Research Article

The uterine secretory cycle: recurring physiology of endometrial outputs that setup the uterine luminal microenvironment

Conserved in female reproduction across all mammalian species is the estrous cycle and its regulation by the hypothalamic-pituitary-gonadal (HPG) axis, a collective of intersected hormonal events that are crucial for ensuring uterine fertility. Nonetheless, knowledge of the direct mediators that synchronously shape the uterine microenvironment for successive yet distinct events, such as the transit of sperm and support for progressive stages of preimplantation embryo development, remain principally deficient. Toward understanding the timed endometrial outputs that permit luminal events as directed by the estrous cycle, we used Bovidae as a model system to uniquely surface sample and study temporal shifts to in vivo endometrial transcripts that encode for proteins destined to be secreted. The results revealed the full quantitative profile of endometrial components that shape the uterine luminal microenvironment at distinct phases of the estrous cycle (estrus, metestrus, diestrus, and proestrus). In interpreting this comprehensive log of stage-specific endometrial secretions, we define the “uterine secretory cycle” and extract a predictive understanding of recurring physiological actions regulated within the uterine lumen in anticipation of sperm and preimplantation embryonic stages. This repetitive microenvironmental preparedness to sequentially provide operative support was a stable intrinsic framework, with only limited responses to sperm or embryos if encountered in the lumen within the cyclic time period. In uncovering the secretory cycle and unraveling realistic biological processes, we present novel foundational knowledge of terminal effectors controlled by the HPG axis to direct a recurring sequence of vital functions within the uterine lumen.

NEW & NOTEWORTHY This study unravels the recurring sequence of changes within the uterus that supports vital functions (sperm transit and development of preimplantation embryonic stages) during the reproductive cycle in female Ruminantia. These data present new systems knowledge in uterine reproductive physiology crucial for setting up in vitro biomimicry and artificial environments for assisted reproduction technologies for a range of mammalian species.

Listen to this article’s corresponding podcast at https://apspublicationspodcast.podbean.com/e/what-is-the-uterine-secretory-cycle-and-why-is-it-important/.

REFERENCES

  • 1. von Hoffmann G. Uterine milk. Am J Med Sci 87: 254–255, 1884.
    Crossref | Google Scholar
  • 2. von Hoffmann G. Sicherer nachweis der sogenannten uterinmilch beim menschen. Zeitschrift fur Geburtshulfe und Gynakologie 7–8: XVI, 258–285, 1882.
    Google Scholar
  • 3. Cooke PS, Spencer TE, Bartol FF, Hayashi K. Uterine glands: development, function and experimental model systems. Mol Hum Reprod 19: 547–558, 2013. doi:10.1093/molehr/gat031.
    Crossref | PubMed | Web of Science | Google Scholar
  • 4. Roberts RM, Bazer FW. The functions of uterine secretions. J Reprod Fertil 82: 875–892, 1988. doi:10.1530/jrf.0.0820875.
    Crossref | PubMed | Google Scholar
  • 5. Spencer TE. Biological roles of uterine glands in pregnancy. Semin Reprod Med 32: 346–357, 2014. doi:10.1055/s-0034-1376354.
    Crossref | PubMed | Web of Science | Google Scholar
  • 6. Albihn A, Gustafsson H, Rodriguez-Martinez H. Maternal influence on the early development of asynchronously transferred bovine embryos. Anim Reprod Sci 24: 25–35, 1991. doi:10.1016/0378-4320(91)90079-F.
    Crossref | Web of Science | Google Scholar
  • 7. Lawson RA, Parr RA, Cahill LP. Evidence for maternal control of blastocyst growth after asynchronous transfer of embryos to the uterus of the ewe. J Reprod Fertil 67: 477–483, 1983. doi:10.1530/jrf.0.0670477.
    Crossref | PubMed | Google Scholar
  • 8. Wilmut I, Sales DI. Effect of an asynchronous environment on embryonic development in sheep. J Reprod Fertil 61: 179–184, 1981. doi:10.1530/jrf.0.0610179.
    Crossref | PubMed | Google Scholar
  • 9. Lessey BA, Killam AP, Metzger DA, Haney AF, Greene GL, McCarty KS Jr. Immunohistochemical analysis of human uterine estrogen and progesterone receptors throughout the menstrual cycle. J Clin Endocrinol Metab 67: 334–340, 1988. doi:10.1210/jcem-67-2-334.
    Crossref | PubMed | Web of Science | Google Scholar
  • 10. Murray MK. The effect of estrogen and progesterone on structural changes in the uterine glandular epithelium of the ovariectomized sheep. Biol Reprod 47: 408–417, 1992. doi:10.1095/biolreprod47.3.408.
    Crossref | PubMed | Web of Science | Google Scholar
  • 11. Murray MK, Sower SA. Estrogen- and progesterone-dependent secretory changes in the uterus of the sheep. Biol Reprod 47: 917–924, 1992. doi:10.1095/biolreprod47.6.917.
    Crossref | PubMed | Web of Science | Google Scholar
  • 12. Anthony RV, Helmer SD, Sharif SF, Roberts RM, Hansen PJ, Thatcher WW, Bazer FW. Synthesis and processing of ovine trophoblast protein-1 and bovine trophoblast protein-1, conceptus secretory proteins involved in the maternal recognition of pregnancy. Endocrinology 123: 1274–1280, 1988. doi:10.1210/endo-123-3-1274.
    Crossref | PubMed | Web of Science | Google Scholar
  • 13. Brown WE, Bradbury JT. A study of the physiologic action of human chorionic hormone; the production of pseudopregnancy in women by chorionic hormone. Am J Obstet Gynecol 53: 749–757, 1947. doi:10.1016/s0002-9378(15)31597-0.
    Crossref | PubMed | Web of Science | Google Scholar
  • 14. Godkin JD, Bazer FW, Moffatt J, Sessions F, Roberts RM. Purification and properties of a major, low molecular weight protein released by the trophoblast of sheep blastocysts at day 13-21. J Reprod Fertil 65: 141–150, 1982. doi:10.1530/jrf.0.0650141.
    Crossref | PubMed | Google Scholar
  • 15. Kidder HE, Casida LE, Grummer RH. Some effects of estrogen injections on the estrual cycle of gilts. J Anim Sci 14: 470–474, 1955. doi:10.2527/jas1955.142470x.
    Crossref | Web of Science | Google Scholar
  • 16. Martal J, Lacroix MC, Loudes C, Saunier M, Wintenberger-Torrès S. Trophoblastin, an antiluteolytic protein present in early pregnancy in sheep. J Reprod Fertil 56: 63–73, 1979. doi:10.1530/jrf.0.0560063.
    Crossref | PubMed | Google Scholar
  • 17. Segaloff A, Sternberg WH, Gaskill CJ. Effects of luteotropic dose of chorionic gonadotropin in women. J Clin Endocrinol Metab 11: 936–944, 1951. doi:10.1210/jcem-11-9-936.
    Crossref | PubMed | Web of Science | Google Scholar
  • 18. Flechon JE, Guillomot M, Charlier M, Flechon B, Martal J. Experimental studies on the elongation of the ewe blastocyst. Reprod Nutr Dev (1980) 26: 1017–1024, 1986. doi:10.1051/rnd:19860609.
    Crossref | PubMed | Google Scholar
  • 19. Letcher R, Simmen RC, Bazer FW, Simmen FA. Insulin-like growth factor-I expression during early conceptus development in the pig. Biol Reprod 41: 1143–1151, 1989. doi:10.1095/biolreprod41.6.1143.
    Crossref | PubMed | Web of Science | Google Scholar
  • 20. Bazer FW, Vallet JL, Roberts RM, Sharp DC, Thatcher WW. Role of conceptus secretory products in establishment of pregnancy. J Reprod Fertil 76: 841–850, 1986. doi:10.1530/jrf.0.0760841.
    Crossref | PubMed | Google Scholar
  • 21. Gross TS, Plante C, Thatcher WW, Hansen PJ, Helmer SD, Putney DJ. Secretory proteins of the bovine conceptus alter endometrial prostaglandin and protein secretion in vitro. Biol Reprod 39: 977–987, 1988. doi:10.1095/biolreprod39.4.977.
    Crossref | PubMed | Web of Science | Google Scholar
  • 22. Vallet JL, Bazer FW, Roberts RM. The effect of ovine trophoblast protein-one on endometrial protein secretion and cyclic nucleotides. Biol Reprod 37: 1307–1316, 1987. doi:10.1095/biolreprod37.5.1307.
    Crossref | PubMed | Web of Science | Google Scholar
  • 23. Brackett BG, Bousquet D, Boice ML, Donawick WJ, Evans JF, Dressel MA. Normal development following in vitro fertilization in the cow. Biol Reprod 27: 147–158, 1982. doi:10.1095/biolreprod27.1.147.
    Crossref | PubMed | Web of Science | Google Scholar
  • 24. Fukuda Y, Ichikawa M, Naito K, Toyoda Y. Birth of normal calves resulting from bovine oocytes matured, fertilized, and cultured with cumulus cells in vitro up to the blastocyst stage. Biol Reprod 42: 114–119, 1990. doi:10.1095/biolreprod42.1.114.
    Crossref | PubMed | Web of Science | Google Scholar
  • 25. Hafez ES, Sugie T, Hunt WL. Superovulation and related phenomena in the beef cow. II. Effect of oestrogen administration on production of ova. J Reprod Fertil 5: 381–388, 1963. doi:10.1530/jrf.0.0050381.
    Crossref | PubMed | Google Scholar
  • 26. McCracken JA, Carlson JC, Glew ME, Goding JR, Baird DT, Gréen K, Samuelsson B. Prostaglandin F identified as a luteolytic hormone in sheep. Nat New Biol 238: 129–134, 1972. doi:10.1038/newbio238129a0.
    Crossref | PubMed | Google Scholar
  • 27. Phillips PH, Lardy HA. A yolk-buffer pabulum for the preservation of bull sperm. J Dairy Sci 23: 399–404, 1940. doi:10.3168/jds.S0022-0302(40)95541-2.
    Crossref | Google Scholar
  • 28. Willadsen SM, Lehn-Jensen H, Fehilly CB, Newcomb R. The production of monozygotic twins of preselected parentage by micromanipulation of non-surgically collected cow embryos. Theriogenology 15: 23–29, 1981. doi:10.1016/s0093-691x(81)80015-5.
    Crossref | PubMed | Web of Science | Google Scholar
  • 29. Willett EL, Black WG, Casida LE, Stone WH, Buckner PJ. Successful transplantation of a fertilized bovine ovum. Science 113: 247 , 1951. doi:10.1126/science.113.2931.247.
    Crossref | PubMed | Web of Science | Google Scholar
  • 30. Wilmut I, Rowson LE. Experiments on the low-temperature preservation of cow embryos. Vet Rec 92: 686–690, 1973. doi:10.1136/vr.92.26.686.
    Crossref | PubMed | Web of Science | Google Scholar
  • 31. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH. Viable offspring derived from fetal and adult mammalian cells. Nature 385: 810–813, 1997 [Erratum in Nature 386: 200, 1997]. doi:10.1038/385810a0.
    Crossref | PubMed | Web of Science | Google Scholar
  • 32. Asdell SA, de Alba J, Roberts SJ. Studies on the estrous cycle of dairy cattle: cycle length, size of corpus luteum and endometrial changes. Cornell Vet 39: 397–410, 1949.
    Google Scholar
  • 33. Cole HH. A study of the mucosa of the genital tract of the cow, with special reference to the cyclic changes. Am J Anat 46: 261–301, 1930. doi:10.1002/aja.1000460204.
    Crossref | Google Scholar
  • 34. Kojima Y, Selander U. Cyclical changes in the fine structure of bovine endometrial gland cells. Z Zellforsch Mikrosk Anat 104: 69–86, 1970. doi:10.1007/bf00340050.
    Crossref | PubMed | Google Scholar
  • 35. Gray CA, Bazer FW, Spencer TE. Effects of neonatal progestin exposure on female reproductive tract structure and function in the adult ewe. Biol Reprod 64: 797–804, 2001. doi:10.1095/biolreprod64.3.797.
    Crossref | PubMed | Web of Science | Google Scholar
  • 36. Gray CA, Taylor KM, Ramsey WS, Hill JR, Bazer FW, Bartol FF, Spencer TE. Endometrial glands are required for preimplantation conceptus elongation and survival. Biol Reprod 64: 1608–1613, 2001. doi:10.1095/biolreprod64.6.1608.
    Crossref | PubMed | Web of Science | Google Scholar
  • 37. Schultz RH, Fahning ML, Graham EF. A chemical study of uterine fluid and blood serum of normal cows during the oestrous cycle. J Reprod Fertil 27: 355–367, 1971. doi:10.1530/jrf.0.0270355.
    Crossref | PubMed | Google Scholar
  • 38. Heap RB. Some chemical constituents of uterine washings: a method of analysis with results from various species. J Endocrinol 24: 367–378, 1962. doi:10.1677/joe.0.0240367.
    Crossref | PubMed | Web of Science | Google Scholar
  • 39. Ibrahim M, Guay P, Lamothe P. Les électrolytes du sang et des sécrétions endométriales de la vache à la suite d’une glucocorticothérapie [Electrolytes of the blood and endometrial secretions of the cow following glucocorticoid therapy]. Can J Comp Med 36: 160–166, 1972.
    PubMed | Google Scholar
  • 40. Jordan ER, Chapman TE, Holtan DW, Swanson LV. Relationship of dietary crude protein to composition of uterine secretions and blood in high-producing postpartum dairy cows. J Dairy Sci 66: 1854–1862, 1983. doi:10.3168/jds.S0022-0302(83)82023-2.
    Crossref | PubMed | Web of Science | Google Scholar
  • 41. Hugentobler SA, Diskin MG, Leese HJ, Humpherson PG, Watson T, Sreenan JM, Morris DG. Amino acids in oviduct and uterine fluid and blood plasma during the estrous cycle in the bovine. Mol Reprod Dev 74: 445–454, 2007. doi:10.1002/mrd.20607.
    Crossref | PubMed | Web of Science | Google Scholar
  • 42. Hugentobler SA, Humpherson PG, Leese HJ, Sreenan JM, Morris DG. Energy substrates in bovine oviduct and uterine fluid and blood plasma during the oestrous cycle. Mol Reprod Dev 75: 496–503, 2008. doi:10.1002/mrd.20760.
    Crossref | PubMed | Web of Science | Google Scholar
  • 43. Hugentobler SA, Morris DG, Sreenan JM, Diskin MG. Ion concentrations in oviduct and uterine fluid and blood serum during the estrous cycle in the bovine. Theriogenology 68: 538–548, 2007. doi:10.1016/j.theriogenology.2007.04.049.
    Crossref | PubMed | Web of Science | Google Scholar
  • 44. Hugentobler SA, Sreenan JM, Humpherson PG, Leese HJ, Diskin MG, Morris DG. Effects of changes in the concentration of systemic progesterone on ions, amino acids and energy substrates in cattle oviduct and uterine fluid and blood. Reprod Fertil Dev 22: 684–694, 2010. doi:10.1071/RD09129.
    Crossref | PubMed | Web of Science | Google Scholar
  • 45. França MR, Mesquita FS, Lopes E, Pugliesi G, Van Hoeck V, Chiaratti MR, Membrive CB, Papa PC, Binelli M. Modulation of periovulatory endocrine profiles in beef cows: consequences for endometrial glucose transporters and uterine fluid glucose levels. Domest Anim Endocrinol 50: 83–90, 2015. doi:10.1016/j.domaniend.2014.09.005.
    Crossref | PubMed | Web of Science | Google Scholar
  • 46. Gao H, Wu G, Spencer TE, Johnson GA, Bazer FW. Select nutrients in the ovine uterine lumen. ii. glucose transporters in the uterus and peri-implantation conceptuses. Biol Reprod 80: 94–104, 2009. doi:10.1095/biolreprod.108.071654.
    Crossref | PubMed | Web of Science | Google Scholar
  • 47. Gao H, Wu G, Spencer TE, Johnson GA, Li X, Bazer FW. Select nutrients in the ovine uterine lumen. I. Amino acids, glucose, and ions in uterine lumenal flushings of cyclic and pregnant ewes. Biol Reprod 80: 86–93, 2009. doi:10.1095/biolreprod.108.071597.
    Crossref | PubMed | Web of Science | Google Scholar
  • 48. Moraes JGN, Behura SK, Geary TW, Spencer TE. Analysis of the uterine lumen in fertility-classified heifers: I. Glucose, prostaglandins, and lipids. Biol Reprod 102: 456–474, 2020. doi:10.1093/biolre/ioz191.
    Crossref | PubMed | Web of Science | Google Scholar
  • 49. Mullen MP, Bazer FW, Wu G, Parr MH, Evans ACO, Crowe MA, Diskin MG. Effects of systemic progesterone during the early luteal phase on the availabilities of amino acids and glucose in the bovine uterine lumen. Reprod Fertil Dev 26: 282–292, 2014. doi:10.1071/RD12319.
    Crossref | PubMed | Web of Science | Google Scholar
  • 50. Bavistei BD. Effects of amino acids on development in vitro of cleavage-stage bovine embryos into blastocysts. Reprod Fertil Dev 8: 835–841, 1996. doi:10.1071/RD9960835.
    Crossref | PubMed | Web of Science | Google Scholar
  • 51. Fahning ML, Schultz RH, Graham EF. The free amino acid content of uterine fluids and blood serum in the cow. J Reprod Fertil 13: 229–236, 1967. doi:10.1530/jrf.0.0130229.
    Crossref | PubMed | Google Scholar
  • 52. Moraes JGN, Behura SK, Bishop JV, Hansen TR, Geary TW, Spencer TE. Analysis of the uterine lumen in fertility-classified heifers: II. Proteins and metabolites. Biol Reprod 102: 571–587, 2020. doi:10.1093/biolre/ioz197.
    Crossref | PubMed | Web of Science | Google Scholar
  • 53. Ribeiro ES, Greco LF, Bisinotto RS, Lima FS, Thatcher WW, Santos JE. Biology of preimplantation conceptus at the onset of elongation in dairy cows. Biol Reprod 94: 97 , 2016. doi:10.1095/biolreprod.115.134908.
    Crossref | PubMed | Web of Science | Google Scholar
  • 54. Simintiras CA, Sánchez JM, McDonald M, Lonergan P. Progesterone alters the bovine uterine fluid lipidome during the period of elongation. Reproduction 157: 399–411, 2019. doi:10.1530/REP-18-0615.
    Crossref | PubMed | Web of Science | Google Scholar
  • 55. Simintiras CA, Sánchez JM, McDonald M, Lonergan P. The influence of progesterone on bovine uterine fluid energy, nucleotide, vitamin, cofactor, peptide, and xenobiotic composition during the conceptus elongation-initiation window. Sci Rep 9: 7716 , 2019. doi:10.1038/s41598-019-44040-6.
    Crossref | PubMed | Web of Science | Google Scholar
  • 56. Simintiras CA, Sánchez JM, McDonald M, Martins T, Binelli M, Lonergan P. Biochemical characterization of progesterone-induced alterations in bovine uterine fluid amino acid and carbohydrate composition during the conceptus elongation window. Biol Reprod 100: 672–685, 2019. doi:10.1093/biolre/ioy234.
    Crossref | PubMed | Web of Science | Google Scholar
  • 57. Tríbulo P, Balzano-Nogueira L, Conesa A, Siqueira LG, Hansen PJ. Changes in the uterine metabolome of the cow during the first 7 days after estrus. Mol Reprod Dev 86: 75–87, 2019. doi:10.1002/mrd.23082.
    Crossref | PubMed | Web of Science | Google Scholar
  • 58. Sponchiado M, Gonella-Diaza AM, Rocha CC, Turco EGL, Pugliesi G, Leroy J, Binelli M. The pre-hatching bovine embryo transforms the uterine luminal metabolite composition in vivo. Sci Rep 9: 8354 , 2019. doi:10.1038/s41598-019-44590-9.
    Crossref | PubMed | Web of Science | Google Scholar
  • 59. de Moraes AA, Hansen PJ. Granulocyte-macrophage colony-stimulating factor promotes development of in vitro produced bovine embryos. Biol Reprod 57: 1060–1065, 1997. doi:10.1095/biolreprod57.5.1060.
    Crossref | PubMed | Web of Science | Google Scholar
  • 60. Larson RC, Ignotz GG, Currie WB. Effect of fibronectin on early embryo development in cows. J Reprod Fertil 96: 289–297, 1992. doi:10.1530/jrf.0.0960289.
    Crossref | PubMed | Google Scholar
  • 61. Larson RC, Ignotz GG, Currie WB. Platelet derived growth factor (PDGF) stimulates development of bovine embryos during the fourth cell cycle. Development 115: 821–826, 1992. doi:10.1242/dev.115.3.821.
    Crossref | PubMed | Web of Science | Google Scholar
  • 62. Larson RC, Ignotz GG, Currie WB. Transforming growth factor beta and basic fibroblast growth factor synergistically promote early bovine embryo development during the fourth cell cycle. Mol Reprod Dev 33: 432–435, 1992. doi:10.1002/mrd.1080330409.
    Crossref | PubMed | Web of Science | Google Scholar
  • 63. Michael DD, Alvarez IM, Ocón OM, Powell AM, Talbot NC, Johnson SE, Ealy AD. Fibroblast growth factor-2 is expressed by the bovine uterus and stimulates interferon-tau production in bovine trophectoderm. Endocrinology 147: 3571–3579, 2006. doi:10.1210/en.2006-0234.
    Crossref | PubMed | Web of Science | Google Scholar
  • 64. Thibodeaux JK, Del Vecchio RP, Hansel W. Role of platelet-derived growth factor in development of in vitro matured and in vitro fertilized bovine embryos. J Reprod Fertil 98: 61–66, 1993. doi:10.1530/jrf.0.0980061.
    Crossref | PubMed | Google Scholar
  • 65. Beltman ME, Mullen MP, Elia G, Hilliard M, Diskin MG, Evans AC, Crowe MA. Global proteomic characterization of uterine histotroph recovered from beef heifers yielding good quality and degenerate day 7 embryos. Domest Anim Endocrinol 46: 49–57, 2014. doi:10.1016/j.domaniend.2013.10.003.
    Crossref | PubMed | Web of Science | Google Scholar
  • 66. Faulkner S, Elia G, Mullen MP, O'Boyle P, Dunn MJ, Morris D. A comparison of the bovine uterine and plasma proteome using iTRAQ proteomics. Proteomics 12: 2014–2023, 2012. doi:10.1002/pmic.201100609.
    Crossref | PubMed | Web of Science | Google Scholar
  • 67. Forde N, Simintiras CA, Sturmey R, Mamo S, Kelly AK, Spencer TE, Bazer FW, Lonergan P. Amino acids in the uterine luminal fluid reflects the temporal changes in transporter expression in the endometrium and conceptus during early pregnancy in cattle. PLoS One 9: e100010 , 2014. doi:10.1371/journal.pone.0100010.
    Crossref | PubMed | Web of Science | Google Scholar
  • 68. Mullen MP, Elia G, Hilliard M, Parr MH, Diskin MG, Evans AC, Crowe MA. Proteomic characterization of histotroph during the preimplantation phase of the estrous cycle in cattle. J Proteome Res 11: 3004–3018, 2012. doi:10.1021/pr300144q.
    Crossref | PubMed | Web of Science | Google Scholar
  • 69. Tabb DL, Vega-Montoto L, Rudnick PA, Variyath AM, Ham AJ, Bunk DM, Kilpatrick LE, Billheimer DD, Blackman RK, Cardasis HL, Carr SA, Clauser KR, Jaffe JD, Kowalski KA, Neubert TA, Regnier FE, Schilling B, Tegeler TJ, Wang M, Wang P, Whiteaker JR ,Zimmerman LJ, Fisher SJ, Gibson BW, Kinsinger CR, Mesri M, Rodriguez H, Stein SE, Tempst P, Paulovich AG, Liebler DC, Spiegelman C. Repeatability and reproducibility in proteomic identifications by liquid chromatography-tandem mass spectrometry. J Proteome Res 9: 761–776, 2010. doi:10.1021/pr9006365.
    Crossref | PubMed | Web of Science | Google Scholar
  • 70. Hawk HW. Sperm survival and transport in the female reproductive tract. J Dairy Sci 66: 2645–2660, 1983. doi:10.3168/jds.S0022-0302(83)82138-9.
    Crossref | PubMed | Web of Science | Google Scholar
  • 71. Thompson JG, Mitchell M, Kind KL. Embryo culture and long-term consequences. Reprod Fertil Dev 19: 43–52, 2007. doi:10.1071/rd06129.
    Crossref | PubMed | Web of Science | Google Scholar
  • 72. Pillai VV, Kei TG, Reddy SE, Das M, Abratte C, Cheong SH, Selvaraj V. Induced pluripotent stem cell generation from bovine somatic cells indicates unmet needs for pluripotency sustenance. Anim Sci J 90: 1149–1160, 2019. doi:10.1111/asj.13272.
    Crossref | PubMed | Web of Science | Google Scholar
  • 73. Pillai VV, Weber DM, Phinney BS, Selvaraj V. Profiling of proteins secreted in the bovine oviduct reveals diverse functions of this luminal microenvironment. PLoS One 12: e0188105 , 2017. doi:10.1371/journal.pone.0188105.
    Crossref | PubMed | Web of Science | Google Scholar
  • 74. Pillai VV, Siqueira LG, Das M, Kei TG, Tu LN, Herren AW, Phinney BS, Cheong SH, Hansen PJ, Selvaraj V. Physiological profile of undifferentiated bovine blastocyst-derived trophoblasts. Biol Open 8: bio037937 , 2019. doi:10.1242/bio.037937.
    Crossref | PubMed | Web of Science | Google Scholar
  • 75. Rabaglino MB, Risco CA, Thatcher MJ, Kim IH, Santos JEP, Thatcher WW. Application of one injection of prostaglandin F in the five-day Co-Synch+CIDR protocol for estrous synchronization and resynchronization of dairy heifers. J Dairy Sci 93: 1050–1058, 2010. doi:10.3168/jds.2009-2675.
    Crossref | PubMed | Web of Science | Google Scholar
  • 76. Lima FS, Ribeiro ES, Bisinotto RS, Greco LF, Martinez N, Amstalden M, Thatcher WW, Santos JEP. Hormonal manipulations in the 5-day timed artificial insemination protocol to optimize estrous cycle synchrony and fertility in dairy heifers. J Dairy Sci 96: 7054–7065, 2013. doi:10.3168/jds.2013-7093.
    Crossref | PubMed | Web of Science | Google Scholar
  • 77. Afgan E, Baker D, van den Beek M, Blankenberg D, Bouvier D, Čech M, Chilton J, Clements D, Coraor N, Eberhard C, Grüning B, Guerler A, Hillman-Jackson J, Von Kuster G, Rasche E, Soranzo N, Turaga N, Taylor J, Nekrutenko A, Goecks J. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res 44: W3–W10, 2016. doi:10.1093/nar/gkw343.
    Crossref | PubMed | Web of Science | Google Scholar
  • 78. Rosen BD, Bickhart DM, Schnabel RD, Koren S, Elsik CG, Tseng E, Rowan TN, Low WY, Zimin A, Couldrey C, Hall R, Li W, Rhie A, Ghurye J, McKay SD, Thibaud-Nissen F, Hoffman J, Murdoch BM, Snelling WM, McDaneld TG, Hammond JA, Schwartz JC, Nandolo W, Hagen DE, Dreischer C, Schultheiss SJ, Schroeder SG, Phillippy AM, Cole JB, Van Tassell CP, Liu G, Smith TPL, Medrano JF. De novo assembly of the cattle reference genome with single-molecule sequencing. Gigascience 9: giaa021 , 2020. doi:10.1093/gigascience/giaa021.
    Crossref | PubMed | Web of Science | Google Scholar
  • 79. Dobin A, Gingeras TR. Mapping RNA-seq Reads with STAR. Curr Protoc Bioinforma 51: 11.14.1–11.14.19, 2015. doi:10.1002/0471250953.bi1114s51.
    Crossref | PubMed | Google Scholar
  • 80. Petersen TN, Brunak S, Von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8: 785–786, 2011. doi:10.1038/nmeth.1701.
    Crossref | PubMed | Web of Science | Google Scholar
  • 81. Emanuelsson O, Nielsen H, Brunak S, Von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300: 1005–1016, 2000. doi:10.1006/jmbi.2000.3903.
    Crossref | PubMed | Web of Science | Google Scholar
  • 82. Käll L, Krogh A, Sonnhammer ELL. A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338: 1027–1036, 2004. doi:10.1016/j.jmb.2004.03.016.
    Crossref | PubMed | Web of Science | Google Scholar
  • 83. Bendtsen JD, Jensen LJ, Blom N, Von Heijne G, Brunak S. Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng Des Sel 17: 349–356, 2004. doi:10.1093/protein/gzh037.
    Crossref | PubMed | Web of Science | Google Scholar
  • 84. Heberle H, Meirelles VG, da Silva FR, Telles GP, Minghim R. InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics 16: 169 , 2015. doi:10.1186/s12859-015-0611-3.
    Crossref | PubMed | Web of Science | Google Scholar
  • 85. Keenan AB, Torre D, Lachmann A, Leong AK, Wojciechowicz ML, Utti V, Jagodnik KM, Kropiwnicki E, Wang Z, Ma'ayan A. ChEA3: transcription factor enrichment analysis by orthogonal omics integration. Nucleic Acids Res 47: W212–W224, 2019. doi:10.1093/nar/gkz446.
    Crossref | PubMed | Web of Science | Google Scholar
  • 86. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P, Jensen LJ, von Mering C. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 49: D605–D612, 2021 [Erratum in Nucleic Acids Res 49: 10800, 2021]. doi:10.1093/nar/gkaa1074.
    Crossref | PubMed | Web of Science | Google Scholar
  • 87. Ge S, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics 36: 2628–2629, 2020. doi:10.1093/bioinformatics/btz931.
    Crossref | PubMed | Web of Science | Google Scholar
  • 88. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA. Circos: an information aesthetic for comparative genomics. Genome Res 19: 1639–1645, 2009. doi:10.1101/gr.092759.109.
    Crossref | PubMed | Web of Science | Google Scholar
  • 89. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Von Mering C. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47: D607–D613, 2019. doi:10.1093/nar/gky1131.
    Crossref | PubMed | Web of Science | Google Scholar
  • 90. Pillai VV, Koganti PP, Kei TG, Gurung S, Butler WR, Selvaraj V. Efficient induction and sustenance of pluripotent stem cells from bovine somatic cells. Biol Open 10: bio058756 , 2021. doi:10.1242/bio.058756.
    Crossref | PubMed | Web of Science | Google Scholar
  • 91. Biase FH, Rabel C, Guillomot M, Hue I, Andropolis K, Olmstead CA, Oliveira R, Wallace R, Le Bourhis D, Richard C, Campion E, Chaulot-Talmon A, Giraud-Delville C, Taghouti G, Jammes H, Renard JP, Sandra O, Lewin HA. Massive dysregulation of genes involved in cell signaling and placental development in cloned cattle conceptus and maternal endometrium. Proc Natl Acad Sci USA 113: 14492–14501, 2016. doi:10.1073/pnas.1520945114.
    Crossref | PubMed | Web of Science | Google Scholar
  • 92. Olds D, Seath DM. Repeatability of the estrous cycle length in dairy cattle. J Dairy Sci 34: 626–632, 1951. doi:10.3168/jds.S0022-0302(51)91757-2.
    Crossref | Web of Science | Google Scholar
  • 93. Sigurgeirsson B, Åmark H, Jemt A, Ujvari D, Westgren M, Lundeberg J, Gidlöf S. Comprehensive RNA sequencing of healthy human endometrium at two time points of the menstrual cycle. Biol Reprod 96: 24–33, 2017. doi:10.1095/biolreprod.116.142547.
    Crossref | PubMed | Web of Science | Google Scholar
  • 94. Hu S, Yao G, Wang Y, Xu H, Ji X, He Y, Zhu Q, Chen Z, Sun Y. Transcriptomic changes during the pre-receptive to receptive transition in human endometrium detected by RNA-Seq. J Clin Endocrinol Metab 99: E2744–E2753, 2014. doi:10.1210/jc.2014-2155.
    Crossref | PubMed | Web of Science | Google Scholar
  • 95. Binelli M, Scolari SC, Pugliesi G, Van Hoeck V, Gonella-Diaza AM, Andrade SCS, Gasparin GR, Coutinho LL. The transcriptome signature of the receptive bovine uterus determined at early gestation. PLoS One 10: e0122874 , 2015. doi:10.1371/journal.pone.0122874.
    Crossref | PubMed | Web of Science | Google Scholar
  • 96. Moraes JGN, Behura SK, Geary TW, Hansen PJ, Neibergs HL, Spencer TE. Uterine influences on conceptus development in fertility-classified animals. Proc Natl Acad Sci USA 115: E1749–E1758, 2018. doi:10.1073/pnas.1721191115.
    Crossref | PubMed | Web of Science | Google Scholar
  • 97. Forde N, Mehta JP, McGettigan PA, Mamo S, Bazer FW, Spencer TE, Lonergan P. Alterations in expression of endometrial genes coding for proteins secreted into the uterine lumen during conceptus elongation in cattle. BMC Genomics 14: 321 , 2013. doi:10.1186/1471-2164-14-321.
    Crossref | PubMed | Web of Science | Google Scholar
  • 98. Wang W, Vilella F, Alama P, Moreno I, Mignardi M, Isakova A, Pan W, Simon C, Quake SR. Single-cell transcriptomic atlas of the human endometrium during the menstrual cycle. Nat Med 26: 1644–1653, 2020. doi:10.1038/s41591-020-1040-z.
    Crossref | PubMed | Web of Science | Google Scholar
  • 99. Brookhart JM, Dey FL, Ranson SW. The abolition of mating behavior by hypothalamic lesions in guinea pigs. Endocrinology 28: 561–565, 1941. doi:10.1210/endo-28-4-561.
    Crossref | Google Scholar
  • 100. Corner GW. The ovarian cycle of swine. American Association for the Advancement of Science. Science 53: 420–421, 1921. doi:10.1126/science.53.1374.420.
    Crossref | PubMed | Google Scholar
  • 101. Everett JW. Progesterone and estrogen in the experimental control of ovulation time and other features of the estrous cycle in the rat. Endocrinology 43: 389–405, 1948. doi:10.1210/endo-43-6-389.
    Crossref | PubMed | Web of Science | Google Scholar
  • 102. De Alba J, Asdell SA. Estrous behavior and hormones in the cow. J Comp Psychol (Baltim) 39: 119–123, 1946. doi:10.1037/h0060346.
    Crossref | PubMed | Web of Science | Google Scholar
  • 103. Moss S, Wrenn TR, Sykes JF. Some histological and histochemical observations of the bovine ovary during the estrous cycle. Anat Rec 120: 409–433, 1954. doi:10.1002/ar.1091200205.
    Crossref | PubMed | Google Scholar
  • 104. Lombard L, Morgan BB, McNutt SH. The morphology of the oviduct of virgin heifers in relation to the estrous cycle. J Morphol 86: 1–23, 1950. doi:10.1002/jmor.1050860102.
    Crossref | PubMed | Web of Science | Google Scholar
  • 105. Skjerven O. Endometrial biopsy studies in reproductively normal cattle; clinical, histochemical and histological observations during the estrous cycle. Acta Endocrinol Suppl (Copenh) 22: 1–101, 1956.
    PubMed | Google Scholar
  • 106. Bone JF. Crystallization patterns in vaginal and cervical mucus smears as related to bovine ovarian activity and pregnancy. Am J Vet Res 15: 542–547, 1954.
    PubMed | Web of Science | Google Scholar
  • 107. Van Klinkenberg GA. Extremely high alkaline phosphatase activity in the vaginal mucus of the cow. Nature 172: 397 , 1953. doi:10.1038/172397a0.
    Crossref | PubMed | Web of Science | Google Scholar
  • 108. Wathes DC, Wooding FB. An electron microscopic study of implantation in the cow. Am J Anat 159: 285–306, 1980. doi:10.1002/aja.1001590305.
    Crossref | PubMed | Google Scholar
  • 109. Su RW, Fazleabas AT. Implantation and establishment of pregnancy in human and nonhuman primates. Adv Anat Embryol Cell Biol 216: 189–213, 2015. doi:10.1007/978-3-319-15856-3_10.
    Crossref | PubMed | Web of Science | Google Scholar
  • 110. UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res 49: D480–D489, 2021. doi:10.1093/nar/gkaa1100.
    Crossref | PubMed | Web of Science | Google Scholar
  • 111. Saengsoi W, Shia WY, Shyu CL, Wu JT, Warinrak C, Lee WM, Cheng FP. Detection of matrix metalloproteinase (MMP)-2 and MMP-9 in canine seminal plasma. Anim Reprod Sci 127: 114–119, 2011. doi:10.1016/j.anireprosci.2011.07.004.
    Crossref | PubMed | Web of Science | Google Scholar
  • 112. Métayer S, Dacheux F, Dacheux J-L, Gatti J-L. Comparison, characterization, and identification of proteases and protease inhibitors in epididymal fluids of domestic mammals. matrix metalloproteinases are major fluid gelatinases. Biol Reprod 66: 1219–1229, 2002. doi:10.1095/biolreprod66.5.1219.
    Crossref | PubMed | Web of Science | Google Scholar
  • 113. Buchman-Shaked O, Kraiem Z, Gonen Y, Goldman S. Presence of matrix metalloproteinases and tissue inhibitor of matrix metalloproteinase in human sperm. J Androl 23: 702–708, 2002. doi:10.1002/j.1939-4640.2002.tb02313.x.
    Crossref | PubMed | Google Scholar
  • 114. Sharifi S, Mohseni R, Amiri I, Tavilani H. Sperm matrix metalloproteinase-2 activity increased in pregnant couples treated with intrauterine insemination: a prospective case control study. J Obstet Gynaecol 39: 675–680, 2019. doi:10.1080/01443615.2018.1558189.
    Crossref | PubMed | Google Scholar
  • 115. Smokovitis A, Kokolis N, Alexopoulos C, Alexaki E, Eleftheriou E. Plasminogen activator activity, plasminogen activator inhibition and plasmin inhibition in spermatozoa and seminal plasma of man and various animal species—effect of plasmin on sperm motility. Fibrinolysis 1: 253–257, 1987. doi:10.1016/0268-9499(87)90045-2.
    Crossref | Google Scholar
  • 116. Huarte J, Belin D, Bosco D, Sappino AP, Vassalli JD. Plasminogen activator and mouse spermatozoa: urokinase synthesis in the male genital tract and binding of the enzyme to the sperm cell surface. J Cell Biol 104: 1281–1289, 1987. doi:10.1083/jcb.104.5.1281.
    Crossref | PubMed | Web of Science | Google Scholar
  • 117. Li TK. The glutathione and thiol content of mammalian spermatozoa and seminal plasma. Biol Reprod 12: 641–646, 1975. doi:10.1095/biolreprod12.5.641.
    Crossref | PubMed | Web of Science | Google Scholar
  • 118. Abu-Erreish G, Magnes L, Li TK. Isolation and properties of superoxide dismutase from ram spermatozoa and erythrocytes. Biol Reprod 18: 554–560, 1978. doi:10.1095/biolreprod18.4.554.
    Crossref | PubMed | Web of Science | Google Scholar
  • 119. Holland MK, Storey BT. Oxygen metabolism of mammalian spermatozoa. Generation of hydrogen peroxide by rabbit epididymal spermatozoa. Biochem J 198: 273–280, 1981. doi:10.1042/bj1980273.
    Crossref | PubMed | Web of Science | Google Scholar
  • 120. Kasimanickam R, Pelzer KD, Kasimanickam V, Swecker WS, Thatcher CD. Association of classical semen parameters, sperm DNA fragmentation index, lipid peroxidation and antioxidant enzymatic activity of semen in ram-lambs. Theriogenology 65: 1407–1421, 2006. doi:10.1016/j.theriogenology.2005.05.056.
    Crossref | PubMed | Web of Science | Google Scholar
  • 121. Giannattasio A, De Rosa M, Smeraglia R, Zarrilli S, Cimmino A, Di Rosario B, Ruggiero R, Colao A, Lombardi G. Glutathione peroxidase (GPX) activity in seminal plasma of healthy and infertile males. J Endocrinol Invest 25: 983–986, 2002. doi:10.1007/BF03344072.
    Crossref | PubMed | Web of Science | Google Scholar
  • 122. Nixon B, Ecroyd H, Dacheux J-L, Dacheux F, Labas V, Johnston SD, Jones RC. Formation and dissociation of sperm bundles in monotremes. Biol Reprod 95: 91 , 2016. doi:10.1095/biolreprod.116.140491.
    Crossref | PubMed | Web of Science | Google Scholar
  • 123. Rowe M, Whittington E, Borziak K, Ravinet M, Eroukhmanoff F, Sætre GP, Dorus S. Molecular diversification of the seminal fluid proteome in a recently diverged passerine species pair. Mol Biol Evol 37: 488–506, 2020. doi:10.1093/molbev/msz235.
    Crossref | PubMed | Web of Science | Google Scholar
  • 124. Mukherjee S, Zheng H, Derebe MG, Callenberg KM, Partch CL, Rollins D, Propheter DC, Rizo J, Grabe M, Jiang QX, Hooper LV. Antibacterial membrane attack by a pore-forming intestinal C-type lectin. Nature 505: 103–107, 2014. doi:10.1038/nature12729.
    Crossref | PubMed | Web of Science | Google Scholar
  • 125. Chiu PCN, Liao S, Lam KW, Tang F, Ho JCM, Ho PC, O WS, Yao YQ, Yeung WSB. Adrenomedullin regulates sperm motility and oviductal ciliary beat via cyclic adenosine 5′-monophosphate/protein kinase A and nitric oxide. Endocrinology 151: 3336–3347, 2010. doi:10.1210/en.2010-0077.
    Crossref | PubMed | Web of Science | Google Scholar
  • 126. Liao SB, Kong LHM, Tang F, W. Sum O . Possible functions of adrenomedullin from the seminal fluid in the female reproductive tract of the rat. Syst Biol Reprod Med 58: 306–312, 2012. doi:10.3109/19396368.2012.695855.
    Crossref | PubMed | Web of Science | Google Scholar
  • 127. Adrian TE, Gu J, Allen JM, Tatemoto K, Polak JM, Bloom SR. Neuropeptide Y in the human male genital tract. Life Sci 35: 2643–2648, 1984. doi:10.1016/0024-3205(84)90033-X.
    Crossref | PubMed | Web of Science | Google Scholar
  • 128. Lange W, Unger J. Peptidergic innervation within the prostate gland and seminal vesicle. Urol Res 18: 337–340, 1990. doi:10.1007/BF00300783.
    Crossref | PubMed | Google Scholar
  • 129. Stridsberg M, Fabiani R, Lukinius A, Ronquist G. Prostasomes are neuroendocrine-like vesicles in human semen. Prostate 29: 287–295, 1996. doi:10.1002/(SICI)1097-0045(199611)29:5<287::AID-PROS3>3.0.CO;2-7.
    Crossref | PubMed | Web of Science | Google Scholar
  • 130. Fallgren B, Ekblad E, Edvinsson L. Co-existence of neuropeptides and differential inhibition of vasodilator responses by neuropeptide Y in guinea pig uterine arteries. Neurosci Lett 100: 71–76, 1989. doi:10.1016/0304-3940(89)90662-9.
    Crossref | PubMed | Web of Science | Google Scholar
  • 131. Herzog H, Hort Y, Schneider R, Shine J. Seminalplasmin: recent evolution of another member of the neuropeptide Y gene family. Proc Natl Acad Sci USA 92: 594–598, 1995. doi:10.1073/pnas.92.2.594.
    Crossref | PubMed | Web of Science | Google Scholar
  • 132. Allen JM, Adrian TE, Tatemoto K, Polak JM, Hughes J, Bloom SR. Two novel related peptides, neuropeptide Y (NPY) and peptide YY (PYY) inhibit the contraction of the electrically stimulated mouse vas deferens. Neuropeptides 3: 71–77, 1982. doi:10.1016/0143-4179(82)90001-4.
    Crossref | PubMed | Web of Science | Google Scholar
  • 133. Budipitojo T, Sasaki M, Matsuzaki S, Cruzana MBC, Iwanaga T, Kitamura N, Yamada J. Expression of gastrin-releasing peptide (GRP) in the bovine uterus during the estrous cycle. Arch Histol Cytol 66: 337–346, 2003. doi:10.1679/AOHC.66.337.
    Crossref | PubMed | Google Scholar
  • 134. Fleischmann A, Waser B, Gebbers J-O, Reubi JC. Gastrin-releasing peptide receptors in normal and neoplastic human uterus: involvement of multiple tissue compartments. J Clin Endocrinol Metab 90: 4722–4729, 2005. doi:10.1210/JC.2005-0964.
    Crossref | PubMed | Web of Science | Google Scholar
  • 135. Levy R, Eustache F, Pilikian S, Clavel C, Cordonier H, Benchaib M, Lornage J, Pinatel MC, Guerin JF. Effect of gastrin-releasing peptide on sperm functions. Mol Hum Reprod 2: 867–872, 1996. doi:10.1093/molehr/2.11.867.
    Crossref | PubMed | Web of Science | Google Scholar
  • 136. Peach MJ. Renin-angiotensin system: biochemistry and mechanisms of action. Physiol Rev 57: 313–370, 1977. doi:10.1152/PHYSREV.1977.57.2.313.
    Link | Web of Science | Google Scholar
  • 137. Deschepper CF, Bouhnik J, Ganong WF. Colocalization of angiotensinogen and glial fibrillary acidic protein in astrocytes in rat brain. Brain Res 374: 195–198, 1986. doi:10.1016/0006-8993(86)90411-7.
    Crossref | PubMed | Web of Science | Google Scholar
  • 138. Sernia C, Mowchanuk MD. Brain angiotensinogen: In vitro synthesis and chromatographic characterization. Brain Res 259: 275–283, 1983. doi:10.1016/0006-8993(83)91258-1.
    Crossref | PubMed | Web of Science | Google Scholar
  • 139. Campbell DJ, Bouhnik J, Ménard J, Corvol P. Identity of angiotensinogen precursors of rat brain and liver. Nature 308: 206–208, 1984. doi:10.1038/308206a0.
    Crossref | PubMed | Web of Science | Google Scholar
  • 140. Schelling P, Ganten U, Sponer G, Unger T, Ganten D. Components of the renin-angiotensin system in the cerebrospinal fluid of rats and dogs with special consideration of the origin and the fate of angiotensin II. Neuroendocrinology 31: 297–308, 1980. doi:10.1159/000123092.
    Crossref | PubMed | Web of Science | Google Scholar
  • 141. Cassis LA, Saye J, Peach MJ. Location and regulation of rat angiotensinogen messenger RNA. Hypertension 11: 591–596, 1988. doi:10.1161/01.HYP.11.6.591.
    Crossref | PubMed | Web of Science | Google Scholar
  • 142. Boustany CM, Bharadwaj K, Daugherty A, Brown DR, Randall DC, Cassis LA. Activation of the systemic and adipose renin-angiotensin system in rats with diet-induced obesity and hypertension. Am J Physiol Regul Integr Comp Physiol 287: R943–R949, 2004. doi:10.1152/ajpregu.00265.2004.
    Link | Web of Science | Google Scholar
  • 143. Poisner AM. The human placental renin–angiotensin system. Front Neuroendocrinol 19: 232–252, 1998. doi:10.1006/FRNE.1998.0166.
    Crossref | PubMed | Web of Science | Google Scholar
  • 144. Pringle KG, Tadros MA, Callister RJ, Lumbers ER. The expression and localization of the human placental prorenin/renin- angiotensin system throughout pregnancy: roles in trophoblast invasion and angiogenesis? Placenta 32: 956–962, 2011. doi:10.1016/j.placenta.2011.09.020.
    Crossref | PubMed | Web of Science | Google Scholar
  • 145. Clere N, Corre I, Faure S, Guihot A, Vessières E, Chalopin M, Morel A, Coqueret O, Hein L, Delneste Y, Paris F, Henrion D. Deficiency or blockade of angiotensin II type 2 receptor delays tumorigenesis by inhibiting malignant cell proliferation and angiogenesis. Int J Cancer 127: 2279–2291, 2010. doi:10.1002/ijc.25234.
    Crossref | PubMed | Web of Science | Google Scholar
  • 146. Isobe A, Takeda T, Sakata M, Miyake A, Yamamoto T, Minekawa R, Nishimoto F, Oskamoto Y, Walker CL, Kimura T. Dual repressive effect of angiotensin II-type 1 receptor blocker telmisartan on angiotensin II-induced and estradiol-induced uterine leiomyoma cell proliferation. Hum Reprod 23: 440–446, 2008. doi:10.1093/humrep/dem247.
    Crossref | PubMed | Web of Science | Google Scholar
  • 147. Muscella A, Greco S, Elia MG, Storelli C, Marsigliante S. Angiotensin II stimulation of Na+/K+ATPase activity and cell growth by calcium-independent pathway in MCF-7 breast cancer cells. J Endocrinol 173: 315–323, 2002. doi:10.1677/joe.0.1730315.
    Crossref | PubMed | Web of Science | Google Scholar
  • 148. Muscella A, Greco S, Elia MG, Storelli C, Marsigliante S. PKC-ζ is required for angiotensin II-induced activation of ERK and synthesis of C-FOS in MCF-7 cells. J Cell Physiol 197: 61–68, 2003. doi:10.1002/jcp.10336.
    Crossref | PubMed | Web of Science | Google Scholar
  • 149. Greco S, Muscella A, Elia MG, Salvatore P, Storelli C, Mazzotta A, Manca C, Marsigliante S. Angiotensin II activates extracellular signal regulated kinases via protein kinase C and epidermal growth factor receptor in breast cancer cells. J Cell Physiol 196: 370–377, 2003. doi:10.1002/jcp.10313.
    Crossref | PubMed | Web of Science | Google Scholar
  • 150. Itabashi H, Maesawa C, Oikawa H, Kotani K, Sakurai E, Kato K, Komatsu H, Nitta H, Kawamura H, Wakabayashi G, Masuda T. Angiotensin II and epidermal growth factor receptor cross-talk mediated by a disintegrin and metalloprotease accelerates tumor cell proliferation of hepatocellular carcinoma cell lines. Hepatol Res 38: 601–613, 2008. doi:10.1111/j.1872-034X.2007.00304.x.
    Crossref | PubMed | Web of Science | Google Scholar
  • 151. Tebbs C, Pratten MK, Broughton Pipkin F. Angiotensin II is a growth factor in the peri-implantation rat embryo. J Anat 195: 75–86, 1999. doi:10.1046/j.1469-7580.1999.19510075.x.
    Crossref | PubMed | Web of Science | Google Scholar
  • 152. Echelard Y, Epstein DJ, St-Jacques B, Shen L, Mohler J, McMahon JA, McMahon AP. Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75: 1417–1430, 1993. doi:10.1016/0092-8674(93)90627-3.
    Crossref | PubMed | Web of Science | Google Scholar
  • 153. Nüsslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in drosophila. Nature 287: 795–801, 1980. doi:10.1038/287795a0.
    Crossref | PubMed | Web of Science | Google Scholar
  • 154. Dyer MA, Farrington SM, Mohn D, Munday JR, Baron MH. Indian hedgehog activates hematopoiesis and vasculogenesis and can respecify prospective neurectodermal cell fate in the mouse embryo. Development 128: 1717–1730, 2001. doi:10.1242/dev.128.10.1717.
    Crossref | PubMed | Web of Science | Google Scholar
  • 155. Takamoto N, Zhao B, Tsai SY, DeMayo FJ. Identification of Indian hedgehog as a progesterone-responsive gene in the murine uterus. Mol Endocrinol 16: 2338–2348, 2002. doi:10.1210/me.2001-0154.
    Crossref | PubMed | Google Scholar
  • 156. Lee K, Jeong JW, Kwak I, Yu CT, Lanske B, Soegiarto DW, Toftgard R, Tsai MJ, Tsai S, Lydon JP, DeMayo FJ. Indian hedgehog is a major mediator of progesterone signaling in the mouse uterus. Nat Genet 38: 1204–1209, 2006. doi:10.1038/ng1874.
    Crossref | PubMed | Web of Science | Google Scholar
  • 157. Talbi S, Hamilton AE, Vo KC, Tulac S, Overgaard MT, Dosiou C, Le Shay N, Nezhat CN, Kempson R, Lessey BA, Nayak NR, Giudice LC. Molecular phenotyping of human endometrium distinguishes menstrual cycle phases and underlying biological processes in normo-ovulatory women. Endocrinology 147: 1097–1121, 2006. doi:10.1210/en.2005-1076.
    Crossref | PubMed | Web of Science | Google Scholar
  • 158. Wei Q, Levens ED, Stefansson L, Nieman LK. Indian hedgehog and its targets in human endometrium: Menstrual cycle expression and response to CDB-2914. J Clin Endocrinol Metab 95: 5330–5337, 2010. doi:10.1210/jc.2010-0637.
    Crossref | PubMed | Web of Science | Google Scholar
  • 159. Chen X, Fu J, Wang A. Expression of genes involved in progesterone receptor paracrine signaling and their effect on litter size in pigs. J Anim Sci Biotechnol 7: 31 , 2016. doi:10.1186/s40104-016-0090-z.
    Crossref | PubMed | Web of Science | Google Scholar
  • 160. Sibley CP, Coan PM, Ferguson-Smith AC, Dean W, Hughes J, Smith P, Reik W, Burton GJ, Fowden AL, Constância M. Placental-specific insulin-like growth factor 2 (Igf2) regulates the diffusional exchange characteristics of the mouse placenta. Proc Natl Acad Sci USA 101: 8204–8208, 2004. doi:10.1073/PNAS.0402508101.
    Crossref | PubMed | Web of Science | Google Scholar
  • 161. Chen H, Li Y, Shi J, Song W. Role and mechanism of insulin-like growth factor 2 on the proliferation of human trophoblasts in vitro. J Obstet Gynaecol Res 42: 44–51, 2016. doi:10.1111/jog.12853.
    Crossref | PubMed | Web of Science | Google Scholar
  • 162. Forbes K, Westwood M, Baker PN, Aplin JD. Insulin-like growth factor I and II regulate the life cycle of trophoblast in the developing human placenta. Am J Physiol Cell Physiol 294: C1313–C1322, 2008. doi:10.1152/ajpcell.00035.2008.
    Link | Web of Science | Google Scholar
  • 163. Harris LK, Crocker IP, Baker PN, Aplin JD, Westwood M. IGF2 actions on trophoblast in human placenta are regulated by the insulin-like growth factor 2 receptor, which can function as both a signaling and clearance receptor. Biol Reprod 84: 440–446, 2011. doi:10.1095/biolreprod.110.088195.
    Crossref | PubMed | Web of Science | Google Scholar
  • 164. Zapf J, Schoenle E, Froesch ER. Insulin‐like growth factors i and ii: some biological actions and receptor binding characteristics of two purified constituents of nonsuppressible insulin‐like activity of human serum. Eur J Biochem 87: 285–296, 1978. doi:10.1111/j.1432-1033.1978.tb12377.x.
    Crossref | PubMed | Google Scholar
  • 165. Douglas RG, Gluckman PD, Ball K, Breier B, Shaw JHF. The effects of infusion of insulinlike growth factor (IGF) I, IGF-II, and insulin on glucose and protein metabolism in fasted lambs. J Clin Invest 88: 614–622, 1991. doi:10.1172/JCI115346.
    Crossref | PubMed | Web of Science | Google Scholar
  • 166. Fang W, Hartmann N, Chow DT, Riegel AT, Wellstein A. Pleiotrophin stimulates fibroblasts and endothelial and epithelial cells and is expressed in human cancer. J Biol Chem 267: 25889–25897, 1992. doi:10.1016/S0021-9258(18)35692-8.
    Crossref | PubMed | Web of Science | Google Scholar
  • 167. Mitsiadis TA, Salmivirta M, Muramatsu T, Muramatsu H, Rauvala H, Lehtonen E, Jalkanen M, Thesleff I. Expression of the heparin-binding cytokines, midkine (MK) and HB-GAM (pleiotrophin) is associated with epithelial-mesenchymal interactions during fetal development and organogenesis. Development 121: 37–51, 1995. doi:10.1242/dev.121.1.37.
    Crossref | PubMed | Web of Science | Google Scholar
  • 168. Soh BS, Song CM, Vallier L, Li P, Choong C, Yeo BH, Lim EH, Pedersen RA, Yang HH, Rao M, Lim B. Pleiotrophin enhances clonal growth and long-term expansion of human embryonic stem cells. Stem Cells 25: 3029–3037, 2007. doi:10.1634/stemcells.2007-0372.
    Crossref | PubMed | Web of Science | Google Scholar
  • 169. Pillai VV, Kei TG, Gurung S, Das M, Siqueira LGB, Cheong SH, Hansen PJ, Selvaraj V. RhoA/ROCK signaling antagonizes bovine trophoblast stem cell self-renewal and regulates preimplantation embryo size and differentiation. Development 149: dev200115 , 2022. doi:10.1242/DEV.200115.
    Crossref | PubMed | Web of Science | Google Scholar
  • 170. Sorensen M, Sorensen SPL. The proteins in whey. Compte rendu des Travaux du Laboratoire de Carlsberg, Ser Chim 20 (7): 55–99, 1940.
    Google Scholar
  • 171. Tenovuo J, Lehtonen OPJ, Aaltonen AS, Vilja P, Tuohimaa P. Antimicrobial factors in whole saliva of human infants. Infect Immun 51: 49–53, 1986. doi:10.1128/iai.51.1.49-53.1986.
    Crossref | PubMed | Web of Science | Google Scholar
  • 172. Wakabayashi H, Takakura N, Yamauchi K, Teraguchi S, Uchida K, Yamaguchi H, Tamura Y. Effect of lactoferrin feeding on the host antifungal response in guinea-pigs infected or immunised with Trichophyton mentagrophytes. J Med Microbiol 51: 844–850, 2002. doi:10.1099/0022-1317-51-10-844.
    Crossref | PubMed | Web of Science | Google Scholar
  • 173. Wakabayashi H, Takakura N, Teraguchi S, Tamura Y. Lactoferrin feeding augments peritoneal macrophage activities in mice intraperitoneally injected with inactivated Candida albicans. Microbiol Immunol 47: 37–43, 2003. doi:10.1111/j.1348-0421.2003.tb02783.x.
    Crossref | PubMed | Web of Science | Google Scholar
  • 174. Bhimani RS, Vendrov Y, Furmanski P. Influence of lactoferrin feeding and injection against systemic staphylococcal infections in mice. J Appl Microbiol 86: 135–144, 1999. doi:10.1046/j.1365-2672.1999.00644.x.
    Crossref | PubMed | Web of Science | Google Scholar
  • 175. Teraguchi S, Shin K, Ogata T, Kingaku M, Kaino A, Miyauchi H, Fukuwatari Y, Shimamura S. Orally administered bovine lactoferrin inhibits bacterial translocation in mice fed bovine milk. Appl Environ Microbiol 61: 4131–4134, 1995. doi:10.1128/aem.61.11.4131-4134.1995.
    Crossref | PubMed | Web of Science | Google Scholar
  • 176. Lu L, Hangoc G, Oliff A, Chen LT, Shen R, Broxmeyer HE. Protective influence of lactoferrin on mice infected with the polycythemia-inducing strain of Friend virus complex. Cancer Res 47: 4184–4188, 1987.
    PubMed | Web of Science | Google Scholar
  • 177. Hasegawa K, Motsuchi W, Tanaka S, Dosako S. Inhibition with lactoferrin of in vitro infection with human herpes virus. Jpn J Med Sci Biol 47: 73–85, 1994. doi:10.7883/yoken1952.47.73.
    Crossref | PubMed | Google Scholar
  • 178. Oram JD, Reiter B. Inhibition of bacteria by lactoferrin and other iron-chelating agents. Biochim Biophys Acta 170: 351–365, 1968. doi:10.1016/0304-4165(68)90015-9.
    Crossref | PubMed | Web of Science | Google Scholar
  • 179. Yamauchi K, Tomita M, Giehl TJ, Ellison RT. Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment. Infect Immun 61: 719–728, 1993. doi:10.1128/iai.61.2.719-728.1993.
    Crossref | PubMed | Web of Science | Google Scholar
  • 180. Newbold RR, Teng T, Beckman WC, Jefferson WN, Hanson RB, Miller JV, Mclachlan JA. Fluctuations of lactoferrin protein and messenger ribonucleic acid in the reproductive tract of the mouse during the estrous cycle. Biol Reprod 47: 903–915, 1992. doi:10.1095/biolreprod47.5.903.
    Crossref | PubMed | Web of Science | Google Scholar
  • 181. Teng CT, Pentecost BT, Chen YH, Newbold RR, Eddy EM, McLachlan JA. Lactotransferrin gene expression in the mouse uterus and mammary gland. Endocrinology 124: 992–999, 1989. doi:10.1210/endo-124-2-992.
    Crossref | PubMed | Web of Science | Google Scholar
  • 182. Loux SC, Scoggin KE, Troedsson MH, Squires EL, Ball BA. Characterization of the cervical mucus plug in mares. Reproduction 153: 197–210, 2017. doi:10.1530/REP-16-0396.
    Crossref | PubMed | Web of Science | Google Scholar
  • 183. Dixon SN, Gibbons RA. Proteins in the uterine secretions of the cow. J Reprod Fertil 56: 119–127, 1979. doi:10.1530/jrf.0.0560119.
    Crossref | PubMed | Google Scholar
  • 184. Forde N, Spencer TE, Bazer FW, Song G, Roche JF, Lonergan P. Effect of pregnancy and progesterone concentration on expression of genes encoding for transporters or secreted proteins in the bovine endometrium. Physiol Genomics 41: 53–62, 2010. doi:10.1152/physiolgenomics.00162.2009.
    Link | Web of Science | Google Scholar
  • 185. Muñoz M, Corrales FJ, Caamaño JN, Díez C, Trigal B, Mora MI, Martín D, Carrocera S, Gómez E. Proteome of the early embryo-maternal dialogue in the cattle uterus. J Proteome Res 11: 751–766, 2012. doi:10.1021/pr200969a.
    Crossref | PubMed | Web of Science | Google Scholar
  • 186. Deguchi A, Tomita T, Omori T, Komatsu A, Ohto U, Takahashi S, Tanimura N, Akashi-Takamura S, Miyake K, Maru Y. Serum amyloid A3 binds MD-2 to activate p38 and NF-κB pathways in a MyD88-dependent manner. J Immunol 191: 1856–1864, 2013. doi:10.4049/jimmunol.1201996.
    Crossref | PubMed | Web of Science | Google Scholar
  • 187. Benditt EP, Meek RL. Expression of the third member of the serum amyloid A gene family in mouse adipocytes. J Exp Med 169: 1841–1846, 1989. doi:10.1084/jem.169.5.1841.
    Crossref | PubMed | Web of Science | Google Scholar
  • 188. Tomita T, Sakurai Y, Ishibashi S, Maru Y. Imbalance of Clara cell-mediated homeostatic inflammation is involved in lung metastasis. Oncogene 30: 3429–3439, 2011. doi:10.1038/onc.2011.53.
    Crossref | PubMed | Web of Science | Google Scholar
  • 189. Hiratsuka S, Watanabe A, Sakurai Y, Akashi-Takamura S, Ishibashi S, Miyake K, Shibuya M, Akira S, Aburatani H, Maru Y. The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nat Cell Biol 10: 1349–1355, 2008. doi:10.1038/ncb1794.
    Crossref | PubMed | Web of Science | Google Scholar
  • 190. Chiba T, Han CY, Vaisar T, Shimokado K, Kargi A, Chen M-H, Wang S, McDonald TO, O'Brien KD, Heinecke JW, Chait A. Serum amyloid A3 does not contribute to circulating SAA levels. J Lipid Res 50: 1353–1362, 2009. doi:10.1194/jlr.M900089-JLR200.
    Crossref | PubMed | Web of Science | Google Scholar
  • 191. Panigrahi M, Kumar H, Sah V, Dillipkumar Verma A, Bhushan B, Parida S. Transcriptome profiling of buffalo endometrium reveals molecular signature distinct to early pregnancy. Gene 743: 144614 , 2020. doi:10.1016/j.gene.2020.144614.
    Crossref | PubMed | Web of Science | Google Scholar
  • 192. Marra MN, Wilde CG, Collins MS, Snable JL, Thornton MB, Scott RW. The role of bactericidal/permeability-increasing protein as a natural inhibitor of bacterial endotoxin. J Immunol 148: 532–537, 1992.
    Crossref | PubMed | Web of Science | Google Scholar
  • 193. Wilde CG, Seilhamer JJ, McGrogan M, Ashton N, Snable JL, Lane JC, Leong SR, Thornton MB, Miller KL, Scott RW. Bactericidal/permeability-increasing protein and lipopolysaccharide (LPS)-binding protein. LPS binding properties and effects on LPS-mediated cell activation. 269: 17411–17416, 1994. doi:10.1016/S0021-9258(17)32454-7.
    Crossref | PubMed | Google Scholar
  • 194. Maddison JW, Rickard JP, Bernecic NC, Tsikis G, Soleilhavoup C, Labas V, Combes-Soia L, Harichaux G, Druart X, Leahy T, de Graaf SP. Oestrus synchronisation and superovulation alter the cervicovaginal mucus proteome of the ewe. J Proteomics 155: 1–10, 2017. doi:10.1016/j.jprot.2017.01.007.
    Crossref | PubMed | Web of Science | Google Scholar
  • 195. Boy GFT, Codognoto VM, Faleiros-Lima MCM, Yamada PH, de Ruediger FR, Paranzini CS, Souza FF, do Carmo LM, Vieira AF, Oba E. Proteomic analysis of amniotic and allantoic fluid from buffaloes during foetal development. Reprod Domest Anim 54: 1507–1515, 2019. doi:10.1111/rda.13557.
    Crossref | PubMed | Web of Science | Google Scholar
  • 196. Foresta C, Ubaldi FM, Rienzi L, Franchin C, Pivato M, Romano S, Guidolin D, De Caro R, Ferlin A, De Toni L. Early protein profile of human embryonic secretome. Front Biosci (Landmark Ed) 21: 620–634, 2016. doi:10.2741/4410.
    Crossref | PubMed | Web of Science | Google Scholar
  • 197. Ciccodicola A, Dono R, Obici S, Simeone A, Zollo M, Persico MG. Molecular characterization of a gene of the “EGF family” expressed in undifferentiated human NTERA2 teratocarcinoma cells. EMBO J 8: 1987–1991, 1989. doi:10.1002/j.1460-2075.1989.tb03605.x.
    Crossref | PubMed | Web of Science | Google Scholar
  • 198. Ciardiello F, Kim N, Saeki T, Dono R, Persico MG, Plowman GD, Garrigues J, Radke S, Todaro GJ, Salomon DS. Differential expression of epidermal growth factor-related proteins in human colorectal tumors. Proc Natl Acad Sci USA 88: 7792–7796, 1991. doi:10.1073/pnas.88.17.7792.
    Crossref | PubMed | Web of Science | Google Scholar
  • 199. Saeki T, Stromberg K, Qi CF, Gullick WJ, Tahara E, Normanno N, Ciardiello F, Kenney N, Johnson GR, Salomon DS. Differential immunohistochemical detection of amphiregulin and cripto in human normal colon and colorectal tumors. Cancer Res 52: 3467–3473, 1992.
    PubMed | Web of Science | Google Scholar
  • 200. Normanno N, Ciardiello F, Brandt R, Salomon DS. Epidermal growth factor-related peptides in the pathogenesis of human breast cancer. Breast Cancer Res Treat 29: 11–27, 1994. doi:10.1007/BF00666178.
    Crossref | PubMed | Web of Science | Google Scholar
  • 201. Xu C, Liguori G, Persico MG, Adamson ED. Abrogation of the Cripto gene in mouse leads to failure of postgastrulation morphogenesis and lack of differentiation of cardiomyocytes. Development 126: 483–494, 1999. doi:10.1242/dev.126.3.483.
    Crossref | PubMed | Web of Science | Google Scholar
  • 202. Kenney NJ, Smith GH, Maroulakou IG, Green JH, Muller WJ, Callahan R, Salomon DS, Dickson RB. Detection of amphiregulin and Cripto-1 in mammary tumors from transgenic mice. Mol Carcinog 15: 44–56, 1996. doi:10.1002/(SICI)1098-2744(199601)15:1<44::AID-MC7>3.0.CO;2-S.
    Crossref | PubMed | Web of Science | Google Scholar
  • 203. Baldassarre G, Romano A, Armenante F, Rambaldi M, Paoletti I, Sandomenico C, Pepe S, Staibano S, Salvatore G, De Rosa G, Persico MG, Viglietto G. Expression of teratocarcinoma-derived growth factor-1 (TDGF-1) in testis germ cell tumors and its effects on growth and differentiation of embryonal carcinoma cell line NTERA2/D1. Oncogene 15: 927–936, 1997. doi:10.1038/sj.onc.1201260.
    Crossref | PubMed | Web of Science | Google Scholar
  • 204. Bianco C, Adkins HB, Wechselberger C, Seno M, Normanno N, De Luca A, Sun Y, Khan N, Kenney N, Ebert A, Williams KP, Sanicola M, Salomon DS. Cripto-1 activates nodal- and ALK4-dependent and -independent signaling pathways in mammary epithelial cells. Mol Cell Biol 22: 2586–2597, 2002. doi:10.1128/MCB.22.8.2586-2597.2002.
    Crossref | PubMed | Web of Science | Google Scholar
  • 205. Klauzinska M, McCurdy D, Rangel MC, Vaidyanath A, Castro NP, Shen MM, Gonzales M, Bertolette D, Bianco C, Callahan R, Salomon DS, Raafat A. Cripto-1 ablation disrupts alveolar development in the mouse mammary gland through a progesterone receptor-mediated pathway. Am J Pathol 185: 2907–2922, 2015. doi:10.1016/j.ajpath.2015.07.023.
    Crossref | PubMed | Web of Science | Google Scholar
  • 206. Connolly DT, Heuvelman DM, Nelson R, Olander JV, Eppley BL, Delfino JJ, Siegel NR, Leimgruber RM, Feder J. Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis. J Clin Invest 84: 1470–1478, 1989. doi:10.1172/JCI114322.
    Crossref | PubMed | Web of Science | Google Scholar
  • 207. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246: 1306–1309, 1989. doi:10.1126/science.2479986.
    Crossref | PubMed | Web of Science | Google Scholar
  • 208. Keck PJ, Hauser SD, Krivi G, Sanzo K, Warren T, Feder J, Connolly DT. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 246: 1309–1312, 1989. doi:10.1126/science.2479987.
    Crossref | PubMed | Web of Science | Google Scholar
  • 209. Asscher AW. Demonstration of a vascular permeability factor in human placental extract. Lancet 2: 112–114, 1965. doi:10.1016/S0140-6736(65)92226-9.
    Crossref | PubMed | Web of Science | Google Scholar
  • 210. Magnussen AL, Rennel ES, Hua J, Bevan HS, Long NB, Lehrling C, Gammons M, Floege J, Harper SJ, Agostini HT, Bates DO, Churchill AJ. VEGF-A165B is cytoprotective and antiangiogenic in the retina. Invest Ophthalmol Vis Sci 51: 4273–4281, 2010. doi:10.1167/iovs.09-4296.
    Crossref | PubMed | Web of Science | Google Scholar
  • 211. Bills VL, Hamdollah-Zadeh M, Soothill PW, Harper SJ, Bates DO. The role of VEGF-A165b in trophoblast survival. BMC Pregnancy Childbirth 14: 278 , 2014. doi:10.1186/1471-2393-14-278.
    Crossref | PubMed | Web of Science | Google Scholar
  • 212. Hughes J, Smith T, Morgan B, Fothergill L. Purification and properties of enkephalin - The possible endogenous ligand for the morphine receptor. Life Sci 16: 1753–1758, 1975. doi:10.1016/0024-3205(75)90268-4.
    Crossref | PubMed | Web of Science | Google Scholar
  • 213. Mathis JP, Lindberg I. Posttranslational processing of proenkephalin in AtT-20 cells: evidence for cleavage at a lys-lys site. Endocrinology 131: 2287–2296, 1992. doi:10.1210/endo.131.5.1425427.
    Crossref | PubMed | Web of Science | Google Scholar
  • 214. Johanning K, Juliano MA, Juliano L, Lazure C, Lamango NS, Steiner DF, Lindberg I. Specificity of prohormone convertase 2 on proenkephalin and proenkephalin-related substrates. J Biol Chem 273: 22672–22680, 1998. doi:10.1074/jbc.273.35.22672.
    Crossref | PubMed | Web of Science | Google Scholar
  • 215. Goumon Y, Lugardon K, Gadroy P, Strub JM, Welters ID, Stefano GB, Aunis D, Metz-Boutigue MH. Processing of proenkephalin-A in bovine chromaffin cells: Identification of natural derived fragments by N-terminal sequencing and matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Biol Chem 275: 38355–38362, 2000. doi:10.1074/jbc.M007557200.
    Crossref | PubMed | Web of Science | Google Scholar
  • 216. Jin DF, Muffly KE, Okulicz WC, Kilpatrick DL. Estrous cycle- and pregnancy-related differences in expression of the proenkephalin and proopiomelanocortin genes in the ovary and uterus. Endocrinology 122: 1466–1471, 1988. doi:10.1210/ENDO-122-4-1466.
    Crossref | PubMed | Web of Science | Google Scholar
  • 217. Rosen H, Itin A, Schiff R, Keshet E. Local regulation within the female reproductive system and upon embryonic implantation: identification of cells expressing proenkephalin A. Mol Endocrinol 4: 146–154, 1990. doi:10.1210/mend-4-1-146.
    Crossref | PubMed | Google Scholar
  • 218. Cheon YP, Li Q, Xu X, Demayo FJ, Bagchi IC, Bagchi MK. A genomic approach to identify novel progesterone receptor regulated pathways in the uterus during implantation. Mol Endocrinol 16: 2853–2871, 2002. doi:10.1210/me.2002-0270.
    Crossref | PubMed | Google Scholar
  • 219. Zhu Y, Pintar JE. Expression of opioid receptors and ligands in pregnant mouse uterus and placenta. Biol Reprod 59: 925–932, 1998. doi:10.1095/biolreprod59.4.925.
    Crossref | PubMed | Web of Science | Google Scholar
  • 220. Bauersachs S, Ulbrich SE, Gross K, Schmidt SE, Meyer HH, Einspanier R, Wenigerkind H, Vermehren M, Blum H, Sinowatz F, Wolf E. Gene expression profiling of bovine endometrium during the oestrous cycle: detection of molecular pathways involved in functional changes. J Mol Endocrinol 34: 889–908, 2005. doi:10.1677/jme.1.01799.
    Crossref | PubMed | Web of Science | Google Scholar
  • 221. Goumon Y, Strub J-M, Moniatte M, Nullans G, Poteur L, Hubert P, Dorsselaer A, Van Aunis D, Metz-Boutigue M-H. The C-terminal bisphosphorylated proenkephalin-A-(209–237)-peptide from adrenal medullary chromaffin granules possesses antibacterial activity. Eur J Biochem 235: 516–525, 1996 [Erratum in Eur J Biochem 237: 883, 1996]. doi:10.1111/J.1432-1033.1996.T01-1-00516.X.
    Crossref | PubMed | Google Scholar
  • 222. Goumon Y, Lugardon K, Kieffer B, Lefèvre JF, Van Dorsselaer A, Aunis D, Metz-Boutigue MH. Characterization of antibacterial COOH-terminal proenkephalin-A-derived peptides (PEAP) in infectious fluids: Importance of enkelytin, the antibacterial PEAP209-237 secreted by stimulated chromaffin cells. J Biol Chem 273: 29847–29856, 1998. doi:10.1074/jbc.273.45.29847.
    Crossref | PubMed | Web of Science | Google Scholar
  • 223. Helle KB. The chromogranin A-derived peptides vasostatin-I and catestatin as regulatory peptides for cardiovascular functions. Cardiovasc Res 85: 9–16, 2010. doi:10.1093/cvr/cvp266.
    Crossref | PubMed | Web of Science | Google Scholar
  • 224. Strub JM, Goumon Y, Lugardon K, Capon C, Lopez M, Moniatte M, Van Dorsselaer A, Aunis D, Metz-Boutigue MH. Antibacterial activity of glycosylated and phosphorylated chromogranin A-derived peptide 173-194 from bovine adrenal medullary chromaffin granules. J Biol Chem 271: 28533–28540, 1996. doi:10.1074/jbc.271.45.28533.
    Crossref | PubMed | Web of Science | Google Scholar
  • 225. O'Connor DT, Bernstein KN. Radioimmunoassay of chromogranin a in plasma as a measure of exocytotic sympathoadrenal activity in normal subjects and patients with pheochromocytoma. N Engl J Med 311: 764–770, 1984. doi:10.1056/NEJM198409203111204.
    Crossref | PubMed | Web of Science | Google Scholar
  • 226. Børglum T, Rehfeld JF, Drivsholm LB, Hilsted L. Processing-independent quantitation of chromogranin A in plasma from patients with neuroendocrine tumors and small-cell lung carcinomas. Clin Chem 53: 438–446, 2007. doi:10.1373/clinchem.2006.076158.
    Crossref | PubMed | Web of Science | Google Scholar
  • 227. Faulkner S, Elia G, P OB, Dunn M, Morris D. Composition of the bovine uterine proteome is associated with stage of cycle and concentration of systemic progesterone. Proteomics 13: 3333–3353, 2013. doi:10.1002/pmic.201300204.
    Crossref | PubMed | Web of Science | Google Scholar
  • 228. Bateman A, Bennett HPJ. Granulins: the structure and function of an emerging family of growth factors. J Endocrinol 158: 145–151, 1998. doi:10.1677/joe.0.1580145.
    Crossref | PubMed | Web of Science | Google Scholar
  • 229. Bhandari V, Giaid A, Bateman A. The complementary deoxyribonucleic acid sequence, tissue distribution, and cellular localization of the rat granulin precursor. Endocrinology 133: 2682–2689, 1993. doi:10.1210/endo.133.6.8243292.
    Crossref | PubMed | Web of Science | Google Scholar
  • 230. Daniel R, He Z, Carmichael KP, Halper J, Bateman A. Cellular localization of gene expression for progranulin. J Histochem Cytochem 48: 999–1009, 2000. doi:10.1177/002215540004800713.
    Crossref | PubMed | Web of Science | Google Scholar
  • 231. Díaz-Cueto L, Stein P, Jacobs A, Schultz RM, Gerton GL. Modulation of mouse preimplantation embryo development by acrogranin (epithelin/granulin precursor). Dev Biol 217: 406–418, 2000. doi:10.1006/dbio.1999.9564.
    Crossref | PubMed | Web of Science | Google Scholar
  • 232. Qin J, Díaz-Cueto L, Schwarze J-E, Takahashi Y, Imai M, Isuzugawa K, Yamamoto S, Chang K-T, Gerton GL, Imakawa K. Effects of progranulin on blastocyst hatching and subsequent adhesion and outgrowth in the mouse. Biol Reprod 73: 434–442, 2005. doi:10.1095/biolreprod.105.040030.
    Crossref | PubMed | Web of Science | Google Scholar
  • 233. Desmarais JA, Cao M, Bateman A, Murphy BD. Spatiotemporal expression pattern of progranulin in embryo implantation and placenta formation suggests a role in cell proliferation, remodeling, and angiogenesis. Reproduction 136: 247–257, 2008. doi:10.1530/REP-08-0044.
    Crossref | PubMed | Web of Science | Google Scholar
  • 234. Voshtani R, Song M, Wang H, Li X, Zhang W, Tavallaie MS, Yan W, Sun J, Wei F, Ma X. Progranulin promotes melanoma progression by inhibiting natural killer cell recruitment to the tumor microenvironment. Cancer Lett 465: 24–35, 2019. doi:10.1016/j.canlet.2019.08.018.
    Crossref | PubMed | Web of Science | Google Scholar
  • 235. Neill T, Buraschi S, Goyal A, Sharpe C, Natkanski E, Schaefer L, Morrione A, Iozzo RV. EphA2 is a functional receptor for the growth factor progranulin. J Cell Biol 215: 687–703, 2016. doi:10.1083/jcb.201603079.
    Crossref | PubMed | Web of Science | Google Scholar
  • 236. Heldin CH, Westermark B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 79: 1283–1316, 1999. doi:10.1152/physrev.1999.79.4.1283.
    Link | Web of Science | Google Scholar
  • 237. Mercola M, Wang C, Kelly J, Brownlee C, Jackson-Grusby L, Stiles C, Bowen-Pope D. Selective expression of PDGF A and its receptor during early mouse embryogenesis. Dev Biol 138: 114–122, 1990. doi:10.1016/0012-1606(90)90181-H.
    Crossref | PubMed | Web of Science | Google Scholar
  • 238. Österlund C, Wramsby H, Pousette Å. Temporal expression of platelet-derived growth factor (PDGF)-A and its receptor in human preimplantation embryos. Mol Hum Reprod 2: 507–512, 1996. doi:10.1093/molehr/2.7.507.
    Crossref | PubMed | Web of Science | Google Scholar
  • 239. Holmgren L, Claesson-Welsh L, Heldin CH, Ohlsson R. The expression of PDGF α- and β-receptors in subpopulations of PDGF-producing cells implicates autocrine stimulatory loops in the control of proliferation in cytotrophoblasts that have invaded the maternal endometrium. Growth Factors 6: 219–231, 1992. doi:10.3109/08977199209026929.
    Crossref | PubMed | Google Scholar
  • 240. Bernardo MM, Fridman R. TIMP-2 (tissue inhibitor of metalloproteinase-2) regulates MMP-2 (matrix metalloproteinase-2) activity in the extracellular environment after pro-MMP-2 activation by MT1 (membrane type 1)-MMP. Biochem J 374: 739–745, 2003. doi:10.1042/BJ20030557.
    Crossref | PubMed | Web of Science | Google Scholar
  • 241. Ulbrich SE, Meyer SU, Zitta K, Hiendleder S, Sinowatz F, Bauersachs S, Büttner M, Fröhlich T, Arnold GJ, Reichenbach HD, Wolf E, Meyer HHD. Bovine endometrial metallopeptidases MMP14 and MMP2 and the metallopeptidase inhibitor TIMP2 participate in maternal preparation of pregnancy. Mol Cell Endocrinol 332: 48–57, 2011. doi:10.1016/j.mce.2010.09.009.
    Crossref | PubMed | Web of Science | Google Scholar
  • 242. Wang Z, Juttermann R, Soloway PD. TIMP-2 is required for efficient activation of proMMP-2 in vivo. J Biol Chem 275: 26411–26415, 2000. doi:10.1074/jbc.M001270200.
    Crossref | PubMed | Web of Science | Google Scholar
  • 243. Caterina JJ, Yamada S, Caterina NCM, Longenecker G, Holmbäck K, Shi J, Yermovsky AE, Engler JA, Birkedal-Hansen H. Inactivating mutation of the mouse tissue inhibitor of metalloproteinases-2(Timp-2) gene alters proMMP-2 activation. J Biol Chem 275: 26416–26422, 2000. doi:10.1074/jbc.M001271200.
    Crossref | PubMed | Web of Science | Google Scholar
  • 244. Zhang J, Bai S, Tanase C, Nagase H, Sarras MP. The expression of tissue inhibitor of metalloproteinase 2 (TIMP-2) is required for normal development of zebrafish embryos. Dev Genes Evol 213: 382–389, 2003. doi:10.1007/s00427-003-0333-9.
    Crossref | PubMed | Web of Science | Google Scholar
  • 245. de Winter P, Leoni P, Abraham D. Connective tissue growth factor: Structure-function relationships of a mosaic, multifunctional protein. Growth Factors 26: 80–91, 2008. doi:10.1080/08977190802025602.
    Crossref | PubMed | Web of Science | Google Scholar
  • 246. Surveyor GA, Brigstock DR. Immunohistochemical localization of connective tissue growth factor (CTGF) in the mouse embryo between days 7.5 and 14.5 of gestation. Growth Factors 17: 115–124, 1999. doi:10.3109/08977199909103520.
    Crossref | PubMed | Web of Science | Google Scholar
  • 247. Surveyor GA, Wilson AK, Brigstock DR. Localization of connective tissue growth factor during the period of embryo implantation in the mouse. Biol Reprod 59: 1207–1213, 1998. doi:10.1095/biolreprod59.5.1207.
    Crossref | PubMed | Web of Science | Google Scholar
  • 248. Uzumcu M, Al Homsi MF, Ball DK, Coskun S, Jaroudi K, Hollanders JMG, Brigstock DR. Localization of connective tissue growth factor in human uterine tissues. Mol Hum Reprod 6: 1093–1098, 2000. doi:10.1093/molehr/6.12.1093.
    Crossref | PubMed | Web of Science | Google Scholar
  • 249. Brigstock DR, Steffen CL, Kim GY, Vegunta RK, Diehl JR, Harding PA. Purification and characterization of novel heparin-binding growth factors in uterine secretory fluids. Identification as heparin-regulated M(r) 10,000 forms of connective tissue growth factor. J Biol Chem 272: 20275–20282, 1997. doi:10.1074/jbc.272.32.20275.
    Crossref | PubMed | Web of Science | Google Scholar
  • 250. Ball DK, A. Surveyor G, Diehl JR, Steffen CL, Uzumcu M, Mirando MA, Brigstock DR. Characterization of 16- to 20-kilodalton (kDa) connective tissue growth factors (CTGFs) and demonstration of proteolytic activity for 38-kDa CTGF in pig uterine luminal flushings. Biol Reprod 59: 828–835, 1998 [Erratum in Biol Reprod 59: 1554, 1998]. doi:10.1095/biolreprod59.4.828.
    Crossref | PubMed | Web of Science | Google Scholar
  • 251. Muñoz M, Martin D, Carrocera S, Alonso-Guervos M, Mora MI, Corrales FJ, Peynot N, Giraud-Delville C, Duranthon V, Sandra O, Gómez E. Localisation of stem cell factor, stanniocalcin-1, connective tissue growth factor and heparin-binding epidermal growth factor in the bovine uterus at the time of blastocyst formation. Reprod Fertil Dev 29: 2127–2139, 2017. doi:10.1071/RD16383.
    Crossref | PubMed | Web of Science | Google Scholar
  • 252. Kannampuzha-Francis J, Tribulo P, Hansen PJ. Actions of activin A, connective tissue growth factor, hepatocyte growth factor and teratocarcinoma-derived growth factor 1 on the development of the bovine preimplantation embryo. Reprod Fertil Dev 29: 1329–1339, 2017. doi:10.1071/RD16033.
    Crossref | PubMed | Web of Science | Google Scholar
  • 253. Wang DH, Ren J, Zhou CJ, Han Z, Wang L, Liang CG. Supplementation with CTGF, SDF1, NGF, and HGF promotes ovine in vitro oocyte maturation and early embryo development. Domest Anim Endocrinol 65: 38–48, 2018. doi:10.1016/j.domaniend.2018.05.003.
    Crossref | PubMed | Web of Science | Google Scholar
  • 254. Aoyama E, Kubota S, Takigawa M. CCN2/CTGF binds to fibroblast growth factor receptor 2 and modulates its signaling. FEBS Lett 586: 4270–4275, 2012. doi:10.1016/j.febslet.2012.10.038.
    Crossref | PubMed | Web of Science | Google Scholar
  • 255. Abreu JG, Ketpura NI, Reversade B, De Robertis EM. Connective-tissue growth factor (CTGF) modulates cell signalling by bmp and TGF-β. Nat Cell Biol 4: 599–604, 2002. doi:10.1038/ncb826.
    Crossref | PubMed | Web of Science | Google Scholar
  • 256. Zhang Y, Zhang Z, Zhao X, Yu Z, Hu Y, Geronimo B, Fromm SH, Chen YP. A new function of BMP4: dual role for BMP4 in regulation of Sonic hedgehog expression in the mouse tooth germ. Development 127: 1431–1443, 2000. doi:10.1242/dev.127.7.1431.
    Crossref | PubMed | Web of Science | Google Scholar
  • 257. Okamoto M, Murai J, Yoshikawa H, Tsumaki N. Bone morphogenetic proteins in bone stimulate osteoclasts and osteoblasts during bone development. J Bone Miner Res 21: 1022–1033, 2006. doi:10.1359/jbmr.060411.
    Crossref | PubMed | Web of Science | Google Scholar
  • 258. Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM, Wang EA. Novel regulators of bone formation: molecular clones and activities. Science 242: 1528–1534, 1988. doi:10.1126/science.3201241.
    Crossref | PubMed | Web of Science | Google Scholar
  • 259. Urist MR. Bone: formation by autoinduction. Science 150: 893–899, 1965. doi:10.1126/science.150.3698.893.
    Crossref | PubMed | Web of Science | Google Scholar
  • 260. Paria BC, Ma W, Tan J, Raja S, Das SK, Dey SK, Hogan BL. Cellular and molecular responses of the uterus to embryo implantation can be elicited by locally applied growth factors . Proc Natl Acad Sci USA 98: 1047–1052, 2001. doi:10.1073/pnas.98.3.1047.
    Crossref | PubMed | Web of Science | Google Scholar
  • 261. Tanwar PS, McFarlane JR. Dynamic expression of bone morphogenetic protein 4 in reproductive organs of female mice. Reproduction 142: 573–579, 2011. doi:10.1530/REP-10-0299.
    Crossref | PubMed | Web of Science | Google Scholar
  • 262. Li Y, Wei QW, Feng JG, Xu ML, Huang RH, Shi FX. Expression of bone morphogenetic protein 2, 4, and related components of the BMP signaling pathway in the mouse uterus during the estrous cycle. J Zhejiang Univ Sci B 15: 601–610, 2014. doi:10.1631/jzus.B1300288.
    Crossref | PubMed | Web of Science | Google Scholar
  • 263. Tasaki H, Zhao L, Isayama K, Chen H, Yamauchi N, Shigeyoshi Y, Hashimoto S, Hattori M. Profiling of circadian genes expressed in the uterus endometrial stromal cells of pregnant rats as revealed by DNA microarray coupled with RNA interference. Front Endocrinol (Lausanne) 4: 82 , 2013. doi:10.3389/fendo.2013.00082.
    Crossref | PubMed | Google Scholar
  • 264. Tasaki H, Zhao L, Isayama K, Chen H, Yamauchi N, Shigeyoshi Y, Hashimoto S, Hattori M. Inhibitory role of REV-ERBα in the expression of bone morphogenetic protein gene family in rat uterus endometrium stromal cells. Am J Physiol Cell Physiol 308: C528–C538, 2015. doi:10.1152/ajpcell.00220.2014.
    Link | Web of Science | Google Scholar
  • 265. Valdez Magaña G, Rodríguez A, Zhang H, Webb R, Alberio R. Paracrine effects of embryo-derived FGF4 and BMP4 during pig trophoblast elongation. Dev Biol 387: 15–27, 2014. doi:10.1016/j.ydbio.2014.01.008.
    Crossref | PubMed | Web of Science | Google Scholar
  • 266. Zhang P, Li J, Tan Z, Wang C, Liu T, Chen L, Yong J, Jiang W, Sun X, Du L, Ding M, Deng H. Short-term BMP-4 treatment initiates mesoderm induction in human embryonic stem cells. Blood 111: 1933–1941, 2008. doi:10.1182/blood-2007-02-074120.
    Crossref | PubMed | Web of Science | Google Scholar
  • 267. Bernardo AS, Faial T, Gardner L, Niakan KK, Ortmann D, Senner CE, Callery EM, Trotter MW, Hemberger M, Smith JC, Bardwell L, Moffett A, Pedersen RA. BRACHYURY and CDX2 mediate BMP-induced differentiation of human and mouse pluripotent stem cells into embryonic and extraembryonic lineages. Cell Stem Cell 9: 144–155, 2011. doi:10.1016/j.stem.2011.06.015.
    Crossref | PubMed | Web of Science | Google Scholar
  • 268. Das P, Ezashi T, Schulz LC, Westfall SD, Livingston KA, Roberts RM. Effects of FGF2 and oxygen in the BMP4-driven differentiation of trophoblast from human embryonic stem cells. Stem Cell Res 1: 61–74, 2007. doi:10.1016/j.scr.2007.09.004.
    Crossref | PubMed | Web of Science | Google Scholar
  • 269. Sudheer S, Bhushan R, Fauler B, Lehrach H, Adjaye J. FGF inhibition directs BMP4-mediated differentiation of human embryonic stem cells to syncytiotrophoblast. Stem Cells Dev 21: 2987–3000, 2012. doi:10.1089/scd.2012.0099.
    Crossref | PubMed | Web of Science | Google Scholar
  • 270. Muramatsu T. Midkine and pleiotrophin: two related proteins involved in development, survival, inflammation and tumorigenesis. J Biochem 132: 359–371, 2002. doi:10.1093/oxfordjournals.jbchem.a003231.
    Crossref | PubMed | Web of Science | Google Scholar
  • 271. Kadomatsu K, Tomomura M, Muramatsu T. cDNA cloning and sequencing of a new gene intensely expressed in early differentiation stages of embryonal carcinoma cells and in mid-gestation period of mouse embryogenesis. Biochem Biophys Res Commun 151: 1312–1318, 1988. doi:10.1016/s0006-291x(88)80505-9.
    Crossref | PubMed | Web of Science | Google Scholar
  • 272. Owada K, Sanjo N, Kobayashi T, Mizusawa H, Muramatsu H, Muramatsu T, Michikawa M. Midkine inhibits caspase-dependent apoptosis via the activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase in cultured neurons. J Neurochem 73: 2084–2092, 1999.
    Crossref | PubMed | Web of Science | Google Scholar
  • 273. Kaneda N, Talukder AH, Nishiyama H, Koizumi S, Muramatsu T. Midkine, a heparin-binding growth/differentiation factor, exhibits nerve cell adhesion and guidance activity for neurite outgrowth in vitro. J Biochem 119: 1150–1156, 1996. doi:10.1093/oxfordjournals.jbchem.a021361.
    Crossref | PubMed | Web of Science | Google Scholar
  • 274. Maeda N, Ichihara-Tanaka K, Kimura T, Kadomatsu K, Muramatsu T, Noda M. A receptor-like protein-tyrosine phosphatase PTPζ/RPTPβ binds a heparin-binding growth factor midkine: involvement of arginine 78 of midkine in the high affinity binding to PTPζ. J Biol Chem 274: 12474–12479, 1999. doi:10.1074/jbc.274.18.12474.
    Crossref | PubMed | Web of Science | Google Scholar
  • 275. Muramatsu H, Shirahama H, Yonezawa S, Maruta H, Muramatsu T. Midkine, a retinoic acid-inducible growth/differentiation factor: Immunochemical evidence for the function and distribution. Dev Biol 159: 392–402, 1993. doi:10.1006/dbio.1993.1250.
    Crossref | PubMed | Web of Science | Google Scholar
  • 276. Yao X, Tan Z, Gu B, Wu R-R, Liu Y-K, Dai L-C, Zhang M. Promotion of self-renewal of embryonic stem cells by midkine. Acta Pharmacol Sin 31: 629–637, 2010. doi:10.1038/aps.2010.39.
    Crossref | PubMed | Web of Science | Google Scholar
  • 277. Ikeda S, Ichihara-Tanaka K, Azuma T, Muramatsu T, Yamada M. Effects of midkine during in vitro maturation of bovine oocytes on subsequent developmental competence. Biol Reprod 63: 1067–1074, 2000. doi:10.1095/biolreprod63.4.1067.
    Crossref | PubMed | Web of Science | Google Scholar
  • 278. Milner PG, Li YS, Hoffman RM, Kodner CM, Siegel NR, Deuel TF. A novel 17 kD heparin-binding growth factor (HBGF-8) in bovine uterus: purification and N-terminal amino acid sequence. Biochem Biophys Res Commun 165: 1096–1103, 1989. doi:10.1016/0006-291X(89)92715-0.
    Crossref | PubMed | Web of Science | Google Scholar
  • 279. Wang X. Pleiotrophin: activity and mechanism. Adv Clin Chem 98: 51–89, 2020. doi:10.1016/BS.ACC.2020.02.003.
    Crossref | PubMed | Web of Science | Google Scholar
  • 280. Sonderegger S, Pollheimer J, Knöfler M. Wnt signalling in implantation, decidualisation and placental differentiation–review. Placenta 31: 839–847, 2010. doi:10.1016/J.PLACENTA.2010.07.011.
    Crossref | PubMed | Web of Science | Google Scholar
  • 281. Wang H, Dey SK. Roadmap to embryo implantation: clues from mouse models. Nat Rev Genet 7: 185–199, 2006. doi:10.1038/nrg1808.
    Crossref | PubMed | Web of Science | Google Scholar
  • 282. Xu Q, Wang Y, Dabdoub A, Smallwood PM, Williams J, Woods C, Kelley MW, Jiang L, Tasman W, Zhang K, Nathans J. Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair. Cell 116: 883–895, 2004. doi:10.1016/S0092-8674(04)00216-8.
    Crossref | PubMed | Web of Science | Google Scholar
  • 283. Balint E, Lapointe D, Drissi H, Van Der Meijden C, Young DW, Van Wijnen AJ, Stein JL, Stein GS, Lian JB. Phenotype discovery by gene expression profiling: mapping of biological processes linked to BMP-2-mediated osteoblast differentiation. J Cell Biochem 89: 401–426, 2003. doi:10.1002/JCB.10515.
    Crossref | PubMed | Web of Science | Google Scholar
  • 284. Tasheva E, Koester A, Paulsen A, Garrett AS, Boyle D, Davidson H, Song M, Fox N, Conrad G. Mimecan/osteoglycin-deficient mice have collagen fibril abnormalities. Mol Vis 8: 407–415, 2002.
    PubMed | Web of Science | Google Scholar
  • 285. Huang H, Cotton JL, Wang Y, Rajurkar M, Zhu LJ, Lewis BC, Mao J. Specific requirement of Gli transcription factors in Hedgehog-mediated intestinal development. J Biol Chem 288: 17589–17596, 2013. doi:10.1074/JBC.M113.467498.
    Crossref | PubMed | Web of Science | Google Scholar
  • 286. Hu X, Li YQ, Li QG, Ma YL, Peng JJ, Cai SJ. Osteoglycin (OGN) reverses epithelial to mesenchymal transition and invasiveness in colorectal cancer via EGFR/Akt pathway. J Exp Clin Cancer Res 37: 41 , 2018. doi:10.1186/S13046-018-0718-2.
    Crossref | PubMed | Web of Science | Google Scholar
  • 287. Matson BC, Pierce SL, Espenschied ST, Holle E, Sweatt IH, Davis ES, Tarran R, Young SL, Kohout TA, van Duin M, Caron KM. Adrenomedullin improves fertility and promotes pinopodes and cell junctionsin the peri-implantation endometrium. Biol Reprod 97: 466–477, 2017. doi:10.1093/BIOLRE/IOX101.
    Crossref | PubMed | Web of Science | Google Scholar
  • 288. Hong G, Kuek V, Shi J, Zhou L, Han X, He W, Tickner J, Qiu H, Wei Q, Xu J. EGFL7: master regulator of cancer pathogenesis, angiogenesis and an emerging mediator of bone homeostasis. J Cell Physiol 233: 8526–8537, 2018. doi:10.1002/JCP.26792.
    Crossref | PubMed | Web of Science | Google Scholar
  • 289. Schmidt MHH, Bicker F, Nikolic I, Meister J, Babuke T, Picuric S, Müller-Esterl W, Plate KH, Dikic I. Epidermal growth factor-like domain 7 (EGFL7) modulates Notch signalling and affects neural stem cell renewal. Nat Cell Biol 11: 873–880, 2009 [Erratum in Nat Cell Biol 11: 1043, 2009]. doi:10.1038/NCB1896.
    Crossref | PubMed | Web of Science | Google Scholar
  • 290. Ludbrook SB, Barry ST, Delves CJ, Horgan CMT. The integrin αvβ3 is a receptor for the latency-associated peptides of transforming growth factors β1 and β3. Biochem J 369: 311–318, 2003. doi:10.1042/BJ20020809.
    Crossref | PubMed | Web of Science | Google Scholar
  • 291. Munger JS, Huang X, Kawakatsu H, Griffiths MJD, Dalton SL, Wu J, Pittet JF, Kaminski N, Garat C, Matthay MA, Rifkin DB, Sheppard D. The integrin αvβ6 binds and activates latent TGFβ1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96: 319–328, 1999. doi:10.1016/S0092-8674(00)80545-0.
    Crossref | PubMed | Web of Science | Google Scholar
  • 292. Annes JP, Chen Y, Munger JS, Rifkin DB. Integrin αvβ6-mediated activation of latent TGF-β requires the latent TGF-β binding protein-1. J Cell Biol 165: 723–734, 2004. doi:10.1083/jcb.200312172.
    Crossref | PubMed | Web of Science | Google Scholar
  • 293. Orimo T, Taga M, Matsui H, Minaguchi H. The effect of activin-A on the development of mouse preimplantation embryos in vitro. J Assist Reprod Genet 13: 669–674, 1996. doi:10.1007/BF02069647.
    Crossref | PubMed | Web of Science | Google Scholar
  • 294. Yoshioka K, Suzuki C, Iwamura S. Activin A and follistatin regulate developmental competence of in vitro-produced bovine embryos. Biol Reprod 59: 1017–1022, 1998. doi:10.1095/BIOLREPROD59.5.1017.
    Crossref | PubMed | Web of Science | Google Scholar
  • 295. Luo H, Kimura K, Aoki M, Hirako M. Effect of vascular endothelial growth factor on maturation, fertilization and developmental competence of bovine oocytes. J Vet Med Sci 64: 803–806, 2002. doi:10.1292/JVMS.64.803.
    Crossref | PubMed | Web of Science | Google Scholar
  • 296. Biswas D, So KH, Hwang SU, Yoon JD, Kim M, Kim DY, Hyun SH. Embryotropic effects of vascular endothelial growth factor on porcine embryos produced by in vitro fertilization. Theriogenology 120: 147–156, 2018. doi:10.1016/J.THERIOGENOLOGY.2018.07.024.
    Crossref | PubMed | Web of Science | Google Scholar
  • 297. Brusselmans K, Bono F, Collen D, Herbert JM, Carmeliet P, Dewerchin M. A novel role for vascular endothelial growth factor as an autocrine survival factor for embryonic stem cells during hypoxia. J Biol Chem 280: 3493–3499, 2005. doi:10.1074/JBC.M406613200.
    Crossref | PubMed | Web of Science | Google Scholar
  • 298. Binder NK, Evans J, Salamonsen LA, Gardner DK, Kaitu'u-Lino TJ, Hannan NJ. Placental growth factor is secreted by the human endometrium and has potential important functions during embryo development and implantation. PLoS One 11: e0163096 , 2016. doi:10.1371/JOURNAL.PONE.0163096.
    Crossref | PubMed | Web of Science | Google Scholar
  • 299. Passaro C, Tutt D, Bagés-Arnal S, Maicas C, Laguna-Barraza R, Gutierrez-Adán A, Browne JA, Rath D, Behura SK, Spencer TE, Fair T, Lonergan P. Global transcriptomic response of bovine endometrium to blastocyst-stage embryos. Reproduction 158: 223–235, 2019. doi:10.1530/REP-19-0064.
    Crossref | PubMed | Web of Science | Google Scholar
  • 300. Akthar I, Suarez SS, Morillo VA, Sasaki M, Ezz MA, Takahashi KI, Shimada M, Marey MA, Miyamoto A. Sperm enter glands of preovulatory bovine endometrial explants and initiate inflammation. Reproduction 159: 181–192, 2020. doi:10.1530/REP-19-0414.
    Crossref | PubMed | Web of Science | Google Scholar
  • 301. Hiradate Y, Inoue H, Kobayashi N, Shirakata Y, Suzuki Y, Gotoh A, Roh SG, Uchida T, Katoh K, Yoshida M, Sato E, Tanemura K. Neurotensin enhances sperm capacitation and acrosome reaction in mice. Biol Reprod 91: 53 , 2014. doi:10.1095/biolreprod.113.112789.
    Crossref | PubMed | Web of Science | Google Scholar
  • 302. Hiradate Y, Hara K, Tanemura K. Effect of neurotensin on cultured mouse preimplantation embryos. J Reprod Dev 66: 421–425, 2020. doi:10.1262/jrd.2020-002.
    Crossref | PubMed | Web of Science | Google Scholar
  • 303. Renner M, Bergmann G, Krebs I, End C, Lyer S, Hilberg F, Helmke B, Gassler N, Autschbach F, Bikker F, Strobel-Freidekind O, Gronert-Sum S, Benner A, Blaich S, Wittig R, Hudler M, Ligtenberg AJ, Madsen J, Holmskov U, Annese V, Latiano A, Schirmacher P, Amerongen AV, D'Amato M, Kioschis P, Hafner M, Poustka A, Mollenhauer J. DMBT1 confers mucosal protection in vivo and a deletion variant is associated with Crohn’s disease. Gastroenterology 133: 1499–1509, 2007. doi:10.1053/j.gastro.2007.08.007.
    Crossref | PubMed | Web of Science | Google Scholar
  • 304. Roldán ML, Teijeiro JM, Ruiz Álvarez J, Marini PE. Sperm binding to porcine oviductal cells is mediated by SRCR domains contained in DMBT1. J Cell Biochem 119: 3755–3762, 2018. doi:10.1002/jcb.26614.
    Crossref | PubMed | Web of Science | Google Scholar
  • 305. Mohseni S, Emtenani S, Emtenani S, Asoodeh A. Antioxidant properties of a human neuropeptide and its protective effect on free radical-induced DNA damage. J Pept Sci 20: 429–437, 2014. doi:10.1002/psc.2634.
    Crossref | PubMed | Web of Science | Google Scholar
  • 306. Briolat J, Wu SD, Mahata SK, Gonthier B, Bagnard D, Chasserot-Golaz S, Helle KB, Aunis D, Metz-Boutigue MH. New antimicrobial activity for the catecholamine release-inhibitory peptide from chromogranin A. Cell Mol Life Sci 62: 377–385, 2005. doi:10.1007/s00018-004-4461-9.
    Crossref | PubMed | Web of Science | Google Scholar
  • 307. Grzeszkiewicz TM, Kirschling DJ, Chen N, Lau LF. CYR61 stimulates human skin fibroblast migration through integrin αvβ5 and enhances mitogenesis through integrin αvβ3, independent of its carboxyl-terminal domain. J Biol Chem 276: 21943–21950, 2001. doi:10.1074/jbc.M100978200.
    Crossref | PubMed | Web of Science | Google Scholar
  • 308. Mo F-E, Muntean AG, Chen C-C, Stolz DB, Watkins SC, Lau LF. CYR61 (CCN1) is essential for placental development and vascular integrity. Mol Cell Biol 22: 8709–8720, 2002. doi:10.1128/mcb.22.24.8709-8720.2002.
    Crossref | PubMed | Web of Science | Google Scholar
  • 309. Gellhaus A, Schmidt M, Dunk C, Lye SJ, Kimmig R, Winterhager E. Decreased expression of the angiogenic regulators CYR61 (CCN1) and NOV (CCN3) in human placenta is associated with pre-eclampsia. Mol Hum Reprod 12: 389–399, 2006. doi:10.1093/molehr/gal044.
    Crossref | PubMed | Web of Science | Google Scholar
  • 310. Finn CA, McLaren A. A study of the early stages of implantation in mice. J Reprod Fertil 13: 259–267, 1967. doi:10.1530/jrf.0.0130259.
    Crossref | PubMed | Google Scholar
  • 311. Enders AC, Schlafke S. A morphological analysis of the early implantation stages in the rat. Am J Anat 120: 185–225, 1967. doi:10.1002/aja.1001200202.
    Crossref | Google Scholar
  • 312. Aplin JD. The cell biology of human implantation. Placenta 17: 269–275, 1996. doi:10.1016/s0143-4004(96)90050-8.
    Crossref | PubMed | Web of Science | Google Scholar
  • 313. Kingman HE. The placentome of the cow. Am J Vet Res 9: 125 , 1948.
    Web of Science | Google Scholar
  • 314. Melton AA, Berry RO, Butler OD. The interval between the time of ovulation and attachment of the bovine embryo. J Anim Sci 10: 993–1005, 1951. doi:10.2527/jas1951.104993x.
    Crossref | Web of Science | Google Scholar
  • 315. Yamauchi S. Studies on morphogenesis of uterine horn, especially with uterine caruncle in Japanese native cattle. Jpn J Zootech Sci 35: 92–100, 1964. doi:10.2508/chikusan.35.tokubetu_92.
    Crossref | Google Scholar
  • 316. Atkinson BA, King GJ, Amoroso EC. Development of the caruncular and intercaruncular regions in the bovine endometrium. Biol Reprod 30: 763–774, 1984. doi:10.1095/biolreprod30.3.763.
    Crossref | PubMed | Web of Science | Google Scholar
  • 317. Chang MC. Development of bovine blastocyst with a note on implantation. Anat Rec 113: 143–161, 1952. doi:10.1002/ar.1091130203.
    Crossref | PubMed | Google Scholar