ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Generalized One-Pot Synthesis of Copper Sulfide, Selenide-Sulfide, and Telluride-Sulfide Nanoparticles

View Author Information
Department of Nanochemistry, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
Cite this: Chem. Mater. 2014, 26, 3, 1442–1449
Publication Date (Web):January 9, 2014
https://doi.org/10.1021/cm4035598
Copyright © 2014 American Chemical Society

    Article Views

    7217

    Altmetric

    -

    Citations

    147
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Here we report a facile approach to synthesize copper chalcogenide (Cu2–xS, Cu2–xSeyS1–y and Cu2–xTeyS1–y) nanocrystals without employing hot-injection, at moderate reaction temperatures (200–220 °C) and free of phosphines. Scaling up of the synthesis yields monodisperse nanoparticles without variations in their morphology. We have observed the formation of alloyed copper selenide-sulfide and telluride-sulfide nanocrystals due to the incorporation of sulfur by using 1-dodecanethiol as a ligand along with oleic acid. The materials obtained possess localized surface plasmon resonances in the near-infrared region, which are demonstrated to be widely tunable via a controlled oxidation generating copper vacancies. Copper sulfide nanoparticles with well-defined initial chalcocite crystal phase were subjected to oxidation followed by structural characterization. Structural rearrangement of the oxidized chalcocite Cu2–xS crystal lattice to roxbyite by aging is proven to release the copper vacancies. Further oxidation again can create new copper vacancies in the roxbyite lattice, however its structure does not evolve into covellite CuS. These findings suggest that besides nonstoichiometry (i.e., the value of x) induced by oxidation, crystal structure is an important factor responsible for plasmonic properties of copper chalcogenide nanocrystals. Furthermore, successful water solubilization of Cu2–xTeyS1–y nanoparticles with preservation of their plasmon band has been realized via a ligand exchange approach employing a mPEG-SH stabilizer.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Histograms displaying size distributions of Cu2–xS, Cu2–xSeyS1–y, and Cu2–xTeyS1–y NCs. TEM images demonstrating a spontaneous self-assembly of Cu2–xS and Cu2–xSeyS1–y NCs. TEM images of Cu2–xSeyS1–y NCs obtained from scaled up synthesis as well as of Cu2–xTeyS1–y NCs synthesized in DDT. Absorbance spectra of DDT and the mixture of DDT with Te powder after heating. Crystal structures of high and low chalcocite Cu2S unit cells. Electron diffraction patterns of Cu2–xS, Cu2–xSeyS1–y and Cu2–xTeyS1–y NCs. HRTEM images of individual Cu2–xS, Cu2–xSeyS1–y and Cu2–xTeyS1–y particles, crystal structures of which differ from the corresponding dominant phases. XRD patterns of as-synthesized Cu2–xS NCs, oxidized by addition of CAN, aged by storage and additionally CAN-oxidized aged sample. Absorbance spectra of Cu7S4 NC colloid before and after a stepwise addition of CAN. TEM images of Cu2–xS NCs before and after oxidation. Absorbance spectra of small size Cu2–xSeyS1–y NCs before and after their oxidation. Details of the ligand exchange on Cu2–xTeyS1–y NCs. Absorbance spectra and TEM images of Cu2–xTeyS1–y NCs before and after the ligand exchange and water solubilization. This information is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 147 publications.

    1. Jie Zheng, Hengke Liu, Shi-Hui Chen, Biao Huang, Tao Tang, Peng Huang, Ran Cui. Biosynthesis of CuTe Nanorods with Large Molar Extinction Coefficients for NIR-II Photoacoustic Imaging. Analytical Chemistry 2024, 96 (13) , 5315-5322. https://doi.org/10.1021/acs.analchem.4c00325
    2. Philippe B. Green, Ona Segura Lecina, Petru P. Albertini, Anna Loiudice, Raffaella Buonsanti. Colloidal-ALD-Grown Metal Oxide Shells Enable the Synthesis of Photoactive Ligand/Nanocrystal Composite Materials. Journal of the American Chemical Society 2023, 145 (14) , 8189-8197. https://doi.org/10.1021/jacs.3c01439
    3. Ki-Hyun Cho, Francis M. Alcorn, Jaeyoung Heo, Prashant K. Jain. Plasmon Resonances and Structures of Chalcogenide Alloy Nanocrystals. Chemistry of Materials 2022, 34 (11) , 4992-4999. https://doi.org/10.1021/acs.chemmater.2c00269
    4. Nandan Ghorai, Hirendra N. Ghosh. Chemical Interface Damping in Nonstoichiometric Semiconductor Plasmonic Nanocrystals: An Effect of the Surrounding Environment. Langmuir 2022, 38 (18) , 5339-5350. https://doi.org/10.1021/acs.langmuir.2c00446
    5. Mengqi Sun, Nicholas Kreis, Kexun Chen, Xiaoqi Fu, Song Guo, Hui Wang. Covellite Nanodisks and Digenite Nanorings: Colloidal Synthesis, Phase Transitions, and Optical Properties. Chemistry of Materials 2021, 33 (21) , 8546-8558. https://doi.org/10.1021/acs.chemmater.1c03259
    6. Luis F. Garcia-Herrera, Haley P. McAllister, Huiyan Xiong, Haiying Wang, Robert W. Lord, Sarah K. O’Boyle, Adem Imamovic, Benjamin C. Steimle, Raymond E. Schaak, Katherine E. Plass. Multistep Regioselectivity and Non-Kirkendall Anion Exchange of Copper Chalcogenide Nanorods. Chemistry of Materials 2021, 33 (10) , 3841-3850. https://doi.org/10.1021/acs.chemmater.1c01107
    7. Leyla Najafi, Sebastiano Bellani, Andrea Castelli, Milena P. Arciniegas, Rosaria Brescia, Reinier Oropesa-Nuñez, Beatriz Martín-García, Michele Serri, Filippo Drago, Liberato Manna, Francesco Bonaccorso. Octapod-Shaped CdSe Nanocrystals Hosting Pt with High Mass Activity for the Hydrogen Evolution Reaction. Chemistry of Materials 2020, 32 (6) , 2420-2429. https://doi.org/10.1021/acs.chemmater.9b04883
    8. Nandan Ghorai, Hirendra N. Ghosh. Ultrafast Plasmon Dynamics and Hole–Phonon Coupling in NIR Active Nonstoichiometric Semiconductor Plasmonic Cu2–xS Nanocrystals. The Journal of Physical Chemistry C 2019, 123 (46) , 28401-28410. https://doi.org/10.1021/acs.jpcc.9b10043
    9. Ying Liang, Hui Li, Ruipeng Hou, Jun Wang, Kai Wang, Mengke Ge, Jun Luo, Zhipeng Huang, Chi Zhang. Vertical Stacking of Copper Sulfide Nanoparticles and Molybdenum Sulfide Nanosheets for Enhanced Nonlinear Absorption. ACS Applied Materials & Interfaces 2019, 11 (39) , 35835-35844. https://doi.org/10.1021/acsami.9b06662
    10. R. Margoth Córdova-Castro, Marianna Casavola, Mark van Schilfgaarde, Alexey V. Krasavin, Mark A. Green, David Richards, Anatoly V. Zayats. Anisotropic Plasmonic CuS Nanocrystals as a Natural Electronic Material with Hyperbolic Optical Dispersion. ACS Nano 2019, 13 (6) , 6550-6560. https://doi.org/10.1021/acsnano.9b00282
    11. Sonam Maiti, Santanu Maiti, Ali Hossain Khan, Andreas Wolf, Dirk Dorfs, Iwan Moreels, Frank Schreiber, Marcus Scheele. Dye-Sensitized Ternary Copper Chalcogenide Nanocrystals: Optoelectronic Properties, Air Stability, and Photosensitivity. Chemistry of Materials 2019, 31 (7) , 2443-2449. https://doi.org/10.1021/acs.chemmater.8b05108
    12. Jianping Long, Zhiqian Hou, Chaozhu Shu, Chao Han, Weijie Li, Rui Huang, Jiazhao Wang. Free-Standing Three-Dimensional CuCo2S4 Nanosheet Array with High Catalytic Activity as an Efficient Oxygen Electrode for Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces 2019, 11 (4) , 3834-3842. https://doi.org/10.1021/acsami.8b15699
    13. Yang Liu, Dewei Zhu, Yongjun Hu, Mark T. Swihart, Wei Wei. Controlled Synthesis of Cu2–xSe Nanoparticles as Near-Infrared Photothermal Agents and Irradiation Wavelength Dependence of Their Photothermal Conversion Efficiency. Langmuir 2018, 34 (46) , 13905-13909. https://doi.org/10.1021/acs.langmuir.8b02133
    14. Ankit Agrawal, Shin Hum Cho, Omid Zandi, Sandeep Ghosh, Robert W. Johns, Delia J. Milliron. Localized Surface Plasmon Resonance in Semiconductor Nanocrystals. Chemical Reviews 2018, 118 (6) , 3121-3207. https://doi.org/10.1021/acs.chemrev.7b00613
    15. Zhiguo Xia, Huajing Fang, Xiuwen Zhang, Maxim S. Molokeev, Romain Gautier, Qingfeng Yan, Su-Huai Wei, and Kenneth R. Poeppelmeier . CsCu5Se3: A Copper-Rich Ternary Chalcogenide Semiconductor with Nearly Direct Band Gap for Photovoltaic Application. Chemistry of Materials 2018, 30 (3) , 1121-1126. https://doi.org/10.1021/acs.chemmater.7b05104
    16. Christian Rohner, Anna Pekkari, Hanna Härelind, and Kasper Moth-Poulsen . Synthesis of Cu Nanoparticles: Stability and Conversion into Cu2S Nanoparticles by Decomposition of Alkanethiolate. Langmuir 2017, 33 (46) , 13272-13276. https://doi.org/10.1021/acs.langmuir.7b02117
    17. Victoria Benavente Llorente, Volodymyr M. Dzhagan, Nikolai Gaponik, Rodrigo A. Iglesias, Dietrich R. T. Zahn, and Vladimir Lesnyak . Electrochemical Tuning of Localized Surface Plasmon Resonance in Copper Chalcogenide Nanocrystals. The Journal of Physical Chemistry C 2017, 121 (33) , 18244-18253. https://doi.org/10.1021/acs.jpcc.7b05334
    18. Mundher Al-Shakban, Peter D. Matthews, Geradius Deogratias, Paul D. McNaughter, James Raftery, Inigo Vitorica-Yrezabal, Egid B. Mubofu, and Paul O’Brien . Novel Xanthate Complexes for the Size-Controlled Synthesis of Copper Sulfide Nanorods. Inorganic Chemistry 2017, 56 (15) , 9247-9254. https://doi.org/10.1021/acs.inorgchem.7b01288
    19. Dongxu Zhu, Aiwei Tang, Qinghua Kong, Bin Zeng, Chunhe Yang, and Feng Teng . Roles of Sulfur Sources in the Formation of Alloyed Cu2–xSySe1–y Nanocrystals: Controllable Synthesis and Tuning of Plasmonic Resonance Absorption. The Journal of Physical Chemistry C 2017, 121 (29) , 15922-15930. https://doi.org/10.1021/acs.jpcc.7b03826
    20. Samrat Das Adhikari, Anirban Dutta, Gyanaranjan Prusty, Puspanjali Sahu, and Narayan Pradhan . Symmetry Break and Seeded 2D Anisotropic Growth in Ternary CuGaS2 Nanocrystals. Chemistry of Materials 2017, 29 (12) , 5384-5393. https://doi.org/10.1021/acs.chemmater.7b01775
    21. Claudia Coughlan, Maria Ibáñez, Oleksandr Dobrozhan, Ajay Singh, Andreu Cabot, and Kevin M. Ryan . Compound Copper Chalcogenide Nanocrystals. Chemical Reviews 2017, 117 (9) , 5865-6109. https://doi.org/10.1021/acs.chemrev.6b00376
    22. Jiaojiao Zheng, Baosong Dai, Jia Liu, Jialong Liu, muwei Ji, Jiajia Liu, Yuanmin Zhou, Meng Xu, and Jiatao Zhang . Hierarchical Self-Assembly of Cu7Te5 Nanorods into Superstructures with Enhanced SERS Performance. ACS Applied Materials & Interfaces 2016, 8 (51) , 35426-35434. https://doi.org/10.1021/acsami.6b11058
    23. Andreas Wolf, Lisa Diestel, Franziska Lübkemann, Torben Kodanek, Tarek Mohamed, Jürgen Caro, and Dirk Dorfs . Plasmonic Semiconductor Nanoparticles in a Metal–Organic Framework Structure and Their in Situ Cation Exchange. Chemistry of Materials 2016, 28 (20) , 7511-7518. https://doi.org/10.1021/acs.chemmater.6b03425
    24. Andreas Wolf, Dominik Hinrichs, Joachim Sann, Jan F. Miethe, Nadja C. Bigall, and Dirk Dorfs . Growth of Cu2–xSe–CuPt and Cu1.1S–Pt Hybrid Nanoparticles. The Journal of Physical Chemistry C 2016, 120 (38) , 21925-21931. https://doi.org/10.1021/acs.jpcc.6b05574
    25. Yongfeng Tong, Tingming Jiang, Azzedine Bendounan, François Nicolas, Stefan Kubsky, and Vladimir A. Esaulov . Selenium, Benzeneselenol, and Selenophene Interaction with Cu(100). The Journal of Physical Chemistry C 2016, 120 (38) , 21486-21495. https://doi.org/10.1021/acs.jpcc.6b06217
    26. Lihui Chen, Masanori Sakamoto, Mitsutaka Haruta, Takashi Nemoto, Ryota Sato, Hiroki Kurata, and Toshiharu Teranishi . Tin Ion Directed Morphology Evolution of Copper Sulfide Nanoparticles and Tuning of Their Plasmonic Properties via Phase Conversion. Langmuir 2016, 32 (30) , 7582-7587. https://doi.org/10.1021/acs.langmuir.6b02035
    27. Grzegorz Gabka, Piotr Bujak, Andrzej Ostrowski, Waldemar Tomaszewski, Wojciech Lisowski, Janusz W. Sobczak, and Adam Pron . Cu–Fe–S Nanocrystals Exhibiting Tunable Localized Surface Plasmon Resonance in the Visible to NIR Spectral Ranges. Inorganic Chemistry 2016, 55 (13) , 6660-6669. https://doi.org/10.1021/acs.inorgchem.6b00912
    28. Andrea Castelli, Joost de Graaf, Mirko Prato, Liberato Manna, and Milena P. Arciniegas . Tic-Tac-Toe Binary Lattices from the Interfacial Self-Assembly of Branched and Spherical Nanocrystals. ACS Nano 2016, 10 (4) , 4345-4353. https://doi.org/10.1021/acsnano.5b08018
    29. Manoj B. Gawande, Anandarup Goswami, François-Xavier Felpin, Tewodros Asefa, Xiaoxi Huang, Rafael Silva, Xiaoxin Zou, Radek Zboril, and Rajender S. Varma . Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. Chemical Reviews 2016, 116 (6) , 3722-3811. https://doi.org/10.1021/acs.chemrev.5b00482
    30. Curtis B. Williamson, Douglas R. Nevers, Tobias Hanrath, and Richard D. Robinson . Prodigious Effects of Concentration Intensification on Nanoparticle Synthesis: A High-Quality, Scalable Approach. Journal of the American Chemical Society 2015, 137 (50) , 15843-15851. https://doi.org/10.1021/jacs.5b10006
    31. Yi Xie, Giovanni Bertoni, Andreas Riedinger, Ayyappan Sathya, Mirko Prato, Sergio Marras, Renyong Tu, Teresa Pellegrino, and Liberato Manna . Nanoscale Transformations in Covellite (CuS) Nanocrystals in the Presence of Divalent Metal Cations in a Mild Reducing Environment. Chemistry of Materials 2015, 27 (21) , 7531-7537. https://doi.org/10.1021/acs.chemmater.5b03892
    32. Feifan Wang, Qi Li, Li Lin, Hailin Peng, Zhongfan Liu, and Dongsheng Xu . Monodisperse Copper Chalcogenide Nanocrystals: Controllable Synthesis and the Pinning of Plasmonic Resonance Absorption. Journal of the American Chemical Society 2015, 137 (37) , 12006-12012. https://doi.org/10.1021/jacs.5b05591
    33. Joel van Embden, Anthony S. R. Chesman, and Jacek J. Jasieniak . The Heat-Up Synthesis of Colloidal Nanocrystals. Chemistry of Materials 2015, 27 (7) , 2246-2285. https://doi.org/10.1021/cm5028964
    34. Xianliang Wang, Yujie Ke, Hengyu Pan, Kuo Ma, Qinqin Xiao, Deqiang Yin, Gang Wu, and Mark T. Swihart . Cu-Deficient Plasmonic Cu2–xS Nanoplate Electrocatalysts for Oxygen Reduction. ACS Catalysis 2015, 5 (4) , 2534-2540. https://doi.org/10.1021/acscatal.5b00115
    35. Xianliang Wang and Mark T. Swihart . Controlling the Size, Shape, Phase, Band Gap, and Localized Surface Plasmon Resonance of Cu2–xS and CuxInyS Nanocrystals. Chemistry of Materials 2015, 27 (5) , 1786-1791. https://doi.org/10.1021/cm504626u
    36. Shunhao Wang, Andreas Riedinger, Hongbo Li, Changhui Fu, Huiyu Liu, Linlin Li, Tianlong Liu, Longfei Tan, Markus J. Barthel, Giammarino Pugliese, Francesco De Donato, Marco Scotto D’Abbusco, Xianwei Meng, Liberato Manna, Huan Meng, and Teresa Pellegrino . Plasmonic Copper Sulfide Nanocrystals Exhibiting Near-Infrared Photothermal and Photodynamic Therapeutic Effects. ACS Nano 2015, 9 (2) , 1788-1800. https://doi.org/10.1021/nn506687t
    37. Quinten A. Akkerman, Alessandro Genovese, Chandramohan George, Mirko Prato, Iwan Moreels, Alberto Casu, Sergio Marras, Alberto Curcio, Alice Scarpellini, Teresa Pellegrino, Liberato Manna, and Vladimir Lesnyak . From Binary Cu2S to Ternary Cu–In–S and Quaternary Cu–In–Zn–S Nanocrystals with Tunable Composition via Partial Cation Exchange. ACS Nano 2015, 9 (1) , 521-531. https://doi.org/10.1021/nn505786d
    38. Chung Soo Kim, Sun Hee Choi, and Jin Ho Bang . New Insight into Copper Sulfide Electrocatalysts for Quantum Dot-Sensitized Solar Cells: Composition-Dependent Electrocatalytic Activity and Stability. ACS Applied Materials & Interfaces 2014, 6 (24) , 22078-22087. https://doi.org/10.1021/am505473d
    39. Don-Hyung Ha, Andrew H. Caldwell, Matthew J. Ward, Shreyas Honrao, Kiran Mathew, Robert Hovden, Margaret K. A. Koker, David A. Muller, Richard G. Hennig, and Richard D. Robinson . Solid–Solid Phase Transformations Induced through Cation Exchange and Strain in 2D Heterostructured Copper Sulfide Nanocrystals. Nano Letters 2014, 14 (12) , 7090-7099. https://doi.org/10.1021/nl5035607
    40. Obafemi O. Otelaja, Don-Hyung Ha, Tiffany Ly, Haitao Zhang, and Richard D. Robinson . Highly Conductive Cu2–xS Nanoparticle Films through Room-Temperature Processing and an Order of Magnitude Enhancement of Conductivity via Electrophoretic Deposition. ACS Applied Materials & Interfaces 2014, 6 (21) , 18911-18920. https://doi.org/10.1021/am504785f
    41. Juanjuan Jia, Azzedine Bendounan, Karine Chaouchi, and Vladimir A. Esaulov . Sulfur Interaction with Cu(100) and Cu(111) Surfaces: A Photoemission Study. The Journal of Physical Chemistry C 2014, 118 (42) , 24583-24590. https://doi.org/10.1021/jp5078517
    42. Olexiy A. Balitskii, Mykhailo Sytnyk, Julian Stangl, Daniel Primetzhofer, Heiko Groiss, and Wolfgang Heiss . Tuning the Localized Surface Plasmon Resonance in Cu2–xSe Nanocrystals by Postsynthetic Ligand Exchange. ACS Applied Materials & Interfaces 2014, 6 (20) , 17770-17775. https://doi.org/10.1021/am504296y
    43. Jun Xu, Xia Yang, Qingdan Yang, Wenjun Zhang, and Chun-Sing Lee . Phase Conversion from Hexagonal CuSySe1–y to Cubic Cu2–xSySe1–y: Composition Variation, Morphology Evolution, Optical Tuning, and Solar Cell Applications. ACS Applied Materials & Interfaces 2014, 6 (18) , 16352-16359. https://doi.org/10.1021/am5046247
    44. Vladimir Lesnyak, Chandramohan George, Alessandro Genovese, Mirko Prato, Alberto Casu, S. Ayyappan, Alice Scarpellini, and Liberato Manna . Alloyed Copper Chalcogenide Nanoplatelets via Partial Cation Exchange Reactions. ACS Nano 2014, 8 (8) , 8407-8418. https://doi.org/10.1021/nn502906z
    45. A. R. Indhu, C. Dharanya, Gnanaprakash Dharmalingam. Plasmonic Copper: Ways and Means of Achieving, Directing, and Utilizing Surface Plasmons. Plasmonics 2024, 19 (3) , 1303-1357. https://doi.org/10.1007/s11468-023-02034-1
    46. Swarup Roy, Parya Ezati, Ruchir Priyadarshi, Deblina Biswas, Jong-Whan Rhim. Recent advances in metal sulfide nanoparticle-added bionanocomposite films for food packaging applications. Critical Reviews in Food Science and Nutrition 2024, 64 (14) , 4660-4673. https://doi.org/10.1080/10408398.2022.2144794
    47. Wencai Bai, Mengjiao Liu, Kaifu Yu, Xin Cao, Jie Lian, Zhibin Zhao, Yong Xiang, Baoliang Xu, Tao Chen, Rong He, Nan Sun, Wenkun Zhu. Developing a highly efficient, environmentally friendly and cost-effective copper sulfide semiconductor sponge for nuclear wastewater treatment under one sun. Journal of Environmental Chemical Engineering 2024, 12 (1) , 111806. https://doi.org/10.1016/j.jece.2023.111806
    48. Dan Wu, Qingqing Huang, Shuang Sha, Fengfeng Xue, Gang Huang, Qiwei Tian. Engineering of copper sulfide mediated by phototherapy performance. WIREs Nanomedicine and Nanobiotechnology 2024, 16 (1) https://doi.org/10.1002/wnan.1932
    49. Zhiwen Tang, Yuede Pan, Qianrui Zhao, Yiming Cao, Chenying Su, Peng Gao, Zonghang Liu, Yanxia Chen, Gang Li, Qin Wang, Zhewei Yang, Chunli Guo, Kaiying Wang. Room-temperature synthesis of nonstoichiometric copper sulfide (Cu 2− x S) for sodium ion storage. Inorganic Chemistry Frontiers 2024, 22 https://doi.org/10.1039/D4QI00969J
    50. Hee Yeon Jeon, Cheol‐Hui Ryu, Seungheon Han, Dong Hoon Lee, Jongmin Byun, Young‐In Lee. Large‐scale synthesis of CuS nanoparticles for photothermal materials using high‐concentration Cu complex ion precursor. Journal of the American Ceramic Society 2023, 106 (12) , 7278-7287. https://doi.org/10.1111/jace.19248
    51. Jiaying Duan, Jiapeng Wang, Liangpeng Hou, Peixuan Ji, Wusheng Zhang, Jin Liu, Xiaodong Zhu, Zhixiang Sun, Yanqing Ma, Lei Ma. Application of Scanning Tunneling Microscopy and Spectroscopy in the Studies of Colloidal Quantum Qots. The Chemical Record 2023, 23 (10) https://doi.org/10.1002/tcr.202300120
    52. Qi Xu, Han Hu, Zhimin Mo, Tianyou Chen, Qianyuan He, Zushun Xu. A multifunctional nanotheranostic agent based on Lenvatinib for multimodal synergistic hepatocellular carcinoma therapy with remarkably enhanced efficacy. Journal of Colloid and Interface Science 2023, 638 , 375-391. https://doi.org/10.1016/j.jcis.2023.01.144
    53. Ning Zhang, Yujie Xiong. Plasmonic semiconductors for advanced artificial photosynthesis. Advanced Sensor and Energy Materials 2023, 2 (1) , 100047. https://doi.org/10.1016/j.asems.2023.100047
    54. Qiming Liu, Yi Peng, Zaheer Masood, Davida DuBois, John Tressel, Forrest Nichols, Paul Ashby, Rene Mercado, Tufa Assafa, Dingjie Pan, Han‐Lin Kuo, Jennifer Q. Lu, Frank Bridges, Glenn Millhauser, Qingfeng Ge, Shaowei Chen. Stable Cuprous Hydroxide Nanostructures by Organic Ligand Functionalization. Advanced Materials 2023, 35 (8) https://doi.org/10.1002/adma.202208665
    55. Gourab Karmakar, Adish Tyagi, Kruti K. Halankar, Sandeep Nigam, B. P. Mandal, A. P. Wadawale, G. Kedarnath, Anil K. Debnath. Molecular precursor-mediated facile synthesis of phase pure metal-rich digenite (Cu 1.8 S) nanocrystals: an efficient anode for lithium-ion batteries. Dalton Transactions 2023, 52 (5) , 1461-1475. https://doi.org/10.1039/D2DT03757B
    56. Mingyue Yao, Dongling Ning, Xinyu Lin, Junrong Huang, Silu Huang, Tao Lin, Bingsuo Zou, Peilong Hong, Yi Liang. Tunable surface plasmonic resonance and infrared self-focusing propagation in CuxS nanoparticle suspensions. Optics Communications 2023, 527 , 128992. https://doi.org/10.1016/j.optcom.2022.128992
    57. Alexandre H. Pinto, Dylan R. Cho, Anton O. Oliynyk, Julian R. Silverman. Green Chemistry Applied to Transition Metal Chalcogenides through Synthesis, Design of Experiments, Life Cycle Assessment, and Machine Learning. 2022https://doi.org/10.5772/intechopen.104432
    58. Dipti Prava Sahoo, Kundan Kumar Das, Sriram Mansingh, Sabiha Sultana, Kulamani Parida. Recent progress in first row transition metal Layered double hydroxide (LDH) based electrocatalysts towards water splitting: A review with insights on synthesis. Coordination Chemistry Reviews 2022, 469 , 214666. https://doi.org/10.1016/j.ccr.2022.214666
    59. Z. Z. Liu, K. P. Li, X. B. Yang, Y. Q. Zhang, Z. X. Xie, Z. Q. Duan, B. Zhou, Y. M. Hu. Selenylation to charge transfer improvement at the counter electrode (CE)/electrolyte interface for nanocrystalline Cu 1.8 S 1− x Se x CEs. Physical Chemistry Chemical Physics 2022, 24 (35) , 21157-21164. https://doi.org/10.1039/D2CP02308C
    60. Luis A. Saona, Jessica L. Campo-Giraldo, Giovanna Anziani-Ostuni, Nicolás Órdenes-Aenishanslins, Felipe A. Venegas, María F. Giordana, Carlos Díaz, Mauricio Isaacs, Denisse Bravo, José M. Pérez-Donoso. Cysteine-Mediated Green Synthesis of Copper Sulphide Nanoparticles: Biocompatibility Studies and Characterization as Counter Electrodes. Nanomaterials 2022, 12 (18) , 3194. https://doi.org/10.3390/nano12183194
    61. Mai Ngoc An, Haemin Song, Kwang Seob Jeong. Intraband transition and localized surface plasmon resonance of metal chalcogenide nanocrystals and their dependence on crystal structure. CrystEngComm 2022, 24 (21) , 3828-3840. https://doi.org/10.1039/D2CE00312K
    62. Yanmin Sun, Rui Tan, Zhouzheng Jin, Yiming Zhang, Xiaoyun Li, Qi Cai, Jun Nan, Dan Liu, Haibin Yu, Jianzhou Gui. Template-free synthesis of Mn 2+ doped hierarchical CuS yolk–shell microspheres for photocatalytic reduction of Cr( vi ). CrystEngComm 2022, 24 (11) , 2171-2178. https://doi.org/10.1039/D1CE01730F
    63. Zhe Yin, Min Hu, Jun Liu, Hao Fu, Zhijie Wang, Aiwei Tang. Tunable crystal structure of Cu–Zn–Sn–S nanocrystals for improving photocatalytic hydrogen evolution enabled by copper element regulation. Journal of Semiconductors 2022, 43 (3) , 032701. https://doi.org/10.1088/1674-4926/43/3/032701
    64. Ya-li Yao, Jin-mei He, Xin Yang, Lei Peng, Xue-dan Zhu, Kan-she Li, Meng-nan Qu. Superhydrophilic/underwater superaerophobic self-supporting CuS/Cu foam electrode for efficient oxygen evolution reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022, 634 , 127934. https://doi.org/10.1016/j.colsurfa.2021.127934
    65. Ananthakumar Soosaimanickam, Tamilselvan Sakthivel, Balaji Sambandam, Samuel Paul David, Anandhi Sivaramalingam. Localized Surface Plasmon Resonance in Colloidal Copper Sulphide (Cu2-xS, x = 0 ≤ x < 1) Nanocrystals and Its Applications. 2022, 1-23. https://doi.org/10.1007/978-3-030-79899-4_1
    66. Maqzia Bashir, Summan Aman, Aneesa Awan, Muhammad Faizan Nazar, Muhammad Zubair, Raziya Nadeem, Muhammad Nadeem Zafar. Metal Sulfide Nanocomposites for Energy Harvesting Applications. 2022, 567-612. https://doi.org/10.1007/978-3-030-94319-6_19
    67. Suraj Mangavati, Anand Pal, Ashok Rao, Zhao-Ze Jiang, Yung-Kang Kuo. Reduction in low-temperature thermal conductivity of Cu2Se via substitution of Se by Te atoms. Journal of Physics and Chemistry of Solids 2022, 160 , 110301. https://doi.org/10.1016/j.jpcs.2021.110301
    68. Qi Xu, Qiuting Li, Zhe Yang, Piao Huang, Han Hu, Zhimin Mo, Zizhen Qin, Zushun Xu, Tianyou Chen, Shengli Yang. Lenvatinib and Cu 2− x S nanocrystals co-encapsulated in poly( d , l -lactide- co -glycolide) for synergistic chemo-photothermal therapy against advanced hepatocellular carcinoma. Journal of Materials Chemistry B 2021, 9 (48) , 9908-9922. https://doi.org/10.1039/D1TB01808F
    69. Meidong Yu, Kunpeng Chang, Sumei Huang, Zhenjie Zhao. Enhancing up-conversion luminescence of Er3+ with copper sulfide nanostructures. Journal of Luminescence 2021, 240 , 118425. https://doi.org/10.1016/j.jlumin.2021.118425
    70. Stefanos Mourdikoudis, George Antonaropoulos, Nikolas Antonatos, Marcos Rosado, Liudmyla Storozhuk, Mari Takahashi, Shinya Maenosono, Jan Luxa, Zdeněk Sofer, Belén Ballesteros, Nguyen Thi Kim Thanh, Alexandros Lappas. Heat-Up Colloidal Synthesis of Shape-Controlled Cu-Se-S Nanostructures—Role of Precursor and Surfactant Reactivity and Performance in N2 Electroreduction. Nanomaterials 2021, 11 (12) , 3369. https://doi.org/10.3390/nano11123369
    71. Huizhu Yu, Ming Ma, Liping Jiang, Jie Shen, Fengfeng Xue, Hangrong Chen. A metal protoporphyrin-induced nano-self-assembly for potentiating photothermal therapy by depleting antioxidant defense systems. Chemical Engineering Journal 2021, 420 , 129769. https://doi.org/10.1016/j.cej.2021.129769
    72. Swarup Roy, Jong-Whan Rhim. Gelatin-Based Film Integrated with Copper Sulfide Nanoparticles for Active Packaging Applications. Applied Sciences 2021, 11 (14) , 6307. https://doi.org/10.3390/app11146307
    73. O.A. Balitskii. Recent energy targeted applications of localized surface plasmon resonance semiconductor nanocrystals: a mini-review. Materials Today Energy 2021, 20 , 100629. https://doi.org/10.1016/j.mtener.2020.100629
    74. Adithya Balakrishnan, Jan Derk Groeneveld, Suman Pokhrel, Lutz Mädler. Metal Sulfide Nanoparticles: Precursor Chemistry. Chemistry – A European Journal 2021, 27 (21) , 6390-6406. https://doi.org/10.1002/chem.202004952
    75. Deqiang Yin, Qi Li, Yang Liu, Mark T. Swihart. Anion exchange induced formation of kesterite copper zinc tin sulphide–copper zinc tin selenide nanoheterostructures. Nanoscale 2021, 13 (9) , 4828-4834. https://doi.org/10.1039/D0NR08991E
    76. Lihui Chen, Haifeng Hu, Yuzhou Chen, Jing Gao, Guohua Li. Plasmonic Cu 2−x S nanoparticles: a brief introduction of optical properties and applications. Materials Advances 2021, 2 (3) , 907-926. https://doi.org/10.1039/D0MA00837K
    77. Mariangela Giancaspro, Teresa Sibillano, Francesca Panzarea, Cinzia Giannini, Silvia Schmitzer, Fabio Vischio, Nicoletta Depalo, Angela Agostiano, M. Lucia Curri, Marinella Striccoli, Elisabetta Fanizza. Cu 2−x S nanocrystal synthesis: a chemical toolbox for controlling nanocrystal geometry, phase and plasmonic behavior. Materials Chemistry Frontiers 2021, 5 (3) , 1341-1354. https://doi.org/10.1039/D0QM00596G
    78. Binbin Zheng, Wei Lu. Nanotechnologies for Photothermal and Immuno Cancer Therapy: Advanced Strategies Using Copper Sulfide Nanoparticles and Bacterium-Mimicking Liposomes for Enhanced Efficacy. 2021, 191-208. https://doi.org/10.1007/978-3-030-78338-9_9
    79. Swarup Roy, Jong-Whan Rhim. Effect of CuS reinforcement on the mechanical, water vapor barrier, UV-light barrier, and antibacterial properties of alginate-based composite films. International Journal of Biological Macromolecules 2020, 164 , 37-44. https://doi.org/10.1016/j.ijbiomac.2020.07.092
    80. Swarup Roy, Jong-Whan Rhim. Fabrication of Copper Sulfide Nanoparticles and Limonene Incorporated Pullulan/Carrageenan-Based Film with Improved Mechanical and Antibacterial Properties. Polymers 2020, 12 (11) , 2665. https://doi.org/10.3390/polym12112665
    81. Zahra Hosseinpour, Zahra Arefinia, Sara Hosseinpour. Effect of doping and surfactant on the structural and Fenton-like catalytic activity of digenite structures synthesized by a solvothermal method. Nano-Structures & Nano-Objects 2020, 24 , 100549. https://doi.org/10.1016/j.nanoso.2020.100549
    82. J. Enrique Samaniego-Benitez, Rubén Mendoza-Cruz, Lourdes Bazán-Díaz, Alejandra Garcia-Garcia, M. Josefina Arellano-Jimenez, J. Francisco Perez-Robles, German Plascencia-Villa, J. Jesus Velázquez-Salazar, Eduardo Ortega, Sarai E. Favela-Camacho, Miguel José-Yacamán. Synthesis and structural characterization of MoS2 micropyramids. Journal of Materials Science 2020, 55 (26) , 12203-12213. https://doi.org/10.1007/s10853-020-04878-y
    83. Ajinkya N. Nikam, Abhijeet Pandey, Gasper Fernandes, Sanjay Kulkarni, Sadhana P. Mutalik, Bharath Singh Padya, Sajan D. George, Srinivas Mutalik. Copper sulphide based heterogeneous nanoplatforms for multimodal therapy and imaging of cancer: Recent advances and toxicological perspectives. Coordination Chemistry Reviews 2020, 419 , 213356. https://doi.org/10.1016/j.ccr.2020.213356
    84. Huizhi Sun, Adugna Boke Abdeta, Osman Ahmed Zelekew, Yuanbo Guo, Jubin Zhang, Dong-Hau Kuo, Jinguo Lin, Xiaoyun Chen. Spherical porous SiO2 supported CuVOS catalyst with an efficient catalytic reduction of pollutants under dark condition. Journal of Molecular Liquids 2020, 313 , 113567. https://doi.org/10.1016/j.molliq.2020.113567
    85. Yuanbo Guo, Osman Ahmed Zelekew, Huizhi Sun, Dong-Hau Kuo, Jinguo Lin, Xiaoyun Chen. Catalytic reduction of organic and hexavalent chromium pollutants with highly active bimetal CuBiOS oxysulfide catalyst under dark. Separation and Purification Technology 2020, 242 , 116769. https://doi.org/10.1016/j.seppur.2020.116769
    86. Chao Qi, Chao Jiang, Lian-Hua Fu, Tuanwei Sun, Tianfu Wang, Jing Lin, Zhihong Nie, Peng Huang. Melanin-instructed biomimetic synthesis of copper sulfide for cancer phototheranostics. Chemical Engineering Journal 2020, 388 , 124232. https://doi.org/10.1016/j.cej.2020.124232
    87. Dongxu Zhu, Lijin Wang, Zheming Liu, Aiwei Tang. Effects of surface ligands on localized surface plasmon resonance and stabilization of Cu2−xSe nanocrystals. Applied Surface Science 2020, 509 , 145327. https://doi.org/10.1016/j.apsusc.2020.145327
    88. Riccardo Marin, José Lifante, Lucas V. Besteiro, Zhiming Wang, Alexander O. Govorov, Fernando Rivero, Fernando Alfonso, Francisco Sanz‐Rodríguez, Daniel Jaque. Plasmonic Copper Sulfide Nanoparticles Enable Dark Contrast in Optical Coherence Tomography. Advanced Healthcare Materials 2020, 9 (5) https://doi.org/10.1002/adhm.201901627
    89. Kun Liu, Kai Liu, Junchao Liu, Qilong Ren, Zhen Zhao, Xiaoyu Wu, Dalin Li, Fukang Yuan, Kaichuang Ye, Bo Li. Copper chalcogenide materials as photothermal agents for cancer treatment. Nanoscale 2020, 12 (5) , 2902-2913. https://doi.org/10.1039/C9NR08737K
    90. Zhiqian Hou, Chaozhu Shu, Peng Hei, Tingshuai Yang, Ruixin Zheng, Zhiqun Ran, Minglu Li, Jianping Long. Configuration of gradient-porous ultrathin FeCo 2 S 4 nanosheets vertically aligned on Ni foam as a noncarbonaceous freestanding oxygen electrode for lithium–oxygen batteries. Nanoscale 2020, 12 (3) , 1864-1874. https://doi.org/10.1039/C9NR09192K
    91. Zhongyuan Guan, Fei Chen, Zhenyang Liu, Peiwen Lv, Mingjun Chen, Mingxuan Guo, Xu Li, Feng Teng, Song Chen, Aiwei Tang. Compositional engineering of multinary Cu–In–Zn-based semiconductor nanocrystals for efficient and solution-processed red-emitting quantum-dot light-emitting diodes. Organic Electronics 2019, 74 , 46-51. https://doi.org/10.1016/j.orgel.2019.06.024
    92. Yongkang Chen, Jiulong Zhao, Shige Wang, Zhilun Zhang, Jing Zhang, Yunfeng Wang, Pei Xie. Photothermal Composite Nanomaterials for Multimodal Tumor Therapy under MRI Guidance. ChemistrySelect 2019, 4 (37) , 11156-11164. https://doi.org/10.1002/slct.201903481
    93. Xin Tong, Xin Li, Ali Imran Channa, Ruitong Liu, Jing-Yin Xu, Peng Yu, Le Chang, Haining Ji, Qiang Wang, Zhiming M. Wang. Engineering the Optoelectronic Properties of Colloidal Alloyed Copper Chalcogenide Quantum Dots for High‐Efficiency Solar Energy Conversion. Solar RRL 2019, 3 (10) https://doi.org/10.1002/solr.201900186
    94. Swarup Roy, Jong-Whan Rhim, Lily Jaiswal. Bioactive agar-based functional composite film incorporated with copper sulfide nanoparticles. Food Hydrocolloids 2019, 93 , 156-166. https://doi.org/10.1016/j.foodhyd.2019.02.034
    95. Kaidi Li, Yongteng Qian, Huijun Zhang, Linyu Zhang, Qingqing Chai, Qiujing Wang, Jimin Du, Yumin Han, Weimin Wang, Dae Joon Kang. Highly efficient oxygen evolution electrocatalysts based on nanosheet-shaped CuS in situ grown on carbon cloth. Ceramics International 2019, 45 (8) , 10664-10671. https://doi.org/10.1016/j.ceramint.2019.02.137
    96. Patrycja Kowalik, Piotr Bujak, Mateusz Penkala, Kamil Kotwica, Angelika Kmita, Marta Gajewska, Andrzej Ostrowski, Adam Pron. Synthesis of CuFeS 2−x Se x – alloyed nanocrystals with localized surface plasmon resonance in the visible spectral range. Journal of Materials Chemistry C 2019, 7 (21) , 6246-6250. https://doi.org/10.1039/C9TC01242G
    97. Xiaoyun Chen, Dong-Hau Kuo, Zong-Yan Wu, Jubin Zhang, Yuanbo Guo, Huizhi Sun, Jinguo Lin. Multi-component (Cu,Mn)(Se,S) nanosheet catalysts for redox reactions in the dark. Separation and Purification Technology 2019, 211 , 71-80. https://doi.org/10.1016/j.seppur.2018.09.066
    98. Xianzhen Song, Xiaojian Li, Dong Wei, Rui Feng, Tao Yan, Yaoguang Wang, Xiang Ren, Bin Du, Hongmin Ma, Qin Wei. CuS as co-reaction accelerator in PTCA-K2S2O8 system for enhancing electrochemiluminescence behavior of PTCA and its application in detection of amyloid-β protein. Biosensors and Bioelectronics 2019, 126 , 222-229. https://doi.org/10.1016/j.bios.2018.10.068
    99. Aixiang Wang, Xiaojuan Hu, Fei Wang, Wei Chen, Yingping Pang, Shagraf Javaid, Dechao Chen, Xinyu Li, Leon Staaden, Guohua Jia. Large lateral sized two-dimensional Cu2-xS nanoplates formed by Ostwald ripening. Materials Letters 2019, 237 , 88-91. https://doi.org/10.1016/j.matlet.2018.11.087
    100. Guanwei Jia, Chengduo Wang, Peixu Yang, Jinhui Liu, Weidong Zhang, Rongbin Li, Shaojun Zhang, Jiang Du. Sulfur-free synthesis of size tunable rickardite (Cu 3− x Te 2 ) spheroids and planar squares. Royal Society Open Science 2019, 6 (2) , 181602. https://doi.org/10.1098/rsos.181602
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect