
Replacing passwords on the Internet
AKA post-Snowden Opportunistic Encryption

Ben Laurie
Google, Inc.

Ian Goldberg
University of Waterloo

January 18, 2014

1 Motivation

Just as DigiNotar gave us an opportunity to re-examine PKI
as applied to the Web, Snowden gives us an opportunity to
re-examine the more general question of encryption and au-
thentication on the Internet.

In particular, it seems very clear that nothing should be
plaintext anymore. The most obvious thing to do is to adopt
opportunistic encryption (for the academics: unauthenticated
forward-secret encryption). But this provides no defence
against active attackers—which is not to say it is not useful:
raising the bar to “must MitM” adds substantial cost for the
attacker, and also exposes him to potential detection. Indeed,
we encourage standards bodies to never again approve a pro-
tocol that sends plaintext over the Internet: unauthenticated
encryption is straightforward to add to any online protocol,
and is strictly safer than unencrypted data. Crucially, however,
implementations of these protocols should not claim to users
that such an unauthenticated connection is secure—it should
be a drop-in replacement for plaintext, not for a fully secure
authenticated connection.

In the TLS context, this amounts to encouraging the prolif-
eration of self-signed certificates (or organization-signed, but
not necessarily with a trust chain to a trusted root). Crucially,
in this model, browsers must no longer display a scary warning
message when they encounter self-signed certificates. Instead,
they should, as above, simply claim the connection is inse-
cure, presenting the page and chrome to the user identically to
an unencrypted HTTP connection. This is reasonable because
a self-signed TLS session is actually more secure than a plain
HTTP session (it is secure against passive, though not active,
attackers), so long as the user is not deceived into thinking
she is using a (fully) secure connection. This means, addition-
ally, that whenever the browser makes a decision depending
on whether the page is secure or insecure (such as sending “se-
cure” cookies), a self-signed TLS connection should be treated
as insecure. In this way, we can encourage the proliferation of
self-signed certificates on the Internet in a manner that replaces
the current uses of plain HTTP, but not displacing the role of
CA-signed certificates.

Can we do even better than pervasive unauthenticated en-
cryption? We think we can. The important observation is that
most traffic on the Internet of value is already authenticated in
some way in one direction, most often by some kind of user-

name/password. We can leverage that to provide authenticated
encryption in a pretty general way, by using PAKEs. [2]

However, this leaves the problem that most passwords are
weak, most passwords are used at multiple sites and phishing
is easy. Therefore, we now need to improve the state of pass-
words. Once we have done that, we have a complete solution;
further, it can be deployed incrementally.

2 Details

2.1 Passwords

First of all, we clearly need to replace weak, re-used, phishable
passwords. The first component is a password store. This must
be run by the OS because, contrary to popular belief, there is
Internet outside the browser. For example, it would not be
good to replace passwords on gmail only to find that I can no
longer run Thunderbird+Enigmail to read my PGPed email.

The password store needs to operate like Plan 9’s facto-
tum [1]. That is, it does not provide passwords, keys, shared
secrets, etc., to applications; instead, it provides the appro-
priate messages to them in order to authenticate to their peer
(and authenticate their peer), keeping passwords safe within it.
This allows us to later migrate the store to a TPM, another ma-
chine [4] or some other sanctuary from malware on the user’s
machine.

Furthermore, the password store needs to support sync. It
must be possible to enroll all my devices, including a brand
new device I purchased after I dropped all my existing ones in
the ocean. Unless someone has a great new idea, this require-
ment means the password store must be unlocked with . . . a
password. [3] Moreover, to ensure the user does not forget this
password, she must be required to use it frequently. Say, every
time she unlocks a device, or the first time she authenticates
after unlocking.

Since this One True Password (1TP) now carries great value,
it must be carefully protected. It must be very clear to users
when the 1TP is needed and where it should be entered, and
it should not be possible for a phisher to fake that. This is
undeniably a challenge—probably the biggest challenge in this
entire plan.

1



2.2 Encryption and authentication protocol
The encryption protocol need not be anything novel—it can
be as simple as unauthenticated Diffie-Hellman followed by
a stream cipher. Once the unauthenticated connection is es-
tablished, the protocol should be able to optionally support
additional authentication using a PAKE (keyed on a combi-
nation of the Diffie-Hellman shared secret, an identifier for
the server, and the client’s authentication information) so that
when a client authenticates to a server with which it has an
existing relationship, it also authenticates that server.

Again in the TLS context, a possible option is TLS-SRP. [5]
Something TLS-like can be desirable, because we want to be
able to upgrade opportunistic encryption to authenticated en-
cryption when possible. In this way, the protocol has to allow
the use of something certificate-like to authenticate the end-
points, and something CA-like to authenticate the certificates.

2.3 Migration
Where a client and server have an existing relationship secured
by username/password, it would be nice to be able to move
seamlessly to the new scheme. If the server has appropriate
hygiene, this means standard PAKEs need to be slightly mod-
ified in order to allow the server to construct the shared secret
(for a symmetric PAKE), or the authenticator (for an asymmet-
ric PAKE), and also to bind the PAKE to the unauthenticated
encryption channel.

For example, SRP uses gH(p‖u), but you might instead use
gH(s‖H2(p)‖u), where p is the password, u is the URL of the
server, s is a value derived from the Diffie-Hellman shared
secret, H is a hash function, and H2 is the hash function the
server already uses to check passwords.

A challenge here is that many servers use ad hoc hashing
mechanisms to store password authenticators, so we may need
to enumerate all the possible schemes (required because the
client needs to know which scheme to use).

The password store should also upgrade passwords to
strongly random ones—or move away from passwords alto-
gether and start using public/private keypairs for authentica-
tion.

All of this can clearly be done incrementally—old clients
can continue to authenticate directly with their passwords.
New clients can use Diffie-Hellman and a PAKE to get a con-
nection that is both encrypted and authenticated.

3 Conclusion
As is often the case, improving security is not a matter of in-
venting new crypto or new protocols. Instead it is a matter
of user interface and user experience. If only we can finally
stop giving users the utterly impractical advice that they should
use different, strong passwords at each site and never write
them down, and instead provide them with powerful and us-
able tools for authentication, we can fix phishing and make it
much harder to intercept the plaintext of users’ interactions on
the Internet.

References
[1] Russ Cox, Eric Grosse, Rob Pike, Dave Presotto, and Sean

Quinlan. Security in Plan 9. In 11th USENIX Security
Symposium, pages 3–16, August 2002.

[2] David P. Jablon. Strong password-only authenticated key
exchange. SIGCOMM Comput. Commun. Rev., 26(5):5–
26, October 1996.

[3] Ben Laurie. Nigori: Storing Secrets in the Cloud.
http://www.links.org/files/nigori-overview.pdf, May 2010.

[4] Ben Laurie and Abe Singer. Choose the red pill and the
blue pill: a position paper. In NSPW, pages 127–133,
September 2008.

[5] David Taylor, Tom Wu, Nikos Mavrogiannopoulos, and
Trevor Perrin. Using the Secure Remote Password
(SRP) Protocol for TLS Authentication. RFC 5054,
http://tools.ietf.org/html/rfc5054, November 2007.

2


