Skip to main content

Abstract

The physicochemical and biological properties of biopharmaceuticals are, in many aspects, different from small molecule drugs. These differences must also be taken into account when evaluating the risk of carcinogenicity in humans. For example, because of their expected biological activity, growth factors or immunomodulators present an inherent risk for potentially enhancing tumor incidence in humans.

The present chapter reviews the background for this position of biotechnologically-derived pharmaceuticals. Growth factors can be seen as oncogenes, as these proteins will stimulate cell surface receptors related to cell proliferation. In this respect, ICH S6(R1) deviates from the common approach for carcinogenicity testing, as generally 2-year bioassay studies are not expected for these products. Also, for immunomodulators, the regulatory guidance acknowledges an inherent risk for cancer when immunosuppressive activity can be expected based on the pharmacology of the compound (e.g., impaired immune surveillance).

In this chapter, a few case studies are presented, illustrating different approaches in evaluating the carcinogenic potential of biopharmaceuticals. Furthermore, approaches to the translation of these findings to the human situation are discussed. Insulin-like growth factor and insulin are different in mitogenic and metabolic activity by stimulation of IGF1- and Insulin receptor A or B, respectively. Insulin analogues such as Insulin AspB10 and insulin glargine have been analyzed in this respect by novel in vitro and in vivo strategies, and this approach reveals its usefulness from a regulatory point of view.

GLP1-agonists induce thyroid C-cell tumors by a direct action at the C-cell, and we have described a pharmacodynamic/pharmacokinetic approach to model the relationship between exposure and the induction of thyroid hyperplasia or adenoma (dependent on the compound).

By virtue of their pharmacology, some monoclonal antibodies are also known to be associated with occurrence of tumors in humans, and an overview of these reported cases is also included in this chapter. The concerns of an increased cancer risk associated with medicines may arise at any time during a drug’s life cycle: in early phases during development, or after many years of use in clinical practice. Pharmacovigilance represents the science and activities related to the detection, assessment, understanding and prevention of adverse effects or other drug-related problems. In this section, we review a series of medicines for which cancer has been a suspected or actual risk detected, as well as the problems that are encountered in studying and communicating such cancer risks or the uncertainties about these risks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Conference on Harmonisation. ICH Guideline S1A: Need for Carcinogenicity Studies of Pharmaceuticals. November 1995. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Safety/S1A/Step4/S1A_Guideline.pdf. Accessed 23 Dec 2014

  2. Van Oosterhout JP, Van der Laan JW, De Waal EJ, Olejniczak K, Hilgenfeld M, Schmidt V, Bass R (1997) The utility of two rodent species in carcinogenic risk assessment of pharmaceuticals in Europe. Regul Toxicol Pharmacol 25(1):6–17

    Article  PubMed  Google Scholar 

  3. Bronchud MH (2007) Molecular oncology. In: Meyers RA (ed) Cancer. From mechanisms to therapeutic approaches. Wiley-VCH Verlag, Weinheim, pp 3–54

    Google Scholar 

  4. Maher ER, Neumann HPH, Richard S (2011) von Hippel-Lindau disease: a clinical and scientific review. Eur J Hum Genet 19(6):617–623. doi:10.1038/ejhg.2010.175, Epub 2011 Mar 9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Somasundaram A, Ardanowski N, Opalak CF, Fillmore HL, Chidambaram A, Broaddus WC (2014) Wilms tumor 1 gene, CD97, and the emerging biogenetic profile of glioblastoma. Neurosurg Focus 37(6):E14. doi:10.3171/2014.9.FOCUS14506

    Article  PubMed  Google Scholar 

  6. Kinzler KW, Vogelstein B (1997) Gatekeepers and caretakers. Nature 386:761–763. doi:10.1038/386761a0

    Article  CAS  PubMed  Google Scholar 

  7. DeVries A, Van Oostrom CTM, Hofhuis FMA, Dortant PM, Berg RJW, DeGruijl FR, Wester PW, VanKreijl CF, Capel PJA, VanSteeg H, Verbeek SJ (1995) Increased susceptibility to ultraviolet-B and carcinogens of mice lacking the DNA excision repair gene XPA. Nature 77:169–173. doi:10.1038/377169a0

    Google Scholar 

  8. Melis JPM, Wijnhoven SW, Beems RB, Roodbergen M, vanden Berg J, Moon H, Friedberg E, van der Horst GTJ, Hoeijmakers JHJ, Vijg J, van Steeg H (2008) Mouse models for Xeroderma pigmentosum group A and group C show divergent cancer phenotypes. Cancer Res 68(5):1347–1353. doi:10.1158/0008-5472.CAN-07-6067

    Article  CAS  PubMed  Google Scholar 

  9. Robinson DE, MacDonald JS (2001) Background and framework for ILSI’s collaborative evaluation program on alternative models for carcinogenicity assessment. International Life Sciences Institute. Toxicol Pathol 29(Suppl):13–19

    Article  CAS  PubMed  Google Scholar 

  10. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CAJ, Butel JS, Bradley A (1992) Mice deficient for p53 are developmental normal but susceptible to spontaneous tumors. Nature 355(6366):215–221

    Article  Google Scholar 

  11. Hanahan D, Weinberg RA (2011) 2011 Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  12. Tischler AS, Powers JF, Pignatello M, Tsokas P, Downing JC, McClain RM (1999) Vitamin D3-induced proliferative lesions in the rat adrenal medulla. Toxicol Sci 51(1):9–18

    Article  CAS  PubMed  Google Scholar 

  13. Silva Lima B, Van der Laan JW (2000) Mechanisms of nongenotoxic carcinogenesis and assessment of the human hazard. Regul Toxicol Pharmacol 32(2):135–143. doi:10.1006/rtph.2000.1427

    Article  CAS  PubMed  Google Scholar 

  14. Bronchud MH (2002) Is cancer really a ‘local’ cellular clonal disease? Med Hypotheses 59(5):560–565

    Article  CAS  PubMed  Google Scholar 

  15. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW (2013) Cancer genome landscapes. Science 339(6127):1546–1558. doi:10.1126/science.1235122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Pan Z-Z, Godwin AK (2007) Oncogenes. In: Meyers RA (ed) Cancer. From mechanisms to therapeutic approaches. Wiley-VCH Verlag, Weinheim, pp 55–114

    Google Scholar 

  17. EMA EPAR Kepivance 2005. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Scientific_Discussion/human/000609/WC500040536.pdf

  18. Sterner E, Meli L, Kwon SJ, Dordick JS, Linhardt RJ (2013) FGF-FGFR signaling mediated through glycosaminoglycans in microtiter plate and cell-based microarray platforms. Biochemistry 52(50):9009–9019. doi:10.1021/bi401284r

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. International Conference on Harmonisation. ICH Guideline S6(R1): Preclinical Safety Evaluation of Biotechnology-Derived Pharmaceuticals. June 2011. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Safety/S6_R1/Step4/S6_R1_Guideline.pdf. Accessed 23 Dec 2014

  20. Vahle JL, Finch GL, Heidel SM, Hovland DN Jr, Ivens I, Parker S, Ponce RA, Sachs C, Steigerwalt R, Short B, Todd MD (2010) Carcinogenicity assessments of biotechnology-derived pharmaceuticals: a review of approved molecules and best practice recommendations. Toxicol Pathol 38:522–553. doi:10.1177/0192623310368984

    Article  CAS  PubMed  Google Scholar 

  21. Bugelski PJ, Volk A, Walker MR, Krayer JH, Martin P, Descotes J (2010) Critical review of preclinical approaches to evaluate the potential of immunosuppressive drugs to influence human neoplasia. Int J Toxicol 29(5):435–466. doi:10.1177/1091581810374654

    Article  CAS  PubMed  Google Scholar 

  22. International Conference on Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. http://www.ich.org

  23. Terrell TG, Green JD (1994) Issues with biotechnology products in toxicologic pathology. Toxicol Pathol 22(2):187–193

    Article  CAS  PubMed  Google Scholar 

  24. Inoue T (1998) Biotechnologically-derived pharmaceuticals in Japan: present and future prospects. In: Griffiths SA, Lumley CE (eds) Safety evaluation of biotechnologically-derived pharmaceuticals: facilitating a scientific approach. Kluwer Academic Publishers, Dordrecht, pp 51–63

    Chapter  Google Scholar 

  25. Rosenblum IY, Dayan AD (2002) Carcinogenicity testing of IL-10: principles and practicalities. Hum Exp Toxicol 21(7):347–358

    Article  CAS  PubMed  Google Scholar 

  26. Ning S, Shui C, Khan WB, Benson W, Lacey DL, Knox SJ (1998) Effects of keratinocyte growth factor on the proliferation and radiation survival of human squamous cell carcinoma cell lines in vitro and in vivo. Int J Radiat Oncol Biol Phys 40(1):177–187

    Article  CAS  PubMed  Google Scholar 

  27. FDA Kepivance, Prescribing information 2004, 2013. http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/125103s146lbl.pdf

  28. EMA EPAR Neorecormon (2004) http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Scientific_Discussion/human/000116/WC500024975.pdf

  29. FDA Epoietin Alfa, Prescribing information 1989. http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/103234s5323lbl.pdf

  30. Frasca F, Pandini G, Scalia P, Sciacca L, Mineo R, Costantino A, Goldfine ID, Belfiore A, Vigneri R (1999) Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol Cell Biol 19(5):3278–3288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Taguchi A, White MF (2008) Insulin-like signaling, nutrient homeostasis, and life span. Annu Rev Physiol 70:191–212

    Article  CAS  PubMed  Google Scholar 

  32. Pollak M (2008) Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer 8(12):915–928. doi:10.1038/nrc2536

    Article  CAS  PubMed  Google Scholar 

  33. Pollak M (2012) The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nat Rev Cancer 12(3):159–169. doi:10.1038/nrc3215

    CAS  PubMed  Google Scholar 

  34. Malaguarnera R, Sacco A, Voci C, Pandini G, Vigneri R, Belfiore A (2012) Proinsulin binds with high affinity the insulin receptor isoform A and predominantly activates the mitogenic pathway. Endocrinology 153(5):2152–2163. doi:10.1210/en.2011-1843, Epub 2012 Feb 21

    Article  CAS  PubMed  Google Scholar 

  35. Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129(7):1261–1274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Taniguchi CM, Emanuelli B, Kahn CR (2006) Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 7:85–96

    Article  CAS  PubMed  Google Scholar 

  37. Cheng Z, Tseng Y, White MF (2010) Insulin signaling meets mitochondria in metabolism. Trends Endocrinol Metab 21(10):589–598. doi:10.1016/j.tem.2010.06.005, Epub 2010 Jul 16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Schwartz GP, Burke GT, Katsoyannis PG (1989) A highly potent insulin: des-(B26-B30)-[AspB10, TyrB25-NH2]insulin(human). Proc Natl Acad Sci U S A 86(2):458–461

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Milazzo G, Sciacca L, Papa V, Goldfine ID, Vigneri R (1997) ASPB10 insulin induction of increased mitogenic responses and phenotypic changes in human breast epithelial cells: evidence for enhanced interactions with the insulin-like growth factor-I receptor. Mol Carcinog 18(1):19–25

    Article  CAS  PubMed  Google Scholar 

  40. Glendorf T, Knudsen L, Stidsen CE, Hansen BF, Hegelund AC, Sorensen AR, Nishimura E, Kjeldsen T (2012) Systematic evaluation of the metabolic to mitogenic potency ratio for B10-substituted insulin analogues. PLoS One 7:e29198

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Hansen BF, Kurtzhals P, Jensen AB, Dejgaard A, Russell-Jones D (2011) Insulin X10 revisited: a super-mitogenic insulin analogue. Diabetologia 54(9):2226–2231. doi:10.1007/s00125-011-2203-8, Epub 2011 Jun 3

    Article  CAS  PubMed  Google Scholar 

  42. Gallagher EJ, Alikhani N, Tobin-Hess A, Blank J, Buffin NJ, Zelenko Z, Tennagels N, Werner U, LeRoith D (2013) Insulin receptor phosphorylation by endogenous insulin or the insulin analog AspB10 promotes mammary tumor growth independent of the IGF-I receptor. Diabetes 62(10):3553–3560. doi:10.2337/db13-0249, Epub 2013 Jul 8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Ter Braak B, Siezen CL, Kannegieter N, Koedoot E, van de Water B, van der Laan JW (2014) Classifying the adverse mitogenic mode of action of insulin analogues using a novel mechanism-based genetically engineered human breast cancer cell panel. Arch Toxicol 88(4):953–966. doi:10.1007/s00204-014-1201-2, Epub 2014 Jan 25

    Article  PubMed  CAS  Google Scholar 

  44. Sciacca L, Cassarino MF, Genua M, Vigneri P, Giovanna Pennisi M, Malandrino P, Squatrito S, Pezzino V, Vigneri R (2014) Biological effects of insulin and its analogs on cancer cells with different insulin family receptor expression. J Cell Physiol 229(11):1817–1821. doi:10.1002/jcp.24635

    Article  CAS  PubMed  Google Scholar 

  45. Oleksiewicz MB, Bonnesen C, Hegelund AC, Lundby A, Holm GM, Jensen MB, Krabbe JS (2011) Comparison of intracellular signalling by insulin and the hypermitogenic AspB10 analogue in MCF-7 breast adenocarcinoma cells. J Appl Toxicol 31(4):329–341. doi:10.1002/jat.1590, Epub 2010 Oct 8

    Article  CAS  PubMed  Google Scholar 

  46. Dideriksen LH, Jørgensen LN, Drejer K (1992) Carcinogenic effect on female rats after 12 months administration of the insulin analogue B10 Asp. Diabetes 41:143A

    Google Scholar 

  47. Tennagels N, Welte S, Hofmann M, Brenk P, Schmidt R, Werner U (2013) Differences in metabolic and mitogenic signalling of insulin glargine and insulin aspart B10 in rats [corrected]. Diabetologia 56(8):1826–1834. doi:10.1007/s00125-013-2923-z, Epub 2013 May 8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Ter Braak B, Siezen CLE, Speksnijder EN, Koedoot E, van Steeg H, Salvatori DCF, van de Water B, van der Laan JW (2015) Mammary gland tumor promotion by chronic administration of IGF1 and the insulin analogue AspB10 in the p53R270H/+WAPCre mouse model. Breast Cancer Res 17:14. doi:10.1186/s13058-015-0518-y

  49. EMA (2001) Points to consider on the non-clinical assessment of the carcinogenic potential of human insulin analogues. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003252.pdf

  50. Sciacca L, Cassarino MF, Genua M, Pandini G, Le Moli R, Squatrito S, Vigneri R (2010) Insulin analogues differently activate insulin receptor isoforms and post-receptor signalling. Diabetologia 53(8):1743–1753. doi:10.1007/s00125-010-1760-6, Epub 2010 Apr 28

    Article  CAS  PubMed  Google Scholar 

  51. Kurtzhals P, Schaffer L, Sorensen A, Kristensen C, Jonassen I, Schmid C, Trub T (2000) Correlations of receptor binding and metabolic and mitogenic potencies of insulin analogs designed for clinical use. Diabetes 49(6):999–1005

    Article  CAS  PubMed  Google Scholar 

  52. Yehezkel E, Weinstein D, Simon M, Sarfstein R, Laron Z, Werner H (2010) Long-acting insulin analogues elicit atypical signalling events mediated by the insulin receptor and insulin-like growth factor-I receptor. Diabetologia 53(12):2667–2675. doi:10.1007/s00125-010-1899-1, Epub 2010 Sep 12

    Article  CAS  PubMed  Google Scholar 

  53. Sommerfeld MR, Muller G, Tschank G, Seipke G, Habermann P, Kurrle R, Tennagels N (2010) In vitro metabolic and mitogenic signaling of insulin glargine and its metabolites. PLoS One 5(3):e9540. doi:10.1371/journal.pone.0009540

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Teng JA, Hou RL, Li DL, Yang RP, Qin J (2011) Glargine promotes proliferation of breast adenocarcinoma cell line MCF-7 via AKT activation. Horm Metab Res 43:519–523. doi:10.1055/s-0031-1280780, Epub 2011 Jul 19

    Article  CAS  PubMed  Google Scholar 

  55. Kellerer M, Haring HU (2001) Insulin analogues: impact of cell model characteristics on results and conclusions regarding mitogenic properties. Exp Clin Endocrinol Diabetes 109(1):63–64

    Article  CAS  PubMed  Google Scholar 

  56. Staiger K, Hennige AM, Staiger H, Haring HU, Kellerer M (2007) Comparison of the mitogenic potency of regular human insulin and its analogue glargine in normal and transformed human breast epithelial cells. Horm Metab Res 39(1):65–67

    Article  CAS  PubMed  Google Scholar 

  57. Pierre-Eugene C, Pagesy P, Nguyen TT, Neuille M, Tschank G, Tennagels N, Hampe C, Issad T (2012) Effect of insulin analogues on insulin/IGF1 hybrid receptors: increased activation by glargine but not by its metabolites M1 and M2. PLoS One 7(7):e41992. doi:10.1371/journal.pone.0041992, Epub 2012 Jul 26

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Stammberger I, Bube A, Durchfeld-Meyer B, Donaubauer H, Troschau G (2002) Evaluation of the carcinogenic potential of insulin glargine (LANTUS) in rats and mice. Int J Toxicol 21(3):171–179

    Article  CAS  PubMed  Google Scholar 

  59. Stammberger I, Essermeant L (2012) Insulin glargine: a reevaluation of rodent carcinogenicity findings. Int J Toxicol 31(2):137–142. doi:10.1177/1091581811431111, Epub 2012 Jan 3

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Ter Braak SJ, Wink S, Koedoot E, Pont C, Siezen CLE, Van der Laan JW, van de Water B (2015) Alternative signaling network activation through different insulin receptor family members caused by promitogenic antidiabetic insulin analogues in human mammary epithelial cells. Breast Cancer Res 17:97. doi:10.1186/s13058-015-0600-5

  61. EMA EPAR Byetta 2006. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Scientific_Discussion/human/000698/WC500051842.pdf

  62. EMA EPAR Bydureon 2011. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/002020/WC500108239.pdf

  63. EMA EPAR Victoza 2009. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/001026/WC500050016.pdf

  64. EMA EPAR Lyxumia 2013. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/002445/WC500140449.pdf

  65. EMA EPAR Trulicity 2014. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/002825/WC500179473.pdf

  66. EMA EPAR Eperzan 2014. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/002735/WC500165119.pdf

  67. Sheiner LB, Steimer JL (2000) Pharmacokinetic/pharmacodynamic modeling in drug development. Annu Rev Pharmacol Toxicol 40:67–95

    Article  CAS  PubMed  Google Scholar 

  68. Danhof M, Alvan G, Dahl SG, Kuhlmann J, Paintaud G (2005) Mechanism-based pharmacokinetic-pharmacodynamic modeling-a new classification of biomarkers. Pharm Res 22(9):1432–1437, Epub 2005 Aug 24

    Article  CAS  PubMed  Google Scholar 

  69. Danhof M, de Lange EC, Della Pasqua OE, Ploeger BA, Voskuyl RA (2008) Mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) modeling in translational drug research. Trends Pharmacol Sci 29(4):186–191. doi:10.1016/j.tips.2008.01.007, Epub 2008 Mar 18

    Article  CAS  PubMed  Google Scholar 

  70. Derendorf H, Meibohm B (1999) Modeling of pharmacokinetic/pharmacodynamic (PK/PD) relationships: concepts and perspectives. Pharm Res 16(2):176–185

    Article  CAS  PubMed  Google Scholar 

  71. Knudsen BL, Madsen LW, Andersen S, Almholt K, de Boer AS, Drucker DJ, Gotfredsen C, Egerod FL, Hegelund AC, Jacobsen SD, Moses AC, Mølck AM, Nielsen HS, Nowak J, Solberg H, Thi TD, Zdravkovic M, Moerch U (2010) Glucagon-like peptide-1 receptor agonists activate rodent thyroid C-cells causing clacitonin release and C-cell proliferation. Endocrinology 151(4):1473–1486. doi:10.1210/en.2009-1272, Epub 2010 Mar 4

    Article  CAS  Google Scholar 

  72. Ponce RA, Gelzleichter T, Haggerty HG, Heidel S, Holdren MS, Lebrec H, Mellon RD, Pallardy M (2014) Immunmodulation and lymphoma in humans. J Immunotoxicol 11(1):1–12. doi:10.3109/1547691X.2013.798388

    Article  CAS  PubMed  Google Scholar 

  73. Salavoura K, Kolialexi A, Tsangaris G, Mavrou A (2008) Development of cancer in patients with primary immunodeficiencies. Anticancer Res 28:1263–1269

    PubMed  Google Scholar 

  74. Weaver JL (2012) Establishing the carcinogenic risk of immunomodulatory drugs. Toxicol Pathol 40:267–271. doi:10.1177/0192623311427711

    Article  CAS  PubMed  Google Scholar 

  75. Cogliano V, Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F (2005) Carcinogenicity of human papillomaviruses. Lancet Oncol 6(4):204

    Article  PubMed  Google Scholar 

  76. Gaschen L, Schuurman HJ (2001) Ultrasound detection of non-Hodgkin’s lymphoma in three cynomolgus monkeys after renal transplantation and cyclosporine immunosuppression. J Med Primatol 30(2):88–93

    Article  CAS  PubMed  Google Scholar 

  77. Kauffman HM, Cherikh WS, McBride MA, Cheng Y, Hanto DW (2006) Post-transplant de novo malignancies in renal transplant recipients: the past and present. Trans Internatl 19:607–620

    Article  Google Scholar 

  78. Dempster AM (2000) Nonclinical safety evaluation of biotechnologically derived pharmaceuticals. In: El-Gewely MR (ed) Biotechnology annual review. Elsevier Science, Amsterdam, pp 221–258

    Google Scholar 

  79. Wordell CJ (1991) Biotechnology update. Hosp Pharm 26:897–900

    Google Scholar 

  80. Goldstein G (1987) Overview of the development of orthoclone OKT3: monoclonal antibody for therapeutic use in transplantation. Transplant Proc 19(2 Suppl 1):1–6

    CAS  PubMed  Google Scholar 

  81. Swinnen LJ, Costanzo-Nordin MR, Fisher SG, O’Sullivan EJ, Johnson MR, Heroux AL, Dizikes GJ, Pifarre R, Fisher RI (1990) Increased incidence of lymphoproliferative disorder after immunosuppression with the monoclonal antibody OKT3 in cardiac-transplant recipients. N Engl J Med 323(25):1723–1728

    Article  CAS  PubMed  Google Scholar 

  82. Macsween KF, Crawford DH (2003) Epstein-Barr virus-recent advances. Lancet Infect Dis 3:131–140

    Article  PubMed  Google Scholar 

  83. Young LS, Rickinson AB (2004) Epstein-Barr virus: 40 years on. Nat Rev Cancer 4:757–768. doi:10.1038/nrc1452

    Article  CAS  PubMed  Google Scholar 

  84. Clarke J, Hurst C, Martin P, Vahle J, Ponce R, Mounho B, Heidel S, Andrews L, Reynolds T, Cavagnaro J (2008) Duration of chronic toxicity studies for biotechnology-derived pharmaceuticals: is 6 months still appropriate? Reg Toxicol Pharmacol 50:2–22. doi:10.1016/j.yrtph.2007.08.001

    Article  CAS  Google Scholar 

  85. Bugelski PJ, Herzyk DJ, Rehm S, Harmsen AG, Gore EV, Williams DM, Maleeff BE, Badger AM, Truneh A, O’Brien SR, Macial RA, Wier PJ, Morgan DG, Hart TK (2000) Preclinical development of keliximab, a primatized™ anti-CD4 monoclonal antibody, in human CD4 transgenic mice: characterization of the model and safety studies. Hum Exp Toxicol 19:230–243. doi:10.1191/096032700678815783

    Article  CAS  PubMed  Google Scholar 

  86. Strangfeld A, Zink A (2010) Are we playing it safe? Tumor necrosis factor alpha inhibition and the risk of solid malignancies. Rheumatologist 1–7. http://www.the-rheumatologist.org/details/article/867933/Are_We_Playing_It_Safe.html

  87. Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B (1975) An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci U S A 72(9):3666–3670

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Balkwill F (2009) Tumor necrosis factor and cancer. Nat Rev Cancer 9:361–371. doi:10.1038/nrc2628

    Article  CAS  PubMed  Google Scholar 

  89. Raaschou P, Simard JF, Neovius M, Askling J (2011) Does cancer that occurs during or after anti-tumor necrosis factor therapy have a worse prognosis? A national assessment of overall and site-specific cancer survival in rheumatoid arthritis patients treated with biologic agents. Arthritis Rheum 63(7):1812–1822. doi:10.1002/art.30247

    Article  CAS  PubMed  Google Scholar 

  90. Ferrajoli A, Keating MJ, Manshouri T, Giles FJ, Dey A, Estrov Z, Koller CA, Kurzock R, Thomas DA, Faderi S, Lerner S, O’Brien S, Albitar M (2002) The clinical significance of tumor necrosis factor-α plasma level in patients having chronic lymphocytic leukemia. Blood 100(4):1215–1219

    CAS  PubMed  Google Scholar 

  91. Brown ER, Charles KA, Hoare SA, Rye RL, Jodrell DI, Aird RE, Vora R, Prabhakar U, Nakada M, Corringham RE, DeWitte M, Sturgeon C, Propper D, Balkwill FR, Smyth JF (2008) A clinical study assessing the tolerability and biological effects of infliximab, a TNF-α inhibitor, in patients with advanced cancer. Ann Oncol 19:1340–1346. doi:10.1093/annonc/mdn054

    Article  CAS  PubMed  Google Scholar 

  92. Baert FJ, D’Haens GR, Peeters M, Hiele MI, Schaible TF, Shealy D, Geboes K, Rutgeerts PJ (1999) Tumor necrosis factor alpha antibody (infliximab) therapy profoundly down-regulates the inflammation in Crohn’s ileocolitis. Gastroenterology 116(1):22–28

    Article  CAS  PubMed  Google Scholar 

  93. FDA Etanercept, Summary basis of approval (1998) http://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/HowDrugsareDevelopedandApproved/ApprovalApplications/TherapeuticBiologicApplications/ucm088697.pdf

  94. Raaschou P, Simard JF, Holmqvist M, Askling J (2013) Rheumatoid arthritis, anti-tumor necrosis factor therapy, and risk of malignant melanoma: nationwide population based prospective cohort study from Sweden. BMJ 346:1–12. doi:10.1136/bmj.f1939, Published 8 April 2013

    Article  Google Scholar 

  95. Bongartz T, Sutton AJ, Sweeting MJ, Buchan I, Matteson EL, Montori V (2006) Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies. Systematic review and meta-analysis of rare harmful effects in randomized controlled trials. JAMA 295(19):2275–2285. doi:10.1001/jama.295.19.2275

    Article  CAS  PubMed  Google Scholar 

  96. Bongartz T, Warren FC, Mines D, Matteson EL, Abrams KR, Sutton AJ (2009) Etanercept therapy in rheumatoid arthritis and the risk of malignancies: a systematic review and individual patient data meta-analysis of randomised controlled trials. Ann Rheum Dis 68(7):1177–1183. doi:10.1136/ard.2008.094904

    Article  CAS  PubMed  Google Scholar 

  97. Wolfe F, Michaud K (2004) Lymphoma in rheumatoid arthritis. The effect of methotrexate and anti-tumor necrosis factor therapy in 18,572 patients. Arthritis Rheum 50(6):1740–1751. doi:10.1002/art.20311

    Article  CAS  PubMed  Google Scholar 

  98. Wolfe F, Michaud K (2007) Biologic treatment of rheumatoid arthritis and the risk of malignancy. Analyses from a large US observational study. Arthritis Rheum 56(9):2886–2895. doi:10.1002/art.22864

    Article  PubMed  Google Scholar 

  99. Askling J, Fored CM, Brandt L, Baecklund E, Bertilsson L, Feltelius N, Cöster L, Geborek P, Jacobsson LT, Lindblad S, Lysholm J, Rantapää-Dahlqvist S, Saxne T, Klareskog L (2005) Risks of solid cancers in patients with rheumatoid arthritis and after treatment with tumor necrosis factor antagonists. Ann Rheum Dis 64:1421–1426. doi:10.1136/ard.2004.033993

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Askling J, van Vollenhoven RF, Granath F, Raaschou P, Fored CM, Baecklund E, Dackhammar C, Feltelius N, Cöster L, Geborek P, Jacobsson LT, Lindblad S, Rantapää-Dahlqvist S, Saxne T, Klareskog L (2009) Cancer risk in patients with rheumatoid arthritis treated with anti-tumor necrosis factor α therapies: does the risk change with the time since start of treatment? Arthritis Rheum 60(11):3180–3189. doi:10.1002/art.24941

    Article  CAS  PubMed  Google Scholar 

  101. Haynes K, Beukelman T, Curtis JR, Newcomb C, Herrinton LJ, Graham DJ, Solomon DH, Griffin MR, Chen L, Liu L, Saag KG, Lewis JD (2013) Tumor necrosis factor alpha inhibitor therapy and cancer risk in chronic immune mediated diseases. Arthritis Rheum 65(1):48–58. doi:10.1002/art.37740

    Article  CAS  PubMed  Google Scholar 

  102. Setoguchi S, Solomon DH, Weinblatt ME, Katz JN, Avorn J, Glynn RJ, Cook EF, Carney G, Schneeweiss S (2006) Tumor necrosis factor α antagonist use and cancer in patients with rheumatoid arthritis. Arthritis Rheum 54(9):2757–2764

    Article  CAS  PubMed  Google Scholar 

  103. Dreyer L, Mellemkjaer L, Andersen AR, Bennett P, Poulsen UE, Ellingsen TJ, Duijnhoven RG, Straus SM, Raine JM, de Boer A, Hoes AW, De Bruin ML (2013) Number of patients studied prior to approval of new medicines: a database analysis. PLoS Med 10(3):e1001407. doi:10.1371/journal.pmed.1001407, Epub 2013 Mar 19

    Article  Google Scholar 

  104. Lopez-Olivo MA, Tayar JH, Martinez-Lopez JA, Pollono EN, Cueto JP, Gonzales-Crespo MR, Fulton S, Suarez-Almazor ME (2012) Risk of malignancies in patients with rheumatoid arthritis treated with biologic therapy: a meta-analysis. JAMA 308(9):898–908. doi:10.1001/2012.jama.10857

    Article  CAS  PubMed  Google Scholar 

  105. Strangfeld A, Hierse F, Rau R, Burmester G-R, Krummel-Lorenz B, Demary W, Listing J, Zink A (2010) Risk of incident or recurrent malignancies among patients with rheumatoid arthritis exposed to biologic therapy in the German biologics register RABBIT. Arthritis Res Ther 12(1):R5. doi:10.1186/ar2904, Epub 2010 Jan 8

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  106. Dixon WG, Watson KD, Lunt M, Mercer LK, British Society for Rheumatology Biologics Register Control Centre Consortium, Hyrich KL, Symmons DPM (2010) Influence of anti-tumor necrosis factor therapy on cancer incidence in patients with rheumatoid arthritis who have had a prior malignancy: results from the British Society for Rheumatology Biologics Register. Arthritis Care Res 62(6):755–763. doi:10.1002/acr.20129

  107. Baecklund E, Iliadou A, Askling J, Ekbom A, Backlin C, Grannath F, Catrina AI, Rosenquist R, Feltelius N, Sundström C, Klareskog L (2006) Association of chronic inflammation, not its treatment, with increased lymphoma risk in rheumatoid arthritis. Arthritis Rheum 54(3):692–701. doi:10.1002/art.21675

    Article  PubMed  Google Scholar 

  108. Hill AB (1965) The environment and disease: association or causation? Proc R Soc Med 58:295–300

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Stricker BH, Stijnen T (2010) Analysis of individual drug use as a time-varying determinant of exposure in prospective population-based cohort studies. Eur J Epidemiol 25(4):245–251. doi:10.1007/s10654-010-9451-7, Epub 2010 Apr 1

    Article  PubMed Central  PubMed  Google Scholar 

  110. WHO. http://www.who.int/medicines/areas/quality_safety/safety_efficacy/pharmvigi/en/

  111. Miacalcin team Novartis Pharmaceuticals Corporation Available for Public Disclosure without Redaction Miacalcin® (calcitonin-salmon) FDA Joint Reproductive Health Drugs and Drug Safety and Risk Management Advisory Committee Meeting on the Benefit/Risk of Salmon Calcitonin for the Treatment of Postmenopausal Osteoporosis – Briefing Book, 29 Jan 2013

    Google Scholar 

  112. Chesnut CH III, Silverman SL, Andriano K, Genant H, Gimona A, Harris S, Kiel D, LeBoff M, Maricic M, Miller P, Moniz C, Peacock M, Richardson P, Watts N, Baylink D (2000) A randomized trial of nasal spray salmon calcitonin in postmenopausal women with established osteoporosis: the PROOF Study. Am J Med 109(4):267–276

    Article  CAS  PubMed  Google Scholar 

  113. EMA EPAR Cimzia 2014. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Procedural_steps_taken_and_scientific_information_after_authorisation/human/001037/WC500069736.pdf

  114. EMA EPAR Humira. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Procedural_steps_taken_and_scientific_information_after_authorisation/human/000481/WC500050869.pdf

  115. EMA EPAR Remicade 2014. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Procedural_steps_taken_and_scientific_information_after_authorisation/human/000240/WC500050890.pdf

  116. EMA EPAR Enbrel 2014. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Procedural_steps_taken_and_scientific_information_after_authorisation/human/000262/WC500027366.pdf

  117. Raaschou P, Frisell T, Askling J (2014) TNF inhibitor therapy and risk of breast cancer recurrence in patients with rheumatoid arthritis: a nationwide cohort study. Ann Rheum Dis 0:1–7. doi:10.1136/annrheumdis-2014-205745

  118. EMA EPAR Aranesp 2006. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Procedural_steps_taken_and_scientific_information_after_authorisation/human/000332/WC500026145.pdf

  119. EMA EPAR Somatropin referral 2011. http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/referrals/Somatropin/human_referral_000287.jsp&mid=WC0b01ac05805c516f

  120. Andersson C, Vaag A, Selmer C, Schmiegelow M, Sørensen R, Lindhardsen J, Gislason GH, Køber L, Torp-Pedersen C (2012) Risk of cancer in patients using glucose-lowering agents: a nationwide cohort study of 3.6 million people. BMJ Open 2(3). pii: e000433. doi:10.1136/bmjopen-2011-000433. Print 2012

  121. Colhoun HM (2009) Use of insulin glargine and cancer incidence in Scotland: a study from the Scottish Diabetes Research Network Epidemiology Group. Diabetologia 52(9):1755–1765. doi:10.1007/s00125-009-1453-1, Epub 2009 Jul 15

    Article  PubMed Central  PubMed  Google Scholar 

  122. Currie CJ, Poole CD, Gale EA (2009) The influence of glucose-lowering therapies on cancer risk in type 2 diabetes. Diabetologia 52(9):1766–1777. doi:10.1007/s00125-009-1440-6, Epub 2009 Jul 2

    Article  CAS  PubMed  Google Scholar 

  123. Hemkens LG, Grouven U, Bender R, Gunster C, Gutschmidt S, Selke GW, Sawicki PT (2009) Risk of malignancies in patients with diabetes treated with human insulin or insulin analogues: a cohort study. Diabetologia 52(9):1732–1744. doi:10.1007/s00125-009-1418-4, Epub 2009 Jun 30

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Jonasson JM, Ljung R, Talback M, Haglund B, Gudbjornsdottir S, Steineck G (2009) Insulin glargine use and short-term incidence of malignancies-a population-based follow-up study in Sweden. Diabetologia 52(9):1745–1754. doi:10.1007/s00125-009-1444-2, Epub 2009 Jul 9

    Article  CAS  PubMed  Google Scholar 

  125. Kostev K (2012) Risk of breast cancer in patients on long-acting insulin analogues in comparison with those on human insulin. Diabetologia 55(5):1554–1555. doi:10.1007/s00125-012-2497-1, Epub 2012 Feb 19

    Article  CAS  PubMed  Google Scholar 

  126. Mannucci E, Monami M, Balzi D, Cresci B, Pala L, Melani C, Lamanna C, Bracali I, Bigiarini M, Barchielli A, Marchionni N, Rotella CM (2010) Doses of insulin and its analogues and cancer occurrence in insulin-treated type 2 diabetic patients. Diabetes Care 33(9):1997–2003. doi:10.2337/dc10-0476, Epub 2010 Jun 14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  127. Ruiter R, Visser LE, van Herk-Sukel MP, Coebergh JW, Haak HR, Geelhoed-Duijvestijn PH, Straus SM, Herings RM, Stricker BH (2012) Risk of cancer in patients on insulin glargine and other insulin analogues in comparison with those on human insulin: results from a large population-based follow-up study. Diabetologia 55(1):51–62. doi:10.1007/s00125-011-2312-4, Epub 2011 Sep 29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  128. Home PD, Lagarenne P (2009) Combined randomised controlled trial experience of malignancies in studies using insulin glargine. Diabetologia 52(12):2499–2506. doi:10.1007/s00125-009-1530-5, Epub 2009 Sep15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  129. Rosenstock J, Fonseca V, McGill JB, Riddle M, Halle JP, Hramiak I, Johnston P, Davis M (2009) Similar risk of malignancy with insulin glargine and neutral protamine Hagedorn (NPH) insulin in patients with type 2 diabetes: findings from a 5 year randomised, open-label study. Diabetologia 52(9):1971–1973. doi:10.1007/s00125-009-1452-2, Epub 2009 Jul 16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  130. Nagel JM, Mansmann U, Wegscheider K, Rohmel J (2010) Insulin resistance and increased risk for malignant neoplasms: confounding of the data on insulin glargine. Diabetologia 53(1):206–208. doi:10.1007/s00125-009-1535-0, Epub 2009 Sep 24

    Article  CAS  PubMed  Google Scholar 

  131. Pocock SJ, Smeeth L (2009) Insulin glargine and malignancy: an unwarranted alarm. Lancet 374(9689):511–513. doi:10.1016/S0140-6736(09)61307-6, Epub 2009 Jul 17

    Article  PubMed  Google Scholar 

  132. Bronsveld H, ter Braak B, Karlstad Ø, Vestergaard P, Starup-Linde J, Bazelier MT, De Bruin ML, de Boer A, Siezen CLE, van de Water B, van der Laan JW, Schmidt MK (2015) Treatment with insulin (analogues) and breast cancer risk in diabetics; a systematic review and meta-analysis of in vitro, animal and human evidence. Breast Cancer Res 17(1):100. doi:10.1186/s13058-015-0611-2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maggie Dempster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dempster, M. et al. (2015). Carcinogenicity of Biopharmaceuticals. In: Graziano, M., Jacobson-Kram, D. (eds) Genotoxicity and Carcinogenicity Testing of Pharmaceuticals. Springer, Cham. https://doi.org/10.1007/978-3-319-22084-0_8

Download citation

Publish with us

Policies and ethics