acsami.5b05503
Copyright © 2015 American Chemical Society

    Article Views

    3706

    Altmetric

    -

    Citations

    90
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    An efficient ligand exchange strategy for aqueous phase transfer of hydrophobic CuInS2/ZnS quantum dots was developed by employing glutathione (GSH) and mercaptopropionic acid (MPA) as the ligands. The whole process takes less than 20 min and can be scaled up to gram amount. The material characterizations show that the final aqueous soluble samples are solely capped with GSH on the surface. Importantly, these GSH-capped CuInS2/ZnS quantum dots have small size (hydrodynamic diameter <10 nm), moderate fluorescent properties (up to 34%) as well as high stability in aqueous solutions (stable for more than three months in 4 °C without any significant fluorescence quenching). Moreover, this ligand exchange strategy is also versatile for the aqueous phase transfer of other hydrophobic quantum dots, for instance, CuInSe2 and CdSe/ZnS quantum dots. We further demonstrated that GSH-capped quantum dots could be suitable fluorescence markers to penetrate cell membrane and image the cells. In addition, the GSH-capped CuInS2 quantum dots also have potential use in other fields such as photocatalysis and quantum dots sensitized solar cells.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsami.5b05503.

    • Experimental details concerning other methods of phase transfer. Results of experiments with different ratio of GSH and MPA. UV and PL spectra, optical picture of the sample, and thermogravimetric analysis. Stability test with different pH and temperatures, under daylight and UV light and the results of the MTT test. (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 90 publications.

    1. Ho Kyung Lee, Ji Hyeon Kim, Il Tae Kim, Dal Ho Lee, Chan Ho Park. Insight into the Synthetic Mechanism of Cadmium-Free Blue-Emissive Quantum Dots for Eco Light-Converting System. ACS Sustainable Chemistry & Engineering 2024, 12 (7) , 2588-2597. https://doi.org/10.1021/acssuschemeng.3c06115
    2. Byung Ku Jung, Hyeri Yoo, Bogyeom Seo, Hyung Jin Choi, Young Kyun Choi, Tae Hyuk Kim, Nuri Oh, Soo Young Kim, Sangtae Kim, Yunki Lee, Jae Won Shim, Hye Yeon Park, Gyu Weon Hwang, Tse Nga Ng, Soong Ju Oh. High-Affinity Ligand-Enhanced Passivation of Group III–V Colloidal Quantum Dots for Sensitive Near-Infrared Photodetection. ACS Energy Letters 2024, 9 (2) , 504-512. https://doi.org/10.1021/acsenergylett.3c02515
    3. Yanhu Wang, Lili Li, Shenguang Ge, Liang Zhang, Xiao Wang, Jinghua Yu. DNAzyme-Mediated Biodeposition Coupling Adjustable Cascade Electric Fields for Photoelectrochemical Telomerase Activity Monitoring. ACS Sensors 2023, 8 (9) , 3538-3546. https://doi.org/10.1021/acssensors.3c01191
    4. Anh T. Nguyen, Dustin R. Baucom, Yong Wang, Colin D. Heyes. Compact, Fast Blinking Cd-Free Quantum Dots for Super-Resolution Fluorescence Imaging. Chemical & Biomedical Imaging 2023, 1 (3) , 251-259. https://doi.org/10.1021/cbmi.3c00018
    5. Maksim Miropoltsev, K. David Wegner, Ines Häusler, Vasile-Dan Hodoroaba, Ute Resch-Genger. Influence of Hydrophilic Thiol Ligands of Varying Denticity on the Luminescence Properties and Colloidal Stability of Quaternary Semiconductor Nanocrystals. The Journal of Physical Chemistry C 2022, 126 (47) , 20101-20113. https://doi.org/10.1021/acs.jpcc.2c05342
    6. Ying-Jie Li, Ting-Ting Huang, Juan Liu, Yong-Qiang Xie, Bingbing Shi, You-Ming Zhang, Hong Yao, Tai-Bao Wei, Qi Lin. Detection of Lead(II) in Living Cells by Inducing the Transformation of a Supramolecular System into Quantum Dots. ACS Sustainable Chemistry & Engineering 2022, 10 (24) , 7907-7915. https://doi.org/10.1021/acssuschemeng.2c00537
    7. Li Fu, Xuwen Gao, Shuangtian Dong, Jingna Jia, Yuqi Xu, Dongyang Wang, Guizheng Zou. Coreactant-Free and Direct Electrochemiluminescence from Dual-Stabilizer-Capped InP/ZnS Nanocrystals: A New Route Involving n-Type Luminophore. Analytical Chemistry 2022, 94 (2) , 1350-1356. https://doi.org/10.1021/acs.analchem.1c04612
    8. Min-Jae Choi, Laxmi Kishore Sagar, Bin Sun, Margherita Biondi, Seungjin Lee, Amin Morteza Najjariyan, Larissa Levina, F. Pelayo García de Arquer, Edward H. Sargent. Ligand Exchange at a Covalent Surface Enables Balanced Stoichiometry in III–V Colloidal Quantum Dots. Nano Letters 2021, 21 (14) , 6057-6063. https://doi.org/10.1021/acs.nanolett.1c01286
    9. Chien-Tien Chen, Santosh Salunke, Tzu-Tang Wei, Yen-An Tang, Yi-Ching Wang. Fluorescent Nanohybrids from ZnS/CdSe Quantum Dots Functionalized with Triantennary, N-Hydroxy-p-(4-arylbutanamido)benzamide/Gallamide Dendrons That Act as Inhibitors of Histone Deacetylase for Lung Cancer. ACS Applied Bio Materials 2021, 4 (3) , 2475-2489. https://doi.org/10.1021/acsabm.0c01438
    10. Chuanzhen Zhao, Tianxing Man, Xiaobin Xu, Qing Yang, Wenfei Liu, Steven J. Jonas, Michael A. Teitell, Pei-Yu Chiou, Paul S. Weiss. Photothermal Intracellular Delivery Using Gold Nanodisk Arrays. ACS Materials Letters 2020, 2 (11) , 1475-1483. https://doi.org/10.1021/acsmaterialslett.0c00428
    11. Pradyut Roy, Gayathri Devatha, Soumendu Roy, Anish Rao, Pramod P. Pillai. Electrostatically Driven Resonance Energy Transfer in an All-Quantum Dot Based Donor–Acceptor System. The Journal of Physical Chemistry Letters 2020, 11 (13) , 5354-5360. https://doi.org/10.1021/acs.jpclett.0c01360
    12. Chenghui Xia, Wentao Wang, Liang Du, Freddy T. Rabouw, Dave J. van den Heuvel, Hans C. Gerritsen, Hedi Mattoussi, Celso de Mello Donega. Förster Resonance Energy Transfer between Colloidal CuInS2/ZnS Quantum Dots and Dark Quenchers. The Journal of Physical Chemistry C 2020, 124 (2) , 1717-1731. https://doi.org/10.1021/acs.jpcc.9b10536
    13. Tianxing Man, Xiongfeng Zhu, Yu Ting Chow, Emma R. Dawson, Ximiao Wen, Alexander N. Patananan, Tingyi Leo Liu, Chuanzhen Zhao, Cong Wu, Jason S. Hong, Pei-Shan Chung, Daniel L. Clemens, Bai-Yu Lee, Paul S. Weiss, Michael A. Teitell, Pei-Yu Chiou. Intracellular Photothermal Delivery for Suspension Cells Using Sharp Nanoscale Tips in Microwells. ACS Nano 2019, 13 (9) , 10835-10844. https://doi.org/10.1021/acsnano.9b06025
    14. Christina H. M. van Oversteeg, Freddy E. Oropeza, Jan P. Hofmann, Emiel J. M. Hensen, Petra E. de Jongh, Celso de Mello Donega. Water-Dispersible Copper Sulfide Nanocrystals via Ligand Exchange of 1-Dodecanethiol. Chemistry of Materials 2019, 31 (2) , 541-552. https://doi.org/10.1021/acs.chemmater.8b04614
    15. Ying-Chu Chen, Hao-Hsuan Chang, Yu-Kuei Hsu. Synthesis of CuInS2 Quantum Dots/In2S3/ZnO Nanowire Arrays with High Photoelectrochemical Activity. ACS Sustainable Chemistry & Engineering 2018, 6 (8) , 10861-10868. https://doi.org/10.1021/acssuschemeng.8b02154
    16. Oleksandr Stroyuk, Alexandra Raevskaya, Felix Spranger, Oleksandr Selyshchev, Volodymyr Dzhagan, Steffen Schulze, Dietrich R. T. Zahn, Alexander Eychmüller. Origin and Dynamics of Highly Efficient Broadband Photoluminescence of Aqueous Glutathione-Capped Size-Selected Ag–In–S Quantum Dots. The Journal of Physical Chemistry C 2018, 122 (25) , 13648-13658. https://doi.org/10.1021/acs.jpcc.8b00106
    17. Marina Gromova, Aurélie Lefrançois, Louis Vaure, Fabio Agnese, Dmitry Aldakov, Axel Maurice, David Djurado, Colette Lebrun, Arnaud de Geyer, Tobias U. Schülli, Stéphanie Pouget, and Peter Reiss . Growth Mechanism and Surface State of CuInS2 Nanocrystals Synthesized with Dodecanethiol. Journal of the American Chemical Society 2017, 139 (44) , 15748-15759. https://doi.org/10.1021/jacs.7b07401
    18. Youngsun Kim, Ho Seong Jang, Hyunki Kim, Sehoon Kim, and Duk Young Jeon . Controlled Synthesis of CuInS2/ZnS Nanocubes and Their Sensitive Photoluminescence Response toward Hydrogen Peroxide. ACS Applied Materials & Interfaces 2017, 9 (37) , 32097-32105. https://doi.org/10.1021/acsami.7b09388
    19. Yulu Zhou, Wenhui Hu, John Ludwig, and Jier Huang . Exceptionally Robust CuInS2/ZnS Nanoparticles as Single Component Photocatalysts for H2 Evolution. The Journal of Physical Chemistry C 2017, 121 (35) , 19031-19035. https://doi.org/10.1021/acs.jpcc.7b05241
    20. Claudia Coughlan, Maria Ibáñez, Oleksandr Dobrozhan, Ajay Singh, Andreu Cabot, and Kevin M. Ryan . Compound Copper Chalcogenide Nanocrystals. Chemical Reviews 2017, 117 (9) , 5865-6109. https://doi.org/10.1021/acs.chemrev.6b00376
    21. Gaixia Xu, Shuwen Zeng, Butian Zhang, Mark T. Swihart, Ken-Tye Yong, and Paras N. Prasad . New Generation Cadmium-Free Quantum Dots for Biophotonics and Nanomedicine. Chemical Reviews 2016, 116 (19) , 12234-12327. https://doi.org/10.1021/acs.chemrev.6b00290
    22. Raul Calzada, Christopher M. Thompson, Dana E. Westmoreland, Kedy Edme, and Emily A. Weiss . Organic-to-Aqueous Phase Transfer of Cadmium Chalcogenide Quantum Dots Using a Sulfur-Free Ligand for Enhanced Photoluminescence and Oxidative Stability. Chemistry of Materials 2016, 28 (18) , 6716-6723. https://doi.org/10.1021/acs.chemmater.6b03106
    23. Xiaoli Cai, Yanan Luo, Weiying Zhang, Dan Du, and Yuehe Lin . pH-Sensitive ZnO Quantum Dots–Doxorubicin Nanoparticles for Lung Cancer Targeted Drug Delivery. ACS Applied Materials & Interfaces 2016, 8 (34) , 22442-22450. https://doi.org/10.1021/acsami.6b04933
    24. Danilo H. Jara, Kevin G. Stamplecoskie, and Prashant V. Kamat . Two Distinct Transitions in CuxInS2 Quantum Dots. Bandgap versus Sub-Bandgap Excitations in Copper-Deficient Structures. The Journal of Physical Chemistry Letters 2016, 7 (8) , 1452-1459. https://doi.org/10.1021/acs.jpclett.6b00571
    25. Alice D. P. Leach and Janet E. Macdonald . Optoelectronic Properties of CuInS2 Nanocrystals and Their Origin. The Journal of Physical Chemistry Letters 2016, 7 (3) , 572-583. https://doi.org/10.1021/acs.jpclett.5b02211
    26. Wenda Zhang, Xijian Duan, Yangzhi Tan, Junjie Hao, Hongmei Zhu, Qingqian Wang, Hongcheng Yang, Haochen Liu, Kai Wang, Zhiwen Wang, Ya‐Long Wang, Yujie Song, Xiao Wei Sun. Giant Pyramidal Near‐Infrared InP/ZnS Quantum Dots with Size Over 15 nm for Cell Imaging. Laser & Photonics Reviews 2024, 12 https://doi.org/10.1002/lpor.202400367
    27. Carolina Arriaza-Echanes, Jessica L. Campo-Giraldo, Felipe Valenzuela-Ibaceta, Javiera Ramos-Zúñiga, José M. Pérez-Donoso. Biosynthesis of Cu-In-S Nanoparticles by a Yeast Isolated from Union Glacier, Antarctica: A Platform for Enhanced Quantum Dot-Sensitized Solar Cells. Nanomaterials 2024, 14 (6) , 552. https://doi.org/10.3390/nano14060552
    28. Wojciech Białowąs, Rym Boudjemaa, Karine Steenkeste, Pauline Nyssen, Maryse Hoebeke, Janina Lulek, Marie Pierre Fontaine-Aupart, Raphaël Schneider. Reactive oxygen species production by photoexcited (CuInS2)x(ZnS)1-x quantum dots and their phototoxicity towards Staphylococcus aureus bacteria. Journal of Photochemistry and Photobiology A: Chemistry 2024, 446 , 115165. https://doi.org/10.1016/j.jphotochem.2023.115165
    29. Tao Zhang, Feng Li, Gaoxiang Huang, Yun Zhang, Feng Zhao, Yan Huang. Dual emission quaternary alloyed quantum dots for white light-emitting diodes with high color-rendering index. Optical Materials 2024, 147 , 114732. https://doi.org/10.1016/j.optmat.2023.114732
    30. Kaylin Cleo Januarie, Marlon Oranzie, Usisipho Feleni, Emmanuel Iwuoha. Quantum dot amplified impedimetric aptasensor for interferon-gamma. Electrochimica Acta 2023, 463 , 142825. https://doi.org/10.1016/j.electacta.2023.142825
    31. Naeem Mohammad, Devesh Khanna, Priyanka Phalswal, Pawan K. Khanna. One-pot synthesis of CIS nano-particles and their EMI shielding studies. Materials Letters 2023, 347 , 134597. https://doi.org/10.1016/j.matlet.2023.134597
    32. Jeladhara Sobhanan, Jose V. Rival, Abdulaziz Anas, Edakkattuparambil Sidharth Shibu, Yuta Takano, Vasudevanpillai Biju. Luminescent quantum dots: Synthesis, optical properties, bioimaging and toxicity. Advanced Drug Delivery Reviews 2023, 197 , 114830. https://doi.org/10.1016/j.addr.2023.114830
    33. Tong Li, Cong Liu, Ruyi Li, Xiaohua Huang, Xiaofei Qi, Xiaohan Mi, Tianyu Bai, Shanghua Xing. Luminescent AgGaSe 2 /ZnSe nanocrystals: rapid synthesis, color tunability, aqueous phase transfer, and bio-labeling application. Dalton Transactions 2023, 52 (14) , 4554-4561. https://doi.org/10.1039/D2DT03979F
    34. Yanbing Lv, Jinjin Fan, Man Zhao, Ruili Wu, Lin Song Li. Recent advances in quantum dot-based fluorescence-linked immunosorbent assays. Nanoscale 2023, 15 (12) , 5560-5578. https://doi.org/10.1039/D2NR07247E
    35. Salar Khaledian, Mohadese Abdoli, Reza Fatahian, Saleh Salehi Zahabi. Quantum Dots in Cancer Cell Imaging. 2023https://doi.org/10.5772/intechopen.107671
    36. Zhiyan Piao, Dan Yang, Zhongjie Cui, Haiyang He, Shiliang Mei, Hanxu Lu, Zizhao Fu, Le Wang, Wanlu Zhang, Ruiqian Guo. Recent Advances in Metal Chalcogenide Quantum Dots: From Material Design to Biomedical Applications. Advanced Functional Materials 2022, 32 (44) https://doi.org/10.1002/adfm.202207662
    37. Olanrewaju A. Aladesuyi, Thabang C. Lebepe, Rodney Maluleke, Oluwatobi S. Oluwafemi. Biological applications of ternary quantum dots: A review. Nanotechnology Reviews 2022, 11 (1) , 2304-2319. https://doi.org/10.1515/ntrev-2022-0136
    38. Sabyasachi Pramanik, Satyapriya Bhandari. Surface-modified quantum dots for advanced sensing applications. 2022, 243-282. https://doi.org/10.1016/B978-0-323-90244-1.00010-0
    39. Hua-jin Zeng, Li-jun Sun, Ling-bo Qu, Ran Yang. Modulation of bovine serum albumin aggregation by glutathione functionalized MoS2 quantum dots. International Journal of Biological Macromolecules 2022, 195 , 237-245. https://doi.org/10.1016/j.ijbiomac.2021.12.005
    40. Yibing Liu, Yu Zhang, Xianlong Zhang, Wei Zhang, Xinghua Wang, Ying Sun, Pinyi Ma, Yibing Huang, Daqian Song. Near-infrared fluorescent probe based on Ag&Mn:ZnInS QDs for tyrosinase activity detection and inhibitor screening. Sensors and Actuators B: Chemical 2021, 344 , 130234. https://doi.org/10.1016/j.snb.2021.130234
    41. Giacomo Morselli, Marco Villa, Andrea Fermi, Kevin Critchley, Paola Ceroni. Luminescent copper indium sulfide (CIS) quantum dots for bioimaging applications. Nanoscale Horizons 2021, 6 (9) , 676-695. https://doi.org/10.1039/D1NH00260K
    42. Qirui Fan, Abhilasha Dehankar, Thomas K. Porter, Jessica O. Winter. Effect of Micelle Encapsulation on Toxicity of CdSe/ZnS and Mn-Doped ZnSe Quantum Dots. Coatings 2021, 11 (8) , 895. https://doi.org/10.3390/coatings11080895
    43. Xiao-Lin Wang, Xiao Han, Xiao-Ying Tang, Xiao-Jun Chen, Han-Jun Li. A Review of Off–On Fluorescent Nanoprobes: Mechanisms, Properties, and Applications. Journal of Biomedical Nanotechnology 2021, 17 (7) , 1249-1272. https://doi.org/10.1166/jbn.2021.3117
    44. Yongfeng Liu, Xiaosheng Tang, Ming Deng, Tao Zhu, Ludvig Edman, Jia Wang. Hydrophilic AgInZnS quantum dots as a fluorescent turn-on probe for Cd2+ detection. Journal of Alloys and Compounds 2021, 864 , 158109. https://doi.org/10.1016/j.jallcom.2020.158109
    45. Raybel Muñoz, Eva M. Santos, Carlos A. Galan-Vidal, Jose M. Miranda, Aroa Lopez-Santamarina, Jose A. Rodriguez. Ternary Quantum Dots in Chemical Analysis. Synthesis and Detection Mechanisms. Molecules 2021, 26 (9) , 2764. https://doi.org/10.3390/molecules26092764
    46. Dominik Voigt, Michael Bredol, Atoosa Gonabadi. A general strategy for CuInS2 based quantum dots with adjustable surface chemistry. Optical Materials 2021, 115 , 110994. https://doi.org/10.1016/j.optmat.2021.110994
    47. Ziang Guo, Xiaowei Huang, Zhihua Li, Jiyong Shi, Xiaodong Zhai, Xuetao Hu, Xiaobo Zou. Employing CuInS 2 quantum dots modified with vancomycin for detecting Staphylococcus aureus and iron( iii ). Analytical Methods 2021, 13 (12) , 1517-1526. https://doi.org/10.1039/D0AY02253E
    48. Lianjiang Tan, Changyu He. Advances in inorganic-based colloidal nanovehicles functionalized for nitric oxide delivery. Colloids and Surfaces B: Biointerfaces 2021, 199 , 111508. https://doi.org/10.1016/j.colsurfb.2020.111508
    49. Zhiwei Long, Wenda Zhang, Junhang Tian, Guantong Chen, Yuanhong Liu, Ronghui Liu. Recent research on the luminous mechanism, synthetic strategies, and applications of CuInS 2 quantum dots. Inorganic Chemistry Frontiers 2021, 8 (4) , 880-897. https://doi.org/10.1039/D0QI01228A
    50. Weili Li, Hongchao Geng, Lu Yao, Haiyan Xu, Yongjun Han, Pengtao Sheng. Improving the Performance of Near-infrared CuInSe 2 Quantum Dots by Two Strategies: Doping and Ligand Exchange. Nano 2021, 16 (02) , 2150012. https://doi.org/10.1142/S1793292021500120
    51. Richardson R. Silva, Denilson V. Freitas, Felipe L.N. Sousa, Anderson C. Jesus, Stterferson E. Silva, Alexandra A.P. Mansur, Sandhra M. Carvalho, Dayane S. Marques, Isadora C. Carvalho, Walter M. Azevedo, Herman S. Mansur, Marcelo Navarro. Synthesis of CuInS2 and CuInS2@ZnX (X = S, Se) nanoparticles for bioimaging of cancer cells using electrochemically generated S2- and Se2-. Journal of Alloys and Compounds 2021, 853 , 156926. https://doi.org/10.1016/j.jallcom.2020.156926
    52. Jaison Jeevanandam, Satheesh Kumar Balu, Swetha Andra, Michael K. Danquah, Manisha Vidyavathi, Murugesan Muthalagu. Quantum Dots Synthesis and Application. 2021, 229-265. https://doi.org/10.1007/978-3-030-62761-4_9
    53. Fahimeh Hajipour, , Sedigheh Asad, , Mohammad Ali Amoozegar, , Ali Asghar Javidparvar, , Jialun Tang, , Haizheng Zhong, , Khosro Khajeh, . Developing a Fluorescent Hybrid Nanobiosensor Based on Quantum Dots and Azoreductase Enzyme forMethyl Red Monitoring. Iranian Biomedical Journal 2021, 25 (1) , 8-20. https://doi.org/10.29252/ibj.25.1.8
    54. Oluwatobi Samuel Oluwafemi, El Hadji Mamour Sakho, Sundararajan Parani, Thabang Calvin Lebepe. Bioimaging and therapeutic applications of ternary quantum dots. 2021, 155-206. https://doi.org/10.1016/B978-0-12-818303-8.00006-X
    55. Oluwatobi Samuel Oluwafemi, El Hadji Mamour Sakho, Sundararajan Parani, Thabang Calvin Lebepe. Synthesis of ternary I–III–VI quantum dots. 2021, 47-76. https://doi.org/10.1016/B978-0-12-818303-8.00009-5
    56. Yan Zhang, Zhenlong Zhang, Yuefeng Liu, Huiping Gao, Yanli Mao. Short-chain ligands capped CuInSe2 quantum dots as hole transport material for inverted perovskite solar cells. Materials Science in Semiconductor Processing 2020, 120 , 105267. https://doi.org/10.1016/j.mssp.2020.105267
    57. Rajendran Jose Varghese, Oluwatobi Samuel Oluwafemi. The Photoluminescence and Biocompatibility of CuInS2-Based Ternary Quantum Dots and Their Biological Applications. Chemosensors 2020, 8 (4) , 101. https://doi.org/10.3390/chemosensors8040101
    58. Maksim Miropoltsev, Vera Kuznetsova, Anton Tkach, Sergei Cherevkov, Anastasiia Sokolova, Viktoria Osipova, Yulia Gromova, Mikhail Baranov, Anatoly Fedorov, Yurii Gun'ko, Alexander Baranov. FRET-Based Analysis of AgInS2/ZnAgInS/ZnS Quantum Dot Recombination Dynamics. Nanomaterials 2020, 10 (12) , 2455. https://doi.org/10.3390/nano10122455
    59. Binxia Yuan, Xiaodong Cai, Xinyi Fang, Daolei Wang, Rui Zhu, Sheng Cao, Maoliang Wu, Qunzhi Zhu. One-step synthesis of water-soluble red AgInS2 nanocrystals with high photocatalytic hydrogen production activity. Solid State Sciences 2020, 109 , 106408. https://doi.org/10.1016/j.solidstatesciences.2020.106408
    60. Song Xu, Na Cheng, Huiming Yin, Dapeng Cao, Baoxiu Mi. Electrospray preparation of CuInS2 films as efficient counter electrode for dye-sensitized solar cells. Chemical Engineering Journal 2020, 397 , 125463. https://doi.org/10.1016/j.cej.2020.125463
    61. Meidong Yu, Zhenjie Zhao. Plasmon-enhanced up-conversion luminescence and oxygen vacancy defect-induced yellow light in annealed Cu8S5@SiO2@Er2O3 nanocomposites. Journal of Luminescence 2020, 225 , 117361. https://doi.org/10.1016/j.jlumin.2020.117361
    62. Xiaoxia Huangfu, Yang Shen, Anzi Yang, Lixiao Liu, Wen Luo, Wenbo Zhao. Synthesis of water soluble CuGaS2/ZnS quantum dots for ultrasensitive fluorescent detection of alkaline phosphatase based on inner filter effect. Colloids and Surfaces B: Biointerfaces 2020, 191 , 110984. https://doi.org/10.1016/j.colsurfb.2020.110984
    63. Baofeng Yun, Hongqin Zhu, Jiaxin Yuan, Qiao Sun, Zhen Li. Synthesis, modification and bioapplications of nanoscale copper chalcogenides. Journal of Materials Chemistry B 2020, 8 (22) , 4778-4812. https://doi.org/10.1039/D0TB00182A
    64. Qunye He, Qing Wu, Xiangran Feng, Ziyan Liao, Wenyao Peng, Yanfei Liu, Dongming Peng, Zhenbao Liu, Miao Mo. Interfacing DNA with nanoparticles: Surface science and its applications in biosensing. International Journal of Biological Macromolecules 2020, 151 , 757-780. https://doi.org/10.1016/j.ijbiomac.2020.02.217
    65. Mingjun Chen, Guoyi Dong, Xue Li, Zichen Gao, Hao Feng, Fenghe Wang, Guan Li, Xu Li. Influence of MoS2 quantum dots size on the properties of memristor devices. Optik 2020, 207 , 163776. https://doi.org/10.1016/j.ijleo.2019.163776
    66. Oleksandr Stroyuk, Oleksandra Raievska, Dietrich R. T. Zahn. Unique Luminescent Properties of Composition-/Size-Selected Aqueous Ag-In-S and Core/Shell Ag-In-S/ZnS Quantum Dots. 2020, 67-122. https://doi.org/10.1007/978-3-030-46596-4_3
    67. Jun Ke. Semiconductor Nanocrystal–Based Nanosensors and Metal Ions Sensing. 2020, 79-117. https://doi.org/10.1016/B978-0-12-814796-2.00003-4
    68. Wenhui Hu, Sizhuo Yang, Jier Huang. Composition effect on the carrier dynamics and catalytic performance of CuInS2/ZnS quantum dots for light driven hydrogen generation. The Journal of Chemical Physics 2019, 151 (21) https://doi.org/10.1063/1.5125024
    69. Seonwoo Lee. Designing of low-cost, eco-friendly, and versatile photosensitive composites / inks based on carboxyl-terminated quantum dots and reactive prepolymers in a mixed solvent: Suppression of the coffee-ring strain and aggregation. Polymer 2019, 182 , 121839. https://doi.org/10.1016/j.polymer.2019.121839
    70. Oleksandr Stroyuk, Alexandra Raevskaya, Felix Spranger, Oleksandr Selyshchev, Volodymyr Dzhagan, Dmytro Solonenko, Nikolai Gaponik, Dietrich R. T. Zahn, Alexander Eychmüller. Mercury-indium-sulfide nanocrystals: A new member of the family of ternary in based chalcogenides. The Journal of Chemical Physics 2019, 151 (14) , 144701. https://doi.org/10.1063/1.5119991
    71. Davina Moodelly, Patrycja Kowalik, Piotr Bujak, Adam Pron, Peter Reiss. Synthesis, photophysical properties and surface chemistry of chalcopyrite-type semiconductor nanocrystals. Journal of Materials Chemistry C 2019, 7 (38) , 11665-11709. https://doi.org/10.1039/C9TC03875B
    72. Jun‐Hao Zhou, Kun Yuan, Liang Zhou, Yu Guo, Ming‐Yu Luo, Xiao‐Yan Guo, Qing‐Yuan Meng, Ya‐Wen Zhang. Boosting Electrochemical Reduction of CO 2 at a Low Overpotential by Amorphous Ag‐Bi‐S‐O Decorated Bi 0 Nanocrystals. Angewandte Chemie 2019, 131 (40) , 14335-14339. https://doi.org/10.1002/ange.201908735
    73. Jun‐Hao Zhou, Kun Yuan, Liang Zhou, Yu Guo, Ming‐Yu Luo, Xiao‐Yan Guo, Qing‐Yuan Meng, Ya‐Wen Zhang. Boosting Electrochemical Reduction of CO 2 at a Low Overpotential by Amorphous Ag‐Bi‐S‐O Decorated Bi 0 Nanocrystals. Angewandte Chemie International Edition 2019, 58 (40) , 14197-14201. https://doi.org/10.1002/anie.201908735
    74. Lu Yao, Hongchao Geng, Runrun Cheng, Kesheng Cao, Pengtao Sheng, Weili Li, Songtian Li. Preparation of hybrid photoelectrode based on defect-poor Zn-CuInSe2 QDs sensitized nanoporous ZnO nanosheets with an application in azo dye removal. Journal of Materials Science: Materials in Electronics 2019, 30 (8) , 7928-7939. https://doi.org/10.1007/s10854-019-01114-5
    75. Dominika Kalinowska, Marcin Drozd, Ilona Grabowska-Jadach, Mariusz Pietrzak, Artur Dybko, Elżbieta Malinowska, Zbigniew Brzózka. The influence of selected ω-mercaptocarboxylate ligands on physicochemical properties and biological activity of Cd-free, zinc‑copper‑indium sulfide colloidal nanocrystals. Materials Science and Engineering: C 2019, 97 , 583-592. https://doi.org/10.1016/j.msec.2018.12.043
    76. Na Qi, Hui Zhao, Qiaozhi Wang, Yan Qin, Hao Yuan, Ying Li. Preparing CdS QDs in sodium alginate gel: realizing water solubility and stimuli responsiveness of QDs in an integrative way. Soft Matter 2019, 15 (11) , 2319-2327. https://doi.org/10.1039/C8SM02483A
    77. Verena Perner, Thomas Rath, Franz Pirolt, Otto Glatter, Karin Wewerka, Ilse Letofsky-Papst, Peter Zach, Mathias Hobisch, Birgit Kunert, Gregor Trimmel. Hot injection synthesis of CuInS 2 nanocrystals using metal xanthates and their application in hybrid solar cells. New Journal of Chemistry 2019, 43 (1) , 356-363. https://doi.org/10.1039/C8NJ04823A
    78. Po-Ting Wu, Chih-Ling Lin, Che-Wei Lin, Ning-Chu Chang, Wei-Bor Tsai, Jiashing Yu. Methylene-Blue-Encapsulated Liposomes as Photodynamic Therapy Nano Agents for Breast Cancer Cells. Nanomaterials 2019, 9 (1) , 14. https://doi.org/10.3390/nano9010014
    79. Jewel Ann Maria Xavier, Gayathri Devatha, Soumendu Roy, Anish Rao, Pramod P. Pillai. Electrostatically regulated photoinduced electron transfer in “cationic” eco-friendly CuInS 2 /ZnS quantum dots in water. Journal of Materials Chemistry A 2018, 6 (44) , 22248-22255. https://doi.org/10.1039/C8TA05269G
    80. Pei Yang, Li-Jie Shi, Jian-Min Zhang, Gui-Bin Liu, Shengyuan A Yang, Wei Guo, Yugui Yao. Tuning to the band gap by complex defects engineering: insights from hybrid functional calculations in CuInS 2. Journal of Physics D: Applied Physics 2018, 51 (2) , 025105. https://doi.org/10.1088/1361-6463/aa9c17
    81. Oleksandr Stroyuk, Alexandra Raevskaya, Nikolai Gaponik. Solar light harvesting with multinary metal chalcogenide nanocrystals. Chemical Society Reviews 2018, 47 (14) , 5354-5422. https://doi.org/10.1039/C8CS00029H
    82. Fei Li, Xiandi Wang, Zhiguo Xia, Caofeng Pan, Quanlin Liu. Photoluminescence Tuning in Stretchable PDMS Film Grafted Doped Core/Multishell Quantum Dots for Anticounterfeiting. Advanced Functional Materials 2017, 27 (17) https://doi.org/10.1002/adfm.201700051
    83. Wubshet Mekonnen Girma, Mochamad Zakki Fahmi, Adi Permadi, Mulu Alemayehu Abate, Jia-Yaw Chang. Synthetic strategies and biomedical applications of I–III–VI ternary quantum dots. Journal of Materials Chemistry B 2017, 5 (31) , 6193-6216. https://doi.org/10.1039/C7TB01156C
    84. Alexandra E. Raevskaya, Maria V. Ivanchenko, Mykola A. Skoryk, Oleksandr L. Stroyuk. Brightly luminescent colloidal Ag–In–S nanoparticles stabilized in aqueous solutions by branched polyethyleneimine. Journal of Luminescence 2016, 178 , 295-300. https://doi.org/10.1016/j.jlumin.2016.06.011
    85. Tong-Tong Xuan, Jia-Qing Liu, Cai-Yan Yu, Rong-Jun Xie, Hui-Li Li. Facile Synthesis of Cadmium-Free Zn-In-S:Ag/ZnS Nanocrystals for Bio-Imaging. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep24459
    86. Ruosheng Zeng, Zhiguo Sun, Chunjiao Zhou, Cheng Fang, Guo-Cheng Han, Zhencheng Chen. Well-resolved oil-soluble Au-doped ZnCdS quantum dots and enhancing doping emission with In-codoping. Journal of Alloys and Compounds 2016, 671 , 66-73. https://doi.org/10.1016/j.jallcom.2016.02.073
    87. S. Shashank Chetty, S. Praneetha, Sandeep Basu, Chetana Sachidanandan, A. Vadivel Murugan. Sustainable, Rapid Synthesis of Bright-Luminescent CuInS2-ZnS Alloyed Nanocrystals: Multistage Nano-xenotoxicity Assessment and Intravital Fluorescence Bioimaging in Zebrafish-Embryos. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep26078
    88. Tran Thi Kim Chi, Ung Thi Dieu Thuy, Tran Thi Thuong Huyen, Nguyen Thi Minh Thuy, Nguyen Thi Le, Nguyen Quang Liem. Enhanced Optical Properties of Cu-In-S Quantum Dots with Zn Addition. Journal of Electronic Materials 2016, 45 (5) , 2449-2454. https://doi.org/10.1007/s11664-016-4368-x
    89. Tatsuya Kameyama, Yujiro Ishigami, Hiroshi Yukawa, Taisuke Shimada, Yoshinobu Baba, Tetsuya Ishikawa, Susumu Kuwabata, Tsukasa Torimoto. Crystal phase-controlled synthesis of rod-shaped AgInTe 2 nanocrystals for in vivo imaging in the near-infrared wavelength region. Nanoscale 2016, 8 (10) , 5435-5440. https://doi.org/10.1039/C5NR07532G
    90. Christine Buchmaier, Thomas Rath, Franz Pirolt, Astrid-Caroline Knall, Petra Kaschnitz, Otto Glatter, Karin Wewerka, Ferdinand Hofer, Birgit Kunert, Kurt Krenn, Gregor Trimmel. Room temperature synthesis of CuInS 2 nanocrystals. RSC Advances 2016, 6 (108) , 106120-106129. https://doi.org/10.1039/C6RA22813E

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect