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1 Introduction
This user manual and reference guide describes how to use the Ngene software and also briefly
introduces the underlying methodology.

1.1 What is Ngene?

Ngene is software for generating experimental designs that are used in stated choice experiments
for the purpose of estimating choice models, particularly of the logit type. 

Ngene  is  distributed  by  ChoiceMetrics  (www.choice-metrics.com).  The  syntax  used  in  Ngene  is
similar to that used in Nlogit/Limdep.

1.2 About Version 1

Ngene 1 is the first commercial release of this software. It has a modern graphical interface and
state-of-the-art  methods  for  generating  a  wide  range of  experimental  designs.  Ngene  allows  for
the  generation  of  orthogonal  designs,  optimal  orthogonal  designs  and  efficient  stated  choice
designs.  Ngene  1  supports  orthogonal  main  effects  only  designs  and  for  efficient  designs,
supports main effects and interaction effects for MNL, MMNL panel and cross sectional  and EC
panel and cross sectional models. Ngene also allows for constraints and nesting of attributes for
different types of designs. Ngene allows the user to open and read existing data, for example to
evaluate designs that may have been generated elsewhere. 

Ngene 1  also allows the user  to  build  the HTML code for  any  design  generated.  The user  may
take  an  existing  design  (even  one  generated  using  other  software)  and  build  step  by  step  the
HTML code for presenting that design. The user will have to write their own code to capture data
using the design, however for those wishing to show clients what the experiment might look like in
practice, this feature will allow for a quick solution without having to first write the complete survey
themselves.

Point  releases  are  released  periodically  as  a  free  upgrade,  and  add  minor  functionality  and  fix
bugs. The current release is  Ngene 1.1.1.  Check the website to see if  a more recent  version of
Ngene is available.

1.3 Feature overview

Ngene is designed to be the single source of stated choice (SC) experimental designs. As such, it
has an extensive range of features and outputs. 

With Ngene you can:

Specify designs with great flexibility:
Generate  designs  with  any  number  of  choice  situations,  alternatives,  attributes  and  attribute
levels.
Maintain attribute level balance, or specify that an attribute must occur an exact number of times
or between a minimum and maximum number of times.
Dummy and effects code attributes.

http://www.choice-metrics.com
http://www.choice-metrics.com
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Specify logical rules to limit what attribute levels can coexist in a choice situation.
Interrogate  design  level  correlations  as  calculated  using  a  range  of  correlation  formulas
(Pearson  product  moment,  G  index,  J  index,  Spearman  rank,  Point  biserial,  CP  coefficient,  H
index).

Generate full and fractional factorial designs.

Generate orthogonal designs:
Maintain orthogonality either across or within alternatives.
Obtain orthogonal designs for a very large range of design dimensions.
Add blocking and foldover columns.
Generate optimal orthogonal in the differences designs.
Find the most efficient orthogonal design.

Generate efficient designs:
Report  and optimize on efficiency measures including d,  a,  s  (sample size),  b  (utility  balance),
and wtp (willingness to pay).
Report  and  optimize  on  efficiency  measures  for  multinomial  logit  (MNL)  models,  mixed
multinomial logit (MMNL) models (panel and cross sectional) and error components (EC) models
(panel and cross sectional).
Account for prior uncertainty with normally and uniformly distributed Bayesian priors.
Report  and  optimize  on  the  Bayesian  mean,  median,  minimum,  maximum  and  standard
deviation.
Draw  Bayesian  and  random  parameter  distributions  with  random,  Halton,  Sobol  and  MLHS
draws, as well as Gaussian quadrature.
Optimize on more than one model and error measure type using model averaging.
Search for efficient designs using the pair swapping, RSC and modified Federov algorithms.
Report utilities, probabilities, the Fisher matrix and the covariance matrix for each model type.

Generate formatted HTML mockups:
Format the scenarios by placing design levels, text and radio buttons wherever you like within a
table.
Format or relabel design levels for presentation.
Apply  cascading  style  sheets  (CSS)  to  instantly  modify  the  appearance  of  the  formatted
scenarios (CSS files included, or create you own).
View the mockups directly within Ngene.

Interact with a modern user interface that maximizes flexibility:
Open and evaluate existing data files and designs.
Open  files  independently  in  the  workspace  or  maintain  syntax,  data  and  output  files  within  a
project.
Retain all syntax runs and associated outputs during a session.
Interrogate any design found during a search.
Report design properties as needed - no need to decide what to report before the syntax runs,
and no calculation of unnecessary properties during the search.
Easily view any number of user selected design properties in a grid, and copy directly to other
applications including Microsoft Excel.

and do much more...



11Introduction

© 2018 ChoiceMetrics

1.4 Overview of this manual

This manual is arranged so that the functions you are most likely to use are the ones you will find
documented  first.  We  have  attempted  to  be  concise,  where  possible  substituting  hands-on
examples  for  lengthy prose about  particular  aspects.  Nonetheless,  in  order  to  be  complete,  this
manual is necessarily longer than we would have hoped.  In spite of this, first time users should
take the time to skim the first few paragraphs of each chapter before beginning serious use. 

This manual is broken into chapters:

Chapter 1 "Introduction" gives a brief introduction to the capabilities of Ngene, and the contents
of this manual.
Chapter  2  "Installation  and  Setup"  provides  instructions  for  the  installation  and  setup  of  the
Ngene software.
Chapter 3 "The Ngene Workspace" explores the graphical operating environment and its various
components.
Chapter 4 "Ngene Syntax" is an introduction to the structure of the syntax that the analyst uses
to control Ngene.
Chapter 5 "Introduction to Experimental Design Theory" provides an introduction to experimental
design theory. It is recommended to read this chapter before reading subsequent chapters.
Chapter  6  "Orthogonal  Designs"  discusses  the  theory  of  orthogonal  designs,  and  guides  the
user through the construction of various types of orthogonal designs in Ngene.
Chapter  7  "Efficient  Designs"  introduces  the  theory  of  efficient  designs,  and  demonstrates  the
basic features of efficient design generation in Ngene.
Chapter 8 "Advanced Features in Generating Efficient Designs" describes some state-of-the-art
design generation techniques that can be utilized in Ngene.
Chapter  9  "Designs  With  Continuous  Attribute  Levels"  examines  designs  that  allow  some
attributes to have continuous attribute levels.
Chapter 10 "Formatting Experiments" explores the tools that Ngene provides for creating HTML
survey mockups using the generated experimental designs.
Chapter  11  "Syntax  Reference"  outlines  in  detail  the  permissible  syntax  of  each  of  Ngene's
commands and properties.
Chapter 12 "Endnotes" contains endnotes from the entire manual.
Chapter 13 "References" lists all references cited in the manual.

Key concepts. Some pieces of information are very important. To make them stand out from
the rest of the documentation, these 'key concepts' will be presented in a yellow box such as this
one.
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2 Installation and Setup

2.1 Installing Ngene

Ngene is a Windows based program (there is no Macintosh version). As of version 1.0.2, Ngene
can run on computers installed with 64 bit versions of Windows.

To install Ngene:

1.Install .NET 4.0, if necessary
Ngene  requires  .NET  4.0  to  run.  If  you  do  not  already  have  .NET  4.0  installed,  you  can
download  the  latest  version  from  the  Microsoft  website.  If  you  are  uncertain  if  .NET  4.0  is
installed, attempt step 3 - an error message will be shown if .NET 4.0 is not installed.

2.Obtain the Ngene installer.
Download the installer EXE file from www.choice-metrics.com/download. The file is moderately
large - approximately 100MB.

3.Navigate to and run the setup program
Run the program 'Ngene setup.exe'.  You can change the installation location if  you wish,  and
install for either all users of the computer, or just yourself.

One screen of the setup program

https://www.microsoft.com/en-US/Download/confirmation.aspx?id=17718
http://www.choice-metrics.com/download
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4.Run Ngene
A shortcut  called 'Ngene'  will  have been placed in  your  Start  menu.  Open this  shortcut  to  run
Ngene.

5.Activate Ngene
If you purchased your copy of Ngene, refer to the section License activation and management
for  information  on  how  to  activate  your  copy  of  Ngene.  Otherwise,  Ngene  will  run  as  an
evaluation version.

2.2 Evaluation version

Until you activate Ngene, Ngene will run as an evaluation version. Ngene can only be activated if
you have purchased the software. If  you have purchased the software, refer to the next section,
License activation and management, for details on how to activate Ngene.

We have provided the evaluation version to allow you to see how Ngene works, and experience
first hand all  of the features that it  provides. You can pass the software on to others freely. The
only limitation in  the evaluation version is  that  all  design values will  appear  as "0",  with  the real
design levels being obfuscated. All other functionality will be complete.

2.3 Purchasing Ngene

Ngene  can  be  purchased  securely  online  through  PayPal,  or  by  bank  transfer.  For  up  to  date
details on how to pay, including current pricing, visit www.choice-metrics.com/purchase.

2.4 License activation and management

Single licenses of Ngene allow the software to be used on at most two computers. We understand
that many people want a copy for their desktop computer and for their laptop.

The full version of Ngene is activated using a license ID and password provided by ChoiceMetrics,
with the software being locked to a single computer after activation. Moving the software with the
license  file  to  another  computer  will  cause  Ngene  to  revert  to  the  evaluation  version  on  that
computer.

Note  that  purchasing  Ngene  is  not  instantaneous.  We  will  need  to  check  that  payment  has
cleared before we send you your password. Please do not leave the purchase of Ngene to the last
minute if you need it for a project.

There  are  two  mechanisms  for  activating  Ngene:  online  activation  and  manual  activation.  We
strongly recommend online activation, as it is faster and more convenient. If however you do not
have internet access on the computer you wish to activate, you may need to manually activate the
software. Both methods are described below.

Online activation

1. Purchase Ngene. We will email you a receipt, a license ID, and a password.

http://www.choice-metrics.com/purchase
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2.  If  you  have  not  already  done  so,  download  Ngene  from  the  ChoiceMetrics  website  at  www.
choice-metrics.com/download and install the software.

3. Run Ngene.

4. From the Help menu, select ‘Online Activation’. A dialog box will appear, similar to that below.

The online activation dialog box

5.  Enter  the license ID and password provided to  you when you purchased Ngene.  If  you have
lost  these  details,  email  sales@choice-metrics.com and  we  will  send  through  the  details  again.
Your software should now be activated.

Manual activation

1. Purchase Ngene.

2.  If  you  have  not  already  done  so,  download  Ngene  from  the  ChoiceMetrics  website  at  www.
choice-metrics.com/download and install the software.

3. Run Ngene.

4. From the Help menu, select ‘Manual Activation’. A dialog box will appear, similar to that below.

http://www.choice-metrics.com/download
http://www.choice-metrics.com/download
mailto:sales@choice-metrics.com
http://www.choice-metrics.com/download
http://www.choice-metrics.com/download
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The manual activation dialog box

5. Email sales@choice-metrics.com with ‘User Code 1’ and ‘User Code 2’.

6. We will reply with an activation code. Run Ngene. From the 'Help' menu, again select ‘Manual
Activation’. Enter the activation code into the field 'Reg Key 1:'. Your copy of Ngene should now
be activated.

Note  that  the  user  codes  will  sometimes  reset  before  the  user  codes  can  be  entered.  You  will
need to email  us again with the updated user codes. This issue is outside of our control,  and is
another reason why online activation is preferable. 

What if I change computers?

If  you received a licence ID and password for  online activation (i.e.  you purchased the software
after  late  2009),  the  same  details  will  allow  you  to  activate  Ngene  after  you  have  upgraded  or
changed  computers.  If  the  activation  fails  due  to  insufficient  activations  being  available,  email
contact@choice-metrics.com.  If  you  purchased  Ngene  in  2009,  you  may  not  have  received  a
license ID and password. Email contact@choice-metrics.com to obtain these details. Alternatively,
you can request a manual activation.

If  you  have  merely  upgraded  a  part  of  your  computer,  it  is  unlikely  that  you  will  need  a  new
activation, although this is a possibility. For example, updating the operating system or installing a
new hard drive is unlikely to cause any problems.

What if I uninstall Ngene?

If  you  uninstall  Ngene,  the  license  file  "Ngene.lf"  will  be  left  in  the  folder  in  which  Ngene  was
installed. So long as this file is left in place, future installations of Ngene to the same folder on the
same computer  will  not need activation. It  is strongly recommended that you create a backup of
the "Ngene.lf" file.

2.5 Updating Ngene

To  install  a  more  recent  version  of  Ngene,  simply  download  the  installation  file  for  the  new
version, and run the installer. The old version will be removed and the new version installed. If you
have  activated  Ngene,  it  will  remain  activated  after  the  update,  so  long  as  you  install  the  new
version to the same location as the old version.

You can find the version of the installed copy of Ngene in the About window, accessible from the
Help menu.

mailto:sales@choice-metrics.com
mailto:contact@choice-metrics.com
mailto:contact@choice-metrics.com
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The best way to check for and download updates is via the Check for Updates feature in the Help
menu. You will either be notified that your software is up to date, or given an option to download
the latest version, without having to visit the ChoiceMetrics website.

2.6 Uninstalling Ngene

Navigate to the Control Panel, and open 'Add or Remove Program'. Select 'Ngene' from the list,
and then its associated 'Uninstall' button.
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3 The Ngene Workspace
This  chapter  will  explain  how  to  navigate  within  and  operate  the  Ngene  workspace.  Ngene  is
primarily  command driven,  where the commands are stored in  a  syntax file  and entered via  the
user’s  keyboard.  However,  the  rest  of  Ngene  utilizes  a  rich  graphical  user  interface  (GUI),  the
components of which are described in this chapter.

3.1 Workspace overview

Upon starting  Ngene,  a  blank  workspace  will  appear  as  below.  Initially,  the  workspace  consists
only of a menu bar and a toolbar with buttons. When performing tasks within Ngene, new windows
will appear within the workspace. 

The Ngene workspace as it appears on startup

The windows can be minimized, so that the window appears at the bottom of the workspace as
shown below.

Windows minimized within the workspace

Various files can be opened and represented within Ngene as windows, including:
Ngene project files
Ngene syntax files
Ngene design files
Excel files
Comma separated files

Of these files, only one project can be open at any one time. There is no limit to how many of the
remaining file types can be open within the main operating environment.
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A  key  distinction  can  be  made  within  Ngene  between  a  managed  and  an  unmanaged
workspace.

A managed workspace is controlled by an open project. All new files created will  automatically
be added to the project folder, and files external to the project that are opened will be copied to
the project's folder.

An unmanaged workspace exists when no project is open. All  new files will  not be stored until
they are saved explicitly, and files will be opened from their original location.

The choice of  which type of  workspace to  use will  depend on the user's  preferences,  and the
number of files and designs they wish to work with.

The  following  sections  outline  the  files  that  can  be  opened,  their  purpose,  and  how  they  are
handled and visualized within Ngene.
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3.2 Syntax windows and files

Whilst some functionality can be invoked in Ngene via the menus, syntax is the primary method of
controlling the program. Syntax is entered as plain text into a syntax window, an example of which
is below. To run syntax, the syntax window that contains the relevant syntax must be made active,
and the Run menu item selected. The results of the run will be displayed in the Output window.

An empty syntax window

A description of the structure of Ngene syntax is covered in Ngene Syntax, together with a simple
example.  The  syntax  is  introduced  across  several  chapters,  and  the  manual  also  contains  a
Syntax Reference chapter.

Syntax files

Ngene syntax is stored in syntax files, which have a .ngs suffix. These are plain text files, and so
are portable and can be opened by a wide range of programs. However, Ngene registers these
files so that they will open in Ngene by default. The File menu section describes how syntax files
can be created, opened and saved.

When a syntax file has not been saved since changes were made, a star will appear next to the
file name in that file's syntax window (see below).

A syntax file that has had changes since it was last saved
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3.3 Data windows and files

Various functions in Ngene may require that the user access data files. For example, the analyst
may wish to evaluate an existing design stored in an Excel file.

The current release version of Ngene supports the access of Excel files (including the new .xlsx
and .xlsm file formats), comma separated (CSV) files, semicolon delimited files, and tab delimited
files.  Data  file  access  is  read-only,  so  the  data  can  be  viewed  within  Ngene  and  used  by  the
routines,  but  may  not  be  modified.  Memory  permitting,  any  number  of  datasets  can  be  opened
simultaneously.

The File menu section describes how data files can be opened.

Below is a screenshot of an Excel file containing a design that has been opened with Ngene.

An Excel file displayed within Ngene

If the data file represents a design, and is to be used with the eval or start properties, the columns
need  to  exist  in  a  specific  order.  The  first  column  contains  the  design  number.  In  most  cases,
there will just be a single design. In this case, all rows should contain the value 1. If D designs are
to be evaluated,  perhaps for  a  heterogeneous design,  then the designs should appear  in  order,
with  the  first  column  containing  values  1...D.  The  second  column  contains  the  choice  situation
number. One choice situation should be specified per row, with the values increasing from 1 to S
in order for every design (where there are S choice situations per design). The remaining columns
contain the attributes, and should be specified in the same order as the attributes are declared in
the syntax that will be used to evaluate the design. Note that constants in a utility expression are
not treated as attributes, and should not be stored in the data file. The above example contains a
single design with 12 choice situations and eight attributes.

Ngene can either treat the first row in the data file as a header, or the first row of actual data. For
the  former,  the  first  row  should  contain  names  for  each  column,  and  the  actual  data  should  be
specified from the second row. For the later, no column names need to be specified, and the data
can begin from the first row. To change this setting, select Session Options or Permanent Options
from the Tools menu, and select the General tab (see below for the relevant part of this screen).
Check  or  uncheck  the  "With  column  headers"  check  box.  All  data  files  will  be  opened  with  this
setting.
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Preferences for changing how data files are read

When opening a CSV file, the file can be seperated by commas (the default), semicolons, or tabs.
To change this setting, select Session Options or Permanent Options from the Tools menu, and
select the General tab (see above for the relevant part of this screen). All data files will be opened
with this setting.
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3.4 Output window

When  syntax  is  run,  results  are  accessed  from  the  Output  window,  shown  below.  The  Output
window is not initially visible, but will automatically open the first time syntax is run in a session.

The Output window

The Output window consists of several parts, listed below. 

Session History

On the left,  the session history  is  stored.  Each time syntax is  run,  a  new row will  appear  in  the
Session  History  list.  The  row,  which  represents  a  single  syntax  run,  contains  several  fields  of
information:

Command: the main command that was run.
Time: the time the run commenced.
Status:  running, paused, or stopped. Note that only one routine may be run at  a time. Hence,
the user cannot pause one routine and start a second.
Syntax: the syntax that was run. Placing the curser over a cell in this column will produce a pop-
up box that shows the full syntax used for that routine.
Comments: the user may type personal comments here that may be useful for future reference.
Also,  if  an  error  occurs  when  the  syntax  is  parsed,  Ngene  will  place  the  word  ‘Error’  here.  In
doing this, the user will quickly be able to see that the routine for that syntax is not running and
hopefully be able to diagnose the problem. 
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The Session History

The user may wish to remove previous syntax runs to free memory. This can be done in one of
two ways:
1.The user may press the ‘Clear entire session history’ button located below the Session History

list. This will clear all syntax runs that are not running and free the associated memory. 
2.The user may remove a single syntax run by right hand clicking on any cell of the corresponding

row in the Session History list, and selecting 'Remove' from the popup menu, as shown below. 

Removing a single syntax run

Note  that  once  removed,  a  syntax  run  cannot  be  retrieved.  That  is,  the  undo  button  will  not
retrieve  a  removed  run.  However,  any  designs  that  were  added  to  the  project  or  opened  in  a
Design window prior to the removal of the run will still be accessible.

Selecting a syntax run in the Session History load that run's output on the right hand side of the
window. Each syntax run is described by two tabs: the Design History tab and the Syntax tab.
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Iteration History tab

The top  of  the  Iteration  History  tab  contains  a  list  of  all  designs  found  so  far  in  the  syntax  run.
Sometimes  only  a  single  design  will  be  found,  at  other  times  there  may  be  very  many  designs
found, as below.

Very important: To open a design window and examine the properties of the design, including
the design levels, double click on a row in the iteration history.

The Iteration history

Each row in the list represents a single design. Three properties of the design are displayed:
Evaluation:  this  indicates how many designs have been evaluated in the search to get to this
design state.
Time: the time and date that the design was found.
A performance measure (optional): the actual measure (and so the column heading) will vary
depending on the syntax. For example, efficient designs will report the efficiency measure being
optimized  (e.g.  MNL  d  error  in  the  example  above),  but  orthogonal  designs  will  not  report
anything for this field.

The information in the row is only a small subset of all the available properties of the design that
can  be  reported.  This  information  is  presented  in  a  separate  window,  the  Design  window.  To
open this window and examine this information, double click on the row of the design you wish
to examine. See Design windows and files for more information on Design windows. 
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Some  rows  may  grey  out.  This  means  that  the  design  has  been  deleted  and  is  no  longer
available.  While  in  Ngene  attempts  to  make  as  much  information  available  as  possible,  some
designs can consume a large amount of memory, and the deletion of old designs is a strategy for
preventing Ngene from running out of memory. The first design is always retained, and then the N
most  recent  designs  are  also  retained,  where  N  is  an  integer  that  can  be  configured  from  the
Options dialog box, or specified in syntax. Also, all  designs can be specified to be retained. The
syntax for both these options is:

;store = N
;store = all

Designs can be added to the current project if it is open. This can either be done from the Design
window, from the Add button in the toolbar,  or  from the design history list.  To perform the later,
right  click  on  any  retained  design,  and  select  'Add  design  to  project'  from  the  popup  menu,  as
shown below.

Adding a design to the project from the Iteration History list

The bottom of the Iteration History tab contains a scrolling text area called 'Trace'. This text area is
used by Ngene to provide a variety of feedback to the user, including, but not limited to:

Syntax error messages that will prematurely terminate a run.
Warnings that alert the user to potential problems, but will not terminate a run.
Notifications of assumptions made from a syntax specification.
Information providing updates on algorithm progress.

A  significant  effort  has  been  made  by  Ngene's  authors  to  provide  meaningful  error  messages.
However, the authors welcome your feedback and suggestions on unclear messages. 

The  bottom of  the  Iteration  History  tab  also  presents  the  'Current  evaluation'  number.  This  can
help reassure the user that a search is still running when an improved design has not been found
for  some  time.  The  'Current  number  of  invalid  designs'  reports  how  many  designs  have  been
found  that  have  had  to  be  discarded  due  to  a  problem  with  the  evaluation  of  the  design.  For
example,  sometimes  the  calculation  of  a  Bayesian  efficient  design  results  in  a  singular  Fisher
matrix.  A  small  number  of  discarded  designs  can  usually  be  tolerated,  but  a  large  number  is
symptomatic of some underlying problem, and should be investigated by the analyst.

mailto:support@choice-metrics.com
mailto:support@choice-metrics.com
mailto:support@choice-metrics.com
mailto:support@choice-metrics.com
mailto:support@choice-metrics.com
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Syntax tab

The Syntax tab displays a read-only copy of the syntax that was used for  the currently selected
syntax run.

The Syntax tab
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3.5 Design windows and files

The design window contains all available information about a design. It can be opened by double
clicking on a row in the iteration history of the output window. 

The title contains several pieces of information:
A performance measure (optional): If relevant, a performance measure. The actual measure
will  vary  depending  on  the  syntax.  For  example,  efficient  designs  will  report  the  efficiency
measure being optimized (e.g. MNL d error in the example below), but orthogonal designs will
not report anything for this field.
The evaluation number: this indicates how many designs have been evaluated in the search to
find this design.
The syntax filename: the syntax file that was run to generate the design.

The design window itself contains three tabs, described below.

Properties tab

The Properties tab, shown below, contains two key components. 

The tree structure: On the left is a tree structure that provides a list of properties of the design
that can be reported. Related properties are grouped together, and the actual properties available
will  vary  depending  on  the  syntax  of  the  design.  The  tree  structure  can  be  expanded  and
collapsed by clicking on the plus  (+)  and minus (-)  symbols  to  the left  of  the tree.  A  property  is
selected for viewing by selecting its corresponding check box in the 'Show' column. Any number
of properties can be selected for viewing.

The output grid: On the right is a grid that reports each of the selected properties. The properties
themselves  are  typically  tables,  and  the  grid  will  adjust  its  size  to  accommodate  all  selected
properties. The properties are listed in the grid in the order they were selected. Values in the grid
are  read-only  and cannot  be  edited.  However,  the  values  may be  copied  and  pasted  into  other
software packages such as Microsoft Excel or Microsoft Word.

When  a  design  is  opened,  certain  properties  are  selected  by  default.  The  default  selection  will
vary according to the syntax. 

Many  properties  are  calculated  on  the  fly  when  they  are  selected.  This  prevents  needless
calculation of properties at earlier stages, say during a search. However, it does mean that some
properties may be slow to display once selected. Properties that are known to frequently be slow
to be calculated will have '(slow)' listed next to their name. 

This  section  will  not  describe  the  actual  available  properties,  or  the  corresponding  outputs
displayed  in  the  grid.  These  outputs  will  be  described  in  later  chapters  where  appropriate.
However, it is worth noting that the design matrix will always be available (the first property listed
below), as will that design's correlation structure.
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Properties tab of the Design window

Syntax tab

The Syntax tab, shown below, displays a read-only copy of the syntax that was used to generate
the design, in addition to the name of the syntax file that was run to generate the design.

Syntax tab of the Design window
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Formatted scenarios tab

In  addition  to  reporting  the  levels  and  various  properties  of  the  design,  Ngene  provides  a
mechanism,  known as  scenario  formatting,  for  applying  extensive  formatting  to  the  design.  The
results are presented in HTML, and the style of output can be rapidly transformed using cascading
style  sheets  (CSS  files).  Choice  matrices  of  any  size  can  be  generated  and  populated  with
arbitrary  text,  radio  buttons  for  capturing  choice,  and  design  levels,  which  can  themselves  be
formatted and transformed into labels. The formatting functionality is extensive, and is described
in Chapter 10 "Formatting Experiments".

Scenario  formatting  is  accessed  through  the  Formatted  scenarios  tab  of  the  Design  window.  A
simple example is shown below.

Formatted scenarios tab of the Design window

Design files

Ngene designs are stored as Ngene design files, which have a .ngd suffix.  These are plain text
files, and can be examined by the curious. However, care must be taken if  modifying an Ngene
design file yourself, as changes may cause problems when the file is opened again in Ngene. The
Ngene  design  file  is  registered  in  Windows  on  installation  so  that  they  will  open  in  Ngene  by
default. The File menu section describes how design files can be opened and saved.

It is worth noting that .ngd files do not store all possible properties of the design. Instead, the file
only  contains  the  syntax  used  to  generate  the  file,  and  the  design  levels.  When  the  design  is
opened,  the  syntax  is  parsed  and  used  to  evaluate  the  stored  design,  making  all  properties
available.  This  has  several  advantages,  including  a  small  file  size  and  the  ability  for  future
versions of Ngene to report additional properties. The key disadvantage is that opening the .ngd
file may be a little slow for some complex designs.
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Adding designs to a project

In addition to saving designs in isolation, designs can be added to a project that is currently open.
From the  Design  window,  right  click  anywhere  on  the  Properties  tab,  and  select  'Add  design  to
project' from the popup menu, as shown below. Alternatively, designs can be added to the project
from the iteration history list of the Output window.

Adding the design to the current project

3.6 The unmanaged workspace

When  a  project  is  not  open,  Ngene  operates  with  an  unmanaged  workspace.  The  unmanaged
workspace treats files in the following way:

New syntax files are only stored after they are explicitly saved for the first time.
Design windows that have been opened from the Output window are only stored after they are
explicitly saved for the first time.
When  syntax  files,  design  files  and  data  files  are  opened,  the  original  version  of  the  files  are
used.
Designs cannot be added to a project, as no project is open.

The unmanaged workspace can be useful in the following situations:
Only a small number of files are to be used.
A design file needs to be interrogated.
A simple search needs to be performed.

However,  an  unmanaged  workspace  with  many  windows  can  quickly  become  unwieldy,  and  in
this case the user may wish to consider moving to a managed workspace by creating a project.



33The Ngene Workspace

© 2018 ChoiceMetrics

3.7 Projects: the managed workspace

When a project  is  open, Ngene operates with a managed workspace. The managed workspace
treats files in the following way:

New syntax files are automatically stored in the project's folder when they are created.
Design windows that  have been opened from the  Output  window can be  added to  the  project
and thus stored in the project's folder. However, they are not automatically added to the project
when they are opened.
When syntax files, design files and data files are opened from outside the project's folder, a copy
of the file is made to the project's folder and this copy is used by the project.

The  unmanaged  workspace  can  be  useful  when  many  files  are  required  by  the  user.  Once  the
project file is created, the user does not need to worry about where the project's files are stored.
Only a single project file needs to be opened to resume from where the user left off in the previous
session.

The project window

The project window (shown below) groups files in three categories: Syntax, Data and Output (the
later contains design files).  Each group has its own tab, which can be changed by selecting the
appropriate button at the bottom of the project window.

The Syntax Files tab of the project window
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The Data and Output tabs of the project window

To open any file in the project as a window, click the file once in the Project window. The window
will  open,  or  if  it  was  already open it  will  come into  focus.  The  window will  maximize  if  it  was
minimized.

Managing files in a project

Files are added to the project  whenever  a file  is  created or  opened.  Additionally,  the created or
opened file is always stored in the project's folder.

To remove a file from a project, right click on the file in the project window, and select 'Remove
from project' (see below). The file will not be deleted, but instead placed inside a subfolder of the
project  folder,  called  'Removed Items'.  You may wish  to  delete  the  file  yourself  from this  folder,
especially if it is a large data file.

Removing a file from a project

Files in a project can be renamed within Ngene. Right click on the file you wish to rename in the
project window, and select 'Rename' (see below). Enter the new file name in the dialog box that
appears (see below).
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Renaming a file in a project

If  you  open  or  create  a  new  project  from  an  unmanaged  workspace  that  contains  open  files,
Ngene will  ask you if  you wish to  move copies of  the open files  into  the opened or  new project
(see below). This is particularly useful if, say, your unmanaged workspace is getting too complex
and you want to consolidate all the files into a single project.

Option to add open files to opened or new project

The project file and its associated folder

Project files end in the suffix .ngp. However, since projects can contain many files, Ngene creates
a folder to store these in the same directory as the .ngp file. If the project file is called 'X.ngp', the
associated folder will be called 'X project files'. If you copy a project to a different location, be sure
to copy both the .ngp file and the associated folder in its entirety.

The .ngp file is registered in Windows on installation so that it will open in Ngene by default.

3.8 Menus

The following sections outline the options available from each of the menus in Ngene.
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3.8.1 File menu

The file menu

New Project

Creates a new, empty project. 

If the current project is unsaved or unsaved files are open, you will be asked if you wish to save
them.
If  the  workspace  is  currently  unmanaged  but  files  are  open,  you  will  be  asked  if  you  wish  to
move copies of the files to the new project.
If syntax is executing, you will be asked if you wish to stop the execution.

New Syntax

Creates a new, blank syntax window. 

If the workspace is unmanaged, the syntax file will not be stored until it is saved for the first time.
If a project is open, you will be asked for a file name, and the new syntax file will be listed in the
project and stored in the project's folder.

Open

Opens any of the following file types in Ngene:
Ngene syntax files (.ngs)
Ngene design files (.ngd)
Ngene project files (.ngp)
Excel files (.xls), read only
Comma separated files (.csv), read only

If the workspace is unmanaged and you open a syntax, design, Excel or CSV file, the file will be
opened from its original location.
If a project is open and you open a syntax, design, Excel or CSV file, the file will be copied to the
project's folder and that copy will be opened.
If the workspace is unmanaged with open files, and you open a project, you will be asked if you
wish to move copies of the files to the project that is being opened.
If  the  existing  (managed  or  unmanaged)  workspace  contains  unsaved  files  and  you  open
another project, you will be asked if you wish to save them.
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If you open a project while syntax is running, you will be asked if you wish to stop the run.

The Open dialog box

Recently Used Syntax
Recently Used Data
Recently Used Designs
Recently Used Projects

The most recently opened syntax, data files, design files and projects will  be listed, and may be
opened quickly with this submenu. The toolbar options open the most recent project, syntax, and
data files. An error message will be displayed if the file selected no longer exists.

Close

Closes the active window.

If the project window is closed, but the project contains unsaved files, you will  be asked if  you
wish to save them. 
If syntax is running, you will be asked if you wish to stop the run.

Save

Saves the active window in its current location. 

If the file has not yet been saved, a save location will be requested, as per Save As.
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Save As

Saves a copy of the active window in the location you specify.

Exit

Exits Ngene. If you are running syntax, you will be asked if you wish to stop the current run. You
may also be asked if you wish to save any unsaved syntax files or projects.

3.8.2 Edit menu

The edit menu

Undo

Undo the last syntax window modification. Undo only works with syntax modifications -  no other
actions can be undone.

Redo

Redo the last undone syntax window modification. Redo only works with syntax modifications - no
other actions can be redone.

Cut

Cut the selected text.

Copy

Copy the selected text.

Paste

Paste the selected text.
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3.8.3 Run menu

The run menu

Run ( / Pause / Resume )
The  Run  menu  item starts  the  syntax  run.  Run  can  only  be  selected  when  a  syntax  window  is
active.  If  any  text  is  selected  in  the  syntax  window,  only  the  selected  text  is  run.  If  no  text  is
selected, the first command is run.

While  the  syntax  is  being  run,  the  Run  menu  item changes  to  Pause.  If  Pause  is  selected,  the
syntax run halts temporarily, and this menu item changes to Resume. If Resume is selected, the
syntax run resumes. A syntax run can be paused and resumed any number of times.

Stop

Many syntax runs will execute for a long time or indefinitely. A syntax run can be stopped at any
stage by selecting the Stop menu item. Stop can only be selected if syntax is currently being run.

3.8.4 Tools menu

The tools menu

Check Syntax

Rather  than run a  piece of  syntax,  you may wish to  just  check that  the syntax is  valid.  When a
syntax  window is  active,  select  this  option  and  any  syntax  errors  will  be  reported  in  the  Output
window.

Permanent Options...
Session Options...

There exist a number of settings and defaults in Ngene that may be changed by the user. Ngene
allows users to change the defaults in two different ways. 

The Permanent Options  dialog box allows the user to make permanent changes to the various
settings which will be saved and retained across sessions. 

The Session Options dialog box allows the user to make changes to the various settings that will
remain in effect only for a particular session. The settings will  be retained until  such time as the
user further changes the default values or until the program is closed.
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Refer to the Options dialog box section for details of the actual settings that can be configured.

3.8.5 Window menu

The window menu allows you to navigate between all open windows.

3.8.6 Help menu

The Help menu

Help

Opens the documentation in a Compiled HTML Help (CHM) file.

Manual

Opens the documentation as a single Acrobat (PDF) file.

Open demonstration project

Opens a copy of a demonstration project containing a collection of example syntax files. The user
is prompted to select a location where the copy will be stored.

Activate Ngene

Allows you to  activate  Ngene and unlock  the  full  version.  For  more  information  refer  to  License
activation and management.

About

Provides  specific  information  on  the  current  installation  of  Ngene,  including  the  specific  version
and build number. If you are reporting a bug or problem on the website, please quote your version
and build number.

http://www.choice-metrics.com
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3.8.7 Options dialog box

There exist a number of settings and defaults in Ngene that may be changed by the user. Ngene
allows users to change the defaults in two different ways via the two options dialog boxes located
in  the  Tools  menu.  The  Permanent  Options  dialog  box  allows  the  user  to  make  permanent
changes to the various settings which will  be saved and retained across sessions.  The Session
Options  dialog  box  allows  the  user  to  make  changes  to  the  various  settings  that  will  remain  in
effect only for a particular session. The settings will be retained until such time as the user further
changes the default values or until  the program is closed. The only differences between the two
dialog boxes are the titles and slight differences to the functionality of the Load Options button. All
screenshots  will  use  the  Session  Options  dialog  box,  but  the  actual  settings  options  will  be
identical.

The screenshot below shows the basic layout of  the Options dialog box. On the left  are links to
various pages (e.g.  Draws and Algorithms),  which are  grouped under  a  heading (e.g.  Designs).
Selecting one of these links will load the corresponding screen on the right. The 'Restore Defaults'
button  will  populate  all  settings  with  Ngene's  'factory'  defaults.  The  'Load  Options'  button  varies
between the two settings dialog boxes. In the Session Options dialog box, the 'Load Permanent
Options'  button  will  populate  the  session  options  with  the  current  permanent  options.  In  the
Permanent  Options  dialog  box,  this  same  button  is  called  'Load  Session  Options',  and  will
populate the permanent options with the current  session options.  Save will  apply all  changes to
the settings and close the dialog box, while cancel  will  close the dialog box without  making any
changes.

Settings are described below, grouped by the page they appear on.
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General tab

The General tab of the Options dialog box

Store designs during search 
(default = 10)

When generating output, Ngene attempts to save as much output as possible, thus allowing the
user to see how the output changes over different iterations. For example, in generating efficient
designs  (see  Chapter  7),  multiple  designs  are  generated  and  tested.  If  a  design  is  found  to  be
more efficient, Ngene will  store and save that design. Rather than throw away previously stored
designs,  Ngene  allows  the  user  to  store  these  as  well.  In  this  way,  the  user  may  view  ‘less
efficient’  designs for  purposes of  comparison.  Indeed,  the user  may for  other  reasons decide to
use a less efficient design if so desired. Storing large numbers of designs may result in significant
memory issues, particularly for some advanced designs. For this reason, Ngene allows the user to
change the number of most recent designs that are stored. The first design in a search will always
be stored. It is also possible to allow all designs to be retained, but the user must accept the risk
of memory issues.

Number precision
(default = 6)

This settings allows the user to modify the number of decimal places reported. While calculations
are  made with  maximum precision  internally,  large  numbers  of  decimal  places  can  be  unwieldy
when reported in the output. 
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Number of Recently Used Syntax
Number of Recently Used Data
Number of Recently Used Designs
Number of Recently Used Projects
(default = 6)

This alters the maximum number of most recently used syntax/data/designs/projects available in
the File menu.

Open data files with column headers

Change  whether  Ngene  will  look  for  a  header  row  when  opening  a  data  file  (checked),  or  start
reading the data from the first row (unchecked). All data files will be opened using this setting.

Formatting type for CSV files

Specify what character is used to delineate cells when opening CSV files: commas, semicolons,
or tab characters. All CSV data files will be opened using this setting.

Draws tab

The Draws tab of the Options dialog box

Default to
(default = Halton)

Sets the default type of draws to use for either Bayesian or Random draws.
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Number of draws
(default = 200)

Sets the default number of draws for each draw type.

In  most  software  packages  that  use  simulated  draws  the  default  number  of  simulated  draws  is
fixed. In Ngene, the user is able to change the default number of draws for each draw type. For
functions that require the use of simulated draws (for example, Bayesian efficient designs), if the
user fails to specify the number of draws, Ngene will  use the default  number of  draws specified
here. 

Remove first rows
(default = 10)

Specifies how many initial rows to remove from the table used for the corresponding draw type.

Many  types  of  draws,  often  referred  to  as  intelligent  or  quasi  random Monte  Carlo  draws  (e.g.,
Halton sequences) are nothing more than tables of generated probabilities. These types of draws
are constructed in a specific fashion so that as much space of a distribution will be covered. Many
researchers  have  questioned  certain  aspects  of  these  tables,  in  particularly  Tables  of  Halton
sequences. In particular, these researchers claim that the first few rows of tables (corresponding
to  the  first  few  simulated  draws)  are  correlated  in  an  undesirable  way  (see  Train  2003  for
example). These researchers therefore suggest removing the first few simulated draws.
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Algorithms tab

The Algorithms tab of the Options dialog box

The  generation  of  efficient  experimental  designs  requires  the  exploration  of  impact  of  different
attribute level combinations. How Ngene changes the attribute level combinations may be set by
the  user.  Different  algorithms  (discussed  in  Algorithms  for  generating  designs  in  Ngene)  are
available  to  the  user.  Most  algorithms  have  several  settings,  which  can  be  controlled  through
parameters  specified  in  the  'alg'  property.  If  no  parameters  are  specified,  the  defaults  specified
here in the Options dialog box are used. The equivalent parameter names that can be supplied in
the 'alg' property are listed in brackets next to the description.

When generating efficient designs, the type of model used to calculate the efficiency can have a
large impact on performance, and this may be a consideration when setting algorithm parameters.
For example, RP panel calculations are relatively slow, and so it may not be appropriate to allow
as  many  seed  iterations  for  RP  panel  designs.  The  algorithm  parameter  defaults  can  be  set
independently for each type of model by first choosing the appropriate tab. The model averaging
tab applies whenever  the 'eff'  property specifies  more than one model  type to  optimize on (See
model averaging for more details).



Chapter 4

Ngene Syntax
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4 Ngene Syntax

4.1 Syntax command format

Most Ngene instructions follow a similar pattern. Each new routine must begin on a new line (see
Figure 4.1), however specific instructions within a routine may use the same line. A routine may
consist of as many lines as required. Ngene code is not case specific so that the user may freely
use lower or capital case letters, and spaces may be used throughout the code. 

Figure 4.1: Sample syntax

The general format of a command is:

VERB
; other information …
$

The  syntax  for  a  routine  in  Ngene  will  always  begin  with  a  verb  and  end  with  a  dollar  sign  ‘$’.
Specific  properties  related  to  the  routine  must  usually  be  specified,  and  each  begins  with  a
semicolon ';'. For example, the typical structure of the Design command is as follows, which starts
with ‘Design’, then sets properties, and closes with the dollar symbol ‘$’:

Design
;<property>
;<property>
;...
? comment
$

Comments  in  the  syntax  file  can  be  indicated  with  a  question  mark  symbol  ‘?’  and  all  text
subsequent to that symbol on the same line will be ignored. 

The order of the properties or routine instructions does not matter.

Several routines may be run in sequence, by typing several routines into a single syntax file and
pressing run, or highlighting several routines and pressing run. However, the generation of many
types  of  designs  will  run  indefinitely,  even  if  an  improved  design  is  unlikely  to  be  found  after  a
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certain period of time. In that case, you can specify stopping criteria. Refer to the syntax reference
for the alg property for more details.

4.2 An example design syntax: Full factorial designs

In the following we will explain a simple syntax file as an introduction to the basic syntax structure.
A list and description of all propertys and properties can be found in the Syntax Reference.

Several  types of  designs can be created using the Design property.  One such design is  the full
factorial design, which uses only the most basic properties. 

For designs, three properties will always be present in a syntax file, namely alts, rows, and model.
The alts  property defines which alternatives are present in the choice model.  The rows  property
defines how many choice situations need to be generated. The model property defines the choice
model by describing the complete utility function for each alternative.

For example,

;alts = A, B, C
;alts = car, bus, train
;alts = house1, house2

The alternatives can have any name (except for some reserved words) and need to be separated
by  commas.  These  same  names  are  then  used  in  the  model  property,  defining  their  utility
functions. This model property is a complex property and will be described in more detail.

Suppose that the alternatives are named ‘alt1’ and ‘alt2’. An example of setting the model property
is:

;model:
U(alt1) = b1 + b2 * A[0,1,2] + b3 * B[0,1]     /
U(alt2) =      b2 * A        + b4 * C[2,4,6,8]

First, notice that complex properties consist of several lines, separated by a slash ‘/’. The first line
after  the  ‘model:’  property  describes  the  utility  function  for  ‘alt1’,  the  second  line  for  ‘alt2’.  The
utility  functions  are  expressed  as  linear  functions  of  attributes  with  associated  weighting
parameters. In the above example, ‘b1’ to ‘b4’ are the weighting parameter names, while ‘A’ to ‘C’
are the attribute names. The first name in the multiplication is the parameter name, the second is
the attribute name, i.e., ‘b2’ is the parameter associated with attribute ‘A’. Note that constants like
‘b1’ are specified without an associated attribute. In all cases, the parameter name precedes the
attribute name, which are separated by the asterisk multiplicative symbol ‘*’.

Note that ‘b2’ appears both in the utility function of ‘alt1’ and ‘alt2’, meaning that ‘b2’ is a generic
parameter across both alternatives. On the other hand, ‘b1’, ‘b3’ and ‘b4’ are alternative specific
parameters. Whenever the same name is used across alternatives, the parameter is assumed to
be generic.

The  values  between  square  brackets  located  after  an  attribute  name  are  the  possible  attribute
levels for that specific attribute required by the user. For example, attribute ‘A’ can have the levels
0,  1,  or  2,  while  attribute  ‘B’  can  only  have  the  levels  0  or  1.  If  the  same levels  are  used  for  a
similar attribute with the same name in another alternative, then it is not necessary to repeat the
levels,  such  that  in  the  example  above,  the  levels  of  ‘A’  can  be  omitted  in  the  second  utility
function. If the levels are different, then the attribute level values will need to be added. Note that
one  can  use  the  same  attribute  name  in  different  utility  functions  as  Ngene  will  treat  them
separately (Ngene will refer to them in the output as ‘alt1.A’ and ‘alt2.A’, etc.).  
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The  number  of  choice  situations  to  be  generated  has  to  be  defined  using  the  rows  property.
Normally  this  would  be  a  whole  number,  but  to  prevent  the  user  from  having  to  calculate  the
number of rows in the full factorial manually, the following can be specified:

;rows = all

Finally, to specify that we want a factorial design, we specify:

;fact

The complete syntax would be:

Design
? This will generate a full factorial design
;alts = alt1, alt2
;rows = all
;fact
;model:
U(alt1) = b1 + b2 * A[0,1,2] + b3 * B[0,1] /
U(alt2) =      b2 * A        + b4 * C[2,4,6,8]   
$

The above example will generate a full factorial design with 3x2x3x4 = 72 choice situations.

Attribute levels can be specified in an alternative way, with a lower and upper bound, and a step
size.  These  three  values  are  specified  in  sequence  inside  the  square  brackets,  separated  by  a
colon. Using this syntax, the above example would be:

Design
? This will generate a full factorial design
;alts = alt1, alt2
;rows = all
;fact
;model:
U(alt1) = b1 + b2 * A[0:2:1] + b3 * B[0:1:1] /
U(alt2) =      b2 * A        + b4 * C[2:8:2]   
$
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5 Introduction to Experimental Design Theory

5.1 Introduction to experimental designs for stated choice
experiments

SC  (SC)  experiments,  as  proposed  by  Louviere  and  Woodworth  (1983)  and  Louviere  and
Hensher (1983), have received increasing attention in many different fields, including marketing,
transportation, health economics, environmental economics, and resource economics. Theoretical
advances  in  and  estimation  of  discrete  choice  models  has  had  a  large  impulse  from  the
transportation community, where many state-of-the-art  publications on this topic have appeared.
In  contrast,  the  main  research  in  design  of  choice  experiments  has  been  in  marketing  and
economics.  Lately,  the  interest  in  the  design  of  choice  experiments  has  increased  in  the
transportation  field  as  well,  and  the  purpose  of  this  manual  is  to  present  the  state-of-the-art  in
designing  choice  experiments  using  the  knowledge  gained  over  the  years  till  present  from  all
disciplines.  While  there  exist  good  books  with  overviews  for  discrete  choice  modelling  and
estimation  (Ben-Akiva  and  Lerman,  1985;  Hensher  et  al.,  2005;  Louviere  et  al.,  2000;  Train,
2003), no such books exist for designing SC experiments. 

The purpose behind conducting experiments is to determine the independent influence of different
variables (attributes or  factors depending on the literature cited)  on some observed outcome. In
SC studies, this translates into the desire to determine the influence of the design attributes upon
the choices that are observed to be made by sampled respondents undertaking the experiment.
However, an acknowledged limitation of SC studies is that unless the number of person specific
observations  captured  in  a  survey  is  extremely  large,  it  is  necessary  to  pool  the  responses
obtained from multiple respondents in order to produce statistically reliable parameter estimates.
As such, SC studies typically consist of numerous respondents being asked to complete a number
of choice tasks in which they are asked to select one or more alternatives from amongst a finite
set  of  alternatives.  In  each  task,  the  alternatives,  whether  labeled  or  unlabeled1,  are  typically
defined on a number of different attribute dimensions, each of which are further described by pre-
specified  levels  drawn  from some  underlying  experimental  design.  The  number  of  choice  tasks
each respondent is asked to undertake will generally be up to the total number of choice situations
drawn from the  experimental  design.  Consequently,  an  archetypal  SC experiment  might  require
choice data be collected on 200 respondents, each of whom are observed to make eight choices,
thus producing a total of 1600 choice observations. 

Exactly how analysts distribute the levels of the design attributes over the course of an experiment
(which typically is via the underlying experimental design), may play a big part in whether or not
an independent assessment of each attribute’s contribution to the choices observed to have been
made by sampled respondents  can be determined.  Further,  the allocation of  the attribute  levels
within  the  experimental  design  may  also  impact  upon  the  statistical  power  of  the  experiment
insofar as its ability to detect statistical relationships that may exist within the data. This ability is
related to the sample size of the study and given a large enough sample, the statistical power of
an experimental design may not matter. Nevertheless, for sample sizes more commonly used in
practice,  the  ability  to  retrieve  statistically  significant  parameter  estimates  may be  compromised
given the selection of a relatively poor design. What constitutes a poor design is the focus of this
chapter, however, at this stage it may be worth noting that there may exist a trade-off between the
ability of  a design to allow for  an independent determination of  the impact  each design attribute
has in a SC experiment (at least insofar as how independence is thought of in a traditional sense)
and  the  ability  of  the  design  to  detect  statistically  significant  relationships.  The  experimental
design chosen by the analyst may therefore play a significant role in SC studies.
   
Conceptually, an experimental design may be viewed as nothing more than a matrix of values that
is  used  to  determine  what  goes  where  in  a  SC  survey.  The  values  that  populate  the  matrix
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represent the attribute levels that will be used in the SC survey, whereas the columns and rows of
the  matrix  represent  the  choice  situations,  attributes  and  alternatives  of  the  experiment.  The
actual layout of the design matrix is often set out in one of two ways. Some researchers set up the
experimental  design matrix  such that  each row represents  a  different  choice  situation  and each
column  a  different  attribute  within  the  experiment  (see  e.g.,  Bliemer  and  Rose  2006;  Rose  and
Bliemer  2008).  In  such  cases,  groups  of  columns  form  different  alternatives  within  each  choice
task.  Other  researchers  however  set-up  the  design  matrix  such  that  each  row  of  the  matrix
represents an individual alternative and each column a different attribute (see e.g., Carlsson and
Martinsson  2002;  Huber  and  Zwerina  1996;  Kanninen  2002;  Kessels  et  al.  2006;  Sándor  and
Wedel 2001, 2002). In these cases, multiple rows are grouped together to form individual choice
situations. Independent of how the matrix is set out, the experimental design performs the same
function; that being the allocation of attribute levels to choice tasks, as shown in Figure 5.1. 

Figure 5.1: From experimental design to choice situation construction

A number of  competing explanations exist  as to  why this  distinction has arisen in  the past.  The
first  explanation  suggests  that  the  distinction  arose  due  to  historical  reasons,  with  Western
Europeans,  led  predominately  by  John  Bates  in  the  early  1980s,  adopting  the  column  based
approach whilst the row based approach remained a legacy from the traditional conjoint methods
used by marketing researchers elsewhere in the world. A second explanation is that the different
design  formats  tend  to  correspond  to  the  use  of  either  equations  to  derive  the  asymptotic
variance-covariance  (AVC)  matrix  (representing  the  column  based  approach)  or  matrix  algebra
(corresponding to the row based approach). Independent of how the design matrix is represented
however, the end result remains the same.

Given the above, the primary question for those generating experimental designs for SC studies is
‘how  best  to  allocate  the  attribute  levels  to  the  design  matrix’.  Traditionally,  researchers  have
relied  upon  the  use  of  orthogonal  experimental  designs  to  populate  the  hypothetical  choice
situations shown to respondents (see Louviere et al.,  2000, for  a review of orthogonal  designs).
More  recently  however,  some  researchers  have  begun  to  question  the  relevance  of  orthogonal
designs  when  applied  to  SC  experiments  (e.g.,  Huber  and  Zwerina,  1996;  Kanninen,  2002;
Kessels et al., 2006; Sándor and Wedel, 2001, 2002, 2005). Generally, the argument against the
use  of  orthogonality  as  a  design  criterion  in  the  construction  process  is  that  the  property  of
orthogonality is unrelated to the desirable properties of the econometric models used to analyse
SC data (i.e., logit and probit models). The orthogonality (or otherwise) of an experimental design
relates to the correlation structure between the attributes of the design with designs in which all
between-attribute correlations are zero being said to be orthogonal (in some cases, this definition
of  an  orthogonal  design  may  be  relaxed  to  define  orthogonality  as  occurring  when  all  attribute
correlations are zero within alternatives but not necessarily between alternatives; see Louviere et
al. (2000) discussion on sequential versus simultaneous generation of orthogonal designs). Whilst
orthogonality is an important criterion to determine independent effects in linear models, discrete
choice models are not linear (Train, 2003). In models of discrete choice, the correlation structure
between the attributes is not what is of importance. Rather, given the derivation of the models, it is
the correlations of the differences in the attributes which should be of concern.

Huber and Zwerina (1996) took the important step of relating the statistical  properties of the SC
experiments  to  the  econometric  models  estimated  on  such  data.  In  their  paper,  Huber  and
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Zwerina  showed  that  designs  that  let  go  of  orthogonality  as  a  consideration  in  generating  SC
experiments  and  which  attempt  to  reduce  the  asymptotic  standard  errors  of  the  parameter
estimates (i.e.,  the square roots of  the diagonal  elements of  the asymptotic  variance-covariance
(AVC) matrix) will generally result in designs that either (i) improve the reliability of the parameters
estimated from SC data at a fixed sample size or (ii) reduce the sample size required to produce a
fixed level of reliability in the parameter estimates with a given experimental design. The linking of
the experimental design generation process to attempts to reduce the asymptotic standard errors
of  the  parameter  estimates  has  resulted  in  a  class  of  designs  known  as  efficient  or  optimal
designs, where designs that produce smaller asymptotic standard errors are thought of as being
more efficient. 

5.2 Overview of general steps for creating stated choice experiments

The aim of generating an experimental design is generally to help construct a SC experiment, for
which an example is given in Figure 5.2. In creating a stated choice experiment, three main steps
have to be taken, as illustrated in Figure 5.3. First of all,  a complete model specification with all
parameters  to  be  estimated  has  to  be  determined.  Based  on  this  model  specification,  an
experimental  design  type  has  to  be  selected  and  then  the  design  can  be  generated.  Finally,  a
questionnaire  (on  paper,  internet,  CAPI,  etc.)  is  created  based  on  the  underlying  experimental
design and data can be collected. The three steps will be elaborated below. The main part of the
chapter will be dedicated to the generation of experimental designs (step 2).

Figure 5.2: Example of a screen in a stated choice experiment
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- 1    1    1   - 1
- 1    1    1    1

1   - 1    1   - 1
1   - 1    1    1
1    1   - 1   - 1
1    1   - 1    1

Which mode would you choose in the following situations?

1. Car    Train
Travel time: 10 min. 10 min.
Cost/fare: $1 $1

Your choice:

2. Car    Train
Travel time: 10 min. 10 min.
Cost/fare: $1 $1.50

Your choice:

3. Car    Train
Travel time: 10 min. 15 min.
Cost/fare: $1.50 $1

Your choice:

…
…

1x 2x 3x 4x

1.
2.
3.
4.
5.
6.
7.
8.

Model                        Experimental design                Questionnaire

Figure 5.3: Steps in designing a stated choice experiment

5.2.1 Step 1 - Model specification

Each SC experiment is specifically created for estimating a specific model (or sometimes a range
of models). Therefore, one needs to specify the model and the parameters to be estimated before
creating an experimental design. 

First, the problem studied should be refined and hypotheses developed. Secondary data search,
focus  groups,  and  in-depth  interview  can  assist  in  this.  Then  the  stimuli  need  to  be  refined,  in
which at least the following choices need to be addressed:

Which alternatives need to be included?
Which attributes to include for each alternative?

For  example,  alternatives  can  be  existing  or  not-yet-existing  transport  modes  in  the  area  of
interest.  Each  mode  can  have  different  attributes  (travel  time,  waiting  time,  comfort,  etc.).
Additionally, the model type has to be chosen, appropriate to the problem. In other words, is the
MNL model, the NL model, or perhaps the MMNL model suitable?

Essentially, the complete specification of the utility functions needs to be known. For the example
in Figure 5.3, the chosen MNL model consists of two utility functions (hence two alternatives are
considered), and each alternative has two attributes (the first alternative has attributes x1 and x2,

while the second alternative has attributes x3 and x4.

Another important decision to make is whether an attribute is generic over different alternatives, or
alternative-specific. In the example, x1 and x3 are assumed to be generic, as they have share the

same generic parameter β1, while the constant β0  and the parameters β2  and β3  are alternative-

specific. For example, the attribute travel time can be differently weighted in the utility functions of
different  mode  alternatives,  while  it  is  typically  weighted  equally  in  case  of  different  route
alternatives. If one is not certain about parameters being generic or alternative-specific, then it is
best to make them alternative-specific, as this can then be tested afterwards when estimating the
parameters.  However,  each  additional  parameter  in  the  model  represents  an  extra  degree  of
freedom2, meaning that the experimental design may become larger (although this is typically not
substantial). The minimum number of choice situations in the experimental design is discussed in
Section 5.2.2.

Also of importance is to decide if  any interaction effects  (such as x1x2)  besides the main effects

will  be included in the model.  Finally,  the decision has to be made if  nonlinear effects  are taken
into  account,  either  estimated  using  dummy-coded  or  effects-coded  variables.  These  will
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introduce extra parameters to be estimated and also impact the number of attribute levels used in
the experimental design.

Once the model has been completely specified, the experimental  design can be generated. It  is
important  to  note  that  the  experimental  design  will  be  specifically  determined  for  the  specified
model  and  may  be  sub-optimal  if  other  models  are  estimated  using  the  data  obtained  from the
stated  choice  experiment.  Hence,  estimating  an  MMNL  model  is  done  best  using  data  from  a
stated  choice  experiment  using  a  design  generated  based  on  the  same  MMNL  model.  Adding
extra  variables  to  the  utility  functions  later  in  estimation,  such  as  socio-economic  data  (age,
gender,  income,  etc.),  may  make  the  experimental  design  again  sub-optimal,  hence  is  possible
they should be taken into account from the beginning.

5.2.2 Step 2 - Generation of experimental design

Once the model specification is known, the experimental design can be created. An experimental
design describes which hypothetical choice situations the respondents are faced with in the stated
choice experiment. It typically consists of a table of numbers (as illustrated in Figure 6.3) in which
each  row  represents  a  choice  situation.  The  numbers  in  the  table  correspond  to  the  attribute
levels for each attribute (e.g., -1, 1) and are replaced by their actual attribute levels later on in the
questionnaire (e.g., $1, $1.50). In the example, there are in total eight choice situations and four
different  columns  for  each  of  the  four  attributes.  Different  coding  schemes  can  be  used  for
representing the attribute levels in the experimental  design. The most common ones are design
coding (0, 1, 2, 3, etc.), orthogonal coding ({-1,1} for two levels, {-1,0,1} for three levels, {-3,-1,1,3}
for four levels, etc.), or coding according to the actual attribute level values. 

There are  many experimental  designs possible,  and the  aim here  is  to  determine  the  best  one.
Before finding the best design, some design decisions have to be made. These include:

Should the design be labelled or unlabelled?
Should the design be attribute level balanced?
How many attribute levels are used?
What are the attribute level ranges?
What type of design to be used? 
How many choice situations to use?

If  the  model  specification  has  alternatives  with  alternative-specific  parameters,  then  these
alternatives need to be labeled (e.g., car, train, bus) in the experiment. If alternatives have generic
parameters, they can be unlabeled (e.g., route A, route B, route C).

Almost all experimental designs created satisfy the attribute level balance property, which means
that each attribute level appears an equal number of times for each attribute. In the example, in
each column -1 and 1 both appear exactly four times. Although imposing attribute level  balance
may restrict the design to be sub-optimal, it is generally considered a desirable property. Having
attribute level balance ensures that the parameters can be estimated well on the whole range of
levels,  instead  of  just  having  data  points  at  only  one  or  few  of  the  attribute  levels.  For  most
designs, Ngene assumes designs will display the attribute level balance property. Where there are
exceptions, such as designs generated using the Modified Federov algorithm, this will  clearly be
indicated in the manual.

The number of attribute levels to use depends on the model specification. If nonlinear effects are
expected  for  a  certain  attribute,  then  more  than  two  levels  need  to  be  used  for  this  attribute  in
order  to  be  able  to  estimate  these  nonlinearities.  If  dummy  and/or  effects  coded  attributes  are
included, then the number of levels to use for these attributes is predetermined. The more levels
used,  the  higher  the  number  of  choice  situations  will  be.  Also,  mixing  the  number  of  attribute
levels for different attributes may yield a higher number of choice situations (because of attribute
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level balance). For example, if there are three attributes with 2, 3, and 5 levels, respectively, then
the minimum number of choice situations will be 30 (since this is divisible by 2, 3, and 5). On the
other hand, if one would use 2, 4, and 6 levels, then only a minimum of 12 choice situations would
be enough.  Therefore,  it  is  wise  not  to  mix  too  many different  numbers  of  attribute  levels,  or  at
least have all even or all odd numbers of attribute levels.

Regarding  the  attribute  level  range,  research  suggests  that  using  a  wide  range  (e.g.,  $1-$6)  is
statistically preferable to using a narrow range (e.g., $3-$4) as this will theoretically lead to better
parameter estimates (i.e., parameter estimates with a smaller standard error), although using too
wide a range may also be problematic (see Bliemer and Rose, 2009). The reason for this is that
the attribute level range will impact upon the likely choice probabilities obtained from the design,
which  we show later  to  impact  upon the  expected  standard  errors  from that  design.  Having  too
wide  a  range  will  likely  result  in  choice  tasks  with  dominated  alternatives  (at  least  for  some
attributes)  whereas  too  narrow  a  range  will  result  in  alternatives  which  are  largely
indistinguishable. We have to emphasize that this is a pure statistical property and that one should
take into account the practical limitations of the attribute levels. The attribute levels shown to the
respondents  have  to  make  sense.  Therefore,  there  is  a  trade-off  between  the  statistical
preference for a wide range and practical considerations that may limit the range.

Several  different  design  types  can  be  considered.  A  full  factorial  design  (see  Section  6.1.1)
consists  of  all  possible  different  choice situations  and with  this  design  all  possible  effects  (main
and  interaction  effects)  can  be  estimated.  However,  for  a  practical  study  the  number  of  choice
situations in a full factorial design is too large. Therefore, most people rely on so-called fractional
factorial  designs  (see  Section  6.2.2),  and  within  this  class  there  exist  many  different  types  of
designs. One could randomly select choice situations from the full factorial, but clearly this is not
the best way of doing it.  Rather, one selects choice situations in a structured manner, such that
the  best  data  from  the  stated  choice  experiment  will  be  produced  for  estimating  the  model.  A
fractional factorial  design consists of subset of choice situations from the full  factorial.  The most
well-known  fractional  factorial  design  type  is  the  orthogonal  design  (see  Section  6.1.2),  which
aims to  minimize the correlation between the  attribute  levels  in  the  choice  situations.  As  will  be
shown  in  Section  6.1.6,  these  orthogonal  designs  have  limitations  and  cannot  avoid  choice
situations  in  which  a  certain  alternative  is  clearly  more  preferred  over  the  others  (hence  not
providing much information). More recently, several researchers have suggested another type of
fractional factorial designs, so-called efficient designs (see Chapter 7). Instead of merely looking
at  the  correlation  between  the  attribute  levels,  they  aim  to  find  designs  that  are  statistically  as
efficient as possible in terms of predicted standard errors of the parameter estimates. Essentially,
these designs try to maximize the information from each choice situation. Efficient designs will be
able  to  outperform  the  orthogonal  designs,  however  prior  parameter  estimates  need  to  be
available.  Therefore,  efficient  designs  rely  on  the  accuracy  of  the  prior  parameter  estimates.  In
order to obtain more stable designs that rely less on the accuracy of the priors, the last few years
Bayesian efficient designs have been proposed (see Section 7.3). Instead of assuming fixed prior
parameters, the priors are considered to be random parameters. Some other design types have
been considered very recently, in which attribute level balance is abandoned, in which constraints
on  attribute  levels  are  imposed,  in  which  attribute  levels  are  pivoted  around  realistic  values  for
each respondent, or in which covariates (such as socio-economics data) are already considered
when creating the design. These design types, being at the frontier of the current state-of-the-art,
will be briefly discussed in Chapter 8.

Unlike  most  other  data  types  where  an  observation  typically  represents  information  captured
about  a  specific  respondent  or  agent,  in  discrete  choice  data  each  alternative  j  represents  a
unique  observation.  This  is  because  each  alternative  is  observed  to  be  chosen  or  not,  hence
providing information down to  this  level  of  detail.  In  grouping  the  alternatives  together  in  choice
tasks,  there  therefore  exist  J-1  independent  choice  probabilities  within  each  choice  situations  S
which  will  be  estimated.  As  such,  for  first  preference  (pick  one)  tasks,  the  total  number  of
independent choice probabilities obtained from any given design will  be equal to (J-1)S  with the
maximum number of parameters, K,  including constants, that can be estimated from that design
having  to  be  less  than  or  equal  to  this  number.  As  such,  the  number  of  choice  situations  is
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bounded  from  below  by  (J-1)S  =K,  and  the  number  of  choice  situations  required  to  ensure
attribute  level  balance.  Also  the  design  type  may  restrict  the  number  of  choice  situations.  An
orthogonal  design  sometimes  needs  (many)  more  choice  situations  than  the  minimum  number
determined by the number of degrees of freedom and attribute level balance, merely because an
orthogonal design may not exist or may be unknown for these dimensions. A full factorial design
has a predetermined number of choice situations, only influenced by the total number of attributes
and the number of attribute levels.

It should be noted that determining a “good” experimental design is not a simple task as there are
generally  billions  of  possible  designs  and  it  is  impossible  to  evaluate  all  of  them.  Typically,
computer software is used to assist in this process.

5.2.3 Step 3 - Construction of questionnaire

Using the underlying experimental design, the actual questionnaire instrument can be constructed
(see  Figure  5.2).  Obviously,  the  experimental  design  represented  by  a  table  of  numbers  is
meaningless to a respondent, hence it needs to be transformed somehow so as to be meaningful
for  the respondent.  Each row in  the experimental  design  is  translated  into  a  choice  situation  as
illustrated for  the first  three rows in  Figure 2.  In  this  example,  all  four  attributes  have two levels
each, denoted by -1 and 1 in the experimental design. These numbers are replaced by meaningful
values for each attribute, e.g., 10 minutes and 15 minutes for the travel time attribute for the car
and  train  alternatives,  and  $1  and  $1.50  for  the  cost/fare  attribute  for  both  alternatives.
Furthermore,  for  each  respondent  the  order  of  the  choice  situations  should  be  randomized  in
order to rule out any possible effects the ordering may have on the estimation. 

In  the  end,  the  questionnaire  can  be  either  written  down  on  paper,  can  be  programmed  into
software for computer-aided personal interviewing (CAPI), or implemented as an internet survey.
Of course, CAPI and internet surveys are much more flexible (choice situations can be responsive
to  earlier  responses  or  automatically  tailor-made  for  each  respondent),  enable  more  advanced
surveys,  and  make  the  data  readily  available  without  human  data  entry  errors.  Therefore,  most
stated choice surveys nowadays are computer-based.

5.3 Notation

For  the  remainder  of  this  manual  we  will  use  the  following  notation  when  describing  various
aspects of experimental design. Let each alternative j, j = 1, ..., J,  have Kj associate attributes. Let

the number of choice situations be denoted by S, and the number of respondents by N. Suppose
that each respondent n, n = 1, ..., N, faces all S choice situations. In each choice situation s, s = 1,
..., S, each alternative has attributes with different attribute levels xjks, k = 1, ..., Kj. The objective is

to  determine the experimental  design matrix  Xn  =  [xjksn]  for  each respondent  n  with  xjksn   Λjkn

where Λjkn is the set of possible attribute levels for each attribute for respondent n. Let ljk = |Λjkn|

denote the number of levels for this attribute. In classical experimental designs, each respondent
faces  the  same  attribute  levels  in  the  same  choice  situations,  hence  the  subindex  n  can  be
omitted  from  the  variables  describing  the  attribute  levels.  However,  in  some  cases  a  different
design for each respondent is created, such that this subindex n is important.
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6 Orthogonal Designs

6.1 Theory of full and fractional factorial designs

In this chapter we discuss how to generate orthogonal designs. Before doing so however, we first
discuss  the  theory  underlying  the  generation  of  these  types  of  designs.  We  begin  with  a
discussion of full factorial designs.

6.1.1 Full factorial designs

A full factorial design considers each possible choice situation, i.e., each possible combination of
the attribute levels. Table 1 shows the full factorial design in case of three attributes (A, B, and C)
with  two,  two,  and  three  levels,  respectively  (using  orthogonal  coding).  In  total  there  are  twelve
choice situations.

In general, if there are J alternatives, each with Kj attributes, where attribute k  Kj  has ljk levels,

then the total number of choice situations in the full factorial design is 

(6.1)

In case of  two alternatives,  each having three attributes  with  four  attribute  levels  each,  the total
number of combinations is (4 x 4 x 4) x (4 x 4 x 4) = 42x3 = 4,096. Clearly, this number increases
rapidly, and it is not feasible to let a single respondent face all these choice situations. Therefore,
only for the smallest problems the full factorial design can be used. However, generating the full
factorial  design  may be  useful  for  determining  other  designs,  such  as  certain  fractional  factorial
designs (e.g., constrained designs, see Section 8.2).

Table 6.1: Example full factorial design

In  the  more  practical  fractional  factorial  designs,  each  respondent  is  only  shown  a  subset  of  S
choice  situations  from  the  total  number  of  choice  situations.  One  option  is  to  randomly  select
choice situations from the full factorial. Another option is to give the first S choice situations to the
first  respondent,  the  second  S  choice  situations  to  the  second  respondent,  and  so  on.  Both
options can lead to biased outcomes, as for example a respondent may face only low or only high
values of  a  certain  attribute.  This  could be avoided by choosing the subsets  in  such a  way that
attribute  level  balance  is  satisfied.  Orthogonal  designs  and  efficient  designs  select  subsets  in  a
more structured way, as will be outlined in the next sections.
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6.1.2 Orthogonal designs

Orthogonal designs have been used in experimental design for a long time. It should be noted that
nowadays  optimal/efficient  designs  exist  (described  in  the  next  section)  and  are  gaining  in
popularity  among  researchers.  However,  for  reasons  of  history  and  inertia,  orthogonal  designs
remain mainstream.

6.1.3 Definition of orthogonality

An  orthogonal  design  is  said  to  be  orthogonal  if  it  satisfies  attribute  level  balance  and  all
parameters are independently estimable. This translates into the definition that the attribute levels
for  each  attribute  column  in  the  design  need  to  be  uncorrelated.  In  case  of  using  orthogonal
coding, an orthogonal design satisfies the property that the sum of the inner product of  any two
columns is zero:

(6.2)

This is illustrated by the orthogonal design in Table 6.2. The design in Table 6.3 is not orthogonal,
as the sum of the inner product of columns B and C is not equal to zero. As can be observed from
the correlation matrix, columns B and C are perfectly (negatively) correlated.

Table 6.2: Orthogonal design with three attributes having two levels

Table 6.3: Non-orthogonal design with three attributes having two levels

Orthogonality is preserved if columns are left out, however not when rows are left out. Therefore,
if an orthogonal array exists with more columns than is needed, one can randomly select columns
to  enter  the  design,  and  re-arrange  them  in  any  preferred  order.  Also,  multiplying  one  or  more
columns by -1 preserves orthogonality. Therefore, from the orthogonal design in Table 6.2, in total
eight  different  orthogonal  designs  can  be  generated  using  all  possible  combinations  of  column
multipliers:  (1,1,1),  (-1,1,1),  (1,-1,1),  (1,1,-1),  (-1,-1,1),  (-1,1,-1),  (1,-1,-1),  and  (-1,-1,-1).
Furthermore,  when  replacing  the  orthogonal  codes  with  the  actual  attribute  levels  when
constructing the questionnaire, one is not restricted to assign the attribute levels in the same order
as the orthogonal  coded levels.  For  example,  one is  free to  choose the replacement {-1,0,1}  
{$1,$2,$3} or {-1,0,1} {$2,$1,$3}, again preserving orthogonality.
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6.1.4 Generating orthogonal designs

The problem of finding an orthogonal design can be described as follows:
Given feasible orthogonal coded attribute levels Λjk for all j and k, given a minimum number

of choice situations S, determine the smallest level balanced design X with Xjks  Λjk such

that Equation (6.2) is satisfied.

Determining orthogonal designs is not a straightforward task. Suppose that one searches for an
orthogonal  design  for  five  attributes  having  three  levels  each.  The  smallest  number  of  choice
situations possible that satisfy the degrees of freedom and attribute level balance is six. However,
in this case an orthogonal design with six choice situations does not exist. Even in nine or twelve
choice situations it does not exist. We are able to find an orthogonal design with no less than 18
choice situations for this problem. Tables of orthogonal arrays have been derived mathematically
for  different  numbers  of  columns  and  levels.  These  tables  are  limited  and  there  may  not  be  an
orthogonal array known for the problem at hand. There are many lists with two, three, or even four
levels,  but  higher  levels  become  rare,  and  when  mixing  different  numbers  of  levels  it  becomes
even harder to find an orthogonal design. For example, Hahn and Shapiro (1966) have published
tables with orthogonal designs for certain instances of numbers of attributes and attribute levels,
but these are restricted to fairly small models. Computer programs can try to find near-orthogonal
designs that can be used.

If an orthogonal design has been found, it may still be too large to give all choice situations to a
single respondent.  An often used procedure called blocking  can split  the orthogonal  design into
smaller  designs.  Each  block  is  not  orthogonal  by  itself,  only  the  combination  of  all  blocks  is
orthogonal.  Blocking  mainly  ensures  that  attribute  level  balance  is  satisfied  within  each  block,
such  that  respondents  do  not  just  face  only  low  or  high  attribute  levels  for  a  certain  attribute.
Blocks  are  typically  determined  by  using  an  extra  uncorrelated  column  with  a  number  of  levels
equal to the number of blocks. This is illustrated in Table 6.4. One can check that the design for
attributes A,  B and C is  orthogonal,  and that  also the blocking column is  orthogonal  to  all  other
columns. The orthogonal design with nine choice situations is blocked into three blocks, such that
each respondent now only has to face three choice situations instead of nine. Note that attribute
level balance is satisfied within each of the blocks. 
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Table 6.4 Blocking an orthogonal design in three blocks

Orthogonal designs can be created manually,  or  can be found in documents such as Hahn and
Shapiro (1966), or can be created automatically using software such as Ngene.

6.1.5 Reasons for using orthogonal designs

Aside from the fact that orthogonal designs allow for an independent estimation of the influence of
each  design  attribute  on  choice,  two  other  reasons  lie  behind  the  common  use  of  orthogonal
designs in practice. The first reason is that they are generally easy to construct or obtain (either
from software packages or academic papers), although only for a limited number of combinations
of  attribute  levels.  Secondly,  the  common  use  of  orthogonal  designs  in  SC  studies  is  largely  a
result  of  historical  impetus.  In  the  past,  the  experimental  design  literature  has  been  primarily
concerned with linear models (such as linear regression models), where the orthogonality of data
is considered important. In linear regression models, this is because (a) orthogonality ensures that
the  model  will  not  suffer  from  multicollinearity,  and  (b)  orthogonality  is  thought  to  minimize  the
variances of the parameter estimates, which are taken from the variance-covariance (VC) matrix
of the model. The VC matrix of a linear regression model is given in Equation (6.3).

(6.3)

where σ2 is the model variance, and X is the matrix of attribute levels in the design or in the data
to  be  used in  estimation.  Fixing  the  model  variance (which  simply  acts  as  a  scaling  factor),  the
elements  of  the  VC  matrix  for  linear  regression  models  are  minimized  when  the  X  matrix  is
orthogonal. A design that results in a model where the elements contained within the VC  matrix
are  minimized  is  preferable,  for  two  reasons.  Firstly,  such  a  design  will  produce  the  smallest
possible  standard  errors  (i.e.,  square  roots  of  the  variances),  and  hence  maximize  the  t-ratios
produced from that model and secondly, an orthogonal design (or data set) will produce zero-off
diagonals in the models VC matrix, thus ensuring that the parameter estimates are unconfounded
with one another (i.e., no multicollinearity).

As such, orthogonal designs, at least in relation to linear models, meet the two criteria for a good
design  mentioned  in  the  introduction;  they  allow  for  an  independent  determination  of  each
attributes  contribution on the dependent  variable  and they maximize  the  power  of  the  design  to
detect  statistically  significant  relationships  (i.e.,  maximize  the  t-ratios  at  any  given  sample  size).
The question however is whether for discrete choice models, do orthogonal designs produce the
same properties? Before  we address  this  question,  we first  discuss  several  problems that  often
occur in practice between the mapping of design orthogonality to data orthogonality.
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6.1.6 Discussion of orthogonal designs

It  is  important  to  understand  that  parameters  are  estimated  from  data  sets  underlined  by  SC
experiments,  not  from  the  design  itself.  As  we  will  demonstrate,  only  under  exceptional
circumstances  will  orthogonality  be  preserved  within  the  data  used  to  estimate  discrete  choice
models, even if  the experimental design is orthogonal.  Indeed, with regards to choice data sets,
one  would  expect  orthogonality  to  be  the  exception  rather  than  the  rule.  Further,  even  under
circumstances where orthogonality is retained in a data set, as we show, orthogonality will  likely
be lost in the estimation process.

In  case  of  non-response,  in  which  a  few  choice  situations  are  missing,  the  data  will  not  be
orthogonal.  In  case  of  blocking,  if  not  all  blocks  are  equally  represented  in  the  data  set,  then
orthogonality will be lost. For example, consider again the blocked orthogonal design in Table 6.4.
If blocks 1 and 2 appear twice in the data set and block 3 only once, then the data is correlated as
indicated  by  the  correlation  matrix  in  Table  6.5.  Removing  data  to  preserve  orthogonality  is  not
common, as extra data is preferred above preserving orthogonality.

Table 6.5: Correlation matrix with missing block

  

Further, it is common practice to collect socio-demographic and contextual variables and include
these in the utility functions of models of discrete choice. Even assuming equal representation of
each  choice  situation  of  a  design  in  the  data,  the  current  standard  of  sampling  is  such  that
analysts fail  to ensure orthogonality between the design attributes and other variables within the
data set. For example, if  age, gender, or income is added as a variable in the utility function for
estimation,  then  this  attribute  level  is  constant  over  all  choice  situations  of  this  person,  creating
correlations between this variable and other attributes in the design. 

Another  reason  that  orthogonality  may  be  lost  is  due  to  a  poor  transition  between  the  design
codes and the attribute level labels used within the experiment. Orthogonality of a design will only
be maintained if the (quantitative) attribute level labels used are spaced equally along the range of
that attribute. If unequal points are used along the attribute level range, then orthogonality will be
lost.  For  example,  if  the  orthogonal  codes  {-1,0,1}  are  replaced  with  quantitative  attribute  level
labels  {$2,  $5,  $15},  then the attribute levels  are not  equidistant  in  spacing.  Therefore,  the data
will not be orthogonal. 

The  primary  argument  for  using  orthogonal  fractional  factorial  designs  is  the  ability  of  such
designs  to  produce  unconfounded  estimates  of  the  population  parameters  due  to  the  enforced
statistical independence between the attributes contained within the design. However, parameters
are  estimated  from  data  sets  underlined  by  SC  experiments,  not  from  the  designs  themselves.
Unfortunately,  only  under  exceptional  circumstances  will  orthogonality  be  preserved  within  the
data used to estimate discrete choice models, even if the experimental design used to construct
the  study  is  itself  orthogonal.  Indeed,  with  regards  to  choice  data  sets,  one  would  expect
orthogonality to be the exception rather  than the rule (see however  Lanscar  et  al.  (2006)  for  an
example where orthogonality has been transferred from the design through to the data). We offer
three reasons for this statement.

Firstly, the principle of orthogonality as we have described it relates solely to the columns of the
design  matrix  being  uncorrelated  with  one  another.  In  cases  where  respondents  review  the
complete  orthogonal  matrix,  this  orthogonality  will  be  preserved  through  to  the  data  set.  When
respondents review subsets of the matrix however, problems can occur and orthogonality lost. If
the subsets (or blocks) of the design are not replicated evenly over the survey and hence certain
blocks  are  either  over  or  under  represented  within  the  data,  orthogonality  will  generally  be  lost.
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Simply put, one cannot (i) add or remove rows of the design and/or (ii) replicate unevenly rows of
the design over multiple  respondents,  and retain orthogonality  within  the data set.  Note that  the
removal  of  columns from the design will  not  impact  on the orthogonality  of  the design however.
Thus, the onus is on the researcher to ensure that in allocating the choice tasks to respondents,
that each choice task is equally represented in the final data. In cases of non-response or where
the  number  of  respondents  in  the  study  does  not  allow  for  each  block  to  be  equally  distributed
over the sample, this may be difficult to achieve (this last point is often missed by the literature, as
it has implications on sampling and sample sizes that is rarely, if ever, discussed). 

Secondly,  it  is  typical  in  many  choice  studies  to  collect  data  on  non-design  attributes  such  as
socio-demographic and contextual variables. In such cases, unless some form of strict sampling is
imposed,  any  covariates  within  the  data  set  will  unlikely  be  orthogonal,  not  only  amongst
themselves,  but  also  with  the  design  attributes.  For  example,  if  age,  gender,  and  income  are
added  as  variables  in  some  form  of  analysis,  correlations  are  not  only  likely  to  exist  for  these
variables,  but  given  that  the  variables  described  are  constant  over  all  choice  situations  within
individual respondents, correlations between these variables and other attributes of the design are
also likely to exist.

Finally, enforcement of orthogonality as a design principle does not ensure against the production
of behaviorally implausible choice situations within the survey. Often, analysts after generating a
design will review the final survey and locate choice situations in which they believe the attribute
level combination of a particular alternative in a choice situation are such that that alternative has
a probability of one of being chosen (i.e., that alternative dominates all other alternatives on offer
in terms of preference). In such cases, no information is gained in terms of the possible trade-offs
between the  attributes  of  the  alternatives.  In  other  cases,  analysts  may  locate  choice  situations
whereby certain combinations of attributes are formed which may not be plausible in reality and
which thus detract  from the realism of  the choice tasks.  In  these cases,  analysts  typically  reject
the choice situations (i.e., delete that row or combination of rows of the design), thus ensuring that
the  design  and  data  will  no  longer  be  orthogonal  (for  a  discussion  of  the  benefits  and  costs  of
such strategies, see e.g., Lanscar and Louviere 2006). 

Knowledge of these and other issues related to orthogonal designs are not new and have been
well  documented  in  the  literature.  For  example,  Hensher  and  Barnard  (1990)  have  made  a
distinction  between  design  orthogonality  and  estimation-data  orthogonality  in  order  to  highlight
that design orthogonality is not always preserved in model estimation. In making this distinction,
they  argued  that  estimation  orthogonality  based  on  discrete  choice  models  requires  that  the
differences in attribute levels be orthogonal, not the absolute levels themselves. Such arguments
are similar to those that led to the creation of so called difference designs  in which the absolute
values of the attribute levels of the alternatives are forced to be as different as possible whilst the
designs themselves remain orthogonal in the differences. 

Given  the  above,  a  carefully  determined  orthogonal  design  is  likely  to  produce  non-orthogonal
data  in  practice.  As  such,  the  question  arises  as  to  how  important  orthogonality  is  to  SC
experiments.  In  the  next  section  efficient  designs  will  be  introduced,  which  seem  to  be
outperforming  orthogonal  designs  easily,  although  such  designs  have  not  been  used  much  in
practice yet.

To  summarize,  a  carefully  determined  orthogonal  experimental  design  is  likely  to  produce  non-
orthogonal data. Therefore the question arises if orthogonality is that important. In the next section
so-called  optimal  or  efficient  designs  will  be  introduced,  which  seem  to  be  outperforming
orthogonal designs easily, although such designs have not been used much in practice yet.
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6.2 Generating orthogonal designs in Ngene

6.2.1 Full factorial designs

We demonstrated the syntax to generate full factorial designs in Section 4.2. The syntax we used
was 

Design
? This will generate a full factorial design
;alts = alt1, alt2
;rows = all
;fact
;model:
U(alt1) = b1 + b2 * A[0,1,2] + b3 * B[0,1]     /
U(alt2) =      b2 * A        + b4 * C[2,4,6,8] 
$

In  the  above  syntax,  the  fact  property  in  conjunction  with  the  rows  property  instructs  Ngene  to
produce the full factorial design. The rows property is required to inform Ngene as to the number
of  rows  that  the  user  requires  for  a  design.  The  above  syntax  will  produce  the  output  given  in
Figure  6.1.  Users  should  be  cautioned  that  for  designs  with  large  numbers  of  attributes  and
attribute levels, display of the full factorial may take some time. Further, full factorials with greater
than 150,000 rows cannot be generated due to memory issues.

Figure 6.1: Full factorial design output

For all  experimental design types, clicking the first ‘Design’ check box will  display the generated
design.  This  is  shown  in  Figure  6.1.  Located  under  the  ‘Design’  check  box  is  the  ‘Correlation’
branch.  Ticking  the  ‘+’  symbol  will  reveal  different  correlation  measures  that  may  be  used  to
examine the design. Depending on the type of data, different correlation formulas are appropriate.
Clicking on one of the correlation checkboxes will result in the desired correlation measure being
displayed.  With  the  exception  of  the  ‘Interactions’  check  box,  Ngene  will  display  on  the
correlations  for  the  main  effects  only.  Selecting  the  ‘Interactions’  checkbox  will  display  the
correlations  for  the  main  effects  and two  way  interaction  terms  for  the  design.  This  is  shown in
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Figure 6.2.

Figure 6.2: Interaction and main effect correlations for a full factorial design output

6.2.2 Fractional factorial designs

In  order  to  create  a  fractional  factorial  design  (i.e.,  one  that  does  not  enumerate  all  possible
attribute level combinations), the user will need to specify the desired number of rows required for
the  design.  The  number  of  choice  situations  or  rows  of  the  design  is  defined  using  the  rows
property, which is used to restrict the number of choice situations in the design. For example, if a
subset of only 12 choice situations is required, the rows property can be set as:

;rows = 12

Using the same design as in Section 4.2, the complete syntax would now be:

Design
? This will generate a fractional factorial design
;alts = alt1, alt2
;rows = 12
;fact
;model:
U(alt1) = b1 + b2 * A[0,1,2] + b3 * B[0,1]     /
U(alt2) =      b2 * A        + b4 * C[2,4,6,8] 
$

The syntax would now generate a design of 12 choice situations by randomly choosing 12 choice
situations from the full set of 72 choice situations. Figure 6.3 shows the output generated for the
above syntax. Note that the generated design will change each time the syntax is run as the rows
of the design are randomly taken from the full factorial design. Further, the design generated will
be randomly constructed and hence need not display the attribute level balance property.
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Figure 6.3: Fractional factorial design with interaction and main effect correlations

If  the  fact  property  is  not  used  in  conjunction  with  the  rows  property,  Ngene  will  attempt  to
optimize  the  design  assuming  that  an  MNL model  is  desired.  Given  that  we  have  not  assumed
any priors, Ngene will  assume them to be zero (see Chapter 7). Ngene will  continue to run until
the user intervenes and presses ‘Stop’. We discuss optimization and priors further in Chapter 7.

A restriction on the minimum number of rows that can be generated is the number of parameters
to be estimated, as well as the number of alternatives present in each choice task. As discussed
in  Section  5.2.2,  (J-1)S=K  and  hence  S=K/(J-1).  The  rows  property  needs  to  be  set  to  a  value
greater  than  or  equal  to  this  number.  In  the  above  example,  the  number  of  parameters  is  four
('b1', 'b2', 'b3' and 'b4'), whilst the number of alternatives is two. As such, S=4/(2-1)=4. If the value
specified in rows is not large enough, Ngene will again generate an error. 

When the fact property is not included in the syntax and the number of rows is not equally divisible
by all attribute levels specified in the utility functions of the design, Ngene will by default generate
designs that do not necessarily display attribute level balance. In the above example,  12 choice
situations  is  feasible  as  this  number  is  divisible  without  remainder  by  all  numbers  of  attribute
levels (2, 3 and 4). If the number of rows is not feasible, then Ngene will generate a non-attribute
level balanced design. 

6.2.3 Orthogonal fractional factorial designs

Rather  than  randomly  choosing  choice  situations  from  the  full  factorial,  choice  tasks  may
sometimes  be  chosen  in  such  a  way  that  the  attribute  levels  are  orthogonal  (i.e.,  there  are  no
correlations  between  the  levels  of  the  two  attributes).  The  property  orth  instructs  Ngene  to
generate  such  a  design.  Ngene  can  either  generate  a  sequential  orthogonal  design,  in  which
orthogonality only holds within each alternative, or generate a simultaneous orthogonal design, in
which orthogonality also holds across alternatives. The properties would be:

;orth = seq

or 

;orth = sim

for  sequential  or  simultaneous orthogonal  designs,  respectively.  Although attribute levels  across
alternatives  are  not  orthogonal  in  a  sequential  orthogonal  design,  the  sequential  method  of
constructing  orthogonal  designs  will  typically  lead  to  smaller  designs  in  terms  of  the  number  of
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choice situations of the design. In the sequential method, first an orthogonal array is determined
for  the  attributes  of  the  first  alternative.  Next,  the  attribute  levels  of  the  other  alternatives  are
derived  from  the  levels  in  the  first  alternative.  Therefore,  sequential  orthogonal  designs  can
typically only be generated in cases where each utility  function has the same attributes with the
same  levels  (i.e.,  unlabelled  alternatives).  Where  different  alternatives  have  attributes  with
different  attributes  or  attributes  with  different  levels,  the  sequential  design  method  described
above  will  not  work.  An  alternative  approach  available  in  Ngene  for  generating  sequential
orthogonal designs for experiments that have different design dimensions across alternatives (i.e.,
certain  types  of  labeled  choice  experiments)  combines  separate  orthogonal  arrays  for  each
alternative. That is, this approach will generate different orthogonal arrays for different alternatives
and hence, each alternative can have different attributes and attribute levels. Note however that
this procedure will  cause correlations between alternatives but not within (similar to using orth =
seq). This procedure will be used if in the syntax the orth property is defined differently, namely

;orth = seq2

To  demonstrate,  consider  the  following  two  syntax  routines.  In  the  first,  we  have  requested  a
simultaneously generated orthogonal design and in the second a sequentially generated design.
Both designs have requested four choice situations be generated.

? This will generate a sequential orthogonal factorial design
Design
;alts = alt1, alt2
;rows = 4
;orth = seq
;model:
U(alt1) = b1 + b2 * A[0,1] + b3 * B[0,1] /
U(alt2) =      b2 * A      + b3 * B      
$

? This will generate a simultaneous orthogonal factorial design
Design
;alts = alt1, alt2
;rows = 4
;orth = sim
;model:
U(alt1) = b1 + b2 * A[0,1] + b3 * B[0,1] /
U(alt2) =      b2 * A      + b3 * B      
$

Table  6.6  shows  two  designs  generated  from  the  above  syntax  whilst  Table  6.7  reports  the
correlation  structures  for  the  two  designs.  In  generating  the  simultaneous  design,  Ngene  was
unable to locate a design in  four  rows where all  the attributes,  independent  of  the alternative to
which  it  belongs  to,  are  uncorrelated  with  each  other.  It  should  be  noted  that  it  cannot  be
guaranteed that an orthogonal design can be found with the number of choice situations specified
in rows. In that case, Ngene will generate a warning message and attempt to locate an orthogonal
design  with  more  rows.  In  some cases  an  orthogonal  design  cannot  be  found  at  all  (it  may  not
exist or is unknown). In that case, the user will have to change some design dimensions (number
of alternatives, attributes,  attribute levels)  and try again.  It  is  in  general  easier  to  find sequential
orthogonal designs than simultaneous orthogonal designs, as shown in the above example, where
a sequential design could be located in four rows.

Table 6.6: Simultaneous versus sequential orthogonal design generation processes
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Table 6.7: Simultaneous versus sequential orthogonal correlation structures

For the example syntax, the smallest orthogonal design that Ngene was able to locate had eight
choice  situations.  For  the  sequential  design,  Ngene  was  able  to  generate  the  design  with  four
choice situations. Note however, that in doing so, there now exist correlations with the attributes
between the alternatives.

An example design using different orthogonal arrays for each alternative is given below. Note that
the first alternative has an additional attribute that is not included in the utility function given for the
second alternative. 

? This will generate a sequential orthogonal factorial design
Design
;alts = alt1, alt2
;rows = 8
;orth = seq2
;model:
U(alt1) = b1 + b2 * A[0,1] + b3 * B[0,1]  + b4*C[0,1] /
U(alt2) =      b2 * A      + b3 * B                   
$

Figure 6.4 shows Ngene output for the above syntax. 

Figure 6.4: Fractional factorial design using orth = seq2

Often the number of choice situations needed to obtain an orthogonal design is too high to give to
a single respondent. Therefore, the design is often blocked into smaller parts. Each block is not
orthogonal by itself, only in combination with the other blocks. However, attribute level balance is
maintained within each block as much as is possible. In order to automatically generate a blocked
(orthogonal)  design  in  Ngene,  simply  add  the  block  property.  In  case  of  creating  a  design
consisting of two blocks,

;block = 3
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To demonstrate the blocking procedure, consider the following syntax. The syntax will produce an
orthogonal fractional factorial design with 3 blocks.  

?  This  will  generate  a  simultaneous  orthogonal  factorial  design  with
three blocks
Design
;alts = alt1, alt2
;rows = 12
;orth = sim
;block = 3
;model:
U(alt1) = b1 + b2 * A[0,1,2] + b3 * B[0,1,2] /
U(alt2) =      b2 * A        + b4 * C[2,4,6] 
$

Note that the number of blocks indicated in the blocking property represents the number of blocks
required and not  the number of  choice tasks per  block.  Thus,  the above syntax will  produce an
orthogonal blocking column with three blocks of four (12 / 3) choice sets each. An example design
is shown in Figure 6.5.

Figure 7.5: Orthogonal fractional factorial design with orthogonal blocking column

Note that this may be an issue if Ngene is unable to locate a design in the requested number of
rows  and  is  forced  to  increase  the  number  of  rows  in  generating  a  design.  In  this  case,  the
number of blocks remains as specified but the number of choice tasks per block will automatically
increase. If such a situation arises, the user may wish to re-specify the number of rows and blocks
and generate a new design.
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6.2.4 Orthogonal fractional factorial designs with two-way interactions

In case two-way interactions are important, one could generate a foldover design that will in many
cases make all two-way interactions independent of all main effects. Note that this will not always
work,  but  does  appear  to  work  in  many  instances.  To  create  a  foldover  design,  simply  add  the
following property to the syntax:

;foldover

In  this  case,  the  number  of  choice  situations  will  be  twice  as  large  as  specified  in  the  rows
property,  but  the design will  be  blocked in  two (a  blocking column will  be  added),  such that  the
total number of choice situations given to a single respondent does not increase. For example,

? use of the foldover property
Design
;alts = alt1, alt2
;rows = 8
;orth = sim
;foldover
;model:
U(alt1) = b1 + b2 * A[0,1] + b3 * B[0,1]   /
U(alt2) =      b2 * A      + b4 * C[0,1]   $

will result in a design similar to that shown in Figure 6.6.

Figure 6.6: Orthogonal fractional factorial design with foldover

In  Figure  6.6,  it  can  be  seen  that  the  resulting  design  produces  two-way  interactions  that  are
uncorrelated within each alternative, but which are perfectly correlated between alternatives. For 
unlabeled choice experiments, such correlation structures do not matter.

Rather than use foldover designs, the user may wish to specify specific interaction effects that are
uncorrelated  with  both  the  main  effects  and  other  specified  interaction  effects.  For  orthogonal
designs,  Ngene  allows  the  user  to  do  so  for  two-way  interaction  effects.  To  specify  a  two-way
interaction  effect,  the  user  first  specifies  a  parameter  estimate  and  then  nominates  which  two
attributes of the design to generate the interaction for. For example, 



73Orthogonal Designs

© 2018 ChoiceMetrics

b3 * x1 * x2

will generate a design that will attempt to locate an uncorrelated two way interaction effect for the
x1 and x2 attributes which must also be specified in the utility function of the model property. Note
that in constructing designs for two way interactions, Ngene employs a search process and that
there is no guarantee that such an uncorrelated interaction effect will be located. In such a case,
Ngene will display the design with the requested interaction effects that have the minimal level of
correlations  that  are  possible  within  the search  domain.  Example  syntax  of  how to  construct  an
orthogonal fractional factorial  design with a two way interaction effect  is  given below. Figure 6.7
shows a screen capture of a design generated using this syntax. In the screen capture, we have
highlighted  the  requested  interaction  effect  to  demonstrate  that  Ngene  was  able  to  locate  the
requested two-way interaction effect.

? use of interactions specified in the model
Design
;alts = alt1, alt2, alt3
;rows = 8
;orth = sim
;model:
U(alt1) = b01 + b1 * x1[0,1] + b2 * x2[0,1] + b3 * x1 * x2 /
U(alt2) = b02 + b1 * x1      + b2 * x2                     /
U(alt3) =       b1 * x1      + b2 * x2                     $

Figure 6.7: Orthogonal fractional factorial design with specified two-way interaction effects
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6.3 Orthogonal optimal in the difference fractional factorial designs

A  special  type  of  a  sequential  orthogonal  design  is  a  so-called  optimal  orthogonal  in  the
differences (OOD) design, following the design principles of Street et al. These researchers have
identified an alternative optimality criteria to that used in generating efficient SC designs. As well
as  maintaining  orthogonality,  these  researchers  suggest  that  SC  experiments  should  be
constructed  such  that  attributes  common  across  alternatives  should  never  take  the  same  level
over the experiment (see e.g., Burgers and Street, 2005; Street and Burgess, 2004; Street et al.,
2001,  2005).  Such  designs  are  known  as  D-optimal  designs.  The  argument  for  using  this
approach  is  that  respondents  are  forced  to  trade  on  all  attributes  in  the  experiment,  whilst  the
orthogonality of the design ensures that independent influence each attribute has upon choice can
be determined.  Optimality  under  this  definition  differs  from that  of  D-efficient  designs,  in  that  D-
optimal  designs  attempt  to  maximize  attribute  level  differences  whereas  D-efficient  designs
attempt to minimize the elements that are likely to be contained within the AVC matrices of models
estimated from data collected using the design. As such, a D-optimal design need not be optimal
in terms of the criteria set out for D-efficient designs, with the opposite also being true. Indeed, the
two optimality criteria are likely to be incompatible with one another for all but a small number of
cases.  Note  that  for  constructing  D-optimal  designs,  no  prior  parameters  are  used  (i.e..,  we
assume  the  priors  are  all  zeros),  as  one  concentrates  on  the  attribute  level  differences,  hence
efficiency  will  be  lost  in  practice  since  the  parameters  are  typically  not  equal  to  zero.  For  the
interested reader, the specific steps in generating these types of designs (taken from Street et al.,
2005) are outlined in detail in Appendix 6B.

In order to create these designs in Ngene, the orth property can be set as

;orth = ood

Optimal orthogonal in the difference choice designs suffer from a number of issues which has not
been  widely  discussed  within  the  literature.  Firstly,  these  designs  may  only  be  constructed  for  
unlabeled  SC  experiments.  Labeled  choice  experiments  where  attributes  may  not  be  common
across alternatives, or where attribute levels may differ for common attributes are not possible for
such designs, as such designs are not covered by the definition of  optimality offered. Secondly,
these designs may promote certain  forms of  behavioral  response,  such  as  lexicographic  choice
behavior.  By  forcing  each  attribute  to  be  different  across  alternatives,  a  particularly  dominant
attribute level may govern the entire experiment3. 

Example syntax used to construct an OOD design is given below.

Design
;alts = alt1, alt2
;rows = 9
;orth = ood
;model:
U(alt1) = b1 * A[0,1,2] + b2 * B[0,1,2]  /
U(alt2) = b1 * A        + b2 * C[0,1,2]  
$

Figure  6.8  presents  a  design  generated  using  Ngene  for  the  above  syntax.  Ngene  will  report  a
number of additional output for OOD type designs. This output can be accessed by clicking on the
OOD tree  structure  located  on  the  left  hand  side  of  the  output  screen.  By  clicking  on  the  OOD
click  box,  as  shown  in  Figure  6.8,  Ngene  will  report  the  D-efficiency  value  of  the  design  (see
Appendix  6B).  This  value  represents  the  percentage  of  optimality  of  the  design.  Ngene  also
reports a number of matrices upon request. These matrices are used in the calculation of the D-
efficiency measure.  For information on what purpose these matrices serve, see Appendix 6B.
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Figure 6.8: Orthogonal optimal in the difference fractional factorial design

6.4 Appendix 6A Correlation measures

Table 6A.1,  adapted from Hensher  and Smith,  1984,  shows the appropriate  formulae to  use for
different scaled data. 

Table 6A.1: Appropriate correlation formula

Random variable scale definitions: R: Ratio; I: Interval, O: Ordinal; D: Dichotomous; N, nominal

Scale Pair
(X1, X2)

Formula
1, 2, …, N observations
1, 2, …, m levels
X1, X2 = random variables Test Name

R,R or R, I Pearson
product moment
correlation

coefficient [ρ]

D,D G index [G]
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where
A = sum of positive agreeing responses (X1 = +ve, X2 = +ve)

B = sum of negative agreeing responses (X1 = -ve, X2 = -ve)

C = sum of non-agreeing responses (X1 = -ve, X2 = +ve)

D = sum of non-agreeing responses (X1 = +ve, X2 = -ve)

When the dichotomous variable (0, 1) is coded (-1, +1)

N,N or N,D

where 

and dx = number of categories for X

J index [J]

O,O

where

Spearman Rank
correlation [SR]

D,R

where   is  the  standard  deviation  of  the  ratio  scaled  random
variable  X2,  µ21  and  µ22  are  the  means  of  the  values  of  X2,

corresponding to the dichotomous X1 variables values 1 and 0. 

Point  Biserial
correlation [PB]

N,I

where
nr is the number of individuals with Y=r

d is the number of categories of the nominal attribute

CP-coefficient
[CP]

I, I H-INDEX [H]
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6.5 Appendix 6B Optimal orthogonal in the differences designs

The construction of OOD designs is described in detail by Street et al. (2005). OOD designs are
constructed  to  so  as  to  maximise  the  differences  in  the  attribute  levels  across  alternatives,  and
hence  maximise  the  information  obtained  from  respondents  answering  SC  surveys  by  forcing
trading of all attributes in the experiment. OOD designs are limited orthogonal designs in that they
are  orthogonal  within  an  alternative  but  have  (often  perfect  negative)  correlations  across
alternatives. As such, the design should generally only be applied to studies where all parameters
are  likely  to  be  treated  as  generic  (i.e.,  typically  unlabeled  choice  experiments).  The  design
generation  process,  as  described  here,  also  limits  the  experimental  design  to  problems  where
each alternative has the same number of attributes, and each attribute has the same number of
levels.  Work  has  been  conducted  on  removing  some  of  these  constraints,  however  we  do  not
report on these here (see for example, Burgess and Street 2005). We restrict here our discussion
to  generating  OOD  designs  to  problems  examining  main  effects  only  (those  interested  in
constructing OOD designs for interactions are referred to Street et al.  (2005) for  further details).
The steps for generating OOD designs are now presented.

Step 1: Construct an orthogonal design for the first alternative of the design (using design coding;
i.e., 0, 1, 2, ..., l). It is from this initial design that subsequent alternatives will be constructed. The
original  orthogonal  design  can  be  obtained  from  software,  cookbooks  (e.g.,  Hahn  and  Shapiro
1966) or generated from first principles (see e.g., Kuehl 1994). Any orthogonal design will suffice,
provided it has the same dimensions required for all alternatives in the design. 

Step 2: Locate a suitable design generator. To do this, create a sequence of K values which are
either  equal  to  zero  or  are  positive  integers,  where K  is  the number  of  attributes  per  alternative
and each value in the sequence maps to an attribute of the second alternative. For each of the K
values in the sequence, the value assumed can be any integer up to lk - 1, where lk is the number

of levels that attribute k assumes. 

For  example,  assuming  the  first  attribute  of  an  alternative  has  three  levels  and  the  second
attribute  has  two  levels,  then  the  first  value  in  the  design  generator  can  be  zero  or  any  integer
value between one and two (i.e., between 1 and 3-1 = 2), whereas the second value in the design
generator must be either zero or one (i.e., non zero, an integer and a value up to 2-1 = 1). Thus,
for example, the analyst may consider as design generators sequences 11 or 21. 

Subsequent  alternatives  are  constructed  in  a  similar  fashion,  however,  where  possible,  design
generator  sequences  should  attempt  to  use  unique  values  for  each  attribute  of  each  new
alternative. Design generators should also attempt to avoid using the value zero as this will lead
perfectly  correlated  attributes  in  the  design.  For  example,  if  the  sequence  21  were  used  as  the
design  generator  for  the  second  alternative,  a  third  alternative  might  use  the  values  11  or  10.
Where  the  same attribute  across  two  or  more  alternatives  have  the  same  value  in  their  design
generators,  the  attributes  will  be  perfectly  confounded.  For  example,  if  we  apply  as  design
generators  21  and  11  for  the  second  and  third  alternatives,  the  second  attribute  for  each
alternative will be perfectly confounded. Where zero is used in the generator, that attribute will be
perfectly confounded with the attribute in the first alternative. For example, if we apply as design
generators 21 and 10, then none of the attributes in alternatives two and three will be confounded,
but the second attribute in alternative three will be perfectly confounded with the second attribute
of alternative one. 

Step 3: For each choice situation, add the sequence of values of the design generator in order of
appearance to  the  attribute  levels  observed for  the  first  alternative.  For  example,  if  the  attribute
levels  in  an  alternative  are  2  and  1  respectively,  adding  the  design  generator  21  results  in  the
values 4 and 2 respectively (using design coding).
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Step 4: Apply modulo arithmetic to the values derived in step 3. The appropriate modulo to apply
for a particular attribute is equal to the number of levels for that attribute, lk. Thus, for attribute one

which has three levels, we use mod 3 and for the second attribute with two levels we would use
mod 2. Using the design generator 21, applying mod 3 to the first attribute results in 4 Ξ 1 (mod 3)
and applying mod 2 to  the second attribute produces 2 Ξ 0 (mod 2).  The values derived in  this
manner represent the levels of the second alternative. Subsequent alternatives are constructed by
applying the appropriate design generator  to  the first  alternative in  the design,  and applying the
same  modulo  arithmetic  rules.  Table  6B.1  shows  a  design  with  six  choice  situations  for  the
example  problem  above.  Note  that  we  have  used  the  full  factorial  in  constructing  the  first
alternative.  In  generating  experimental  designs  using  this  method,  one  can  use  a  fractional
factorial instead and our use of a full factorial is purely for demonstrative purposes only.

The  above  description  represents  a  rather  simplistic  discussion  on  the  construction  of  design
generators  for  OOD  designs.  The  reader  interested  in  finding  out  more  about  the  process  is
referred to Street et al. (2005) for a more detailed description.
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Table 6B.1: Constructing a second alternative for an OOD design

Step 5: Construct a symmetric matrix, Λ. The Λ matrix represents the proportion of times over all
choice situations that each alternative (as represented by its sequence of attribute levels) appears
with  all  other  possible  alternatives  in  the  design.  The  Λ  matrix  will  be  a  square  matrix  with

dimensions  equal  to  .  Hence,  working  with  the  example  above,  the  Λ  matrix  will  be  of
dimensions 6x6 (i.e., (3x2)x(3x2)). Each column and row of the matrix relates to a potential unique
combination of attribute levels that could exist within the design. In generating the matrix, we write
out the full  enumeration of  attribute level  combinations contained within  a single alternative.  For
the  above  design,  the  combinations  of  attributes  within  an  alternative  can  be  expressed  by  the
following  sequences  (using  design  coding);  00,  01,  10,  11,  20  and  21,  where  the  first  value  in
each  sequence  relates  to  the  first  attribute  in  the  design  and  the  second  value,  the  second
attribute. 

To populate the Λ matrix, we simply count the number of times a particular sequence of attribute
levels for one alternative appears with sequences of attribute levels in all  other alternatives. For
the above example, the sequence 00 appears in the first choice situation as the attribute levels in
alternative 1 against the attribute levels 21 in alternative 2; The same sequence also appears in
choice situation four, as the attribute levels for alternative 2 against  the attribute level  sequence
11 for alternative 1. Each time a combination appears together anywhere in the design, we add a -
1  to  the  corresponding  coordinates  in  the  Λ  matrix.  To  complete  the  matrix,  the  values  of  the
leading diagonal are then chosen such that all rows and columns sum to zero. 

We next need to scale the Λ matrix to account for the number of alternatives and choice situations

in the design. To do this, we multiple each element of the matrix by  where J is the number of
alternatives  in  the  design,  and  S  is  the  number  of  choice  situations.  Table  6B.2  shows  the  Λ
matrix for the above example, both before and after scaling.

Table 6B.2: Λ matrix

Step 6: Construct a matrix of contrasts for the effects that are of interest in the design (e.g., linear,
quadratic, cubic, etc.). This matrix we call the B matrix. The number of rows of the B matrix will be

equal to  where lk -1 corresponds to the number of effects attribute k can be used to test.

Hence, each row will correspond to a particular effect of interest for each attribute in the design.
The number of columns in the matrix will be exactly the same as the Λ matrix, which will be equal

to . For the example above, the B matrix will therefore have three rows (i.e., (3-1) + (2-1) =
3) and six columns (i.e., 2x3 = 6), where the first two rows correspond to the linear and quadratic
effects  of  the  first  attribute  (which  has  three  levels)  and  the  last  row  to  the  linear  effect  of  the
second attribute (which has two levels). 
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To  populate  the  B  matrix,  we  first  begin  by  determining  what  the  coefficients  of  orthogonal
polynomials are that correspond to each of the attributes in the design. The values that populate
the  matrix  represent  the  full  factorial  of  the  possible  combinations  of  coefficients  of  orthogonal
polynomials.   For  our  example,  the  linear  coefficients  of  orthogonal  polynomials  for  the  first
attribute  are  {-1,  0,  1},  and  {1,  -2,  1}  for  the  quadratic  effects.  The  linear  effects  for  a  two  level
attribute are simply {-1, 1}. The linear coefficients of orthogonal polynomials for the first attribute
constitute the first row of the matrix, whilst the quadratic effects make up the second row. The final
row represents in our example, the second attribute of the design. This row is  constructed such
that each level of the attribute appears against each of the linear and quadratic effects of the first
attribute. Thus, the matrix of coefficients of orthogonal polynomials for our example is: 

We are next required to normalise this matrix by dividing each row of the matrix by the square root
of the sum of the squares for each row of the non-normalised matrix. For the above, squaring all
elements  and  summing  each  row  produces  values  of  four,  12  and  six  for  rows  1,  2  and  3
respectively.  Taking  the  square  roots  and  dividing  each  row  of  the  matrix  of  coefficients  of
orthogonal polynomials by these values, we obtain the B matrix which we show below.

Step 7: Calculate the information matrix, C (El Helbawy and Bradley 1978). C is calculated using
matrix algebra such that C = BΛB'.

When the C matrix is diagonal, all main effects will be independent, which is not the case with our
example. 

Step 8: Calculate the level of efficiency for the design. This requires first estimating the maximum
value the determinant of the C matrix could assume and comparing this to the actual value of the
C matrix for the design. The first step in determining the maximum value of the determinant of the
C matrix is to calculate the value Mk which represents the largest number of pairs of alternatives

that  can  assume  different  levels  for  each  attribute,  k,  in  a  choice  situation.  This  value  for  each
attribute k, can be established using Equation (6B.1). Note that the particular formula to adopt to
calculate Mk is a function of the number of alternatives in the design, J, and the number of levels

of attribute k.

(6B.1)

and x and y are positive integers that satisfy the equation J = lkx + y for 0  y   lk. For the case

where an attribute has levels 2 < lk   J,  the analyst  will  need to fit  integer  values for  y  between

zero  and  lk  to  obtain  values  of  x  that  satisfies  this  equation.  Any  value  of  y  that  results  in  an

integer value of x represents a possible candidate for the design.

For  our  example,  the  design  has  J  =  2  with  l1  =  3  and  l2  =  2  and  S  =  6.  As  such,  for  the  first
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attribute we obtain M1 = J(J-1)/2 = 2(2-1)/2 = 1 and for the second attribute, M2 = J2/4 = 22/4 = 1.

Once  the  value  of  Mk  has  been  established  for  each  attribute,  the  maximum  value  of  the

determinant of C is calculated as:

(6B.2)

Applying Equation (6B.2) to our example, the maximum value the determinant of C could possibly
achieve is

For OOD designs, the level of efficiency of a design is expressed as a percentage referred to as
D-efficiency in the literature. The D-efficiency of a design is calculated as follows: 

(6B.3)

The closer the D-efficiency to 100 percent, the more efficient the design is. For our example, the
determinant of  the C  matrix is  0.00362. From Equation (6B.3),  the D-efficiency for  our  design is
calculated as



Chapter 7

Efficient Designs
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7 Efficient Designs

7.1 Theory of efficient designs

In  this  section,  we  discuss  the  theory  underlying  efficient  designs.  Subsequent  sections  of  the
chapter outline how such designs are obtained using Ngene. 

7.1.1 Efficient designs

In  contrast  to  orthogonal  designs,  so-called  efficient  designs  do  not  merely  try  to  minimize  the
correlation in the data for estimation purposes, but aim to result in data that generates parameter
estimates with as small as possible standard errors. These designs make use of the fact that the
AVC  matrix  (the  roots  of  the  diagonal  of  this  matrix  are  the  asymptotic  standard  errors)  of  the
parameters can be derived if the parameters are known. Unfortunately, since the objective of the
SC  experiment  is  to  estimate  these  parameters,  they  are  unknown.  However,  if  some  prior
information  about  these  parameters  is  available  (e.g.,  parameter  estimates  available  in  the
literature  from  similar  studies,  or  parameter  estimates  from  pilot  studies),  then  this  asymptotic
variance-covariance  matrix  can  be  determined,  assuming  that  the  priors  are  correct.  It  can  be
argued that an orthogonal design is efficient only in cases where there is no knowledge about the
parameters,  but  whenever  there  is  any  prior  parameter  information  available  (perhaps  just
knowledge of the sign of the parameter) then the design can be improved.

7.1.2 Definition of efficiency

An experimental design is called efficient  if  the design yields data that enables estimation of the
parameters with as low as possible standard errors.  These standard errors can be predicted by
determining the AVC matrix based on the underlying experiment and some prior information about
the parameter estimates. The following subsection will first briefly describe how to obtain this AVC
matrix. Then, we will  present several proposed efficiency measures for expressing the efficiency
of an experimental design into a single value. 

7.1.3 Deriving the asymptotic variance-covariance matrix

Let ΩN denote the asymptotic variance-covariance matrix4 (AVC) matrix given a sample size of N

respondents  (each  facing  S  choice  situations).  This  AVC  matrix  depends  in  general  on  the
experimental design, X = [Xn],  the parameter values, β, and the outcomes of the survey, Y = [yjsn],

where  yjsn  equals  one  if  respondent  n  chooses  alternative  j  in  choice  situation  s  and  is  zero

otherwise. Since the parameter values β are unknown, prior parameter values  are used as best
guesses for the true parameters. 

The AVC matrix is the negative inverse of the expected Fisher Information matrix (e.g., see Train,
2003), where the latter is equal to the second derivatives of the log-likelihood function:

(7.1)



84 Ngene User Manual

© 2018 ChoiceMetrics

where  lN(X,  Y,  β)  is  the  Fisher  Information  matrix  with  N  respondents,  and  LN(X,  )  is  the  log-

likelihood function in case of N respondents defined by

(7.2)

This formulation holds for each model type (MNL, NL, or MMNL), only the choice probabilities Pjsn(

X,  )  are different.  Further  information on these model  types are given in  Appendix  7A.  For  the
MNL  model,  the  choice  probabilities  given  in  Equation  (7A.5)  in  Appendix  7A  apply.  Other
probabilities are used for other model types, as discussed in Appendix 7A. There are two ways of
determining the AVC matrix, either by Monte Carlo simulation, or analytically. 

Most  researchers  have  relied  on  Monte  Carlo  simulation.  In  this  case,  a  sample  of  size  N  is
generated and parameters  are  estimated based on simulated choices  (by simply  computing the
observed utilities using some prior parameter estimates, adding random draws for the unobserved
utilities, and then determine the chosen alternative by assuming that each respondent selects the
alternative  with  the  highest  utility).  Such  an  estimation  also  provides  the  results  for  the  AVC
matrix. This procedure is repeated a large number of times and the average AVC matrix gives the
AVC matrix. 

Many have not realized that the AVC matrix can be determined analytically, as suggested for MNL
models with all generic parameters by McFadden (1974). In this case, the second derivative of the
log-likelihood  function  in  Equation  (7.2)  is  determined  and  evaluated  analytically.  A  potential
problem is,  that  the vector  of  outcomes,  Y,  is  part  of  the log-likelihood function,  the reason why
most researchers perform Monte Carlo simulations. However, it can be shown that the outcomes
Y drop out when taking the second derivatives in case of the MNL model. This has been shown by
McFadden (1974)  for  models  with  all  generic  parameters,  and in  Rose and Bliemer  (2005a)  for
models with alternative-specific parameters, or a combination. Furthermore, Bliemer et al. (2009)
have  also  derived  analytical  expressions  for  the  second  derivatives  for  the  NL  model.  The
outcomes Y do not drop out, but as shown in their paper, they can be replaced with probabilities
leading  to  exactly  the  same  AVC  matrix,  which  has  been  confirmed  by  Monte  Carlo  simulation
outcomes.  Although  more  tedious,  the  second  derivatives  can  also  be  derived  for  the  MMNL
model  and  a  similar  procedure  holds  for  removing  the  outcome  vector  Y.  Note  that  the  MMNL
model  will  always require some simulations,  as the parameters  are assumed to be random and
therefore  expected  probabilities  need  to  be  approximated  using  simulation.  However,  these
simulations  have  no  connection  with  the  simulations  mentioned  earlier  for  determining  the  AVC
matrix.  To  conclude,  ΩN  can  be  determined  without  knowing  simulated  outcomes  Y,  hence  the

dependency on Y disappears in Equation (7.2).

In  the  special  (and  most  considered)  case  that  all  respondents  face  exactly  the  same  choice
situations, i.e., Xn = X for all n, it can be shown that (see Rose and Bliemer, 2005a)

(7.3)

In other words, the AVC matrix corresponding to a sample size of N can be derived directly from
the  AVC  matrix  from  a  single  respondent  using  a  rate  of  1/N.  This  means  that  the  impact  of
sample size on the design can readily be investigated (under all assumptions made so far). The
asymptotic  standard  errors  seN(X,  )  are  the  roots  of  the  diagonal  of  the  AVC matrix,  therefore

these standard errors decrease with a rate of 1/  of the sample size N. This is also illustrated in
Figure 7.1 for a single parameter, clearly indicating a diminishing decreasing asymptotic standard
error  when  the  sample  size  increases.  This  is  an  important  result,  as  it  suggests  that  spending
(much)  more  money  on  collecting  data  using  a  larger  sample  size  does  in  the  end  not  lead  to
significantly better parameter estimates, indicated by (*) in the figure. As the figure also suggests,
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it pays off much more to determine a design with a higher efficiency (design with attribute levels X
II  instead  of  XI),  in  which  the  standard  error  can  decrease  significantly,  indicated  by  (**)  in  the
figure, without spending any extra money!  

Figure 7.1: Asymptotic standard error as a function of the sample size

7.1.4 Efficiency measures

The efficiency of a design can be derived from the AVC matrix. Instead of assessing a whole AVC
matrix,  it  is  easier  to  assess  a  design  based  on  a  single  value.  Therefore,  efficiency  measures
have  been  proposed  in  the  literature  in  order  to  calculate  such  an  efficiency  value,  typically
expressed  as  an  efficiency  ‘error’  (i.e.,  a  measure  for  the  inefficiency).  The  objective  then
becomes to minimize this efficiency error. 

The  most  widely  used  measure  is  called  the  D-error,  which  takes  the  determinant  of  the  AVC
matrix  Ω1,  assuming  only  a  single  respondent5.  A  design  with  the  lowest  D-error  is  called  D-

optimal.  In practice it  is  very difficult  to find the design with the lowest D-error,  therefore we are
satisfied if the design has a sufficiently low D-error, called a D-efficient design. Different types of
D-error have been proposed in the literature, depending on the available information on the prior
parameters . We will distinguish three cases:
(a) No information is available; If no information is available (not even the sign of the parameters),
then set =0. This leads to a so-called Dz-error (‘z’ from ‘zero’).

(b) Information is available with good approximations of β; If the information is relatively accurate,
 is set to the best guesses, assuming they are correct. This leads to a so-called Dp-error (‘p’ from

‘priors’)
(c) Information is available with uncertainty about the approximations of β;
Instead  of  assuming  fixed  priors  ,  they  are  assumed  to  be  random  following  some  given
probability  distribution  to  express  the  uncertainty  about  the  true  value  of  β.  This  Bayesian
approach leads to a so-called Db-error (‘b’ from ‘Bayesian’).

The  D-errors  are  a  function  of  the  experimental  design  X  and  the  prior  values  (or  probability
distributions) , and can be mathematically formulated as:

  (7.4)

  (7.5)
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  (7.6)

where K is the number of parameters to be estimated. Note that the AVC matrix is a K x K matrix.
In order to let the D-error be independent of the size of the problem, the D-error is normalized by
the  power  1/K.  We  recommend  removing  the  rows  and  columns  corresponding  to  the  model
constants in the AVC matrix as these parameters in general do not have a clear meaning in a SC
experiment (in contrast to revealed choices). As the standard errors of these model constants can
become fairly large, they could dominate the D-errors, therefore we advise to remove them before
taking the determinant (and at the same time also adjust the value of K).

Equation (7.6)  needs some more explanation.  In  the Bayesian D-error  computation  the  priors  
are  assumed  to  be  random  variables  with  a  joint  probability  density  function  Φ(.)  with  given
parameters Θ. For example, these priors could follow normal distributions  ~ N(µ, Σ), or uniform
distributions  ~ U(u, v), or a mix, or other distributions. Normal and uniform distributions seem to
be the only ones used in the literature so far.

Besides the D-error, other inefficiency measures have been proposed as well. Another well-known
efficiency  error  is  called  the  A-error,  and  the  design  with  the  lowest  A-error  is  called  A-optimal.
Instead  of  taking  the  determinant,  the  A-error  takes  the  trace  of  the  AVC  matrix,  which  is  the
summation  of  all  diagonal  elements  of  the  matrix.  Therefore,  the  A-error  only  looks  at  the
variances and not at the covariances. In order to normalize the A-error it is divided by K (the same
recommendation about the model constants applies). Similar to the D-error, different A-errors can
be  determined  based  on  the  availability  of  information  on  the  parameters.  The  Ap-error  is

mathematically formulated as

(7.7)

The Az-error and Ab-error can be derived using formulations equivalent to Equations (7.4) to (7.6)

(see Bliemer and Rose, 2009). The A-error should be used with caution in case not all parameter
values are of  equal  scale.  By the simple summation of  the variances it  is  likely  that  parameters
with large values will overshadow the other parameters. Therefore, we suggest using a weighted
summation. Using weights it is also possible to give more importance to certain parameters, that
is, enable the estimating of these parameters more accurately than others. 

A  completely  different  efficiency  measure  has  been  introduced  by  Bliemer  and  Rose  (2005a).
They propose a measure that is related to the sample sizes required to estimate each parameter
significantly.  If  the null  hypothesis  is  that  βk  =  0  for  a  certain  parameter,  then  this  hypothesis  is

rejected if

(7.8)

where  tα  is  the  t-value  corresponding  to  the  (1  -  α)-confidence  interval  (e.g.,  t0.05  =  1.96).

Assuming  that  the  priors  are  correct  estimates  for  the  true  parameters  and  assuming  that  all
respondents face the same choice situations, i.e.,  Equation (7.3)  holds,  then Equation (7.8)  can
be rewritten as

(7.9)

This  number  provides  a  lower  bound  on  the  necessary  number  of  the  sample  size  in  order  to
obtain  significant  estimates  for  parameter  βk  (see  Bliemer  and  Rose,  2009).  The  measure
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proposed  by  Bliemer  and  Rose  (2005a,  2009)  is  derived  from  the  observation  that  if  some
parameters  need  much  higher  sample  sizes  than  others,  it  may  be  better  in  the  experiment  to
focus  more  on  the  parameters  that  are  difficult  to  estimate  significantly.  By  spreading  the
information obtained from each choice situation in the design over all parameters, the design can
be optimized for sample size, and is termed S-optimality (see Bliemer and Rose 2005a, 2009). 

Note  that  Equation  (7.9)  merely  provides  a  lower  bound  and  does  not  guarantee  significant
parameter  estimates  due  to  random  choice  behavior  and  in  the  case  of  the  MNL  model,  the
assumption  that  all  random  components  are  independent,  even  if  a  single  respondent  faces
multiple choice situations, may also impact upon the value derived. This will lead to some biases,
yielding  higher  necessary  sample  sizes.  The  problem  of  dependent  observations  in  a  SC
experiment is a known problem to which unfortunately no simple solution exists, besides putting
the  correlation  structure  in  a  random  components  model.  Therefore,  the  S-optimality  measure
merely gives an indication in order to compare different designs on lower bounds for the sample
sizes. 

Several other efficiency criteria have been proposed within the literature (see e.g., Kessels et al.,
2006)  and  many  others  can  be  formulated.  Within  Ngene,  aside  from  D-,  A-,  and  S-error
measures  of  efficiency,  there  also  exists  (implemented  only  for  the  MNL  model)  an  additional
efficiency measure termed C-error (see Kanninen, 1993a,b and Scarpa and Rose 2008). The C-
error measure in Ngene attempts to minimise the variance of the ratio of two parameters and as
such is ideal for working with problems dealing with willingness to pay (WTP) issues. As shown in
Scarpa and Rose (2008),  the variance of  two parameters  may be approximated using Equation
(8.10)

(7.10)

The C-error criterion relates to the minimization of such variances. In most SC experiments, there
will  exist more than one WTP, with indeed up to k-1 potential  WTPs. In such cases, the C-error
has  been  set  up  to  minimise  the  sum  of  the  up  to  k-1  C-error  values,  with  the  user  able  to
nominate which WTP values to include in the calculation.

7.1.5 Drawing from parameter distributions

In the previous section, we saw that there exist multiple efficiency criteria that one may use when
generating  efficient  designs.  We  further  saw  that  within  each  efficiency  measure,  there  exist
multiple  approaches  regarding  the  parameter  priors  assumed  in  generating  efficient  SC
experiments.  In  the  first  approach,  researchers  have  made  the  strong  assumption  that  all
parameter priors for the design are simultaneously equal to zero (e.g., Burgess and Street 2005;
Grasshoff and Schwabe 2007; Huber and Zwerina 1996; Street and Burgess 2004; Street et al.
2001).  Street  et  al.  make  this  assumption  for  analytical  reasons,  enabling  them  to  locate  truly
optimal (most efficient) orthogonal designs. This optimality will only exist under the assumption of
zero  parameter  estimates,  which  is  unlikely  to  hold  in  reality.  A  second  approach  that  has
sometimes  been  used  is  to  assume  that  the  parameter  priors  are  non-zero  and  known  with
certainty (e.g., Carlsson and Martinsson 2003; Huber and Zwerina 1996; Rose and Bliemer 2005).
In such an approach, a single fixed prior is assumed for each attribute. Whilst the assumption of
perfect certainty is a strong one, the design generation process is such that researchers are able
to  test  its  impact  on  a  design’s  efficiency  assuming  misspecification  of  the  priors.  Sándor  and
Wedel  (2001)  introduced  a  third  approach  by  relaxing  the  assumption  of  perfect  a  priori
knowledge  of  the  parameter  priors  through  adopting  a  Bayesian  approach  to  the  design
generation process. 

The Bayesian approach to constructing efficient SC experiments requires that the efficiency of a
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design be evaluated over  numerous different  draws taken from the prior  parameter  distributions
assumed in generating the design. The Bayesian efficiency of a design is then calculated as the
expected  value  of  whatever  measure  of  efficiency  is  assumed  over  all  the  draws  taken.  The
Bayesian  approach  therefore  necessitates  the  use  of  simulation  methods  to  approximate  the
expectations for differing designs. 

For computing the Bayesian efficiency, a number of different simulation procedures are available
to researchers, with the simplest being the use of pseudo random draws. In using pseudo random
draws (often referred to  as  pseudo Monte Carlo,  or  PMC,  draws),  points  from a  distribution  are
randomly selected. Whilst simple to implement in practice, results obtained using PMC draws are
susceptible to being specific to the particular draws taken from whatever distribution is assumed,
with  different  sets  of  random  draws  likely  to  produce  different  coverage  over  the  distribution
space, possibly leading to widely different results  when calculating the expectations. This risk is
especially  high with  the use of  a  small  number  of  draws.  The precision of  simulation processes
may  potentially  be  improved  by  using  a  more  systematic  approach  in  selecting  points  when
sampling  from a  distribution.  Such  techniques  are  commonly  referred  to  within  the  literature  as
quasi random Monte Carlo draws (see, for example, Bhat 2001, 2003; Hess et al. 2005; Sándor
and Train 2003). The potential to provide better coverage of the distribution space for each prior
parameter distribution should theoretically result in a lower approximation error in calculating the
simulated  choice  probabilities  for  a  given  design.  This  in  turn  will  result  in  greater  precision  in
generating  the  design’s  AVC  matrix,  resulting  in  greater  precision  in  terms  of  the  Bayesian
efficiency  measure  of  that  design.  Other  methods,  such  as  Gaussian  quadrature,  also  aim  to
minimize the approximation error when calculating the Bayesian efficiency.

Independent  of  the type of  draws used,  the researcher  must  decide  on  the  number  of  draws to
use. If too few draws are taken, it is probable that the resulting Bayesian measure of efficiency will
be  far  from the  true  efficiency  for  a  given  design.  If  too  many draws are  used,  the  computation
time in generating an efficient design will be unnecessarily high. The issue therefore becomes one
of how many draws should be used before the Bayesian measure of efficiency will converge to the
true  efficiency  level  for  a  given  design,  or  alternatively,  fall  within  some  acceptable  error  range
around  the  true  value.  Unfortunately,  the  answer  to  this  question  will  likely  depend  on  the
dimensions  of  the  design  itself,  the  number  of  Bayesian  priors  assumed,  the  population  of  the
prior  distributions,  the type of  econometric  model  used,  as  well  as  the type of  draws employed.
Kessels et al. (2006) argue that a well-designed systematic 20-point sample may be sufficient to
give a good enough approximation of the Bayesian efficiency, at least in a first step of a search 
algorithm,  although  no  claims  can  be  given  for  general  experiments.  Improvements  in  search
algorithms  and  in  faster  evaluations  of  the  Bayesian  efficiency  should  both  lead  to  significantly
smaller  computation times for  determining a Bayesian efficient  design.  From a search algorithm
perspective (for unlabeled experiments), the reader is referred to Kessels et al. (2006) and Yu et
al. (2008), which deal with determining Bayesian efficient designs for the MNL and MMNL model,
respectively. 

Ngene allows the use of the PMC method alongside three different types of quasi random Monte
Carlo draws; namely Halton, Sobol, and Modified Latin Hypercube Sampling (MLHS) draws, and
one  Gaussian  quadrature  method,  namely  Gauss-Hermite  approximation.  Independent  of  the
method, the principles in generating efficient SC experiments remain the same:

1)first, R values are drawn from the random distribution of the prior parameter values;
2)then, for each of these parameter values, the D-error is evaluated; and
3)an average D-error is computed over these values (giving the Db-error). 

The PMC and quasi-random MC methods all take a simple (unweighted) average of the different
Db-errors  (or  any  other  efficiency  method),  but  differ  in  the  way  they  take  the  draws  from  the
random  distribution.  In  the  PMC  method,  these  draws  are  completely  random,  whereas  in  the
quasi-random MC methods  they  are  intelligent  and  structured,  and  in  most  cases  deterministic.
The Gaussian quadrature methods construct intelligent and deterministic draws as well, but also
determine specific weights for each draw and compute a weighted average. 
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Sandor and Wedel (2001, 2002) suggested that when generating Bayesian efficient designs, the
generalised  Asymptotic  Fisher  Information  matrix  be  used  instead  of  the  Asymptotic  Fisher
Information  matrix.  This  approach  has  also  been  proposed  and  used  by  Kessels,  et  al.   (2006)
and  Yu  et  al.  (2009).  The  generalised  Asymptotic  Fisher  Information  matrix  is  calculated  as

 where Sβ are the prior parameter variances. Chaloner and Verdinelli

(1995)  argue  in  favour  of  the  common  Db-error  measure,  as  it  allows  for  different  prior

information,  to  be  used  in  the  design  and  analysis  and  is  appealing  when  a  non-Bayesian
framework is adopted in analysis. In addition, the traditional Db-error is based on an asymptotic

approximation of the posterior, and the prior vanishes in any case.

We now discuss each of these methods in turn. Further information on the impact of changing the
number of draws by type is available in Bliemer et al. (2008). 

7.1.5.1 Pseudo-random Monte Carlo (PMC) simulation

In PMC simulation, for each of the K parameters, R independent draws are taken from their given
prior distributions. For each of these R  draws of the prior parameters, the Db-error is computed.
Finally, the average is taken of all computed efficiency measures. Let (r) = [ 1

(r), ..., K
(r)] denote

draw r, r = 1, ..., R,  from the corresponding prior random distributions described by the probability
density functions Φk( k | Θk).  The approximation of the efficiency-error can be formalized as

(7.11)

The total number of efficiency evaluations is equal to R. In order to determine the draws k
(r), we

let the computer generate for each parameter R pseudo-random numbers uk
(r) which are uniformly

distributed on the interval [0,1], and then compute the draws by 

(7.12)

where  ( k  |  Θk)  denotes  the  cumulative  distribution  function  corresponding  to  the  probability

density function Φk( k | Θk).

7.1.5.2 Quasi-random Monte Carlo simulation

Randomness  of  the  draws  is  not  a  prerequisite  in  the  approximation  of  the  integral;  rather,
Winiarski  (2003)  has  argued  that  (a)  correlation  or  a  systematic  structure  between  draws  for
different dimensions can have a positive effect on the approximation, and (b) one should aim for
the draws to be distributed as uniformly as possible over the area of integration. Hence, the draws
can  be  selected  deterministically  so  as  to  minimize  the  integration  error,  which  is  exactly  what
quasi-random  MC  simulation  methods  aim  to  do.  For  a  more  detailed  discussion  on  these
methods  we  refer  to  Niederreiter  (1992)  and  Fang  and  Wang  (1994).  Quasi-random  MC
simulation methods for approximating say the Db-error are almost identical to the PMC simulation

method, except that they use deterministic draws for k
(r)  (as opposed to purely random draws).

Instead of generating pseudo-random numbers uk
(r) ~ U(0,1), these numbers uk

(r) are taken from

different intelligent quasi-random sequences, also called low discrepancy sequences. Using these
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quasi-random sequences, faster convergence to the true value of the numerical integration can be

achieved.  PMC  simulation  has  a  slow  rate  of  convergence  of  ,  while  quasi-random  MC
simulation typically has a rate of convergence as good as O(1/R). 6

7.1.5.3 Modified Latin Hypercube Sampling (MLHS)

The  MLHS  method  (Hess  et  al.  2005)  produces  multi-dimensional  sequences  by  combining
randomly  shuffled  versions  of  one-dimensional  sequences  made  up  of  uniformly  spaced  points.
Formally, the individual one-dimensional sequences of length R are constructed as:

(7.13)

where  is  a random number drawn between 0 and 1/R,  and where a different random draw is
used  in  each  of  the  K  different  dimensions.  In  the  resulting  sequence,  the  distances  between
adjacent  draws are  all  equal  to  1/R,  satisfying the condition  of  equal  spacing.  Multi-dimensional
sequences  are  constructed  by  simple  combination  of  randomly  shuffled  one-dimensional
sequences, where the shuffling disrupts the correlation between individual dimensions.

7.1.5.4 Halton sequences

Halton  sequences  (Halton  1960)  are  based  on  the  one-dimensional  Van  der  Corput  sequence
(Van der Corput, 1935) and are constructed according to a deterministic method based on the use
of prime numbers, dividing the 0-1 space into pk segments (with pk giving the prime used as the

base for parameter k), and by systematically filling in the empty spaces, using cycles of length pk

that place one draw in each segment. Formally, the rth element in the Halton sequence based on
prime pk is obtained by taking the radical inverse of integer r in base pk by reflection through the

radical point, such that 

(7.14)

where   determines  the  L  digits  used  in  base  pk  in  order  to  represent  r  (i.e.,  solving

equation  (7.14)),  and  where  the  range  for  L  is  determined  by  The  draw  is  then
obtained as:7

(7.15
)

To  allow  for  the  computation  of  a  simulation  error,  the  deterministic  Halton  sequence  can  be
randomized  in  several  ways.  Here,  we  use  the  approach  discussed  by  amongst  others  Tuffin
(1996),  where  the  modified  draws  are  obtained  by  adding  a  random  draw   to  the  individual
draws in dimension k, and by subtracting one from any draws that now fall outside the 0-1 interval.
A different random draw is used for each dimension. 
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7.1.5.5 Sobol sequences

The  main  problem  with  Halton  sequences  is  the  fact  that  the  individual  sequences  are  highly
correlated, leading to problems with poor multi-dimensional coverage in higher dimensions. Aside
from various transformations of the standard Halton sequence and other advanced methods (cf.
Hess  et  al.  2005),  one  approach  that  has  received  exposure  in  the  area  of  discrete  choice
modeling is the Sobol sequence, used amongst others by Garrido (2003). Like Halton sequences,
Sobol  sequences  are  based  on  Van  der  Corput  sequences  (cf.  Niederreiter  1992).  However,
rather than in a K-dimensional problem using the first K  primes (as in Halton sequences), Sobol
sequences  are  based  on  prime  2  in  each  dimension,  where  different  permutations  are  used  to
ensure  that  the  resulting  K-dimensional  sequence  obtains  good  coverage.  We  will  use  a
randomized  version  of  the  Sobol  sequences  equivalent  to  the  randomization  in  the  Halton
sequences by adding a random component to each of the draws in each dimension. 

7.1.5.6 Gaussian quadrature

Polynomial  cubature  methods  aim  to  approximate  integrals  using  orthogonal  polynomials.
Gaussian quadrature is the best-known method, see e.g. Stoer and Bulirsch (2002). In case of a
single variable, the use of R draws yields an exact approximation if the integrand is a polynomial
up to degree (2R-1). General functions can be approximated by (high order) polynomials, hence
the higher the degree (yielding more draws), the more accurate the approximation will be. 

The  principle  of  Gaussian  quadrature  is  that  not  only  the  draws  k
(r)  for  the  priors  are  selected

intelligently, but also that weights wk
(r) are associated with each draw. The approximation of the D

b-error using Gaussian quadrature can be formalized as

(7.16)

The draws for the priors and the associated weights depend on the random distribution. Different
draws k

(r) for each individual parameter are called abscissas. The draws for the whole vector  (r)

  are  given  by  a  rectangular  grid  of  these  abscissas8.  In  the  case  where  k  ~  N(µk,  σk),  the

abscissas and weights  can be computed using so-called Hermite  polynomials.  If  k  ~  U(ak,  bk),

the  abscissas  and  weights  can  be  computed  using  so-called  Legendre  polynomials.  The
abscissas  and  weights  for  both  situations  are  listed  in  Table  1  for  up  to  10  abscissas  for  each

individual parameter. The weights always sum up to one, i.e., = 1  for each k. For each of
the K parameters, the number of abscissas used, Rk, can be different. 

Note that the total number of D-error evaluations in Gaussian quadrature is equal to R = ,
that is, the total number of all combinations of abscissas in all dimensions. This number of D-error
evaluations grows exponentially if  the number of random priors increases9.  Therefore, Gaussian
quadrature  is  typically  not  suitable  for  integrals  of  high  dimensionality,  although  it  is  extremely
powerful for low-dimensional problems.
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7.1.6 Orthogonal versus efficient designs

In  case  any  information  about  the  parameters  is  available,  then  efficient  designs  will  always
outperform orthogonal designs. This is due to the fact that efficient designs use the knowledge of
the  prior  parameters  to  optimize  the  design  in  which  the  most  information  is  gained  from  each
choice situation (e.g., dominant alternatives can be avoided as the utilities can be computed). We
will come back to dominant alternatives when discussing the (un)importance of utility balancing in
Section 7.1.8.

What  happens  in  the  case  where  no  information  about  the  parameters  is  available?  In  other
words,  which  design  is  better,  an  orthogonal  design,  or  a  Dz-optimal  design  (which  assumes  

=0)?  As  mentioned  in  Bliemer  and  Rose  (2005b),  there  is  a  close  correspondence  between
orthogonal designs and Dz-optimal designs. In fact, in case all model parameters are alternative-

specific,  a  Dz-optimal  design  is  orthogonal.  In  case  all  model  parameters  are  generic,  it  is  not

necessary to  choose between either  orthogonality  or  Dz-efficiency  as  it  is  possible  to  determine

orthogonal Dz-optimal designs. Street et al. (2001), Street and Burgess (2004) demonstrate how

to create such Dz-optimal designs for generic designs with only two alternatives and where each

attribute has a number of levels equal to the power of two (hence, two, four, eight, etc.). In Street
et al. (2005) a nice overview is given for determining Dz-optimal (or nearly optimal) designs with

multiple  alternatives  and  different  levels.  However,  these  remain  limited  to  models  with  generic
parameters. 

The design principles in Street et al. (2005) have some limitations. First of all, they are limited to
the MNL model. Secondly, they are only optimal in case all parameters are equal to zero, which is
clearly  not  the  case.  The  fact  that  their  designs  are  sub-optimal  under  the  nonzero  parameter
case  is  due  to  the  fact  that  they  assume  all  equal  probabilities  in  the  MNL  model.  Finally,  if
alternative-specific  parameters are present,  then a simple principle  that  will  lead to a Dz-optimal

design does not exist.

If correlations in the design have a negative impact on the parameter estimates, then this should
implicitly be reflected in the AVC matrix of the design, instead of explicitly in an orthogonal design.
Hence, an efficient design will to a certain degree implicitly minimize the correlations in a design,
hence it is not necessary to include orthogonality as an additional criteria to efficiency.

7.1.7 Importance of prior parameter values

The purpose of the SC experiment is to estimate the parameters of the specified model. But even
without  estimating  them,  some  information  and/or  educated  guesses  regarding  parameters  are
usually available. Again, we would like to stress that Dp-optimal designs will always outperform Dz-

optimal  designs  in  case  any  information  about  the  parameters  (even  only  the  sign  of  the
parameters)  is  available.  We argue that  it  is  always  possible  to  obtain  some information  on  the
priors.

Just  using  reasoning  alone,  it  should  be  possible  to  determine  at  minimum  the  signs  of  most
parameters.  For  example,  price  attributes  are  typically  negatively  perceived,  while  comfort  and
service are attributes that will receive positive attitudes. Instead of using a prior parameter value
equal to zero, already a slight positive or negative value would already improve the design. 

Many surveys have been conducted around the world, and it is likely to find at least a few similar
parameters. If no such studies can be found, then it  may be very useful to conduct a small  pilot
study in order to get an initial idea about the parameter values. With the same amount of money,
one could (i) conduct a large survey using an experimental design based on priors equal to zero
(no information case), or (ii) conduct a slightly smaller survey using an experimental design based
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on  priors  obtained  from  a  pilot  study.  As  Figure  7.1  also  suggested,  the  second  option  is
preferred, since it can lead to significantly more reliable parameter estimates.

Obviously, a Dp-optimal design is sensitive to the chosen prior parameters. If they are not correct,

then  the  design  is  sub-optimal  (note  that   Dz-optimal  will  therefore  always  be  sub-optimal).

Fortunately, the design can be tested for robustness in case one or more prior parameter values
are  not  correct.  By  taking  a  fixed  design  X  and  computing  the  AVC matrix  as  in  Equation  (7.1)
(recall that the outcomes Y drop out) for different values of , a sensitivity analyses of the design
can be performed. Once the sensitivity of the efficiency of the design to each prior parameter is
known,  one  can  decide  to  either  put  more  effort  in  determining  the  prior  values  for  the  most
sensitive priors, or determine a new design (which may be less efficient, but more robust). 

Another  way  of  dealing  with  uncertainty  about  prior  parameters  was  already  mentioned  when
describing  the  Bayesian  efficient  designs.  A  Bayesian  efficient  design  optimizes  the  expected
efficiency of the design over a range of prior parameter values, thereby making it more robust to
mis-specifying the priors. Priors with a higher uncertainty should see this uncertainty reflected into
a larger standard deviation or spread of its probability distribution. 

7.1.8 Utility balance

A couple of times the words “dominant alternatives” or “more information from choice situations”
have been used. Here the concept of utility balancing, as suggested in (Huber and Zwerina, 1996)
will be described.

As a simple example, consider two choice situations in an unlabelled stated choice experiment as
illustrated in Figure 7.2. In the first choice situation, Route A has both a lower travel time as well
as a lower toll  cost, making it clearly the preferred alternative. The Route A alternative therefore
clearly  dominates in  this  choice situation,  therefore no information will  be  gained.  In  contrast,  in
the second choice situation there is no clear dominant alternative and the respondent has to make
a clear trade-off between travel time and toll cost, hence this will provide information.

The example illustrates that balancing the utilities of alternatives (i.e., having no alternatives that
are  clearly  dominating the others)  is  of  importance.  At  least,  if  it  is  very  unbalanced,  the  choice
situation  does  not  provide  information  for  estimating  the  parameters.  This  could  lead  to  the
understanding  that  in  the  most  efficient  design,  all  the  choice  situations  are  perfectly  utility
balanced. This is however not the case. If all alternatives have an equal observed utility, then the
random  unobserved  component  dominates.  In  other  words,  then  the  respondent  has  no  clear
preference  for  any  of  the  alternatives  and  randomly  selects  one.  This  too  does  not  give
information.  Therefore  it  can  be  concluded  that  an  efficient  design  has  some  degree  of  utility
balance, but not too much, and not too little. 
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Figure 7.2: Dominant alternative in choice situation 1

Utility  balance  of  a  choice  situation  and  a  whole  design  can  be  expressed  in  a  percentage.
Consider  a  stated  choice  experiment  with  J  alternatives.  Consider  a  certain  choice  situation  s.
This  choice  situation  would  have  perfect  utility  balance  if  all  alternatives  j  have  an  equal  
probability, that is, Pjs = 1 / J. The utility balance of choice situation s can be defined as

(7.17)

For example,  if  J  = 3 and all  three alternatives have a probability of  1/3,  then Bs  =  100%. If  the

probabilities are 1/2, 1/3, and 1/6, respectively, then the utility balance is Bs = 75%. If one or more

of  the  probabilities  is  equal  to  zero,  then  the  utility  balance  is  zero  percent.  The  overall  utility
balance of the design, B,  can be determined by averaging over all choice situations (Kessels et
al., 2006):

(7.18)

The  optimal  value  for  utility  balance  of  a  design  cannot  be  given,  but  observations  of  the  utility
balance of efficient designs suggest that it lies in the range of 70-90 percent. Utility balance can
be  examined  for  each  choice  situation,  thereby  investigating  if  the  design  contains  choice
situations with clearly dominant alternatives, which should not occur in an efficient design. Hence,
utility balance could be used in the algorithms for generating efficient designs. In Ngene, we refer
to attempts to maximize utility balance as B-error. Similar to the D-, A-, S- and C-error measures,
B-error may be implemented using either zero, fixed or Bayesian priors.
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7.1.9 Generating efficient designs

The problem of finding an efficient design can be described as follows:
Given feasible attribute levels Λjk  for all  j  and k,  given the number of choice situations S,

and given the prior parameter values  (or probability distributions of ), determine a level
balanced  design  X  with  xjks   Λjk  that  minimizes  the  efficiency  error  in  Equations  (7.4),

(7.5), (7.6), (7.7), (7.9)  or (7.10). 

Note  that  in  this  formulation  attribute  level  balance  is  added  as  a  requirement,  consistent  with
current state of practice. It should be stressed that an efficient design does not necessarily require
attribute level balance. In fact, a more efficient design may be found by removing the level balance
requirement as will be discussed in Section 8.1.

In order to solve the problem of determining the most efficient design, one could determine the full
factorial design and then evaluate each different combination of S choice situations from this full
factorial.  The  combination  with  the  lowest  efficiency  error  is  the  optimal  design.  However,  this
procedure  is  not  feasible  in  practice  due  to  an  extremely  high  number  of  possible  designs  to
evaluate. For example, consider the problem of determining an efficient design for a hypothetical
case  with  three  alternatives  as  shown  in  Table  7.1.  The  full  factorial  design  has  21  x  38  x  42  =
209,952  choice  situations.  Suppose  that  we  would  like  to  find  an  efficient  design  with  S  =  12
choice situations. Selecting 12 choice situations from this set of 209,952 different choice situations
yields  7.3  x  1063  possible  different  designs.  Clearly,  it  is  not  feasible  to  evaluate  all  possible
designs, hence a smart algorithm is necessary to find an efficient as possible design. 

Table 7.1: Example dimensions for generating an efficient design

There are row based algorithms and column based algorithms for finding an efficient design. In a
row  based  algorithm  choice  situations  are  selected  from  a  predefined  candidate  set  of  choice
situations (either a full factorial or a fractional factorial) in each iteration. Column based algorithms
(such as RSC algorithms) create a design by selecting attribute levels over all choice situations for
each attribute. Row based algorithms can easily remove bad choice situations from the candidate
set at the beginning (e.g.,  by applying a utility balance criterion), but it  is  more difficult  to satisfy
attribute  level  balance.  The opposite  holds  for  column based algorithms,  in  which attribute  level
balance  is  easy  to  satisfy,  but  finding  good  combinations  of  attribute  levels  in  each  choice
situation is  more difficult.  In  general  column based algorithms offer  more flexibility  and can deal
with  larger  designs,  but  in  some cases (for  unlabelled designs and for  specific  designs such as
constrained designs, see Section 8.2) row based algorithms are more suitable.

The Modified  Federov  algorithm  (Cook  and Nachtsheim,  1980)  is  a  row based algorithm and  is
illustrated  in  Figure  7.3.  First,  a  candidate  set  is  determined,  either  the  full  factorial  (for  small
problems), or a fractional factorial (for large problems). Then, a (attribute level balanced) design is
created by selecting choice situations from the candidate set. After that, the efficiency error (e.g.,
D-error)  is  computed  for  this  design.  Finally,  if  this  design  has  a  lower  efficiency  error  than  the
current  best  design,  the design is  stored as  the most  efficient  design so far,  and one continues
with the next iteration repeating the whole process again. The algorithm terminates if all possible
combinations of choice situations have been evaluated (which is in general not feasible), or after a
predefined number of iterations. Construction of Dz-optimal as described in Street et al. (2005) is

also row based, in which in a smart way combinations of choice situations are made.
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Figure 7.3: Modified Federov algorithm

RSC (Relabeling, Swapping & Cycling) algorithms (Huber and Zwerina, 1996; Sándor and Wedel,
2001) are column based algorithms, illustrated in Figure 7.4. In each iteration, different columns
for each attribute are created, which together form a design. This design is evaluated and if it has
a lower efficiency error than the current best design, then it is stored. The columns are not created
randomly,  but   as  the  name  suggests   are  generated  in  a  structured  way  using  relabeling,
swapping, and cycling techniques. Starting with an initial design, each column could be altered by
relabeling  the  attribute  levels.  For  example,  if  the  attribute  levels  1  and  3  are  relabeled,  then  a
column containing the levels (1,2,1,3,2,3)  will  become (3,2,3,1,2,1).  Swapping means that  some
attribute  levels  switch  place,  for  example  if  the  attribute  levels  in  the  first  and  fourth  choice
situation are swapped, then (1,2,1,3,2,3) would become (3,2,1,1,2,3). Finally, cycling replaces all
attribute  levels  in  each  choice  situation  at  the  time  by  replacing  the  first  attribute  level  with  the
second level, the second level with the third, etc. Since this impacts all columns, cycling can only
be  performed  if  all  attributes  have  exactly  the  same  sets  of  feasible  levels  (e.g.,  in  case  all
variables are dummy coded). Sometimes only swapping is used, sometimes only relabeling and
swapping is used, as special cases of this algorithm type. 

Figure 7.4: RSC algorithm

If for some reason orthogonality is required in a Dp-efficient design, one could construct a single

orthogonal  design,  from  this  design  easily  create  a  large  (but  not  huge)  number  of  other
orthogonal designs, and then evaluate all these orthogonal designs and select the most efficient
one.  Creating  other  orthogonal  designs  from  a  single  orthogonal  design  is  relatively  simple,  as
discussed in Section 6.1.3.
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Evaluating each design for the efficiency error is the most time-consuming part of each algorithm,
therefore the number of D-error or other efficiency error evaluations should be kept to a minimum
by putting more intelligence into the construction of the designs. In determining Bayesian efficient
designs this becomes even more important, as the integral in Equation (7.6) cannot be computed
analytically,  but  only  by  simulation.  Mainly  pseudo-random  Monte  Carlo  simulations  have  been
performed for determining the Bayesian D-error for each design, which enables the approximation
of  this  D-error  by  taking  the  average  of  all  D-errors  for  the  same  design  using  pseudo-random
draws for  the prior  parameter  values.  This  is  clearly  a  computation intensive process,  such that
finding  Bayesian  efficient  designs  is  a  very  time  consuming  task.  Bliemer  et  al.  (2006)  have
proposed  to  use  quasi-random  draws  (such  as  Halton  or  Sobol  sequences)  or  preferably
Gaussian  quadrature  methods  instead  of  pseudo-random draws,  which  require  less  simulations
and therefore enable the evaluation of more designs in the same amount of time.

For further information on generating efficient designs, see Appendix 7B.

7.1.10 Discussion of efficient designs

Efficient or  optimal  designs have been embraced by more and more researchers as the current
best way of  designing SC experiments.  Practitioners are still  somewhat hesitant  to  deviate from
orthogonal  designs  which  have been claimed to  be  best  for  a  long  time,  but  there  is  a  growing
support for such designs both in practice and within the academic literature.

Do  the  chosen  feasible  levels,  determined  before  generating  an  efficient  design,  impact  the
potential  efficiency  of  the  design?  The  answer  is  ‘yes’,  they  have  a  significant  impact  on  the
efficiency. Broadly speaking, the less attribute levels and, more importantly, the wider the attribute
level  range,  the  higher  the  efficiency  of  the  design  can  be.  A  wide  attribute  level  range  usually
translates  into  smaller  asymptotic  standard  errors.  Therefore,  the  highest  efficiency  can
theoretically  be  obtained  using  so-called  end-point  designs,  which  are  two-level  designs  with
extreme (wide range) levels. The disadvantage of this kind of designs is, that nonlinearities cannot
be estimated (more levels are needed for this purpose). Furthermore, the extreme levels should
be realistic.

The  number  of  choice  situations  does  not  seem  to  have  a  large  impact  on  the  efficiency  of  a
design,  as  long  as  the  number  of  choice  situations  is  not  smaller  than  K/(J-1).  Clearly,  more
choice situations yield more data per respondent, hence the efficiency will automatically increase
with more choice situations. Compensating for this effect by normalizing the efficiency error (i.e.,
assuming the same amount of data), it does not seem to make much difference how many choice
situations are chosen. Therefore, the number of choice situations does not have to be very high
(blocking as in orthogonal designs is therefore not necessary) and should mainly depend on the
intuition  how  many  choice  situations  respondents  can  handle.  A  higher  number  of  choice
situations  means  a  higher  task  effort  for  the  respondent.  The  maximum  number  of  choice
situations  depends  of  course  on  the  complexity  of  each  choice  situation,  but  roughly  10  to  20
choice situations should be possible.

Still,  the  efficient  designs  discussed  in  this  section  may  be  improved  due  to  the  somewhat
restrictive assumptions commonly imposed. First of all, attribute level balanced has been imposed
for efficient designs, which is typically only required for orthogonal designs. Attribute level balance
is  viewed as  a  desired  property  ensuring  that  all  attribute  levels  appear  equally  in  the  data  set,
which  intuitively  provides  a  good  basis  for  estimation.  However,  the  attribute  level  balance
requirement  is  mathematically  speaking  merely  imposing  another  constraint  on  the  problem  of
minimizing the efficiency  error,  thereby always  leading  to  less  efficient  designs.  By  relaxing  this
assumption  a  more  efficient  design  can  be  found  (at  least  it  is  never  less  efficient).  An  optimal
level unbalanced design is likely to be (close to) an end-point design using just the two extreme
levels.
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Another assumption made in this section is the assumption of independent observations, i.e., the
outcomes  of  all  choice  situations  from  the  same  respondent  are  assumed  independent.  This
assumption makes it easy to derive analytical expressions of the AVC matrix. However, it is likely
that the data does not consist of independent observations, as the random unobserved utilities are
correlated  within  each  respondent,  and  this  has  to  be  taken  into  account.  Using  an  error
components structure one could simulate these correlations,  but  then the AVC matrix  has to  be
computed by simulation instead of  analytically,  see Scarpa et  al.  (2005)  and Ferrini  and Scarpa
(2006).

Some  other  assumptions  were  that  all  respondents  face  the  same  choice  situations,  and  that
socio-economic  data  is  ignored.  These  assumptions  are  relaxed  in  the  next  section.  Instead  of
relaxing some assumptions, it is also discussed how to deal with more constraints.

7.2 Generating efficient designs in Ngene

In contrast to orthogonal designs, more information on the model type and prior parameter values
is needed when dealing with efficient designs. In the following, different syntax commands will be
discussed for different model types. We will describe syntax for the MNL, the MMNL and the EC
models. 

7.2.1 Efficiency measures

All model types share that the efficiency measure to be optimized on has to be set. In Ngene this
can  be  done  using  the  property  eff,  by  defining  the  model  type  together  with  the  efficiency
measure required for optimisation. For example, using the D-error measure for finding an efficient
design for the MNL model, the following property is added to the syntax:

;eff = (mnl,d)

where  the  first  part  between  brackets  refers  to  the  model  type,  while  the  second  refers  to  the
efficiency measure. Other examples include

;eff = (ecpanel,d)
;eff =(ec,a)
;eff = (rp,s)
;eff = (rppanel,b)

where  mnl  refers  to  the  multinomial  logit  model,  ‘rp’  and  ‘rppanel’  refer  to  the  MMNL  cross
sectional and panel models, and ‘ec’ and ‘ecpanel’  to the EC cross sectional and panel models.
Furthermore, instead of using D-error, the A-error is minimised when the second argument is set
to ‘a’, the sample size is minimised when set to ‘s’, and the utility balance of the design maximized
when it is set to ‘b’. 

For designs that are to be optimized based on the variance of the ratio of two or more parameters
(WTP  designs),  the  optimization  routine  allows  for  up  to  k-1  ratios  to  be  specified.  The  routine
then attempts to minimize the sum of the variances of the indicated parameter ratios. In this way,
not all ratios need be used in the optimization routine. As such, when using the ‘wtp’ property, the
user is required to also specify what parameter ratios to use in the calculation. This is handled via
a separate wtp property in conjunction with the eff property, as shown below. 

;eff = (mnl,wtp(ref1))
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;wtp = ref1(*/b1)

where the ‘wtp’ argument in the eff property indicates that C-error efficiency measure is to be used
(see Section  7.1.4)  and ref1  links  the  eff  property  to  the  wtp  property.  For  the  wtp  property  the
user  first  specifies  a  name  (any  name  will  suffice;  we  have  used  ref1  here  for  demonstrative
purposes only) followed by what parameter ratios to use in the efficiency calculation. If an asterisk
(i.e.,  *)  is  used,  as  in  the  example  provided,  then  all  parameters  specified  in  the  models  utility
functions will be used as numerators in the calculation, save for the parameter indicated after the
back  slash  or  divide  symbol  (i.e.,  /).  The  parameter  named  after  the  back  slash  represents  the
parameter  (usually  a  cost  parameter)  that  will  be  used  as  the  denominator  in  the  WTP
calculations. Rather than use all parameters in the calculation, it is also possible to specify only a
subset of parameters as shown in the following example.

;eff = (mnl,wtp(wtp1))
;wtp = wtp1(b2,b3,b5/b1)

In  this  case,  the  C-error  measure  will  only  be  calculated  using  the  sum of  the  variances  of  the
ratios of the b2, b3 and b5 parameters to the b1 parameter. Any other parameters specified in the
models utility specification will not form part of the calculation. Note that any name can be used in
specifying the WTP measure with the name WTP1 now being substituted for the name ref1 used
previously. Note also that the WTP property will only work for the MNL model.

Efficient  designs  are  in  general  not  orthogonal.  However,  it  is  possible  to  generate  an  efficient
orthogonal design by adding the orth property as described before. Ngene will then search for the
most efficient design that is orthogonal.

Although efficient  designs typically  require less choice situations than an orthogonal  design,  the
number  of  choice  situations  may  still  be  too  large  to  give  to  a  single  respondent.  Similar  to
creating blocks for orthogonal designs, add the block property to the syntax, and Ngene will block
the  design  automatically  based  on  the  minimum  correlation  principle.  Basically,  it  will  try  to
minimize the average correlation between the blocking column and all other design columns.

It is possible that one would like to have a no-choice alternative (the option of not choosing any of
the other alternatives). This alternative does not have a utility function (so the utility is basically set
to zero for that alternative), but it does affect the choice probabilities and therefore the efficiency
of  the  design.  In  case  one  would  like  to  add  a  no-choice  alternative,  this  alternative  should  be
added  in  the  alts  property,  but  not  have  a  utility  function  in  the  model  property.  Ngene
automatically recognizes the alternative without a utility function as a no-choice alternative. 

The definition  of  the model  property  is  different  for  each of  the  model  types,  hence they will  be
discussed separately in the following. 

7.2.2 Designs for estimating multinomial logit models

The multinomial logit (MNL) model is the basic logit model with fixed parameters. Prior parameters
need to be specified for each fixed parameter, and this is done by adding them between square
brackets in the model property behind the parameter names. For example, the syntax may look as
follows:

Design
;alts = alt1, alt2
;rows = 12
;eff = (mnl,d)
;model:
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U(alt1) = b1[-0.2] + b2[1.2] * A[0,1,2] + b3[2.5] * B[0,1]     /
U(alt2) =            b2      * A        + b4[1.1] * C[2,4,6,8] 
$

When creating an efficient design, each parameter must have a prior value associated with it. For
generic  parameters  like  ‘b2’,  the  prior  value  should  only  be  defined  the  first  time  the  parameter
appears  and  should  not  be  defined  again  when  the  same  parameter  appears  in  another  utility
function.

Attribute levels can be specified in an alternative way, with a lower and upper bound, and a step
size.  These  three  values  are  specified  in  sequence  inside  the  square  brackets,  separated  by  a
colon. Using this syntax, the above example would be:

Design
;alts = alt1, alt2
;rows = 12
;eff = (mnl,d)
;model:
U(alt1) = b1[-0.2] + b2[1.2] * A[0:2:1] + b3[2.5] * B[0:1:1]     /
U(alt2) =            b2      * A        + b4[1.1] * C[2:8:2] 
$

Figure  7.5  shows  example  output  based  on  a  design  generated  using  the  above  syntax.  In
presenting  the  output  for  efficient  designs,  Ngene  always  first  presents  information  on  the
efficiency  measures  related  to  the  design,  independent  of  what  measure  was  used  during
optimization of the design. In the example output, the generated design has a Dp-error of 1.42, Ap
-error  of  4.12,  a  Bp-error  of  33.12  percent  and  an  Sp-error  of   6.18(suggesting  that  given  the
priors assumed, the design would need to be replicated at least 6.18 times for all  parameters to
be statistically  significant  with  a t-ratio  of  at  least  1.96).  Note that  these values assume that  the
prior parameters assumed are correct.

Note  that  in  calculating  the  efficiency  measures,  Ngene  ignores  any  constants.  The  constant  is
typically ignored in these kind of  studies,  since usually the constant is  of  less importance to the
researcher (indeed the constant is often considered meaningless in SC experiments as it is based
on the choice shares over the hypothetical situations, S). Further, in many SC studies, it is often
the ratios of two parameter values (e.g., to derive willingness to pay) that is of primary importance.
Therefore,  in  calculating  the  efficiency  for  each  design,  we  ignore  the  row  and  column  for  the
constant  in  the AVC matrix  when computing the efficiency statistic.  If  one wishes to  include the
constant in these calculations, then the con property can be added to the syntax. That is,

;con

Underneath  the  efficiency  measures,  more  detailed  information  related  to  the  Sp  -error  is
presented  for  each  (non-constant)  parameter  estimate  of  the  design.  The  parameter  estimate
priors and Sp  -errors for each of the parameters are presented here, as too are the expected t-
ratios for each of the parameters assuming only a single replication of the design were to be used
in practice. The last item of output presented automatically is the design itself.
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Figure 7.5: MNL design output

Additional output is also available by clicking on the check boxes located in the tree structure at
the  left  of  the  output  screen.  Figure  7.6  shows  the  additional  output  available  for  designs
generated  assuming  an  MNL  model  formulation.  Available  to  the  researcher  are  the  Fisher
Information matrix, AVC matrix, the utility estimates and choice probabilities for each choice task
contained within the design. The Fisher Information and AVC matrices are generated assuming a
single  design  replication.  The  utilities  and  choice  probabilities  are  often  useful  for  diagnostic
purposes. Examination of these outputs will often allow the user to observe if one alternative will
tend to dominate others within the design, in which case large efficiency measures (and/or small
B-error values) will generally be observed indicating difficulty in locating an efficient design. In the
example  output  shown  in  Figure  7.6,  examination  of  the  choice  probabilities  shows  that  the
second  alternative  will  tend  to  dominate  the  first  in  most  (but  not  all)  choice  situations.  Should
other attribute levels be used or different priors be assumed, then it might be possible to locate a
more  efficient  design.  Note  however  that  assuming  a  different  set  of  priors  in  generating  the
design  might not be ideal given that the priors assumed generally have to come from some other
source (such as a pilot survey), and hence disregarding these and simply assuming another set of
priors for the sake of statistical efficiency may have no scientifically valid basis.  

Although not shown here, Ngene can calculate the correlation structure of the design in the same
manner  as  with  orthogonal  designs.  The  various  correlation  measures  are  located  in  the  tree
structure  to  the  left  of  the  design  output  under  the  ‘Design’  button.  Clicking  on  any  of  the
correlation click boxes will have Ngene generate and show the requested correlation structure for
the design. 
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Figure 7.6: Additional MNL design output

7.2.3 Designs for estimating random parameters models

It  is strongly advised to first generate a non-Bayesian design with the MNL model. This allows
problems  to  be  much  more  quickly  identified.  For  example,  the  priors  might  lead  to  extreme
choice  probabilities  of  zero  and  one,  and  may  need  to  be  adjusted.  An  MNL  design  should
always be generated quickly, so if it is not, then you know there is a problem with your design
specification. Random parameter and Bayesian models are much slower to generate, and it may
not be clear for some time that there is a problem with the design. A good principle to follow is:
start simple, and gradually add complexity to the design.

In the mixed multinomial logit (MMNL) model, the parameters are assumed to be random instead
of fixed as in the MNL model. Therefore, the parameters in the model property need to be defined
as distributions. For example, suppose that parameter ‘b2’ is assumed to be normally distributed
with a mean of 1.2 and a standard deviation of 0.3 (1.2 and 0.3 are now prior parameter values for
the random parameter distribution), and suppose that ‘b4’ is uniformly distributed between 0.5 and
1.5, then the following syntax could be used:

? Cross sectional RP model
Design
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;alts = alt1, alt2
;rows = 12
;eff = (rp,d)
;model:
U(alt1) = b1[-0.2] + b2[n,1.2,0.3] * A[0,1,2] + b3[2.5] * B[0,1]       
   /
U(alt2) =            b2            * A        + b4[u,0.5,1.5] * C
[2,4,6,8] 
$

Hence, [n,1.2,0.3] indicates a normal distribution with mean 1.2 and standard deviation 0.3, while
[u,0.5,1.5] indicates a uniform distribution between 0.5 and 1.5.

For  generating  designs  for  the  MMNL  model,  simulations  are  needed  for  evaluating  the  design
over  the  complete  parameter  distributions.  This  is  done  by  taking  draws  from  the  parameter
distribution. The number of draws is  determined by setting the rdraws  (random draws) property.
For taking 1,000 (pseudo) random draws, the following is added to the syntax:

;rdraws = random(1000)

Not only are pseudo random draws available,  but also more intelligent sequences can be used,
such  as  Halton  sequences,  Sobol  sequences,  or  modified  latin  hybercube  sampling  (MLHS).
These may be used by adding for example:

;rdraws = halton(50)
;rdraws = sobol(100)
;rdraws = mlhs(80)

Another approach is to use Gaussian quadrature. For this method, the number of abscissas per
parameter is input. In the model described above, there are two random parameters. If one uses 5
abscissas  per  parameter,  the  total  number  of  Gaussian  draws  will  be  5×5  =  25  draws.  In  the
syntax this would be:

;rdraws = gauss(5)

In  case  of  few  random  parameters,  Gaussian  quadrature  is  extremely  efficient.  For  higher
numbers  of  random parameters,  the  number  of  Gaussian  draws  increases  exponentially.  For  5
random  parameters  with  5  abscissas  each,  this  would  yield  55  =  3,125  Gaussian  draws.  It  is
possible to set different numbers of abscissas per random parameter, for example:

;rdraws = gauss(3,3,2,4,5)

where the first two parameters have 3 abscissas, the third parameter 2 abscissas, etc. (in order of
appearance). The total number of Gaussian draws would now be 3×3×2×4×5 = 360 draws.

In  the  traditional  (cross-sectional)  MMNL model  the  observations  from the  choice  situations  are
treated  as  independent.  However,  in  SC  experiments  these  choice  observations  are  not
independent as they are faced by the same respondent. Ngene has a unique feature in which this
dependency can be taken into account by considering the panel MMNL model. Instead of model
type ‘rp’ one can use ‘rppanel’ in the syntax. The evaluation of the design efficiency for the panel
MMNL  model  is  much  more  complex  and  time  consuming  than  for  the  cross-sectional  MMNL
model as it requires sampling of respondents. The number of sampled (simulated) respondents is
set by the rep property. The higher this value, the more accurate the computations, but the higher
the computation time. The following two properties ensure that the panel MMNL model is used:
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;eff = (rppanel,d)
;rep = 500

Thus  the  complete  syntax  for  a  MMNL  design  allowing  for  the  pseudo  panel  nature  of  the  SC
design would look:

? Panel RP model
Design
;alts = alt1, alt2
;rows = 12
;eff = (rppanel,d)
;rep = 500
;rdraws = halton(250)
;model:
U(alt1) = b1[-0.2] + b2[n,1.2,0.3] * A[0,1,2] + b3[2.5]       * B[0,1] 
    /
U(alt2) =            b2            * A        + b4[u,0.5,1.5] * C
[2,4,6,8]  
$

The  type  of  output  generated  for  a  MMNL  design  (cross-sectional  and  panel  formulation)  is
identical  to  that  for  MNL  designs  discussed  earlier.  That  is,  Ngene  will  first  display  the  overall
efficiency  measures  of  the  design  followed  by  S-error  measures  for  each  of  the  parameter
estimates (including any standard deviation or spread parameters), after which the design itself is
presented (see Figure 7.7 which shows a design generated using the above syntax).

Figure 7.7: MMNL design output

Unlike  the  output  for  MNL  designs  however,  when  a  MMNL  design  is  requested,  Ngene  will
automatically  generate  additional  outputs  for  each  of  the  normally  reported  efficiency  measures
assuming  other  model  types.  This  is  shown  in  Figure  7.8  where  Ngene  reports  the  efficiency
outputs for the same design given in Figure 7.7, assuming MNL, MMNL cross sectional (RP) and
MMNL panel (RP Panel) model formulations. In generating the MNL model outputs, the means of
any random parameter distributions are assumed as the prior parameter inputs. Note that whilst
these  values  are  both  calculated  and  reported  for  the  different  model  types,  only  the  efficiency
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measure  for  the  model  type  requested  in  the  eff  property  is  used  in  the  design  optimization
routine. 

Finally,  as  briefly  mentioned  earlier,  calculation  of  the  Fisher  Information  matrix  for  the  panel
version  of  designs  generated  for  a  MMNL  model  requires  the  generation  of  a  sample  of
respondents.  This  greatly  increases  the  time  required  to  construct  such  a  design  compared  to
designs  generated  assuming  other  model  types.  Ngene  allows  the  user  to  observe  the  sample
generated for these calculations (but only for panel MMNL designs) by clicking on the sample tick
box within the RP panel tree structure. An example sample is shown in Figure 7.8. The simulated
sample of  respondents is  set  up in  such a way that  each row of  data represents  an alternative,
with  multiple  rows  representing  a  choice  task  in  the  design.  The  parameter  estimates  in  the
sample for random parameters are drawn from the prior parameter estimates provided by the user
in  generating  the  design  using  Halton  sequences.  By  using  Halton  sequences,  the  parameter
estimates  for  each  simulated  respondent  is  kept  constant  over  multiple  design  generation
iterations. Similarly, the EV1 error term is drawn using Halton sequences. The choice variable is
constructed based on the alternative that is observed to have the highest utility within each choice
task.
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Figure 7.8: MMNL design output by model type

Figure 7.9: Panel MMNL simulated sample

7.2.4 Designs for estimating error components models

In the error components (EC) model, the user can specifically add error terms (which are normally
distributed with mean zero and a given standard deviation) into the utility functions in the model
property. Prior values for the standard deviation need to be provided. The eff property will need to
reflect  the  fact  that  an  error  component  model  is  being  used,  setting  the  model  type  (the  first
argument of the eff property) to ‘ec’. In the utility functions, an error component will be recognized
by putting ‘ec’ as a first argument in the square brackets following the parameter name, e.g. ‘s1
[ec,0.2]’ indicates that parameter ‘s1’ represents a normal distributed error component with mean
zero and standard deviation 0.2. Multiple error components can be used, for example:

;eff = (ec,d)
;model:
U(alt1) = b1[-0.2] + b2[1.2] * A[0,1,2]   + s1[ec,0.2]      /
U(alt2) = b3[0.9]  + b4[0.8] * B[2,3,4,5] + s1 + s2[ec,0.5] /
U(alt3) =            b5[1.5] * C[1,2,3]        + s2   

As in the MMNL model, draws need to be taken from the random error components, such that the
rdraws property needs to be set in a similar fashion. 

Similar  to  designs  for  the  MMNL model,  it  is  also  possible  to  generate  a  panel  version  of  error
components type designs. This also requires the generation of a sample of simulated respondents
which  is  handled  in  the  exact  same  manner  as  with  MMNL  designs,  as  shown  in  the  following
syntax. 

;eff = (ecpanel,d)
;rep = 500
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An example set of syntax for an EC design allowing for the pseudo panel nature of the SC design
might therefore look as follows.

Design
;alts = alt1, alt2, alt3
;rows = 12
;eff = (ecpanel,d)
;rep = 500
;rdraws = halton(250)
;model:
U(alt1) = b1[-0.2] + b2[1.2] * A[0,1,2]   + s1[ec,0.2]      /
U(alt2) = b3[0.9]  + b4[0.8] * B[2,3,4,5] + s1 + s2[ec,0.5] /
U(alt3) =            b5[1.5] * C[1,2,3]        + s2         
$

The  output  for  EC  designs  is  exactly  the  same  as  that  reported  for  random  parameter  logits
models. As with MMNL designs, Ngene will report the efficiency measures for the MNL, EC cross
sectional,  and  EC panel  models  whenever  an  EC cross  sectional  or  panel  design  is  requested.
Also,  as  with  panel  MMNL  designs,  panel  EC  designs  require  the  simulation  of  a  sample  of
respondents. The simulated sample may be viewed in a manner similar to that when dealing with
panel MMNL designs (see Section 7.2.3).

7.2.5 Designs for estimating combined random parameters and error components

In some cases, the analyst may wish to generate a design that contains both random parameters
and error components. Setting the model type to ‘rpec’ lets Ngene know that both are used in the
utility functions. In the following example, ‘b2’ and ‘b4’ are random parameters, while ‘s1’ and ‘s2’
are error components:

Design
;eff = (rpec,d)
;model:
U(alt1) = b1[-0.2] + b2[n,1.2,0.3]  * A[0,1,2]   + s1[ec,0.2]          
    /
U(alt2) = b3[0.9]  + b4[0.8]        * B[2,3,4,5] + s1         + s2
[ec,0.5]  /
U(alt3) =            b5[u, 0.2,1.5] * C[1,2,3]                + s2 

Similar to ‘rp’, ‘ec’ and ‘rpec’ can be used in a panel approach. Setting the model type to ‘ecpanel’
or  ‘rpecpanel’  and setting the rep  property will  tell  Ngene to create a sample of  respondents  for
doing the computations for the panel approach. A full example of syntax is provided below.

Design
;alts = alt1, alt2, alt3
;rows = 12
;eff = (rpecpanel,d)
;rep = 500
;rdraws = halton(250)
;model:
U(alt1) = b1[-0.2] + b2[n,1.2,0.3] * A[0,1,2]   + s1[ec,0.2]           
   /
U(alt2) = b3[0.9]  + b4[0.8]       * B[2,3,4,5] + s1         +  s2
[ec,0.5]  /
U(alt3) =            b5[u,0.2,1.5] * C[1,2,3]                + s2      
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$

In case the model  specification contains error  components,  but  the eff  property indicates an ‘rp’
model,  then  the  error  components  will  be  ignored  in  the  efficiency  calculations.  Similarly,  if  the
model  specification  contains  random  parameters,  but  the  model  type  is  given  as  ‘ec’  in  the  eff
property,  the  random  parameters  will  be  assumed  fixed  (i.e.,  set  to  the  mean  value  of  the
distribution) when optimizing the design.

Once more, the output for this type of model is similar to that described earlier for the MMNL and
EC models, the main difference being that efficiency measures may now be obtained for all model
types, not just for MNL or MMNL or EC models. Also, as previously described, simulated samples
may be generated for the MMNL and error component panel models. 

7.2.6 Reporting efficiency measures for different model types

In  the  previous  sections,  the  example  syntax  assumed  that  the  utility  specifications  matched
perfectly the model type described in the eff property. For example, in using 

b2[n,1.2,0.3] 

to specify a random parameter, we used either 

;eff = (rppanel,d) 

or 

;eff = (rp,d)

Similarly, when an error component was included in the utility function, the eff property referred to
either a cross sectional or panel EC model form. In Ngene, it is possible however to specify one
type of model form in the set of utility functions but optimize on another type of model in the eff
property. The syntax below demonstrates one such case where the utility specification assumes
random parameters for b2 and b4, but the design is optimized assuming an MNL model (with fixed
parameters).

Design
;alts = alt1, alt2
;rows = 12
;eff = (mnl,d)
;rep = 500
;rdraws = halton(250)
;model:
U(alt1) = b1[-0.2] + b2[n,1.2,0.3] * A[0,1,2] + b3[2.5]       * B[0,1] 
    /
U(alt2) =            b2            * A        + b4[u,0.5,1.5] * C
[2,4,6,8]  
$

In cases such as this, Ngene will optimize on the model type requested in the eff property but will
also report the efficiency measure outcomes for model forms outlined in the utility specifications.
When optimized assuming an MNL model, Ngene will assume the average value of any random
parameter distribution as being the true prior value and ignore any error components. For designs
generated assuming a random parameter type model, any error component will be ignored in the
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optimization  routine.  Similarly,  for  EC  designs,  any  random  parameter  estimate  located  in  the
utility functions will also be ignored in optimization of the design. The benefit of allowing different
forms  of  utility  specifications  from  the  efficiency  measure  being  optimized  is  that  the  user  can
easily examine how the design is likely to perform assuming a different model type than that for
which it was optimized for. We discuss a similar concept in Section 7.4 when we discuss the use
of model averaging in the design generation process.

7.2.7 Designs with no choice alternatives

The question as to whether or not to include a ‘status quo’ alternative (sometimes referred to as a
‘no choice’ or ‘opt out’ alternative in various literatures) in SC studies has been widely debated in
many  discipline  areas.  Within  the  literature,  significant  differences  in  results  of  SC  experiments
with  and  without  the  presence  of  status  quo  alternatives  have  been  found  (see  e.g.,  Dhar  and
Simonson  2003),  and  in  general,  the  recommendation  has  been  that  status  quo  alternatives
should  be  used  in  such  experiments  (e.g.,  Louviere  et  al.  2000;  Adamowicz  and  Boxall  2001;
Bennett  and  Blamey  2001;  Bateman  et  al.  2003).  These  recommendations  have  grown  from  a
number  of  arguments  that  have  been  put  forward  for  the  use  of  status  quo  alternatives.  These
arguments include that the inclusion of a status quo alternative leads to an increase in the realism
of SC tasks (see e.g.,  Louviere and Woodworth 1983;  Batsell  and Louviere  1991;  Carson et  al.
1994), an increase in the external validity of welfare estimates derived from SC experiments (see
e.g., Adamozicz and Boxall  2001) and an improvement in the statistical efficiency of parameters
estimated from discrete choice models (see e.g., Louviere et al. 2000; Anderson and Wiley 1992).
For  a  further  overview  of  these  arguments,  see  e.g.,  Kontoleon  and  Yabe  (2003)  or  Dhar  and
Simpson (2003).

Traditionally,  where  used,  the  no  choice  or  status  quo  alternative  has  been  represented  in  SC
data  as  either  being  an  alternative  labelled  as  ‘none’  and  devoid  of  any  attribute  levels  or
alternatively as an option labelled as ‘your current alternative’ with attribute levels given simply as
'at the current level'  (see e.g., Tversky and Shafir  1992; Dhar 1997; Kontoleon and Yabe 2003).
Whilst  both  versions  of  the  status  quo  alternative  have  different  implications  given  different
interpretational  meanings  (i.e.,  the  ‘none’  option  represents  a  complete  opt-out  of  all  non-status
quo  alternatives  by  the  respondent  whereas  the  'your  current  alternative'  option  represents  the
choice  of  an  already  experienced  or  known  alternative  and  hence  is  not  strictly  a  no  choice
alternative),  it  is  the  impact  upon  respondents  of  including  such  alternatives  in  SC  experiments
that requires careful consideration. Where a ‘none’ option is used, there exists little possibility of
interpretation differences in terms of what the alternative means to respondents as the choice of
selecting  none  of  the  other  alternatives  presented  within  a  choice  task  should  have  the  same
meaning  for  the  entire  sample.  Where  the  status  quo  alternative  is  described  simply  as  'your
current  alternative'  however,  interpretation  differences  may  arise  as  different  respondents  may
have different current alternatives, or in the case where all respondents face the same status quo
alternative, may possess different perceptions as to the current attribute levels that that alternative
possesses. 

Independent of the form of the no choice alternative, one or more no choice alternatives can be
accounted  for  in  generating  a  design  by  naming  an  alternative  in  the  alts  property  but  not
specifying  a  utility  function  after  the  model  property.  Note  that  this  can  be  done  for  any  model
type,  and  can  also  be  used  when  generating  orthogonal  designs.  An  example  of  syntax  for  an
MNL design allowing for a no choice alternative is given below.
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Design
;alts = alt1, alt2, alt3
;rows = 12
;eff = (mnl,d)
;model:
U(alt1) = b11[-0.2] + b2[1.2] * A[0,1,2] + b3[2.5] * B[0,1]     /
U(alt2) = b12[0.3]  + b2      * A        + b4[1.1] * C[2,4,6,8] 
$

In generating such designs, Ngene will  assume that the utility for a no choice alternative is zero
and  that  no  attribute  levels  are  attached  to  the  alternative.  We  therefore  make  a  distinction
between this form of design and one where the no choice alternative does indeed have attribute
levels. For example, many designs employ a form of status quo option, which we term reference
alternative,  which  is  similar  to  the  'at  the  current  level'  status  quo  alternative  format  but  which
involves the capturing and often relation back to  respondents  as  part  of  SC choice tasks  of  the
(perceived)  attribute  levels  of  respondent  specific  currently  (or  recently)  experienced  real  life
alternatives. That is, respondents are asked what their perceptions are of the attribute levels for a
current (usually chosen) real world alternative, and these are used as an alternative in the choice
tasks that they view. We discuss this specific form of design in Section 8.3.

7.2.8 Designs with dummy and effects coded attributes

Rather  than  estimate  a  single  parameter  for  each  attribute  (assuming  a  linear  relationship
between changes in  the  attribute  and utility),  one  can also  estimate  multiple  unique parameters
associated with l-1 of an attribute's levels (suggesting that different levels have a different impact
upon utility, and hence assuming a nonlinear relationship). Typically, such nonlinear relationships
are represented using one of two data coding structures, these being dummy coding and effects
coding. 

To  demonstrate,  consider  an  example  where  an  attribute  representing  color  can  take  on  three
levels; blue, red and yellow. Within the utility specification, this attribute might be represented as
follows. 

U(alt1) = color[0.17] * color[0,1,2]

Graphically, the marginal utility for this color attribute may be represented as per Figure 7.10. In
this  case,  the  marginal  utility  difference  between  ‘blue’  and  'red',  is  the  same  as  the  difference
between the marginal utilities for ‘red’ and ‘yellow’. This is because a single parameter has been
assigned to the attribute and thus has the same impact upon utility as one moves from any one
level to the next adjacent level.
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Figure 7.10: Linear relationship between color and utility

Rather  than  assume a  linear  relationship  between  the  attribute  levels  of  an  attribute  and  utility,
dummy and effects coding requires that the analyst create unique variables for up to l-1 levels of
an  attribute,  each of  which  may then be  associated  with  distinct  parameter  estimates.  As  such,
rather  than  having  a  single  parameter  estimate,  the  analyst  now  has  l-1  parameter  estimates,
each of which represents the marginal utility associated with their corresponding attribute levels,
with the Lth level having a marginal utility set to zero.

Dummy coding utilizes a series of 0s and 1s to relate each attribute level of the original variable to
the  newly  created  columns.  Table  7.2  demonstrates  the  dummy  coding  concept  for  the  color
example  given  above.  First,  the  analyst  creates  l-1  columns  corresponding  in  this  case  to  the
creation of 2 additional columns (3 levels  1 = 2). In this example, we relate the two new columns
to  the colors  ‘blue’  and ‘red’.  Note  that  it  does not  matter  which attribute  levels  one creates  the
new columns for, as discrete choice models produce estimates of relative utility, and hence, any
order will produce the same result. Next, every time an attribute level appears in the design (data),
the column corresponding to that level  receives a value of  1,  otherwise it  receives a value of  0.
For the attribute level with no corresponding column (in Table 7.2 this is represented by the color
‘yellow’), for all constructed columns it will take the value of 0 (i.e., ‘blue’ and ‘red’). In the design
generation (or estimation process), the analyst now estimates parameters for the newly created l-
1 dummy variables.  

Table 7.2: Example dummy code

Figure 7.11 demonstrates the marginal utilities that could arise from the dummy coding exercise
presented in Table 7.2. Using only the newly created ‘blue’ and ‘red’ dummy variables, two unique
parameter  estimates  will  be  obtained,  one  for  each.  The  ‘yellow’  level,  not  having  a  dummy
variable column will automatically have a marginal utility of zero (hence the ‘blue’ and ‘red’ dummy
variable parameters will be relative to this ‘base’ level). 
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Figure 7.11: Nonlinear relationship between color and utility represented using dummy
codes

Dummy coding in Ngene is performed via minor modifications to how a parameter is handled in
the model utility functions. Firstly, in specifying the parameter value, the analyst will need to add
the syntax .dummy after naming the parameter, such as 

<parameter name>.dummy 

Next,  the  analyst  needs  to  provide  l-1  unique  parameter  priors  associated  with  the  l-1  newly
created dummy variables. This is done by separating l-1 parameter priors using a | symbol. Note
that if the analyst does not specify the attribute levels for a dummy coded variable, Ngene will use
the  levels  0,1,…,  L  when  presenting  the  design.  Where  attribute  levels  have  been  specified,
Ngene will report these values when presenting the final design despite using the dummy coded
variables  in  the  design  generation  process.  Example  syntax  is  presented  below  for  the  color
example,  where  the  first  color  level  has  been  assigned  a  prior  parameter  value  of  -0.15,  the
second 0.45 and the final omitted level, a value of zero.

U(alt1) = color.dummy[-0.15|0.45] * color

or

U(alt1) = color.dummy[-0.15|0.45] * color[0,1,2]

Effects coding is similar to dummy coding in that it allows the analyst to detect nonlinearities in the
marginal  utilities  for  levels  of  attributes  rather  than  assuming  a  linear  relationship  between  an
attributes  levels  and  overall  utility.  However,  effects  coding  offers  a  number  of  theoretical
advantages  over  dummy coding.  In  particular,  if  two or  more  attributes  are  dummy coded,  then
each will have its own ‘base’ level where all dummy coded columns are set at zero. For example,
if both color and gender are dummy coded, then the marginal utility for ‘yellow’ will have the same
marginal utility as say ‘male’ (assuming male = 0). In this way, the ‘base’ levels of several dummy
coded  variables  will  be  perfectly  confounded  with  each  other,  or  a  model  constant  if  one  is
present.

Effects coding overcomes this by changing the base level in the coding structure in such a way as
to allow for a unique estimate for that level. This is done by changing 0 to -1 in each column for
the base attribute level, as shown in Table 7.3. In this way, the base level will not be equal to zero,
but  rather  will  be  equal  to  minus  the  sum of  the  remaining  parameter  estimates.  This  is  shown
both in Equation (7.19) and Figure 7.12. 

Table 7.3: Example dummy code
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βyellow = -βred - βblue (7.19)

Effects  coding  and  dummy  coding  should  provide  the  same  results  in  terms  of  the  estimated
utilities  for  each  alternative  as  well  as  producing  the  same  choice  probabilities.  Differences
however will exist in the parameter priors (estimates) for the model constants as well as between
the  dummy  or  effects  coded  variables.  Indeed,  the  effects  coded  priors  (estimates)  should  be
similar to the dummy coded priors (estimates) up to some scale.

Figure 7.12: Nonlinear relationship between color and utility represented using effects
codes

In Ngene, the process to specify effects codes is similar to that for specifying dummy codes. The
analyst  must  still  specify  l-1  parameter  priors,  however  rather  than  use  the  syntax  .dummy,  .
effects is used instead. This is shown in the following example. As with dummy codes, the analyst
need not specify the levels of the attribute (in which case Ngene will report the levels as 0,1,…L in
the design output), however if levels are provided by the analyst, these levels will be used in any
output provided. Also, just like the dummy coding, the Ngene automatically codes the last attribute
level as the base.

U(alt1) = color.effects[-0.36|0.4] * color[0,1,2]

An example syntax shown dummy codes is given below.

Design
;alts = alt1, alt2, alt3
;rows = 12
;eff = (mnl,d)
;model:
U(alt1) = b11[-0.2] + b2.dummy[1.2|0.8] * A[0,1,2] + b3[2.5] * B[0,1]  
  /
U(alt2) = b12[0.3]  + b2                * A        + b4[0.4] * C
[2,4,6,8] 
$

Output showing a design generated using the above syntax is given in Figure 7.13. Note that in
presenting the design, Ngene does not present the dummy or  effects  coded columns but  rather
the levels of the design as if they were not dummy or effects coded. This is because, even though
the  optimization  routine  treated  these  variables  as  dummy  or  effects  coded,  conversion  of  the
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design into a choice survey is best done if the attributes are viewed as per those given in Figure
7.13. Note once more that even though the design is represented as if it were treated as linear in
the attributes, the optimization routine does indeed treat the design as if it were dummy or effects
coded.  This  can be confirmed by examining either  the Fisher  Information matrix  or  AVC matrix,
where  additional  rows  and  columns  will  be  present  for  each  dummy  or  effects  coded  prior
parameter. This can be clearly seen in Figure 7.13 where the AVC matrix now has additional rows
and columns for the two dummy priors assumed in the syntax.

Figure 7.13: Example Ngene design output with a dummy coded variable

Care  should  be  taken  when  using  dummy  or  effects  codes  in  generating  designs  however.  A
commonly observed problem occurs when a dummy or effects coded variable takes the value 1
over the entire design only a few times. For example, if a variable is coded 0,1,2,4 and the design
is  generated  with  16  choice  situations,  then  each  attribute  level  will  appear  four  times  over  the
design. If the variable is now dummy coded however, then the value 1 will appear only four times
for each dummy coded variable with the remainder of the variable taking the value of 0 (i.e., the
variable  will  have  four  1s  and 12  0s  over  the  16  choice  situations).  In  this  way,  the  design  can
become quite sparse in terms of non-zero values, the result of which will  either be an inefficient
design,  or  a  design  with  a  near  singular  Fisher  Information  matrix  meaning  that  it  cannot  be
inverted to obtain the design’s AVC matrix. 



115Efficient Designs

© 2018 ChoiceMetrics

7.2.9 Efficient designs with interactions

Previously,  in  Section  6.2.4,  interactions  were  introduced  in  the  context  of  orthogonal  designs.
Interactions  can  also  be  specified  for  efficient  designs.  In  fact,  Ngene  is  not  limited  to  two-way
interactions. It can handle interactions of any order.

The  two-way  interaction  is  the  most  basic  form  of  interaction  in  Ngene.  As  with  two-way
interactions  for  orthogonal  designs,  the  syntax  is  specified  by  introducing  a  parameter,  and
multiplying that parameter by two attributes that have already been specified. The key difference
is  that  for  efficient  designs,  a  parameter  prior  would  typically  be  specified  for  the  interaction
parameter. An example is provided below, where an interaction parameter i1, with a prior value of
0.1, is introduced in the first alternative, for the interaction of attributes A and B.

Design
;alts = alt1, alt2
;rows = 12
;eff = (mnl,d)
;model:
U(alt1) = b1[-0.2] + b2[0.7] * A[0,1,2] + b3[0.8] * B[0,1]     + i1[0.1]
* A * B /
U(alt2) =            b2      * A        + b4[0.2] * C[2,4,6,8]         
        
$

The interaction parameter will be reported in the Fisher and AVC matrices, and be included in the
calculation  of  the  efficiency  measures.  The  design  reported  will  include  two  columns  for  the
attributes, as well as an additional column for the interaction (even though this typically would not
be shown in a survey). 

To specify interactions of a higher order, simply multiply the parameter by more attributes. In the
example below, a new attribute, D, has been introduced, and included in the interaction, resulting
in a three-way interaction. 

Design
;alts = alt1, alt2
;rows = 12
;eff = (mnl,d)
;model:
U(alt1) = b1[-0.2] + b2[0.7] * A[0,1,2] + b3[0.8] * B[0,1]     + b5
[0.05] * D[1,2] + i1[0.1] * A * B * D /
U(alt2) =            b2      * A        + b4[0.2] * C[2,4,6,8]         
                                
$

In some situations, an attribute is only important in an interaction term, not as a main effect. As of
version  1.1,  Ngene  allows  an  attribute  to  be  introduced  in  the  interaction,  without  first  being
specified with a parameter for a main effect. The attribute will  still  be reported in its own column
when the design levels are reported, however the level will only be used in the interaction, and so
no main effect parameter will be included in the Fisher and AVC matrices. The example below is a
modification of the previous example, where the attribute D has been removed as a main effect,
and only included in the three-way interaction.

Design
;alts = alt1, alt2
;rows = 12
;eff = (mnl,d)
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;model:
U(alt1) = b1[-0.2] + b2[0.7] * A[0,1,2] + b3[0.8] * B[0,1]     + i1[0.1]
* A * B * D[1,2]  /
U(alt2) =            b2      * A        + b4[0.2] * C[2,4,6,8]         
                  
$

Finally,  you  may  wish  to  specify  an  interaction  with  a  dummy or  effects  coded  attribute.  In  this
context,  it  probably  does  not  make  sense  to  treat  the  dummy  or  effects  coded  attribute  as
continuous in the interaction. As of version 1.1, Ngene allows an interaction to be specified with a
specific attribute level, rather than all possible levels of an attribute. When referencing an existing
dummy  or  effects  coded  attribute  in  the  interaction,  use  the  syntax  <attribute>.dummy
[<exact level of attribute>]. This will evaluate to 1 if the attribute takes on the attribute
level specified, or 0 otherwise. This is best demonstrated using the example below.

Design
;alts = alt1, alt2, alt3
;rows = 12
;eff = (mnl,d)
;model:
U(alt1) = b11[-0.2] + b2.dummy[-0.6|-0.35] * A[1,2,3] + b3[0.8] * B[1,2]
    + i1[0.1] * A.dummy[2] * B /
U(alt2) = b12[0.3]  + b2                   * A        + b4[0.2] * C
[2,4,6,8]                            
$

Here, attribute A is dummy coded, with a prior of -0.6 for level 1 and -0.35 for level 2, with level 3
forming the base. In the interaction, A.dummy[2] will evaluate to 1 if attribute A is 2. Note that in
this  example,  levels  were  specified  for  attribute  A  (A[1,2,3]),  even  though  each  level  will  be
coded as 0 or 1 internally when evaluating the dummy coded main effect.  If  the levels were not
explicitly specified, they would default to [0,1,2], and these levels would need to be referenced
in the interaction term. If each level of a dummy or effects coded attribute needs to be interacted
with another attribute, then one interaction needs to be added for each level.

Note that dummy coding of an attribute level in an interaction does not require that that attribute's
main effect be dummy or effects coded. The example below is the same as above, except that in
the interaction, level 2 of attribute B is dummy coded, even though it was not for the main effect.

Design
;alts = alt1, alt2, alt3
;rows = 12
;eff = (mnl,d)
;model:
U(alt1) = b11[-0.2] + b2.dummy[-0.6|-0.35] * A[1,2,3] + b3[0.8] * B[1,2]
    + i1[0.1] * A.dummy[2] * B.dummy[1] /
U(alt2) = b12[0.3]  + b2                   * A        + b4[0.2] * C
[2,4,6,8]                                     
$
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7.3 Bayesian efficient designs

It  is strongly advised to first generate a non-Bayesian design with the MNL model. This allows
problems  to  be  much  more  quickly  identified.  For  example,  the  priors  might  lead  to  extreme
choice  probabilities  of  zero  and  one,  and  may  need  to  be  adjusted.  An  MNL  design  should
always be generated quickly, so if it is not, then you know there is a problem with your design
specification. Random parameter and Bayesian models are much slower to generate, and it may
not be clear for some time that there is a problem with the design. A good principle to follow is:
start simple, and gradually add complexity to the design.

In the previously discussed efficient designs the parameter prior values are assumed known and
fixed.  Since there is  always some uncertainty about  the true parameter  values,  these priors  are
never  known  exactly,  but  only  by  approximation.  In  order  to  take  into  account  the  uncertainty
about the parameter priors, Bayesian efficient designs have been developed which make use of
random priors instead of fixed priors, described by random distributions. All previously described
model types can be used in conjunction with random priors. All that is needed is to substitute the
fixed prior values with random distributions in the model property. We will illustrate this using the
example for the MNL and the MMNL models.

In the MNL model, assume that the prior value for parameter ‘b3’  is uncertain and that the prior
distribution  is  a  normal  distribution  with  mean  0.5  and  standard  deviation  0.2.  Then  instead  of
having [0.5] as a fixed prior for ‘b3’ it is now a random prior denoted by [(n,0.5,0.2)]. Note that the
round  brackets  within  which  the  distribution  is  placed  distinguishes  a  Bayesian  parameter
distribution  from  a  random  parameter  distribution.  That  is,  the  round  brackets  around  the  prior
value indicate that it is a Bayesian prior, which is not to be confused with a random parameter.

;eff = (mnl,d,mean)
;model:
U(alt1) = b1[-0.2] + b2[1.2] * A[0,1,2] + b3[(n,0.5,0.2)] * B[0,1]     /
U(alt2) =            b2      * A        + b4[1.1]         * C[0,1,2,3]

Observe that now in the efficiency method eff the term ‘mean’ is added as a third argument. When
computing the Bayesian D-error over different random draws, one can choose to take the mean
value,  the  minimum  or  maximum  value  (‘min’  or  ‘max’),  or  the  median  value  (‘median’)  of  the
efficiency measure being optimised. An additional argument that can be used is ‘fixed’,  in which
fixed priors values are assumed (set to the mean values of the distribution) instead of Bayesian
prior distributions. 

In  the  MMNL model,  the  random parameters  have prior  values  to  describe  the  distribution,  and
these prior values can again be Bayesian by assuming a prior distribution. For example, assume
that  the  ‘b2’  parameter  is  random,  following  a  normal  distribution  with  mean  1.2  and  standard
deviation  0.3.  These  two  values  are  not  known  with  certainty,  so  we  could  assume  prior
distributions for them, e.g., a normal distribution for the prior mean, and a uniform distribution for
the prior standard deviation:

;eff = (rp,d,median)
;model:
U(alt1) = b1[-0.2] + b2[n,(n,1.2,0.2),(u,0.1,0.3)] * A[0,1,2] + b3[0.5]
* B[0,1]     /
U(alt2) =            b2                            * A        + b4[0.4]
* C[0,1,2,3] 

In this case, the mean of the random parameter ‘b2’  follows a Bayesian normal distribution with
mean  1.2  and  standard  deviation  0.2,  while  the  standard  deviation  of  this  random  parameter
follows  a  uniform  distribution  from  0  to  0.3.  Note  that  negative  standard  deviations  should  not
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occur, hence the Bayesian distribution for the standard deviation prior should be chosen with care.

Similarly,  Bayesian  prior  parameter  distributions  can  be  used  for  EC  models.  For  EC  models
however,  the  error  component  term  represents  a  normally  distributed  random parameter  with  a
mean of  zero and an estimated standard deviation parameter.  As such,  only  the Bayesian prior
parameter  distribution  for  the  standard  deviation  parameter  of  the  error  component  need  be
established. This is shown in the following syntax. 

;eff = (ecpanel,s,mean)
;model:
U(alt1) = b11[-0.2] + b2[1.2] * A[0,1,2] + b3[(n,0.5,0.2)] * B[0,1]   +
s1[ec,(u,0.8,1.2)]  /
U(alt2) = b12[-0.3] + b2      * A        + b4[1.1]         * C[0,1,2,3]
+ s1                /
U(alt2) =             b2      * A        + b5[0.8]         * D[0,1,2,3]
  

Similar to the MMNL model, for the Bayesian efficient designs several random draws have to be
taken from the Bayesian random distributions. This is defined by the property bdraws  (Bayesian
draws) and can have the same arguments as the rdraws property, e.g.,

;bdraws = halton(100)
;bdraws = gauss(3,4)

Note  that  generating  designs  for  the  MMNL  or  EC  model  with  Bayesian  priors  can  be  very
computationally intensive, even more so if a panel approach is applied. Therefore, the number of
random parameters, error components, and Bayesian priors should preferably be limited.

Example syntax demonstrating the use of fixed parameter priors, Bayesian distributions for fixed
parameters, Bayesian distributions for random parameter population moments and Bayesian prior
parameter distributions for error components is given below.

Design
;alts = alt1, alt2,alt3
;rows = 12
;eff = (rpecpanel,d,mean)
;rep = 250
;rdraws = gauss(2)
;bdraws = gauss(2)
;model:
U(alt1)  =  b1[-0.2]  +  b2[n,(n,1.2,0.2),(u,0.1,0.3)]  *  A[0,1,2]  +  b3
[(n,0.5,0.1)] * B[0,1] + s1[ec,(u,0.8,1.2)]  /
U(alt2) =            b2                            * A        + b4[0.4]
* C[0,1,2,3]     + s1                  
$

In  the  above  example,  the  ‘b4’  parameter  prior  is  assumed  to  be  fixed  and  known  with  exact
certainty (i.e., 0.4). The ‘b3’ parameter is assumed to be a fixed (i.e., non-random) parameter but
with  a Bayesian prior  parameter  distribution assumed representing some uncertainty as to  what
the true population parameter will be once data is collected using the design. The ‘b2’ parameter
(which is also generic across alternatives ‘alt1’ and ‘alt2’) is assumed to be a random parameter
with Bayesian prior parameter distributions for both population moments. The design also allows
for  an error  component  with  a  standard deviation parameter  that  is  not  precisely  known a priori
and hence draws values also from a Bayesian prior parameter distribution. 

Figure 7.14 shows an example design generated using the above syntax. The output for designs
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generated  assuming  Bayesian  prior  parameter  distributions  mirrors  that  given  for  designs
constructed assuming fixed parameters with one exception. In addition to the efficiency measures
assuming  the  fixed  priors,  Ngene  reports  the  Bayesian  efficiency  measures  used  in  the
optimization  routine.  Note  that  when  Gaussian  quadrature  is  used,  as  in  this  example,  only  the
mean values for each of the efficiency measures is reported. This is a byproduct of how Gaussian
quadrature is calculated. When other draw types are used, such as Halton sequences, Ngene will
report  additional  population  moments  for  each  of  the  efficiency  measures,  as  shown  in  Figure
7.15.

Figure 7.14: Bayesian efficient design output screen

Figure 7.15: Output for non-Gaussian quadrature efficient designs

Finally, note that it is possible to combine Bayesian prior parameter estimates with dummy effects
coded variables. For example, 

b1.dummy[(n,-0.7,0.2)|(n,0.4,0.2)|0.8]*A[5,10,15,20]
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will assign Bayesian prior parameters for dummy variables associated with levels ‘5’ and ‘10’, and
a fixed prior parameter for the dummy variable associated with the attribute level ‘15’ (the attribute
level ‘20’ will be the base level). Similar structures can be applied to effects coded variables.

Ngene also  allows  the  user  to  optimise  the  design  based on  the  generalised  Asymptotic  Fisher

Information matrix (see Section 7.1.5). To do this, the command 

;gfim

is added to the syntax. For example, the previous syntax becomes

Design
;alts = alt1, alt2,alt3
;rows = 12
;eff = (rpecpanel,d,mean)
;rep = 250
;gfim
;rdraws = gauss(2)
;bdraws = gauss(2)
;model:
U(alt1)  =  b1[-0.2]  +  b2[n,(n,1.2,0.2),(u,0.1,0.3)]  *  A[0,1,2]  +  b3
[(n,0.5,0.1)] * B[0,1] + s1[ec,(u,0.8,1.2)]  /
U(alt2) =            b2                            * A        + b4[0.4]
* C[0,1,2,3]     + s1                  
$

Note that use of the generalised Asymptotic Fisher Information matrix will  not change the output

generated by Ngene, however it will affect the AVC matrix that the design is being optimised for.

7.4 Model averaging of efficient designs

Not  only  the  prior  parameter  values  are  uncertain,  the  precise  model  type  that  one  is  likely  to
estimate once data is collected using the design may also be uncertain. In order to provide greater
flexibility,  Ngene is  capable  of  evaluating different  models  at  the same time for  a  single  design.
These models may be of a different type, with different utility functions and different priors. Also,
different efficiency measures may be used in conjunction and/or Bayesian and fixed priors can be
taken into account. Since a single design is evaluated for different models, it is important that the
attribute  levels  specified  in  each  model  specification  are  the  same  when  referring  to  the  same
attribute.  Not  all  attributes  have  to  occur  in  each  model  specification,  although  the  design
generated  will  contain  levels  for  all  attributes  (attributes  not  used  in  the  model  specification  will
simply be ignored when evaluating the efficiency of that model). 

As described by Rose et al.  (2009),  Figure 7.16 schematically demonstrates the model  average
approach. Given a single design, different parameter priors associated with different model types
will result in different AVC matrices. Based on these AVC matrices, a single combined AVC matrix
can  be  constructed  from  which  efficiency  measures  can  be  calculated.  In  constructing  the
combined  AVC  matrix,  different  weights  can  be  attached  to  each  of  the  model  types  assumed,
thus giving different model types different degrees of emphasis in generating the overall design.
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Figure 7.16: Model average approach

In Ngene, to describe different models, the model property will be set a number of times, and each
model will be given a name. For example, below in the syntax we define five models and name
them ‘M1’, ‘M2’, ‘M3’, ‘M4’, ‘M5’. Note that in separating the model types, no backslash (i.e., /) is
used for the last utility function as would typically be the case.

;model(M1):
U(Alt1) = SP1[0.7] + b1[(n,-0.7,0.2)]*A[5,10,15,20] + b2[1.2]*B[0,1,2,3]
+ b3[1.8]*C[0,1,2,3] + b4[-0.6]*D[1,2,3,4] /
U(Alt2) = SP2[0.5] + b1*A                           + b2*B             
 + b3*C               + b4*D                

;model(M2):
U(Alt1) = SP1[0.6] + b1[(n,-0.6,0.2)]*A[5,10,15,20] + b2[1]*B[0,1,2,3] +
b3[1.5]*C[0,1,2,3] + b4[-0.5]*D[1,2,3,4]  + EC[EC,(U,1,2)] /
U(Alt2) = SP2[0.4] + b1*A                           + b2*B             +
b3*C               + b4*D                 + EC 

;model(M3):
U(Alt1)  =  SP1[0.8]  +  b1[n,(n,-0.8,0.1),(u,0.1,0.2)]*A[5,10,15,20]  +  b2
[n,1.2,0.2]*B[0,1,2,3] + b3[1.2]*C[0,1,2,3] + b4[-0.7]*D[1,2,3,4]  /
U(Alt2) = SP2[0.6] + b1*A                                         + b2*B
                     + b3*C               + b4*D      

;model(M4):
U(Alt1) = SP1[10.4] + b1[n,(n,-1.2,0.1),(u,0.1,0.2)]*A[5,10,15,20] + b2
[n,1.4,0.3]*B[0,1,2,3] + b3[1]*C[0,1,2,3] + b4[-0.6]*D[1,2,3,4]  /
U(Alt2) = SP2[10.2] + b1*A                                         +
b2*B                     + b3*C             + b4*D      

;model(M5):
U(Alt1) = SP1[0.7] + b1[(n,-0.5,0.2)]*A[5,10,15,20] + b2[1.1]*B[0,1,2,3]
+ b3[1.2]*C[0,1,2,3] + b4[-0.4]*D[1,2,3,4]  + EC[EC,(U,2,3)] /
U(Alt2) = SP2[0.5] + b1*A                           + b2*B             
 + b3*C               + b4*D                 + EC          

The  first  model  is  a  MNL  model  with  some  Bayesian  priors,  the  second  and  fourth  models  are
MMNL models whilst the third and fifth are EC models. Note that the priors for the unique models
can be different, and although not shown here, not all  parameters and attributes need appear in
all model utility functions.

When generating an efficient design for multiple models at the same time, a weighted efficiency
measure  is  computed  and  optimised  on.  The  eff  property  has  to  be  changed  to  compute  this
weighted efficiency measure, for example as follows:

;eff = M1(mnl,d,mean) + 2*M2(rppanel,d,mean) + 1.5*M3(ecpanel,d,mean) +
M4(rp,d,mean) + M5(ec,d,mean) 



122 Ngene User Manual

© 2018 ChoiceMetrics

The  efficiency  in  this  example  consists  of  the  Bayesian  D-errors  for  MNL  model  ‘M1’,  MMNL
models ‘M2’ and ‘M4’ and EC models ‘M3’ and ‘M5’. Whilst it is possible to mix different efficiency
measures in this procedure Rose et al. (2009) suggest against this as each measure is based on
a  different  metric  which  may  cause  one  efficiency  measure  to  dominate  all  the  others.  In  the
above example,  note how we have suggested multiplying the efficiency measure for  model  ‘M2’
by two and ‘M3’ by 1.5. In this way, the efficiency measures for these models will be given these
amounts  of  weight  more  than  the  efficiency  measures  of  the  remaining  models.  Note  that  if  no
weight is provided, then the efficiency measure for that model is automatically weighted by one.
 
In the above example, all alternatives in all model specifications are the same; each model uses
‘alt1’, ‘alt2’, and ‘alt3’. In general, these may be different for each model specification as well.  In
that case, the alts property has to be defined for each model, such as:

;alts(M1) = alt1, alt2, alt4
;alts(M2) = alt1, alt3, alt5, alt6

Other properties set in the syntax, such as rdraws, bdraws, and rep, apply to all models specified. 

Example syntax using the model averaging approach to generating an efficient design is provided
below.
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Design
;alts(m1) = alt1, alt2, alt3
;alts(m2) = alt1, alt2, alt3
;alts(m3) = alt1, alt2, alt3
;alts(m4) = alt1, alt2, alt3
;alts(m5) = alt1, alt2, alt3
;rows = 16
;eff = M1(mnl,d,mean) + 2*M2(rppanel,d,mean) + 1.5*M3(ecpanel,d,mean) +
M4(rp,d,mean) + M5(ec,d,mean)
;rdraws=gauss(3)
;bdraws=gauss(3)
;rep=250

;model(M1):
U(Alt1) = SP1[-3.2] + b1[(n,-0.07,0.03)]*A[5,10,15,20] + b2[(n,1.2,0.2)]
*B[0,1,2,3] + b3[1.8]*C[0,1,2,3] + b4[-0.6]*D[1,0] /
U(Alt2) = SP2[-3.4] + b1*A                             + b2*B          
            + b3*C               + b4*D  

;model(M2):
U(Alt1) = SP1[-2.4] + b1[n,(n,-0.08,0.01),(u,0.02,0.04)]*A[5,10,15,20] +
b2[n,1.2,0.4]*B[0,1,2,3] + b3[1.2]*C[0,1,2,3] + b4[-0.7]*D[1,0]  /
U(Alt2) = SP2[-2.2] + b1*A                                             +
b2*B                     + b3*C               + b4*D

;model(M3):
U(Alt1) = SP1[-3] + b1[(n,-0.06,0.02)]*A[5,10,15,20] + b2[1]*B[0,1,2,3]+
b3[1.5]*C[0,1,2,3] + b4[-0.5]*D[1,0]  + EC[EC,(U,1,2)] /
U(Alt2) = SP2[-2.8] + b1*A                           + b2*B            +
b3*C                +b4*D             + EC 

;model(M4):
U(Alt1) = SP1[-3.2] + b1[n,(n,-0.02,0.01),(u,0.01,0.03)]*A[5,10,15,20] +
b2[n,1.4,0.3]*B[0,1,2,3] + b3[1]*C[0,1,2,3] + b4[-0.6]*D[1,0]  /
U(Alt2) = SP2[-3] + b1*A                                               +
b2*B                     + b3*C             + b4*D      

;model(m5):
U(Alt1)  =  SP1[-3.3]  +  b1[(n,-0.05,0.02)]*A[5,10,15,20]  +  b2[1.1]*B
[0,1,2,3]+ b3[1.2]*C[0,1,2,3] + b4[-0.4]*D[1,0]  + EC[EC,(U,1.5,2.5)] /
U(Alt2) = SP2[-3.2] + b1*A                             + b2*B          
   + b3*C               + b4*D             + EC 

$

Example output based on the above syntax is given in Figure 7.17. Note that the output provided
is  similar  to  that  provided  for  non  model  average  efficient  designs,  although  Ngene  now  also
reports  the  weights  applied  to  the  various  model  types  in  generating  the  design  as  well  as  the
unweighted and weighted efficiency measure values. 
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Figure 7.17: Model average output screen

The  model  averaging  approach  outlined  here  may  also  be  used  to  examine  different  possible
utility specifications for the same model. For example, the analyst may be unsure as to whether
they will use dummy or effects codes or not post data collection. In such a case, the analyst may
utilize the same model form (e.g., MNL), but using the model averaging approach, specify linear in
the attributes for one model and dummy and/or effects codes for another model. For example, the
syntax  below  assumes  a  linear  in  the  attributes  specification  for  model  ‘M1”  but  a  nonlinear
specification  using  dummy  coding  for  model  ‘M2’.  Similarly,  one  can  use  the  same  process  to
average  models  with  and  without  a  no  choice  alternative  if  one  is  not  sure  what  choice  will  be
used in the final experiment, or if a dual choice process will be used.
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Design
;alts(M1) = alt1, alt2, alt3
;alts(M2) = alt1, alt2, alt3
;rows = 20
;eff = M1(mnl,d,mean) + M2(mnl,d,mean)

;bdraws=halton(150)

;model(M1):
U(Alt1) = SP1[0.7] + b1[(n,-0.7,0.2)]*A[5,10,15,20] + b2[1.2]*B[0,1,2,3]
+ b3[1.8]*C[0,1,2,3] /
U(Alt2) = SP2[0.5] + b1*A                           + b2*B             
 + b3*C               

;model(M2):
U(Alt1)  =  SP1[1.2]  +  b1.dummy[(n,-0.7,0.2)|(n,0.4,0.2)|0.8]*A
[5,10,15,20] + b2[1.2]*B[0,1,2,3] + b3[1.8]*C[0,1,2,3] /
U(Alt2) = SP2[0.9] + b1*A                                              
 + b2*B               + b3*C               

$ 

7.5 Appendix 7A Discrete choice models

In this section, we outline the differences between the MNL, MMNL, and EC models. We begin by
examining  different  conceptualizations  of  utility  specifications  that  result  in  each  of  the  different
model  formulations  before  discussing  how  these  utility  specifications  impact  upon  the  choice
probabilities and log-likelihood functions of each of the models. 

7.5.1 Utility specification

Let Unsj denote the utility of alternative j perceived by respondent n in choice situation s. Unsj may

be  partitioned  into  three  separate  components,  an  observed  component  of  utility,  Vnsj,  an

unobserved  (or  un-modeled)  component  of  utility,  ηnsj,  and  an  unobserved  (and  un-modeled)

component, εnsj, such that

Unsj = Vnsj + ηnsj + εnsj (7A.1)

The  observed  component  of  utility  is  typically  assumed  to  be  a  linear  relationship  of  observed
attribute levels of each alternative, x, and their corresponding weights (parameters), β. In the MNL
model,  the  parameter  weights  for  each  attribute  are  invariant  over  respondents,  such  that  the
observed component of utility may be represented as

(7A.2
)

Unlike the MNL model, some or all of the parameter weights of the MMNL model are assumed to
vary with density f(β  |  Ω) over the sampled population. Assumptions as to how these parameter
weights  vary  over  the  population  have  in  the  past  resulted  in  two  different  formulations  of  the
MMNL  model.  One  version  of  the  model,  known  as  the  cross  sectional  MMNL  formulation,



126 Ngene User Manual

© 2018 ChoiceMetrics

assumes  that  the  parameter  weights  vary  with  density  over  both  n  and  s  suggesting  that
preference  heterogeneity  exists  both  within  and  between  individuals,  even  when  the  same
individual is observed to make s choices within a similar choice context. The second version of the
model,  known  as  the  panel  MMNL  formulation,  assumes  that  preferences  vary  between
individuals  but  not  within.  The  assumption  that  preferences  vary  between  and  not  within
respondents  accounts  for  the  pseudo  panel  nature  of  SP  data  (Ortúzar  and  Willumsen,  2001;
Revelt  and  Train,  1998;  Train,  2003).  Equations  (7A.3a)  and  (7A.3b)  represent  the  observed
components of utility under both the cross sectional and panel formulations of the MMNL model
specifications. 

(7A.3
a)

(7A.3
b)

Like  the  MMNL  model,  the  EC  model  involves  estimation  of  one  or  more  random  parameters.
Unlike  the  MMNL  model  however,  the  random  parameter  estimates  of  the  EC  model  are
associated with alternatives, j, not attributes, x. To estimate the model, the analyst first specifies a
set of dummy variables, with each dummy variable able to appear in the utility specifications of up
to J-1 alternatives. Next, generic normally distributed random parameters with means normalised
to  zero,  represented  as   ηnsj  in  Equation  (7A.1),  are  estimated  for  each  of  the  defined  dummy

variables.  By associating each  ηnsj  with different subsets  of  alternatives,  the parameters  (which

represent  standard  deviations  set  around  a  mean  of  zero)  capture  different  common  error
variances  associated  with  those  alternatives  for  which  they  are  estimated  for.  Note  that  utility
specifications with alternative specific constants and alternative specific error components will be
equivalent to a MMNL model with normally distributed random constant terms. Also, as with the
MMNL model, the random parameters of the EC model may be estimated with density over both n
and s (cross sectional EC model) or only over n (panel EC model).

Assuming the analyst fails to specify error components as part of the utility functions of the model,
then Equation (7A.1) will collapse to 

Unsj = Vnsj + εnsj
(7A.4
)

which represents the most common form of utility representation within the literature.

Finally, for all logit type models, the second unobserved component of utility, εnsj, are assumed to

be identically and independently extreme value type 1 (EV1) distributed. 

7.5.2 Model probabilities

Depending on the assumptions made about  the utility  specifications as  outlined above,  different
functional forms of the logit model will be arrived at. We now outline in turn how the assumptions
made about the different models influence the choice probabilities derived for each of the models. 

The MNL Model

The choice probabilities of the MNL model are derived from a number of assumptions about the
choice behaviour of respondents. In particular, aside from the assumption that εnsj are IID EV1, the

MNL model assumes that the marginal utilities for the attributes and variables specified within the
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system of  utility  equations  are  fixed  for  the  sampled  population  and  that  ηnsj  =  0.   Under  these

assumptions, the probability, Pnsj, that respondent n  chooses alternative j in choice situation s  is

given by

(7A.5)

MMNL and EC Models

Both the MMNL and EC models differ from the MNL model in that we now assume that (some of)
the parameters (or error components) are random, following a certain probability distribution. The
choice  probabilities  of  the  MMNL  model  therefore  depend  on  the  random  parameters.  Both
models  utilize  the  MNL  probabilities  given  in  Equation  (7A.5),  however  rather  than  calculate  a
single  probability  for  each  alternative,  both  models  calculate  the  choice  probabilities  for  each
random  draw  taken  from  the  assumed  probability  distribution(s).  In  this  way,  multiple  choice
probabilities  are  obtained  for  each  alternative,  as  opposed  to  a  single  set  of  probabilities  as
obtained from the MNL model. It is the expectation of these probabilities over the random draws
which are calculated and used in the model estimation process. The expected choice probabilities
for the MMNL logit and EC models are given in Equations (7A.6a) and (7A.7b) respectively.

(7A.6
a)

(7A.6
b)

Equations (7A.6a) and (7A.6b) provide the choice probabilities at the level of the alternatives. In
the  cross  sectional  formulations  of  the  MMNL  and  EC  models,  it  is  these  probabilities  that  are
used  directly  in  model  estimation.  In  the  panel  formulations  of  the  MMNL  and  EC  models,  the
choice  probabilities  given  in  Equations  (7A.7a)  and  (7A.7b),  whilst  calculated,  are  not  of  direct
interest.  Rather,  what  are  of  interest  are  the  probabilities  of  observing  the  sequence  of  choices
made by  each  respondent,  not  the  probabilities  that  specific  alternatives  will  be  observed  to  be
chosen. To this end, we define the probability Pn

* that a certain respondent n has made a certain

sequence of choices  with respect to the set of choice situations, Sn, by

(7A.7
a)

(7A.7
b)

for the MMNL and EC models respectively.

7.5.3 Model log-likelihood functions

Typically, the parameters β contained within each Vnsi are unknown and must be estimated from

data. Let ynsj equal one if j is the chosen alternative in choice situation s shown to respondent n,

and zero otherwise. Then the parameters can be estimated by maximizing the likelihood function
L,
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(7A.8)

where N denotes the total number of respondents and Sn is the set of choice situations faced by

respondent n.

Rather  than  maximize  the  likelihood  function,  it  is  more  common  to  maximize  the  log  of  the
likelihood  function  instead.  This  is  because  taking  the  product  of  a  series  of  probabilities  will
typically produce values that are extremely small  and which most computing software packages
will  be  unable  to  adequately  handle.  By  taking  the  logs  of  the  probabilities  first,  large  negative
values will  result, which when multiplied, produce even larger negative values. As such, the log-
likelihood function of the model, shown below, is typically preferred.  

(7A.9)

In the sections that follow, we attempt to differentiate between the log-likelihood functions of the
various models available in Ngene.

The MNL Model

In  order  to  derive  the  log-likelihood  function  of  the  MNL model,  an  assumption  is  made  that  all
choice  observations  are  independent  of  each  other.  That  is,  even  in  data  where  the  same
individual  is  observed  to  make  multiple  choices,  the  log-likelihood  function  of  the  MNL  model
treats the data as if the observed choices have been made by separate pseudo individuals. Using
the mathematical  properties  ln(n1n2)  =  ln(n1)  +  ln(n2)  and ,  and applying the same

mathematical  rules  to  choice  tasks,  s,  and  alternatives,  j,  this  independence  of  choice
observations assumption results in Equation (7A.9) being rewritten in the more commonly known
form of

(7A.1
0)

The Log-likelihood function of the MNL model given in Equation (7A.10) will be globally concave
for  linear  in  the  parameters  utility  specifications  (see  McFadden  1974)  suggesting  that  there
should exist a single set of parameter estimates that will maximise this function. 

Cross Sectional MMNL and EC Models

The log-likelihood functions of  the cross sectional  MMNL and EC models  are derived under  the
same  assumptions  of  choice  observation  independence  as  made  with  the  MNL  model.  The
difference between these two models and the MNL model however is that the choice probabilities
used for the MNL are replaced with the expected choice probabilities given in Equations (7A.6a)
and  (7A.6b).  Using  the  same  mathematical  rules  used  to  derive  the  MNL  model  log-likelihood
function, and noting additionally that E(n1n2) = E(n1)E(n2), the log-likelihood functions of the cross

sectional MMNL and EC models may be represented as

(7A.1
1)

Panel MMNL and EC Models
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The  derivation  of  the  log-likelihood  functions  of  the  panel  formulations  of  the  MMNL  and  EC
models  differ  to  those  of  their  equivalent  cross  sectional  forms,  as  well  as  to  that  of  the  MNL
model,  in  that  the  choice  observations  are  no  longer  assumed  to  be  independent  within  each
respondent (although the independence across respondents assumption is maintained). 

Mathematically, this means that E(s1s2)  E(s1)E(s2), and hence we are no longer able to invoke

the mathematical rule ln(s1s2) = ln(s1) + ln(s2). Given this, the log-likelihood functions of the panel

MMNL and EC models may respectively be represented as

(7A.1
2a)

(7A.1
2a)

or

(7A.1
2c)

In the next section we outline the AVC matrices of each of the model types available in Ngene.

7.5.4 Model variance-covariance matrices

The generation of  efficient  SC experiments  requires first  an estimation of  the AVC matrix  of  the
design,  ΩN..  The  AVC  matrix  ΩN  can  be  determined  as  the  inverse  of  the  Fisher  Information

matrix,  IN,  which  in  turn  can  be  computed  using  the  second  derivatives  of  the  log-likelihood

function of the discrete choice model to be estimated (see Train, 2003). Mathematically, the AVC
matrix for the MNL may be represented as

(7A.1
3a)

whilst the AVC matrix of the MMNL and EC models becomes 

(7A.1
3b)

where EN(.) is used to express the large sample population mean. Hence, the AVC matrix can be

determined by calculating the Hessian matrix of the log-likelihood function for the specific model. 

As  was  seen  in  Appendix  7A.3,  different  discrete  choice  models  have  different  log-likelihood
functions. Given that the AVC matrix of a discrete choice model is calculated as the inverse of the
second derivatives of the log-likelihood function of that model, it is clear that each model will also
yield  a  different  AVC  matrix.  In  this  section,  we  reproduce  the  second  derivatives  of  the  log-
likelihood functions for each of the models available in Ngene. 

The MNL Model

The  second  derivatives  of  the  log-likelihood  function  of  the  MNL  depend  on  whether  the
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parameter estimates are generic  or  alternative specific  (see Bliemer and Rose,  2005b).  Let  x*
nsj

and xnsj represent attributes for which generic, given as β*, and alternative specific, represented by

 βj, parameters are to be estimated for respectively. Assuming that all respondents face the same

choice situations, s, the second derivatives of the MNL log-likelihood function yields the following
expressions (see Rose and Bliemer, 2005b)

(7A.1
4a)

(7A.1
4b)

(7A.1
4b)

Note  that  the  choice  index,  ynsj,  drops  out  of  the  second  derivatives  of  the  MNL  log-likelihood

function,  with  only  the  design,  x,  and  choice  probabilities  remaining.  Given  this  result,  it  is  not
necessary to know a prior what alternatives will be chosen in the sample data in order to calculate
the  expected  AVC  matrix  of  the  model.  All  the  analyst  requires  to  know  is  the  design,  and  the
choice probabilities. Given that the choice probabilities are a function of the design as well as the
parameter  estimates  (see  Equation  (7A.5)),  in  generating  an  efficient  design,  the  analyst  is
required to make certain assumptions regarding the parameter estimates in advance.

Cross Sectional MMNL and EC Models

The AVC matrix of the MMNL and EC models are somewhat more complicated than those of the
MNL  model  given  that  the  parameter  and  error  component  estimates  are  now  assume  to  be
randomly  distributed.  Let  Mk  represent  a  vector  of  parameters  related  to  the  probability

distributions of the k  (either random or error component) parameters, βk, denoted by Θk  = [Θkm],

where m = 1, ..., Mk. The second derivatives of this model is given as 

(7A.1
5)

Unfortunately,  unlike  the  MNL model,  the  choice  index,  ynsj,  does  not  drop  out  when  taking  the

second derivatives of  the log-likelihood function of  this  model.  Thus,  in  order  to  derive Equation
(7A.15), we are forced to rely on asymptotic theory and substitute EN(ynsj) = E(Pnsj), where EN(.) is

again the large sample mean. In this way, Equation (7A.15) becomes equivalent to that given in
Sándor and Wedel (2002).

Panel MMNL and EC Models

Relative to the other models explored herein, the second derivatives of the log-likelihood functions
of the panel MMNL and EC models are far more complex to compute as a result  of the product
terms  resident  in  Equations  (7A.12a)  to  (7A.12b).  Nevertheless,  such  derivations  are  possible.
Bliemer and Rose (2009) show that the second derivatives of Equation (7A.12c) is
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(7A.1
6)

where

(7A.1
7)

and

(7A.1
8)

and where  is the first derivative of the MNL probability,

(7A.1
9)

As with the cross sectional MMNL and EC models, the choice index,  ynsj, does not drop out when

taking  the  second  derivatives  of  the  log-likelihood  function  of  this  model.  Nevertheless,  it  is
possible once more to for the choice outcomes to be replaced by probabilities, since EN(ynsj) = Pnsj

  (y follows a multinomial distribution). However, EN(PN
*) cannot be approximated that easily, as it

describes a generalized multinomial distribution (Beaulieu, 1991). It is therefore necessary, unlike
for  designs  generated  specifically  for  the  MNL  and  cross  sectional  MMNL  and  EC  models,  to
simulate a sample based on the design x in order to calculate the second derivatives of the model.
To  do  this,  for  each  respondent  n,  we  first  draw  a  random  parameter  βk  from  each  given

parameter distribution, then determine the observed utility Vnsj  for  each choice situation s  based

on design x. Next we separately draw random values for the unobserved component εnsj for each

alternative in each choice situation, and determine ynsj by selecting the alternative with the highest

utility  in  each  choice  situation.  Note  that  the  same  random  draw  for  βk  is  used  over  all  choice

situations for each respondent, representing the panel formulation.

7.6 Appendix 7B Steps in generating efficient stated choice designs

Designs which attempt to minimise the elements contained within the AVC matrix are referred to
as efficient choice designs. We now go on to discuss the generation process for efficient choice
designs.

Step 1: Specify the utility specification for the likely final model to be estimated from data collected
using the SC design. This involves determining (i) what parameters will be generic and alternative
specific; (ii) whether attributes will enter the utility function as dummy/effects codes or some other
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format; (iii) whether main effects only or interaction terms will be estimated; (iv) the values of the
parameter  estimates  likely  to  be  obtained  once  the  model  is  estimated;  and  (v)  the  precise
econometric  model  that  is  likely  to  be  estimated  from  data  collected  using  the  experimental
design. Points (i) to (iii) impact directly upon the design matrix X, whereas point (iv) influences the
AVC  matrix  via  the  choice  probabilities  and  point  (v)  via  the  choice  probabilities  as  well  as
influencing the dimensionality of the AVC matrix itself. 

Point  (iv)  represents  the  most  divisive  aspect  of  generating  efficient  choice  designs.  In  order  to
estimate  the  AVC  matrix  of  a  design,  point  (iv)  suggests  that  the  analyst  is  required  to  have  a
priori knowledge of the parameter estimates that will be achieved using the design, even though
the design has not yet been constructed. Fortunately, the analyst does not have to assume exact
knowledge of these parameter priors (e.g., the price parameter will be -0.4), but can use Bayesian
methods  to  reflect  imperfect  knowledge of  the  exact  parameter  value  (e.g.,  the  price  parameter
may be drawn from a normal distribution with a mean of -0.4 and a standard deviation of 0.2, or
from a uniform distribution with a range between -1 and zero; see for example Sándor and Wedel
2001). Independent of how the priors are treated, two methods, namely numerically by simulation
or analytical derivation (discussed in step 4) can be used to approximate the AVC matrix. 

Point (v), determining the econometric model influences the AVC matrix not via the X matrix, but
in  terms  of  the  parameter  estimates  represented  within  the  AVC  matrix.  For  example,  designs
assuming  MNL  will  require  only  parameters  related  to  each  of  the  design  attributes  whereas
designs generated for NL models will require consideration of the scale parameters and designs
constructed for MMNL models will require elements in the AVC to be associated with the standard
deviation  or  spread parameters.  Given interdependencies  between  the  values  that  populate  the
AVC matrix of discrete choice models, one cannot simply assume that a design that minimises the
elements contained within the AVC for one model form will necessarily minimise the AVC matrix
for another model form. 

Step 2: Randomly populate the design matrix, X, to create an initial design. Unlike OOD designs,
the initial  design need not  be orthogonal,  although if  the analyst  wishes to  retain  orthogonally  it
should  be.  The  initial  design,  however,  should  incorporate  all  the  constraints  that  the  analyst
wishes  to  impose  upon  the  final  design  outcome.  For  example,  if  the  analyst  wishes  to  retain
attribute level balance, then the initial design should display this property. The initial design can be
constructed with the desired number of rows, however the number of rows should be greater than
or  equal  to  K/(J-1).  The utility  specification  expressed in  step  1  should  act  as  a  handy  guide  in
determining  the  minimum  number  of  choice  situations  to  use.  Similarly,  step  1  should  help
determine the number of columns that make up the X matrix;  one for each attribute (or attribute
level minus one in terms of dummy or effects coded attributes). In constructing the X matrix, the
precise levels that will likely be used later during estimation should be used. That is, if an attribute
is  likely  to  be  dummy  coded  in  estimation,  then  the  X  matrix  should  reflect  this.  Similarly,  if  a
quantitative attribute is to be estimated exactly as shown to a respondent during the survey (e.g.,
a price attribute takes on the levels $2, $4 and $6), then these values should be used to populate
the  X  matrix.  Note  that  different  attributes  may  take  on  different  coding  schemes.  Typically,  a
single design would be constructed that will be applied to the entire sample population; however,
multiple  designs  might  be  generated  corresponding  to  different  sub  segments  of  the  sampled
population (see e.g., Sándor and Wedel 2005 and Rose and Bliemer 2006).

Step 3: For the design, calculate the choice probabilities for each alternative in the design. For the
MNL  and  NL  models  calculating  the  choice  probabilities  is  relatively  straightforward  when  fixed
parameter  priors  are used (e.g.,  the price  parameter  is  -0.4).  When parameter  priors  are  drawn
from  Bayesian  distributions,  the  analyst  is  required  to  take  a  number  of  draws  from  the  given
random  distributions  and  calculate  the  choice  probability  for  each  set  of  draws.  Unlike  the
estimation process of  the MMNL model,  the average probability  is  not  calculated,  but  rather  the
average efficiency measure is used (as calculated in step 5). 

For designs assuming a MMNL, EC or probit  model  form, draws must be taken using the same
procedures  as  when  estimating  the  parameters  in  order  to  calculate  the  choice  probabilities  at
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each draw. When draws are taken from a Bayesian distribution for such models however, different
distributions  may  be  required  for  each  random  parameter  population  moment  (e.g.,  mean  and
standard  deviation).  Bliemer  et  al.  (2008)  examined  the  use  of  various  types  of  draws  when
drawing from Bayesian parameter distributions. They conclude that the predominantly employed
method  of  using  pseudo  Monte  Carlo  draws  is  unlikely  to  result  in  leading  to  truly  Bayesian
efficient  SC  designs  and  that  quasi  Monte  Carlo  methods  (e.g.,  using  Halton  or  Sobol  draws),
Modified  Latin  Hypercube  Sampling,  or  polynomial  cubature  methods  should  be  employed
instead. 

Step 4: Once the choice probabilities have been calculated, the next step is to construct the AVC
matrix for the design. Let ΩN denote the AVC matrix given a sample size of N respondents (each

facing S  choice situations).  This  AVC matrix  depends in  general  on the experimental  design,  X,
the  parameter  values,  β,  and  the  outcomes  of  the  survey,  Y  =  [yjsn],  where  yjsn  equals  one  if

respondent  n  chooses  alternative  j  in  choice  situation  s  and  is  zero  otherwise.  Since  the
parameter values β are unknown, prior parameter values  are used as best guesses for the true
parameters. 

The AVC matrix is the negative inverse of the expected Fisher Information matrix (e.g., see Train,
2003), where the latter is equal to the second derivatives of the log-likelihood function:

(7B.1)

where lN(X, Y, β) is the Fisher Information matrix with N respondents, and LN(X, Y, ) is the log-

likelihood function in case of N respondents defined by

(7B.2)

This formulation holds for each model type (MNL, MMNL or EC), only the choice probabilities Pjsn(

X,  )  are  different.  There  are  two  ways  of  determining  the  AVC  matrix,  either  by  Monte  Carlo
simulation, or analytically. 

Most  researchers  have  relied  on  Monte  Carlo  simulation.  In  this  case,  a  sample  of  size  N  is
generated and parameters  are  estimated based on simulated choices  (by simply  computing the
observed utilities using some prior parameter estimates, adding random draws for the unobserved
utilities, and then determine the chosen alternative by assuming that each respondent selects the
alternative with the highest utility). Such an estimation also provides the results for the variance-
covariance matrix. This procedure is repeated a large number of times and the average variance-
covariance matrix gives the AVC matrix. 

Many have not realized that the AVC matrix can be determined analytically, as suggested for MNL
models with all generic parameters by McFadden (1974). In this case, the second derivative of the
log-likelihood  function  in  Equation  (7B.2)  is  determined  and  evaluated  analytically.  A  potential
problem is,  that  the vector  of  outcomes,  Y,  is  part  of  the log-likelihood function,  the reason why
most researchers perform Monte Carlo simulations. However, it can be shown that the outcomes
Y drop out when taking the second derivatives in case of the MNL model. This has been shown by
McFadden (1974)  for  models  with  all  generic  parameters,  and in  Rose and Bliemer  (2005a)  for
models with alternative-specific parameters, or a combination. Furthermore, Bliemer et al. (2009)
have  also  derived  analytical  expressions  for  the  second  derivatives  for  the  NL  model.  The
outcomes  Y  do  not  drop  out,  but  as  shown  Bliemer  et  al.  (2009),  they  can  be  replaced  with
probabilities leading to exactly the same AVC matrix, which has been confirmed by Monte Carlo
simulation outcomes. Although more tedious, the second derivatives can also be derived for the
MMNL  model  and  a  similar  procedure  holds  for  removing  the  outcome  vector  Y.  Note  that  the
MMNL model will always require some simulations, as the parameters are assumed to be random
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and therefore  expected probabilities  need to  be approximated using simulation.  However,  these
simulations  have  no  connection  with  the  simulations  mentioned  earlier  for  determining  the  AVC
matrix.  To  conclude,  ΩN  can  be  determined  without  knowing  the  simulated  outcomes  Y,  hence,

the dependency on Y disappears in Equation (7B.1). 

Step 5:  The next  step  is  to  evaluate  the  statistical  efficiency  of  the  design.  Efficiency  measures
have been proposed in the literature in order to calculate an efficiency value based on the AVC
matrix,  typically  expressed  as  in  efficiency  ‘error’  (i.e.,  a  measure  for  the  inefficiency).  The
objective then becomes to minimize this efficiency error. The most widely used measure is called
the D-error (not to be confused with the D-efficiency measure of OOD designs (equation (7B.3)),
which  takes  the  determinant  of  the  AVC matrix  Ω1,  assuming only  a  single  respondent10.  Other

measures exist, such as the A-error, which takes the trace (sum of the diagonal elements) of the
AVC  matrix.  However,  in  contrast  to  the  D-error,  the  A-error  is  sensitive  to  scaling  of  the
parameters and attributes, hence here only the D-error will be discussed.

The D-errors are a function of the experimental design X and the prior values (or prior probability
distributions) , and can be mathematically formulated as:

(7B.3)

(7B.4)

(7B.5)

where K is the number of parameters to be estimated. It  is common to normalize the D-error by
taking the power 1/K. Within the literature, designs which are optimized without any information on
the priors  (i.e.,  assuming =0)  are referred to  as Dz–optimal  designs (Equation (7B.3),  whereas

designs  optimized  for  specific  fixed  (non-zero)  prior  parameters  are  referred  to  as  Dp–optimal

designs  (Equation  (7B.4)).  In  (Bayesian)  Db–optimal  designs  (Equation  (7B.5)),  the  priors   are

assumed  to  be  random  variables  with  a  joint  probability  density  function  Φ(.)  with  given
parameters Θ.

Step  6:  In  step  2,  we  began  with  a  random start  design.  The  next  stage  in  generating  efficient
choice designs is to change the design(s) and repeat steps 3 to 5 up to R number of times, each
time recoding the designs relative level of statistical efficiency. By changing the design R number
of times, the analyst is in effect able to compare the efficiency of  each of  the R  different design
matrices. It is important to note that for only the smallest of designs will it be possible to search the
full enumeration of possible designs11. As such, it is common to turn to algorithms to determine as
many different designs with low efficiency errors as possible. A number of algorithms have been
proposed and implemented within the literature for determining how best to change the attribute
levels in locating efficient choice designs. Primarily, these consist of row based and column based
algorithms. In a row based algorithm choice situations are selected from a predefined candidate
set  of  choice  situations  (either  a  full  factorial  or  a  fractional  factorial)  in  each  iteration.  Column
based algorithms  create a design by selecting attribute levels over all  choice situations for  each
attribute. Row based algorithms can easily remove dominated choice situations from the canditure
set  at  the  beginning  (e.g.,  by  applying  some  utility  balance  criterion),  but  it  is  more  difficult  to
satisfy attribute level balance. The opposite holds for column based algorithms, in which attribute
level  balance is  easy to  satisfy,  but  finding good combinations  of  attribute  levels  in  each choice
situation is  more difficult.  In  general  column based algorithms offer  more flexibility  and can deal
with larger designs, but in some cases (e.g., for unlabelled designs and for specific designs such
as constrained designs) row based algorithms are more suitable.

The Modified Federov algorithm (Cook and Nachtsheim, 1980) is the most widely used row based
algorithm. The algorithm first constructs a candidature set of choice situations which may either be
the full  factorial  (for  small  problems) or  a fractional  factorial  (for  large problems) drawn from the
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full  enumeration  of  choice  situations  possible  for  the  problem.  Next,  a  (attribute  level  balanced)
design is created by selecting choice situations from the candidature set, after which the efficiency
error (e.g., D-error) is computed for the design. If this design has a lower efficiency error than the
current  best  design,  the design is  stored as  the most  efficient  design so far,  and one continues
with the next iteration repeating the whole process again. The algorithm terminates if all possible
combinations of choice situations have been evaluated (which is in general not feasible), or after a
predefined number of iterations.

RSC (Relabeling, Swapping & Cycling) algorithms (Huber and Zwerina, 1996; Sándor and Wedel,
2001)  represent  the  predominant  column  based  algorithms  in  use  today.  Each  iteration  of  the
algorithm creates different columns for each attribute, which together form a design. This design is
evaluated and if it has a lower efficiency error than the current best design, then it is stored. The
columns  are  not  created  randomly,  but  are  generated  in  a  structured  way  using  relabeling,
swapping,  and  cycling  techniques.  Relabeling  involves  switching  all  the  attribute  levels  of  an
attribute. For example, if the attribute levels 1 and 3 are relabeled, then a column containing the
levels  (1,2,1,3,2,3)  will  become  (3,2,3,1,2,1).  Rather  than  switch  all  attribute  levels  within  an
attribute, swapping involves switching only a few attribute levels within an attribute at a time. For
example,  if  the  attribute  levels  in  the  first  and  fourth  choice  situation  are  swapped,  then
(1,2,1,3,2,3)  would  now  become  (3,2,1,1,2,3).  Finally,  cycling  works  by  replacing  all  attribute
levels  in  each  choice  situation  at  the  same  time  by  replacing  the  first  attribute  level  with  the
second level, the second level with the third, etc. Since this impacts all columns, cycling can only
be  performed  if  all  attributes  have  exactly  the  same  sets  of  feasible  levels  (e.g.,  in  case  all
variables  are  dummy  coded).  Note  that  it  is  not  necessary  to  use  all  three  methods
simultaneously,  such  that  only  relabelling,  swapping  or  cycling,  or  combinations  thereof  can  be
used. 



Chapter 8

Advanced Features in Generating
Efficient Designs



137Advanced Features in Generating Efficient Designs

© 2018 ChoiceMetrics

8 Advanced Features in Generating Efficient Designs
So  far  we  discussed  orthogonal  designs  which  remain  the  mainstream  design  type  used  by
practitioners,  and  efficient  designs  that  have  theoretical  and  practical  advantages  and  are
envisaged to be used more and more by practitioners. In this section, several advanced designs
will  be  discussed.  These  designs  are  actually  special  efficient  designs  in  which  some  of  the
assumptions are relaxed to allow more flexibility  in  the design,  or  in  which more constraints  are
added, both for practical reasons. It is important to note that the designs discussed in this section
are the current state-of-the-art  and certainly not state-of-the-practice,  although practitioners may
be  highly  interested  in  these  advanced  designs.  We  note  that  there  still  remains  a  significant
amount of research to be done in this area.

8.1 Attribute level balance and fractional factorial designs

As  mentioned  in  Section  6.2.2,  most  designs  in  Ngene  default  to  the  property  of  attribute  level
balance, meaning that for each attribute, each level appears an equal number of times over the
choice situations. This will guarantee an even distribution of the levels, such that not just primarily
high or  low levels are faced by respondents.  However,  like orthogonality,  attribute level  balance
puts  another  restriction  on  the  design,  such  that  some  efficiency  may  be  lost.  Letting  go  of
attribute level balance typically produces more efficient designs, although in practice most people
maintain attribute level balance in their design as a desired property.

Ngene  allows  three  methods  to  overcome  the  attribute  level  balance  restriction  in  the  types  of
designs discussed to date,  or  otherwise control  the degree of  attribute level  balance.  We briefly
discussed  the  first  method  in  Section  6.2.2.  This  involved  designs  where  the  number  of  rows
specified  is  greater  than  or  equal  to  K/(J-1),  but  such  that  they  do  not  allow  for  attribute  level
balance. An example of this is given in the following syntax where the number of rows specified is
eight, but attribute A is specified with three levels. 

Design
;alts = alt1, alt2
;eff=(mnl,d)
;rows = 8
;model:
U(alt1) = b1[-0.2] + b2[0.2] * A[0,1,2] + b3[-0.3] * B[0,1]     /
U(alt2) =            b2      * A        + b4[-0.4] * C[2,4,6,8] 
$

In this case, Ngene will generate a design but in doing so provide the following warning.
 
“Warning: One or  more attributes will  not  have level  balance with the number of  rows specified:
alt1.a, alt2.a”

In such cases, Ngene will  generate a design while attempting to maintain attribute level balance
as much as possible. This is shown in Figure 8.1. When the number of attribute levels specified is
less than the number of rows, Ngene will ensure that each attribute level appears at least once in
the design.  If  the number  of  attribute  levels  for  any given attribute  exceeds the number  of  rows
specified,  it  becomes  impossible  for  Ngene  to  ensure  that  each  attribute  level  appears  at  least
once over  the  course  of  the  design,  forcing  Ngene  to  select  those  levels  that  will  maximize  the
efficiency  criteria  selected.  The  following  utility  functions  demonstrate  this  idea  assuming  the
analyst maintained a desire to generate the design in eight rows.
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;model:
U(alt1) = b1[-0.2] + b2[0.2] * A[0,1,2,3,4,5,6,7,8] + b3[-0.3] * B[0,1]
/
U(alt2) =            b2      * A           + b4[-0.4] * C[2,4,6,8]      
$

Figure 8.1: A non attribute level balanced design generated using Method 1

The second method for letting go of attribute level balance involves the user specifying attribute
level  count  constraints,  i.e.  how  many  times  each  level  needs  to  occur  within  the  design,  by
indicating  a  minimum  and  maximum  number.  This  is  done  by  specifying  this  minimum  and
maximum in a range after the attribute levels (using round brackets, and a dash, ‘-’, for indicating
a range). This allows more flexibility than the first method of letting go of attribute level balance by
allowing the user to specify the number of times an attribute level will appear (within some range)
rather  than  have  Ngene  attempt  to  enforce  attribute  level  balance  as  much  as  is  possible.
Example syntax of this method is shown below.

Design
;alts = alt1, alt2
;eff = (mnl,d)
;rows = 9
;model:
U(alt1)  =  b1[1.1]  +  b2[-0.2]  *  A[2,4,6](1-4,4,2-4)    +  b3[0.8]  *  B
[0,1,2] /
U(alt2) =           b4[-0.3] * C[0,3,6](0-9,2-9,0-9) + b3      * B     
  
$

In  this  example,  a  design  will  be  generated  with  nine  choice  situations,  where  the  levels  of
attribute ‘A’  do not  necessarily  have to be attribute  level  balanced (i.e.,  each of  the three levels
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does not have to appear exactly three times). In fact, the first level (2) has to appear 1 to 4 times,
the second level (4) exactly 4 times, and the third level (6) has to appear 2 to 4 times. Attribute ‘C’
does not put any restrictions on the number of times each attribute level has to appear, indicated
by a minimum of appearing not at all (0) to appearing in all choice situations (9). 

Figure 8.2 shows a design generated using the above syntax. Although not always the case, we
note  that  for  designs  with  attributes  with  more  than  two  levels,  if  the  user  allows  non-end  point
levels  to  appear  zero  times  (i.e.,  the  minimum  number  of  times  the  middle  attribute  levels  are
allowed to appear is set at zero; e.g., 0-9) then typically the most efficient design will be one that
will have only the two end point levels. As stated above, this need not be the case, as it depends
upon the attribute levels and priors assumed in generating the design, however our experience is
that this will be the case in many instances.

Figure 8.2: A non attribute level balanced design generated using Method 2

This  second  approach,  attribute  level  count  constraints,  is  particularly  useful  when  utilising  the
Modified  Federov  algorithm  to  generate  efficient  designs  (see  Section  8.6  for  details  on  the
various algorithms available). This is because the Modified Federov algorithm does not preserve
attribute level balance by default. By contrast, the swapping algorithm, that is the default in Ngene,
will  maximise  the  attribute  level  balance,  so  long  as  attribute  level  count  constraints  are  not
specified.  Despite  a  natural  tendency  to  have  attribute  level  imbalance,  the  Modified  Federov
algorithm can  be  useful  in  a  number  of  situations,  and  allows  for  very  flexible  constraints  to  be
imposed on the design (see Section 8.2 for more on these constraints). The following is the same
syntax as above, but utilising the Modified Federov algorithm.
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Design
;alts = alt1, alt2
;eff = (mnl,d)
;rows = 9
;alg = mfederov
;model:
U(alt1)  =  b1[1.1]  +  b2[-0.2]  *  A[2,4,6](1-4,4,2-4)    +  b3[0.8]  *  B
[0,1,2] /
U(alt2) =           b4[-0.3] * C[0,3,6](0-9,2-9,0-9) + b3      * B     
  
$

Figure  8.3  shows  a  design  generated  with  the  Modified  Federov  algorithm  and  attribute  level
count constraints imposed on some of the attributes. Note how only the end point levels are in the
design for attribute 'B'. 

Figure 8.3: A non attribute level balanced design generated with the Modified Federov
algorithm using Method 2

The third method for controlling the amount of attribute level balance is through the imposition of a
soft level balance constraint. Unlike the second approach, which imposes hard constraints on how
many  times  each  attribute  level  can  appear,  this  approach  calculates  an  overall  measure  of
attribute level imbalance, which can be added to efficiency measures such as d-error, allowing the
design to be optimised on a combination of statistical efficiency and attribute level balance.

Consider an experimental design x, which contains S choice tasks. Each attribute k has Lk levels.
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Collins et al. (2014) calculate the attribute level imbalance (LIB) as:

(8.1)

For each attribute, the difference is calculated between the number of  times each attribute level
occurs,  and  the  number  of  times  it  should  occur  under  level  balance.  Imbalance  of  greater
magnitude  is  penalised  by  squaring  the  difference.  The  denominator  represents  the  balance
measure in the worst case. The final level imbalance measure lies between 0 (full balance) and 1
(full imbalance), and is useful for combining with an efficiency measure in the optimisation function
(Collins et al., 2014).

The attribute level imbalance measure can readily be combined with other efficiency measures in
Ngene  using  the  eff  property.  The  analyst  can  adjust  the  relative  weights  of  the  imbalance
measure  and  other  measures,  and  may  need  to  do  so  iteratively  to  find  an  appropriate
compromise between statistical efficiency and attribute level balance.

Design
;alts = alt1, alt2
;eff = (mnl,d) + 0.5*(imbalance)
;rows = 9
;alg = mfederov
;model:
U(alt1) = b1[1.1] + b2[-0.2] * A[2,4,6] + b3[0.8] * B[0,1,2] /
U(alt2) =           b4[-0.3] * C[0,3,6] + b3      * B        
$

Figure 8.4 shows a design generated with the soft level balance constraint approach specified in
the above syntax. Note how level balance is nearly but not fully achieved.
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Figure 8.4: A design generated utilising soft level balance constraints

8.2 Constraints and fractional factorial designs

8.2.1 Constrained designs

Sometimes  certain  combinations  of  attribute  levels  in  a  choice  situation  are  not  feasible.  These
infeasible choice situations need to be avoided by adding constraints. 

Level  constrained designs are  most  apparent  in  applications  in  health  economics.  For  example,
consider two alternatives, treating and not treating a patient.  Then the attribute ‘age of  death’  in
these alternatives should be such that in each choice situation this age for the treating alternative
is  never  lower  than the non-treating alternative,  and the attribute  ‘current  age’  cannot  be higher
than  the  ‘age  of  death’.  In  transportation,  one  could  think  of  route  alternatives  with  different
departure times, free-flow travel times, and arrival times. Clearly, the arrival times should be later
than  the  departure  times,  and  the  difference  between  the  arrival  and  departure  time  should  be
greater than or equal to the free-flow travel time. 

There  are  different  ways  of  including  these  constraints.  A  straightforward  way,  implemented  in
Ngene, is using an extended version of the modified Federov algorithm. After having determined
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the candidate set, choice situations that do not satisfy the constraints are removed from this set.
This ensures that all designs generated from this candidate set will be feasible. 

Note that it  may be hard or even impossible to find an attribute level  balanced design satisfying
the constraints, especially when the constraints impose many restrictions. Also note that in theory
RSC algorithms can also be used, but that after each relabeling, swapping, or cycling all  choice
situations need to be checked for feasibility. Ensuring that all choice situations are feasible could
be difficult, hence RSC algorithms may not be suitable.

8.2.2 Constrained designs in Ngene

In order to avoid designs with choice situations that are not feasible, Ngene allows constraints to
be put on the attribute levels. Constraints can be included by specifying conditions for the attribute
levels.  The  cond  property  can  be  used  to  include  these  conditions,  which  are  basically  if-then
statements.

A first type of constraint is called ‘nesting’. If a specific attribute has a certain level, then another
attribute has to have a certain level as well (or perhaps is limited to a set of levels). For example,

;cond:
if(alt1.A = 0, alt2.B = 1) ,
if(alt1.A = [1,2], alt2.B = [2,3])

Each  line  contains  a  condition,  and  the  conditions  are  separated  with  a  comma,  ‘,’.  The  first
condition states that if  the attribute level of attribute ‘A’  of  alternative ‘alt1’  equals zero,  than the
attribute  level  of  attribute  ‘B’  of  alternative  ‘alt2’  should  be  equal  to  one.  The  second  condition
states that if the level of attribute ‘A’ in alternative ‘alt1’ is either one or two, than the allowed levels
of  attribute  ‘B’  in  alternative  ‘alt2’  are  two  or  three.  Note  that  nesting  will  overrule  the  attribute
levels (and also possible ranges) defined in the model property.

Besides nesting constraints, more general constraints can be included in the cond property. Some
examples are:

;cond:
if(alt1.A + alt1.B > alt1.C, alt2.A = alt1.A) ,
if(alt1.A = alt2.A and alt1.B < 3, alt2.B = [2,3]) ,
if(alt1.A <> alt2.A or alt1.A = 0, alt2.A > 3)

Note that the operations ‘=’  (equal  to),  ‘>’  (greater  than),  ‘<’  (less than),  ‘<=” (less than or  equal
to),  ‘>=” (greater than or equal to),  ‘<>’  (not equal  to),  ‘and’  (logical  and),  ‘or’  (logical  or)  can be
used in order to make logical  expressions. This offers great flexibility in dealing with almost any
constraints.

Important to keep in mind is that if the constraints are too strong, Ngene may not be able to find a
design  that  satisfies  all  constraints.  If  this  happens,  in  most  cases  Ngene  will  report  one  of  a
number  of  error  messages.  However,  if  you  are  having  problems  generating  a  design  that
includes  constraints,  removing  some  of  these  constraints  may  overcome  the  problem.  It  is
recommended  that  you  start  with  an  unconstrained  design,  and  progressively  add  constraints,
checking the properties of the design after each addition.

Furthermore,  it  is  very  difficult  (and  often  even  impossible)  to  find  an  attribute  level  balanced
design  when  constraints  are  specified,  such  that  Ngene  aims  to  find  a  design  that  is  as  much
attribute  level  balanced  as  possible.  Note  that  in  case  of  nesting  constraints,  only  the  nested
attributes will not be attribute level balanced (such as ‘alt2.B’ in the example mentioned above); all
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other attribute will  be.  Also note that  the cond  property will  only work if  a  swapping algorithm is
used. It will not work for example if a Modified Federov algorithm is applied to the design.

A  further  complication  can  arise  if  a  large  number  of  attributes  are  'related'  through  multiple
conditions that 'overlap'. Ngene will attempt to generate a full factorial of all combinations of levels
from the related attributes that do not violate the conditions. This can lead to memory problems. A
warning  will  be  provided  if  this  problem is  likely  to  occur.  The  solution  is  to  add  to  the  comma
separated list  in  the cond  property the following:  fractional=X%.  A sufficiently  low value of  X
will solve the memory problem, although several attempts may be required to find a suitable value.

A fully complete example of syntax employing two constraints is shown below.

Design
;alts = A, B, C
;rows = 24
;eff = (mnl, d) 
;cond: 
if(a.att1=2, b.att1=[4,6]),   
if(a.att2<3, b.att2=[3,5])
;model:
U(A) = A0[-0.1] + G1[-0.4] * att1[2,4,6]  + G2[-0.3] * att2[1,3,5] + A1
[0.7]  * att3[2.5,3,3.5]  + A2[0.6]  * att4[4,6,8] /
U(B) = B0[-0.2] + G1       * att1         + G2       * att2        + B1
[-0.4] * att7[2.5,4,5.5]  + B2[0.7]  * att8[4,6,8] 
$

A screenshot of an example design generated using the above syntax is given in Figure 8.5. We
leave it to the reader to verify that the conditions specified have actually been meet as well as the
degree of attribute level balance of the design shown (a good starting point would be to examine
attribute b.att2).
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Figure 8.5: Example design with constraints 

Similar  to  the  cond  property,  users  may  use  the  require  property  to  force  certain  attribute  level
combinations  to  be  present  within  the  design  within  all  choice  situations.  The  require  property
constructs  a  set  of  candidate  choice  situations  that  meet  some  criteria  in  terms  of  the  attribute
level  combinations  allowed  within  each  choice  situation.  All  other  choice  situations  that  do  not
meet the required choice criteria are then rejected from the design. Note that this method, unlike
the cond property, cannot be used in conjunction with any form of swapping algorithm but rather
requires  use  of  the  Modified  Federov  algorithm  or  factorial  design.  Note  also  that  the  require
property  will  also  likely  not  display  the  attribute  level  balance  property  for  the  generated  design
unless the user specifically restricts the number of times each level appears within the design in a
manner similar to that discussed in Section 8.1. However, a combination of these restrictions may
result in an inability to locate a design, or even if a design can be located, the efficiency level of
the design is likely to be poor. 

An example of the require property is shown below. In this property, the design would require that
attribute  a.att1  be  greater  than  or  equal  to  that  of  attribute  b.att1  for  all  choice  situations  in  the
design.

;require:
a.att1 >= b.att1

Note that the operations ‘=’  (equal  to),  ‘>’  (greater  than),  ‘<’  (less than),  ‘<=” (less than or  equal
to),  ‘>=” (greater than or equal to),  ‘<>’  (not equal  to),  ‘and’  (logical  and),  ‘or’  (logical  or)  can be
used  in  order  to  make  logical  expressions,  as  per  the  cond  property.  Note  also  that  unlike  the
cond property, the require property does not use if statements. 



146 Ngene User Manual

© 2018 ChoiceMetrics

Design
;alts = A, B, C
;rows = 24
;eff = (mnl, d) 
;alg = mfederov
;require:
a.att1 >= b.att1
;model:
U(A) =  A0[-0.1] + G1[-0.4] * att1[2,4,6]  + G2[-0.3] * att2[1,3,5] + A1
[0.7]  * att3[2,3,4] /
U(B) =  B0[-0.2] + G1       * att1         + G2       * att2        + B1
[-0.4] * att7[3,4,5] 
$

In  addition  to  using  the  cond  and  require  properties,  Ngene  also  allows  users  to  use  the  reject
property  to  force  attribute  level  constraints  within  a  design.  Whereas  the  cond  and  require
properties  force  the  attributes  within  the  design  to  meet  certain  criteria,  the  reject  property
disallows  a  design  from  having  choice  situations  in  which  the  attributes  can  take  on  certain
combinations  of  levels.  Unlike  the  cond  property,  but  as  with  the  require  property,  the  reject
property does not allow the use if statements.

;reject:
a.att1 > a.att2

Example syntax using the reject property is given below. Figure 8.6 provides a screen capture of a
design generated using this syntax, demonstrating that the attribute levels of the design met the
required restrictions set.

Design
;alts = Alt1, Alt2
;rows = 6
;eff = (mnl, d)
;alg = mfederov
;reject:
Alt1.X1 > Alt2.X3
;model:
U(Alt1)  =  b1[-0.2]  +  b2[0.3]  *  X1[2,4,6](1-3,1-3,1-3)  +  b3[0.4]  *  X2
[1,3,5](1-3,1-3,1-3) /
U(Alt2) =            b2      * X3[2,4,6](1-3,1-3,1-3) + b4[0.3] * X4
[1,2,3](1-3,1-3,1-3) 
$
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Figure 8.6: Example design with constraints using the reject property

8.3 Reference or pivot (customized) designs

8.3.1 Pivot designs

So far we have assumed that all  respondents face the same choice situations. From a cognitive
and contextual point of view, this may not be optimal. The use of a respondent’s knowledge base
to  derive  the  attribute  levels  of  the  experiment  has  come  about  in  recognition  of  a  number  of
supporting  theories  in  behavioral  and  cognitive  psychology,  and  economics,  such  as  prospect
theory,  case-based decisions  theory and minimum-regret  theory.  This  leads to  the notion of  so-
called reference alternatives,  which may be different  for  each respondent.  As Starmer  (2000,  p.
353)  remarks:  “While  some  economists  might  be  tempted  to  think  that  questions  about  how
reference  points  are  determined  sound  more  like  psychological  than  economic  issues,  recent
research is showing that understanding the role of reference points may be an important step in
explaining  real  economic  behavior  in  the  field.”  Reference  alternatives  in  stated  choice
experiments  act  to  frame  the  decision  context  of  the  choice  task  within  some  existing  memory
schema of the individual respondents and hence make preference-revelation more meaningful at
the level of the individual.

In  a  pivot  design  the  attribute  levels  shown  to  the  respondents  are  pivoted  from  reference
alternatives of each respondent. In Table 8.1 an example is shown, where for compactness only
the  first  alternative  is  presented.  The  actual  underlying  design  is  shown  in  grey,  where  the
attributes are either a relative pivot (as in the travel time), or an absolute pivot (as in the toll cost).
The attribute levels shown in the stated choice experiment are based on the reference alternative
of the respondents. For example, suppose that respondent 1 has answered in an earlier question
in the survey that he or she currently has a travel time of 10 minutes and pays $2 toll,  then the
attribute levels for the first  alternative in the first  choice situation will  be determined as 10-1 = 9
minutes (10 percent less travel time), and a toll cost of 2+2 = $4 ($2 extra). Therefore, this choice
situation will be different from the choice situation presented to respondent 2 (facing a travel time
of 27 minutes and a toll of $5 for the first alternative in the first choice situation). 
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Table 8.1: Designs pivoted from a reference alternative

Hence, instead of creating a design with the actual attribute levels, a pivot design is created with
relative or absolute deviations from references. Suppose that a single pivot design is created. The
efficiency of  this  design depends on the references of  the  respondents,  as  these determine  the
actual attribute levels in the choice situations and therefore the AVC matrix. However, in advance
the references of the respondents are typically not available. Rose  et al.  (2008) have compared
several different approaches for finding efficient pivot designs:

(a) Use the population average as the reference (yields a single design);
(b) Segment the population based on a finite set of different references (yields multiple designs);
(c) Determine an efficient design on the fly (yields a separate design for each respondent); and
(d) Use a two-stage process in which the references are captured in the first stage and the design

is created in the second stage (yields a single design).

Intuitively,  approach  (a)  should  give  the  lowest  efficiency  (individual  reference  alternatives  may
differ widely from those assumed in generating the design), while the last approach should yield
the  highest  efficiency  (likely  to  produce  truly  efficient  data).  This  was  also  the  outcome  of  the
study.  Approach  (a)  worked  relatively  well,  and  approach  (b)  only  performed  marginally  better.
Approach  (c)  and  (d)  performed  best.  The  outcomes  were  also  compared  with  an  orthogonal
design,  which  performed poorly.  Pivot  designs  for  approaches  (a)  and (b)  are  relatively  easy  to
generate,  for  approaches  (c)  and  (d)  more  effort  is  needed.  Approach  (c)  requires  a  CAPI  or
internet  survey,  and  an  efficient  design  is  generated  while  the  respondent  is  answering  other
questions.  Approach  (d)  is  sensitive  to  drop-outs,  as  the  design  will  only  be  optimal  if  all
respondents in the second stage participate again in the survey.

8.3.2 Pivot designs in Ngene

Instead of a traditional no-choice alternative, one may want to generate a design with a reference
(or status-quo) alternative. Similar to the traditional no-choice alternative, the reference alternative
has  a  fixed  utility  across  choice  situations  (at  least  fixed  within  all  choice  situations  for  a  single
respondent).  However,  unlike  the  traditional  no-choice  alternative,  the  attribute  levels  of  the
alternative need not be absent and hence the utility need not be equal to zero. Figure 8.7 shows
an  example  of  a  SC questionnaire  involving  a  reference  alternative,  where  the  attributes  of  the
first alternative are non-zero and fixed across choice situations. 
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Figure 8.7: Example choice situations based on a pivot design

In the simplest case, where all respondents observe the same reference or status quo alternative,
Ngene is able to construct pivot style designs quite easily via the utility specifications of the model.
For  example,  the  attribute  levels  of  the  reference  alternative  can  be  assigned  a  single  attribute
level rather than multiple levels as in 

b2[-0.1] * B[5]

Next, the attribute levels of the non-reference alternatives can then be chosen so that they vary
either  by  some  absolute  value  from  the  reference  alternative,  or  by  some  percentage.  For
example, if  the non-reference alternative levels are to vary by 0% and ±25% from the reference
level, then assuming the reference level is 5 (as above), then the levels 3.75, 5 and 6.25 could be
assigned  to  the  common  attribute  of  the  non-reference  alternative.  The  syntax  below
demonstrates this concept with the attribute A1 varying by fixed amounts of -1, 0 and 1 around the
reference attribute A (= 2) and attribute B1 varying by -25%, 0% and 25% around the reference
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attribute B (=5).

Design
;alts = alt1, alt2, alt3
;rows = 12
;eff = (mnl,d)
;model:
U(alt1) = b1[0.6] * A[2]      + b2[-0.1] * B[5] /
U(alt2) = b1      * A1[1,2,3] + b2 * B1[3.75,5,6.25] /
U(alt3) = b1      * A1[1,2,3] + b2 * B1[3.75,5,6.25] 
$

Figure 8.8: Example pivot design assuming everyone observes the same reference
alternative (method 1)

Rather than having to calculate the attribute levels of the non-reference alternatives manually (e.
g.,  -25% of  5  is  3.75)  and  insert  these  as  the  attribute  levels  of  the  non-reference  alternatives,
Ngene has available syntax that  will  automatically  do this  for  you.  This  first  requires the user  to
specify what attributes represent a reference attribute and which represent those which should be
pivoted around the reference attribute. This is handled by adding either the suffix .ref or .piv after
an attributes name. For example B.ref is used to specify attribute ‘B’ as a reference alternative,
whereas  B.piv  would  be  used to  specify  the  same attribute  (but  for  another  alternative)  as  an
attribute that will  be pivoted around the previously specified reference attribute. In specifying the
reference alternative,  only  a  single  attribute  level  is  required.  (e.g.,  B.ref[5]).  For  the  pivoted
attribute,  the  analyst  may  specify  either  absolute  pivot  levels  or  percentage  pivot  levels.  For
absolute pivot levels, the analyst simply places the levels, + or -, that are to be pivoted around the
reference attribute (e.g.,  B.piv[-2,0,1]).  For pivoted attributes which are to  be a percentage
change from the reference attribute level, the analyst simply specifies the percentages, + or -, that
are  required  (e.g.,  B.piv[-25%,0%,25%]).  Example  syntax  showing  the  use  of  both  absolute
and percentage change pivot levels is given below. 
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Design
;alts = alt1, alt2, alt3
;rows = 12
;eff = (mnl,d)
;model:
U(alt1) = b1[0.6] * A.ref[2]         + b2[-0.1] * B.ref[5]           /
U(alt2) = b1         * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] /
U(alt3) = b1         * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] 
$

Figure 8.9 provides example output produced using the above syntax. Note that the output differs
to that  shown previously,  in  that  the actual  levels  for  the non-reference attributes  are  not  given,
but rather the absolute or percentage changes. This may be useful  where the attribute levels of
the reference alternative are not fixed over respondents,  but in generating the design a ‘sample
average’ is assumed to generate a design that will be applied to all individuals irrespective of their
real reference alternative.

Figure 8.9: Example pivot design assuming everyone observes the same reference
alternative (method 2)

The  above  two  methods  generate  designs  assuming  all  respondents  have  the  same  reference
alternative in terms of the attribute levels shown. In many cases, different respondents will  have
reference alternatives with different attribute levels. In Ngene, the analyst is able to generate i) a
single design that can be applied to different respondent segments, despite the segments having
different  attribute  levels  for  their  reference  alternatives,  or  ii)  different  designs  for  different
respondent  segments  based  on  the  fact  the  different  segments  face  attributes  with  different
reference attributes. We call the first type of design a ‘homogenous pivot design’ and the second
type of design a ‘heterogeneous pivot design’. Both types of designs require additional syntax to
generate the required design. 

To demonstrate the syntax requirements for these two types of pivot designs, assume that there
exist  three  different  respondent  segments.  To  generate  both  homogenous  and  heterogeneous
pivot designs, syntax for the utility specifications is employed similar that used to generate model
averaging designs as described in Section 7.4.  That is, separate utility specifications are required
for  each  data  segment.  For  example,  assuming  three  segments,  small,  medium  and  large,  the
following  utility  specifications  might  be  used.  Note  that  as  with  the  model  averaging  approach,
each segment must be given a unique name, and that the last  utility  specification for  all  but  the
last data segment does not end in a / or $.
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;model(small):
U(alt1) = b1[0.6] * A.ref[2]      + b2[-0.1] * B.ref[5]           /
U(alt2) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] /
U(alt3) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] 

;model(Medium):
U(alt1) = b1[0.6] * A.ref[4]      + b2[-0.1] * B.ref[10]          /
U(alt2) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] /
U(alt3) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] 

;model(Large):
U(alt1) = b1[0.6] * A.ref[6]      + b2[-0.1] * B.ref[15]          /
U(alt2) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] /
U(alt3) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] 
$

Next the user  is  required to  use the fisher  property  to  specify  i)  homogenous or  heterogeneous
pivot  designs  is  required,  and  ii)  how  much  weight  each  data  segment  should  be  given  in
calculating  the  overall  Fisher  Information  matrix  (and  hence  AVC  matrix)  of  the  design.  In
generating  the  design,  only  a  single  Fisher  Information  matrix  (and  hence  AVC  matrix)  is
constructed to represent the fact that the data segments are to be combined into a single data set
post data collection. If the different segments are to be treated separately in data estimation, then
separate designs should be generated as shown at the beginning of this section. 

The fisher property requires several items of information in order to function properly. Firstly, the
user is required to give the Fisher Information matrix a name (n.b., any name can be used). Next,
in the case of a homogenous pivot designs, the user is required to provide a name for the design
that  is  to  be  generated.  In  the  case  of  heterogeneous  pivot  design,  separate  names  must  be
provided for each data segment specific design required. In either design type, the user may use
any  name  to  designate  the  designs.  Finally,  the  analyst  is  required  to  specify  the  weights  that
each segment is to have in calculating the Fisher Information matrix in generating the designs. 

In order to generate a homogenous pivot design, each segment name is associated with a single
design, separated by commas. This is done by placing all segment names and attached weights
in round brackets after the design name. This is shown below for up to k data segments. 

;fisher(<Fisher Information matrix name>) = <design name>(<model 1 name>
[<model  1  weight>],  <model  2  name>[<model  2  weight>],  ...,  <model  k
name>[<model k weight>])

In  specifying  the  segment  weights,  the  model  names  must  be  those  provided  in  the  utility
specifications.  Also,  it  is  important  to  note  that  the  weights  must  sum  to  one.  Thus,  given  the
above system of utility functions, the fisher property might look something like

;fisher(fish) = design1(small[0.33], medium[0.33], large[0.34])

In the above syntax, we have called the Fisher Information matrix ‘fish’ and the design ‘design1’.
All designs have been associated with design1 as they are included in the round brackets linked
to this  design.  For  the first  segment,  represented by the utility  specifications  given in  the ‘small’
model  segment,  we  have  assigned  the  segment  a  0.33  weight  in  calculating  the  overall  Fisher
Information  matrix.  Similarly,  we  have  applied  the  same  weight  to  the  second  data  segment
‘medium’. In order to make the weights sum to one, we have assigned a weight of 0.34 to the last
data segment, ‘large’.

To  construct  a  heterogeneous  pivot  design,  the  different  model  data  segments  are  linked  to
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designs  with  different  names.  Rather  than  separate  the  different  model  data  segments  with  a
comma, + signs are used. This is shown below.

;fisher(<Fisher Information matrix name>) = <design name>(<model 1 name>
[<model 1 weight>]) + <model 2 name>([<model 2 weight>]) + ... + <model
k name>([<model k weight>])

An  example  fisher  property  for  generating  a  heterogeneous  pivot  design  for  our  three  segment
example is given below.

;fisher(Fish)  =  des1(small[0.33])  +  des2(medium[0.33])  +  des3(large
[0.34])

In  the  above  syntax,  the  small  model  data  segment  is  linked  to  a  design  which  we  have
designated  ‘des1’,  whereas  the  medium  and  large  model  data  segments  are  linked  to  different
designs,  ‘des2’  and ‘des3’  respectively.  As  such,  different  designs will  be  generated for  each of
the model data segments. As per the homogenous pivot designs, each model data segment must
be given a weight in calculating the overall design Fisher Information matrix.

Note that it  is also possible to generate designs which both specify that different data segments
be generated with both homogenous and heterogeneous pivot designs over different  subsets  of
data segments, as in

;fisher(Fish) = des1(small[0.33]) + des2(medium[0.33], large[0.34])

In addition to the fisher  property, additional syntax is required for the efficiency measure. Rather
than optimize on a single Fisher Information matrix (the inverse of the AVC matrix), the design is
now to be optimized based on the weighted average Fisher Information matrix named in the fisher
property.  To handle this,  the name of the Fisher  Information matrix  is  added to the eff  property,
much like different models are added to the eff property in the model averaging process. For the
above example, the eff property would look as follows.

;eff = fish(mnl,d)

Although we show a design specifically generated for an MNL model, the pivot design syntax can
be applied to any model type available in Ngene. The complete syntax for a homogeneous pivot
design is given below. 
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Design
;alts(small)  = alt1, alt2, alt3
;alts(medium) = alt1, alt2, alt3
;alts(large)  = alt1, alt2, alt3
;rows = 12
;eff = fish(mnl,d)
;fisher(fish) = design1(small[0.33], medium[0.33], large[0.34])

;model(small):
U(alt1) = b1[0.6] * A.ref[2]      + b2[-0.1] * B.ref[5]           /
U(alt2) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] /
U(alt3) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] 

;model(Medium):
U(alt1) = b1[0.6] * A.ref[4]      + b2[-0.1] * B.ref[10]          /
U(alt2) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] /
U(alt3) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] 

;model(Large):
U(alt1) = b1[0.6] * A.ref[6]      + b2[-0.1] * B.ref[15]          /
U(alt2) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] /
U(alt3) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] 
$

Figure  8.10  shows  output  generated  for  the  above  syntax.  From  the  output  screen,  it  can  be
clearly seen that despite the reference alternatives taking on different attribute levels, the design
itself has been constrained to be the same across each segment. Although not shown, the analyst
is also able to examine the design properties as related to each data segment by clicking on the
relevant click boxes located on the left of the output screen.
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Figure 8.10: Homogeneous pivot design output screen

For the same data segments, the following syntax will generate a heterogeneous design. 
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Design
;alts(small)  = alt1, alt2, alt3
;alts(medium) = alt1, alt2, alt3
;alts(large)  = alt1, alt2, alt3
;rows = 12
;eff = fish(mnl,d)
;fisher(Fish)  =  des1(small[0.33])  +  des2(medium[0.33])  +  des3(large
[0.34])

;model(small):
U(alt1) = b1[0.6] * A.ref[2]      + b2[-0.1] * B.ref[5]           /
U(alt2) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] /
U(alt3) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] 

;model(Medium):
U(alt1) = b1[0.6] * A.ref[4]      + b2[-0.1] * B.ref[10]          /
U(alt2) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] /
U(alt3) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] 

;model(Large):
U(alt1) = b1[0.6] * A.ref[6]      + b2[-0.1] * B.ref[15]          /
U(alt2) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] /
U(alt3) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] 
$

Output  generated  using  the  above  syntax  is  shown  in  Figure  8.11.  Examination  of  the  output
demonstrates  that  the  non-reference  alternatives  are  indeed  different  across  the  different  data
segments, meaning that each data segment has its own unique design. 
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Figure 8.11: Heterogeneous pivot design output screen

The optimization process for generating pivot designs requires that each data segment be given a
weight in calculating the overall  design Fisher Information matrix.  The previous syntax assumed
that the analyst knew a priori the proportions that each segment will appear within the sample. It is
possible  however  to  not  only  optimize  the  efficiency  of  a  design,  but  also  simultaneously  the
proportions of various segments that should be exposed to the design. As described in Rose and
Bliemer  (2006),  the  optimization  routine  first  generates  a  random  design  (using  whatever
algorithm),  and  then  searches  over  different  segment  proportions  to  determine  if  the  overall
efficiency  level  can  be  improved.  If  the  efficiency  level  cannot  be  improved  beyond  the  current
best level, then another design is then examined. 

This is handled in the weighting section of the fisher property. Rather than assign a single weight
to each data segment, the analyst may specify a range of weights. This is done by separating a
lower  weight  bound  from  an  upper  weight  bound  by  a  colon.  For  example,  the  syntax  small
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[0.1:0.6] will allow the small data segment to have a weight anywhere between 0.1 and 0.6 in
the  optimization  of  the  overall  design  Fisher  Information  matrix.  Note  that  for  this  to  work,  the
upper  weight  bounds  provided  must  sum  to  one  or  more.  Note  also,  that  this  function  may  be
applied to both homogenous and heterogeneous pivot designs. Example syntax for this  is  given
below.

Design
;alts(small)  = alt1, alt2, alt3
;alts(medium) = alt1, alt2, alt3
;alts(large)  = alt1, alt2, alt3

;rows = 12
;eff = Fish(mnl,d)
;fisher(Fish)  =  des1(small[0.1:0.6])  +  des2(medium[0.1:0.6],  large
[0.1:0.6])
;model(small):
U(alt1) = b1[0.6] * A.ref[2]      + b2[-0.1] * B.ref[5]           /
U(alt2) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] /
U(alt3) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] 

;model(Medium):
U(alt1) = b1[0.6] * A.ref[4]      + b2[-0.1] * B.ref[10]          /
U(alt2) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] /
U(alt3) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] 

;model(Large):
U(alt1) = b1[0.6] * A.ref[6]      + b2[-0.1] * B.ref[15]          /
U(alt2) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] /
U(alt3) = b1      * A.piv[-1,0,1] + b2[-0.2] * B.piv[-25%,0%,25%] 
$

Figure  8.12  shows  design  generated  using  the  above  syntax.  Based  on  this  design,  the  output
suggests that the most efficient results will be obtained if the first segment is represented by 10%
of the final  sample,  whereas the remaining two segments should make up 45.5% and 44.5% of
the  final  sample.  In  this  way,  if  there  exists  only  enough  budget  to  collect  data  from  200
respondents, then 20 respondents should be sampled from segment 1 (i.e., the ‘small’ segment),
91 from segment 2 (i.e., the ‘medium’ segment), and the remaining 89 from segment 3 (i.e.,  the
‘large’ segment). 
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Figure 8.12: Heterogeneous pivot design output screen

8.4 Including covariates in generating efficient designs

8.4.1 Designs with covariates

Including covariates  (e.g.,  socio-economic  data  such as  income,  gender,  car-ownership,  etc.)  in
the  model  estimation  may  result  in  loss  of  efficiency  when  the  design  was  generated  ignoring
these covariates. So far, only attributes have been considered in the model specification, but it is
common to include covariates in the estimation process. Analysts should primarily be interested in
the  efficiency  of  the  SC  data  collected  rather  than  being  concerned  about  the  efficiency  of  the
underlying SC design. Designs should be constructing in a manner that will reflect the final data to
be collected, including any possible covariates. 

Rose  and  Bliemer  (2006)  demonstrate  how  efficient  SC  experiments  may  be  constructed  to
account  for  covariates,  and  how minimum quotas  may  be  established  in  order  to  retain  a  fixed
level  of  efficiency. The procedures for  doing this  are not much different for  constructing efficient
designs  without  considering  any  covariates.  Assuming  categorical  covariates  (or  continuous
covariates  coded  categorically),  it  is  possible  to  calculate  the  AVC  matrix  for  a  SC  study  by
constructing  a  set  of  segments  based  on  combinations  of  covariates,  and  assigning  to  each
segment one or more SC designs. If multiple covariates are to be analyzed, the analyst may wish
to  construct  a  full  factorial  or  fractional  factorial  of  the  possible  combinations  formed  by  the
covariates  and  assign  to  each  the  generated  design.  Next  the  analyst  may  generate  segment
specific efficient designs that minimize the AVC matrix for the pooled data. Procedures similar to
those discussed here may be used to do this, however, rather than having one design, the analyst
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now has to deal with multiple ‘stacked’ or pooled designs. 

Figure 8.13 shows two different designs; the one on the left generated without a gender covariate
and the one on the right with. Below each of the design are the AVC matrices for the two designs
assuming that gender either is or is not included in the model utility function during the estimation
process.  Examination  of  the  different  AVC  matrices  highlights  the  fact  that  an  efficient  design
generated  without  accounting  for  possible  covariates  may  potentially  lose  efficiency  when  the
covariate is included in the estimation process. This is because any covariate will impact upon the
 choice probabilities of the design and hence will  impact upon the elements contained within the
AVC matrix. 

Figure 8.13: Comparison of efficient design with and without accounting for covariates

If  the covariates are continuous in  nature,  then the above methods cannot  be handled easily.  If
the above procedure is to be employed, then the number of segments that can be formed may be
so large as to not be computationally possible to handle. If this is the case, then the analyst may
have  to  resort  to  Monte  Carlo  simulations  to  simulate  the  likely  data  that  is  expected  to  be
collected. Whilst this will generally take much longer to locate an efficient design than when using
the true analytical AVC matrix, given the full factorial of possible covariate combinations that may
possibly  be  formed  by  combining  certain  covariates,  the  use  of  Monte  Carlo  simulations  may
actually require much less time in this instance.

In Ngene, covariates are handled similarly to pivot type designs in that they require the use of the
fisher  property.  As  with  pivot  style  designs,  the  fisher  property  may  be  used  to  generate
homogenous or heterogeneous covariate style designs. Also, similar to pivot designs, the analyst
is required to nominate a weight representing the proportion that each covariate will appear in the
final sample. For example, assuming that the analyst wishes to construct a design allowing for a
gender  covariate  (male  =  1)  and  assuming  that  the  analyst  believes  that  males  and  females
should  be  sampled  equally,  the  fisher  property  for  a  homogeneous  covariate  design  might  look
thus

;fisher(F1) = des1(Male[0.5], Female[0.5])

Similarly,  the  fisher  property  for  a  heterogeneous  covariate  design  for  the  same example  might
look

;fisher(F1) = des1(Male[0.5]) + des2(Female[0.5])

Also similar to pivot designs, the analyst is required to inform Ngene what variables in the utility
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specification are covariates. For covariates, the suffix .covar is added after an attributes name (e.
g., gender.covar). 

Within a single model, a number of rules exist related to the specification of covariates. Firstly, a
covariate can only have one level per model (e.g., gender.covar[1]). As such, different levels
of the covariate design must be assigned over models. Secondly, covariates can only be assigned
to J-1 alternatives.

Example syntax for  a  homogeneous  covariate  design  is  represented  below.  Note  that  in  setting
out the utility specifications, both of the above mentioned rules are met. For example, the gender
covariate  appears  in  only  2  of  the  three  utility  functions  within  each  model.  Secondly,  the  two
levels of the gender variable are spread over the two models (‘male’ and ‘female’).

Design
;alts(Male) = Alt1, Alt2, Alt3
;alts(Female) = Alt1, Alt2, Alt3
;rows = 12
;eff = F1(rp,d)
;fisher(F1) = des1(Male[0.5], Female[0.5])
;rdraws = Halton(150)
;con

;model(Male):
U(Alt1) = Con1[1.2] + A[n,-0.6,0.1] * A[6,8,10,12] + B[-0.4] * B[4,8] +
C1[0.3] * C1[0,1] + gender[n,-0.6,0.1]*gender.covar[1] /
U(Alt2) = Con2[0.8] + A             * A            + B       * B      +
C2[0.8] * C2[0,1] + gender[n,-0.6,0.1]*gender.covar[1] /
U(Alt3) =             A             * A                               +
C3[-1.0] * C3[0,1] 

;model(Female):
U(Alt1) = Con1[1.2] + A[n,-0.6,0.1] * A[6,8,10,12] + B[-0.4] * B[4,8] +
C1[0.3] * C1[0,1] + gender[n,-0.6,0.1]*gender.covar[0] /
U(Alt2) = Con2[0.8] + A             * A            + B       * B      +
C2[0.8] * C2[0,1] + gender[n,-0.6,0.1]*gender.covar[0] /
U(Alt3) =             A             * A                               +
C3[-1.0] * C3[0,1] 
$

Figure 8.14 shows a design generated using the above syntax. In presenting the output,  design
for  the  gender  equal  to  zero  (female)  can  be  seen  to  be  shown  second,  with  the  associated
covariate columns taking the value zero for all choice situations. Similarly, the design for ‘male’ is
shown taking the value 1 for the associated covariate columns for all choice situations. 

Also, as with pivot designs, Ngene allows for the simultaneous optimization of the design and the
proportions of the covariates required within the final sample collected. Once more, this is handled
in the weighting section of the fisher property. Rather than assign a single weight to each level of
a covariate, the analyst may specify a range of weights. This is done by separating a lower weight
bound from an upper weight bound by a colon. For example, the syntax female[0.1:0.6] will
allow the proportion of females in the final data set to have a weight anywhere between 0.1 and
0.6 in the optimization of the overall  design Fisher Information matrix.  Note that for this to work,
the upper weight bounds provided must sum to one or more. Note also, that this function may be
applied to both homogenous and heterogeneous covariate designs. For more information on this,
see the earlier discussion on pivot designs (Section 8.3.2).
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Figure 8.14: An example covariate design

8.5 Designs within designs: Designs with scenarios in Ngene

Typically, in presenting SC experiments to respondents, the analyst must first construct a scenario
to  frame  the  experiment.  In  most  studies,  the  constructed  scenarios  are  fixed  over  choice
situations  and  respondents.  Figure  8.15  shows  an  example  choice  situation  for  a  health  study.
Above the choice situation,  respondents  are presented with  a scenario  of  confronting a 30 year
old patient with congenital heart disease. In most studies, this scenario would be replicated (i.e., it
would not vary) over repeated choice situations.

Figure 8.15:  Example choice situation with a fixed scenario

Often however, the analyst may wish to vary the scenario from one choice situation to the next. An
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example of this is presented in Figure 8.16 where the characteristics of the patient are varied over
two different choice tasks. In varying the characteristics of the scenario over the different choice
tasks, it  should be noted that within any given choice task, the levels shown in the scenario are
constants across all J alternatives. That is, the patient remains 30 years of age for the ‘Brand A’,
‘Brand B’ and ‘none’ alternatives. In this way, when setting up the experimental design, scenario
characteristics  should  be  treated  in  the  same  manner  as  covariate  attributes  in  terms  of  being
entered into only J-1 utility functions (alternatively, one could interact them with design attributes).

Figure 8.16:  Example choice situation with changing scenarios

In  Ngene,  it  is  possible  to  force  an  attribute  level  to  be  the  same  for  two  or  more  different
alternatives  via  a  slight  variation  in  the  usual  utility  function  specification.  Typically,  in  a  utility
function, the values supplied after an attribute’s name will  represent the levels that that attribute
may take. For example, age[20,30,40,50], suggests that the age variable may take the values
20,  30,  40 or  50.  In  Ngene,  if  the age variable  appears  in  a  second alternative,  it  is  possible  to
reference  the  original  attribute  and  constrain  the  value  that  the  attribute  level  in  the  second
alternative takes to be the same as the level in the first alternative. This is done by specifying the
name  of  the  original  attribute  rather  than  providing  attribute  levels  when  writing  out  the  utility
function for the second attribute. For example,

U(Alt1) = A[-0.6] * age[20,30,40,50]
U(Alt2) = A       * age[age]        

In the second alternative, the age attribute references the level provided in the first alternative and
will  constrain  the  level  to  be  the  same  across  the  two  alternatives.  This  is  precisely  what  is
required  for  designs  where  the  analyst  wishes  to  vary  levels  in  the  scenarios  presented  to
respondents.  Note that in  setting out  the syntax in  this  manner,  the age characteristics  will  vary
from one choice situation to the next (taking the values 20, 30, 40 or 50), but take the same value
for  the commonly  named attribute  across  the  two (or  more)  alternatives  within  the  same choice
situation.  Note  however,  as  previously  mentioned,  such  variables  may  only  be  entered  into  J-1
utility functions unless they are to be specified as interaction effects. Thus, whilst the attribute may
appear in any choice situation presented to a respondent across all J alternatives (as per Figure
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8.16),  in  the  actual  modeling  process,  the  variable  will  need  to  be  treated  similar  to  any  socio-
demographic variable. Thus in the example given in Figure 8.16, the patient characteristics could
be  treated  as  factors  differentiating  between  a  respondent  choosing  to  prescribe  medication
(either ‘Brand A’ or ‘Brand B’) relative to not prescribing any medication.

Example  syntax  showing  the  full  set  of  syntax  for  the  above  example  is  given  below.  In  this
syntax, we have two such scenario attributes.

Design
;alts = alt1, alt2, alt3
;rows = 20
;eff = (mnl,d,mean)
;bdraws = halton(150)
;model:
U(Alt1) = SP1[3.2] + 
          b1[(n,0.07,0.03)] * A[5,10,15,20]    + 
          b2[(n,1.2,0.3)]   * B[0,1,2,3]       + 
          b3[1.8]           * C[0,1,2,3]       + 
          b4[0.6]           * D[0,1]           + 
          age[-0.06]        * age[20,30,40,50] + 
          condition[0.4]    * cond[0,1,2,3]    /  
U(Alt2) = SP1[3.4]                             + 
          b1                * A                + 
          b2                * B                + 
          b3                * C                + 
          b4                * D                + 
          age               * age[age]         + 
          condition         * cond[cond]       
$

Figure 8.17 shows output based on the above output. In the figure, we have highlighted the ‘age’
and ‘cond’ variables as they appear in the design to demonstrate that they are indeed constrained
to  take  the  same  levels  across  alternatives.  Figure  8.18  shows  the  AVC  matrix  for  the  design
given in Figure 8.17. Note that the ‘age’ and ‘cond’ variables are represented in this matrix.
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Figure 8.17:  Example design output with constrained attribute levels

Figure 8.18:  Example design output with constrained attribute levels

8.6 Algorithms for generating designs in Ngene

When  executing  the  syntax  (see  Chapter  4),  Ngene  will  generate  a  design  according  to  the
specified  properties.  Different  search  algorithms have been implemented  in  order  to  generate  a
design. Depending on the properties set, different algorithms will be defaulted by Ngene. If using
the default, no algorithm has to be specified in the syntax. However, if one would like to overrule
the  default,  or  change  settings  of  the  algorithms,  then  one  could  add  the  alg  property  in  the
syntax. 

For different types of designs (e.g., orthogonal, efficient, orthogonal efficient, with constraints, etc.)
different algorithms are used, including RSC (relabelling-swapping-cycling) algorithms, swapping
algorithms, and Modified Federov algorithms. For efficient designs, the swapping algorithm is the
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default.  The parameters for this algorithm can be changed, or  even a different algorithm can be
selected.

If one would like to use a specific algorithm, one can specify this in the alg property, by choosing
one of the following:

;alg = swap
;alg = rsc
;alg = mfederov

Note that for the RSC algorithm, different combinations of the individual aspects of the algorithm
can  be  employed.  For  example,  one  could  employ  only  the  relabeling  and  cycling  methods  by
specifying only the appropriate letters in the alg property. This is shown below.

;alg = rc

For example

Design
;alts = alt1, alt2, alt3
;rows = 12
;eff = (mnl,d)
;alg = rc
;model:
U(alt1) = b11[-0.2] + b2[1.2] * A[0,1,2] + b3[2.5] * B[0,1]     /
U(alt2) = b12[0.3]  + b2      * A        + b4[1.1] * C[2,4,6,8] 
$

will use only relabeling and cycling in searching for an efficient design.

Each algorithm also has a number of default settings. One can overrule these default settings by
changing the settings in the alg property. For example,

;alg  =  swap(random  =  50,  swap  =  10,  swaponimprov  =  20,  reset  =  200,
resetinc = 50)

For  a  more  detailed  explanation  of  all  the  algorithm settings  we  refer  to  the  alg  property  in  the
Syntax Reference.

It is also possible to use an existing design as the initial starting design for the algorithm (which for
example  can  be  used  as  a  starting  point  for  the  swapping  algorithm),  one  can  add  the  start
property  to  the  syntax,  defining  the  filename  of  the  initial  design.  First,  the  design  should  be
present in the project, either by importing a Microsoft Excel file (*.xls, *.xlsx, *.xlsm) or importing
an  Ngene  design  file  (*.ngd),  see  Section  3.3.  Then  it  can  be  used  as  an  initial  design  in  the
algorithm, for example:

;start = efficient design.xls

or 

;start = design.ngd

Note that spaces are allowed in the filename.

By default,  the Modified Federov algorithm attempts to generate a candidate set of  2000 choice
sets. The candidate set size can be altered. For example, to generate a candidate set with 5000
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choice tasks, specify:

;alg = mfederov(candidates=5000)

There  are  a  number  of  reasons  why  the  default  or  specified  candidate  set  size  cannot  be
achieved. The full factorial of choice tasks might be smaller in size, especially once dominance or
row repetition checks are performed (see Section 8.8), or if constraints are specified (see Section
8.2). If this is the case, Ngene will automatically utilise a smaller candidate set size, and provide
some statistics on why the default or specified candidate set size cannot be achieved.

In some cases, it  may be desirable to have complete control over the composition of the choice
tasks  in  the  candidate  set.  Examples  include  partial  profiles  designs,  in  which  only  a  subset  of
attributes  are  varied  in  each  choice  task  (see  Section  8.10),  and  partial  choice  set/availability
designs, in which only a subset of alternatives are shown in each choice task (see Section 8.11). 

A candidate set can be loaded in from the complete set of choice tasks in an existing 'design'. The
number of choice tasks in this design is arbitrarily large and can be controlled by the analyst. As
with the start syntax, the design should be present in the project, either by importing a Microsoft
Excel  file  (*.xls,  *.xlsx,  *.xlsm)  or  importing  an  Ngene  design  file  (*.ngd),  see  Section  3.3.  For
example: 

;alg = mfederov(candidates=designForCandidates.xls)

or 

;alg = mfederov(candidates=designForCandidates.ngd)

Most  algorithms will  keep running indefinitely.  It  is  possible  to  force an algorithm to  stop after  a
certain amount of time, or a certain number of iterations. For example,

;alg = swap(stop=total(10 mins))

will run the swapping algorithm for a total of 10 minutes, and 

;alg = mfederov(stop=total(100000 iterations))

will run the Modified Federov algorithm for a total of 100000 iterations. An algorithm can also be
instructed  to  stop  after  a  specified  amount  of  time  or  number  of  iterations  since  the  latest
improvement was found. For example

;alg = swap(stop=noimprov(80 secs))

will run the swapping algorithm until 80 seconds have elapsed since an improvement was found.

It is also possible to run several algorithms one after the other, so long as all but the last algorithm
have  stopping  criteria.  The  best  design  found  from  the  previous  algorithm  will  be  used  as  the
starting  design  of  the  current  algorithm.  Specify  a  single  alg  property,  and  place  a  comma
between the algorithms you wish to run. For example:

;alg = mfederov(stop=total(10 secs)), swap

Finally,  for  very  small  designs,  it  may  be  possible  to  sequentially  evaluate  all  possible  designs.
This  can be achieved by specifying ;alg=all  .  However  it  is  only  feasible  for  very  small  designs.
The percentage of  all  possible  designs  evaluated  so  far  is  shown below the  trace  in  the  output
window, in addition to the current evaluation. 
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;alg = all

8.7 Evaluating existing designs in Ngene

Instead of  generating a new design, one may be interested in evaluating an existing design,  for
example  to  check  the  efficiency  under  certain  model  assumptions.  Similar  as  to  using  a  start
design in an algorithm, we can read in an existing design that is currently in the project (importing
again a Microsoft Excel file or an Ngene design file), and refer to this file in the eval property. This
property  overrules  the  alg  property,  in  the  sense  that  it  will  not  search  for  a  better  design,  but
merely evaluates the design and then finishes. For example,

;eval = efficient design.ngd

Instead of just evaluating the design, it is also possible to block an existing design (independent of
whether  it  was originally  blocked or  not).  If  the block  property  has been specified  in  the syntax,
Ngene will use this to block the design that is being evaluated. If a blocking column already exists
(possibly  with  a different  number of  blocks),  it  will  be replaced with  a  new blocking column.  For
example,

;block = 3
;eval = efficient design.ngd

Ngene will read in the design, evaluate it (with whatever model and efficiency measure specified
in the syntax), and also block the design in 3 blocks by adding (or replacing) a blocking column in
the design.

Note  that  if  the  design  was  saved  using  an  evaluation  version  of  Ngene,  the  number  0  was
inserted in place of all design levels, and so you will be unable to use the eval property.

8.8 Handling unlabeled alternatives

Stated  choice  experiments  can  contain  either  labeled  or  unlabeled  alternatives.  Labeled
alternatives occur where a heading conveys some meaning to the respondent beyond the order of
the alternative shown, for example, bus, car and train (see Figure 8.19a). Unlabeled alternatives
occur where headings convey no pertinent meaning beyond the order of the alternatives shown,
for example, Option A, Option B, etc (see Figure 8.19b for an example). Labeled and unlabeled
choice  experiments  are  typically  used  for  different  purposes  and  to  achieve  different  outcomes.
For  forecasting  purposes  where  brand  may  influence  preference,  labeled  alternatives  may  be
preferred.  Labeled  experiments  may  also  be  preferred  when  one  wishes  to  generate  brand
specific  willingness to  pay values.  Where  forecasting  is  not  the  main  objective  of  the  study,  but
where  understanding  preferences  is,  unlabeled  experiments  may  be  preferred  as  such
experiments  remove  brand  influences  from the  choice  and  hence  focus  the  trade-offs  upon  the
attributes  in  the  study.  There  exist  advantages  and  disadvantages  for  each  type  of  experiment
and the interested reader is referred to Hensher et al. (2005) for a full discussion. 
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(a)

(b)
Figure 8.19: Example labeled and unlabeled stated choice tasks

When  generating  an  experimental  design,  the  distinction  between  labeled  and  unlabeled
experiments  may be an important  one.  To  understand why,  consider  the  labeled  and unlabeled
choice tasks shown in Figure 8.20. In both cases we have used the same attributes and attribute
levels,  with  the  only  difference  being  the  headings  of  the  alternatives.  Two  things  stand  out  in
terms of the attribute levels we have chosen. Firstly, the attribute levels of the first two alternatives
are exactly the same. Secondly, the attribute levels of the last alternative are always the same, or
worse than the first two alternatives. When we consider the labeled experiment example, the fact
that  the  train  and  bus  alternatives  have  the  same  attribute  levels  is  not  too  problematic  in  that
respondents  may  still  differentiate  between  the  two  alternatives  based  on  the  fact  that  one  is  a
train  and  one  is  a  bus.  As  such,  any  respondent  observed  to  choose  the  train  alternative  is
revealing a preference for train over bus, all  other things being constant. Similarly, a respondent
observed to choose the bus alternative is revealing a preference for bus over train, all other things
being  constant.  Consider  now  the  fact  that  the  attribute  levels  of  the  car  alternative  are  never
better  than  the  other  alternatives.  Such  a  situation  does  not  preclude  the  possibility  of  a
respondent  rationally  selecting  the  car  alternative  if  both  the  unobserved  and  observed  effects
combined (i.e., the overall utility) associated with car is greater than that of both train and bus. In
terms of generating the experimental design, this situation may manifest itself via a larger positive
alternative  specific  constant  associated  with  the  car  alternative  than  for  the  train  or  bus
alternatives.
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(a)

(b)
Figure 8.20: Examples of problematic labeled and unlabeled stated choice tasks

Now consider the unlabeled choice task. The two issues discussed above, that is, two alternatives
taking the same attribute levels, and the fact that one alternative is never better on any attribute,
will  now  have  a  different  impact  upon  how  respondents  would  be  expected  to  react  to  the
experiment.  Taking the case of  the first  two alternatives being the same, any respondent  facing
this  situation  will  not  be  able  to  distinguish  between  the  two  alternatives  and  hence  the  choice
becomes purely random (however this may strictly not be true, as most people read left  to right
and hence the left most alternative, option A in this case, is more likely to be selected). Thinking
about  the  second  issue  presented  in  the  choice  task,  that  is  the  fact  that  the  last  alternative  is
never better on any attribute, then there exists no rational explanation for a respondent to select
this alternative (i.e., other than left to right bias in answering the question, there is no reason that
the unobserved effects of the option should be any better or worse than the other alternatives, that
is unless the respondent has a fetish for the words option C, a highly improbable circumstance).
We call such alternatives dominated alternatives. As such, issues of alternatives being dominated
and  the  repetition  of  all  attribute  levels  across  alternatives  may  have  a  larger  bearing  on
generating  unlabeled  choice  experiments  than  when  generating  labeled  ones.  This  is  not  to
suggest  that  dominance  and  attribute  level  repetition  may  not  be  important  for  labeled  choice
experiments. Indeed, labeled choice experiments may have dominated alternatives, however the
dominance occurs purely as a result of preferences for the labeled alternatives and not purely as
an artefact of the attribute levels being dominated.

An additional  concern typically  associated  with  unlabeled  choice  experiments  relates  to  the  fact
that  the  order  of  combination  of  the  attributes  associated  with  alternatives  matters  over  the
experimental design, much more so than with labeled choice experiments. To see why, consider
the series of choice tasks shown in Figure 8.21. Assume that we were to present the two labeled
choice tasks given in Figure 8.21a to a respondent. Examination of the two choice tasks reveals
that the bundles of attribute levels we have used are the same, however the alternatives that we
have  assigned  these  bundles  of  attributes  to  are  different  across  the  two  choice  tasks.  In  this
instance,  rotating  the  entire  bundle  of  attributes  across  the  alternatives  has  not  impacted  upon
how sensible the overall survey would be to any given respondent. As such, the order of bundles
of  attribute  levels  is  not  likely  to  have  a  behavioural  impact  upon  the  design  (it  might  have  a
statistical impact however depending upon the parameter priors).
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Task 1

Task 2

(a)

Task 1

Task 2

(b)
Figure 8.21: Example of choice tasks with repeated alternatives

Now  consider  the  two  unlabeled  choice  tasks  shown  in  Figure  8.21b.  As  with  the  two  labeled
choice tasks, we have simply rotated the bundles of attribute levels that make up the alternatives
of the first  choice task to make up the new choice task.  Now, given the unlabeled nature of  the
experiment,  the  order  that  the  attribute  level  bundles  appear  do  matter.  This  is  because  if  the
respondent demonstrated a preference for the bundle of attribute levels associated with Option B
in the first choice task, then clearly they should prefer Option A in the second choice task (again,
ignoring  any  preference  the  respondent  may  have  for  the  words  ‘Option  B’).  As  such,  when  a
particular  combination  of  attribute  levels  is  repeated  in  an  unlabeled  choice  experiment,  even  if
the  attribute  level  bundles  are  associated  with  different  alternatives,  no  additional  information  is
theoretically obtained from the respondent.

It  is  possible  to  prevent  these  problems  from  occurring  in  Ngene.  This  is  achieved  via  the  alts
property,  by placing an asterisk  next  to  the names of  the alternatives that  one wants  to  prevent
from having 
i) within choice task alternative repetition, 
ii) strict attribute level dominance and 
iii) choice task repetition given attribute bundle ordering. 
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Whilst this may apply to labeled choice experiments, it is more likely to prove useful in generating
unlabeled choice experiments. To demonstrate the property, consider

;alts = alt1*, alt2*, alt3*

Note  that  several  other  conditions  must  be  met  in  the  specification  of  the  utility  expressions  to
allow  the  checks  to  take  place.  To  prevent  within  choice  task  alternative  repetition  (i),  and  to
prevent row repetition in unlabeled choice situations (iii),  all  attribute names must be identical  in
the  alternatives  that  are  to  be  compared.  Every  attribute  specified  in  one  alternative  must  be
specified in  the other,  and vice versa.  Failure to  do this  for  any alternative  pair  will  result  in  the
alternative  repetition  check  not  being  performed  for  that  alternative  pair,  and  a  warning  being
issued.  The  order  in  which  the  attributes  are  specified  must  not  vary  across  alternatives.  The
presence  of  an  alternative  specific  constant,  while  unusual  for  unlabeled  alternatives,  will  not
affect the check for repeated alternatives or row repetitions.

This design would be checked for alternative repetition:

Design 
;alts = alt1*, alt2*
;rows=9
;eff=(mnl,d) 
;model: 
U(alt1) = a[-0.1]*A[96,114,126,144] + b[-0.5]*B[25,28,31,34] + c[0.1]*C
[20,40,60,80] / 
U(alt2) = a*A                       + b*B                    + c*C     
                              
$ 

while this would not:

Design 
;alts = alt1*, alt2*
;rows=9
;eff=(mnl,d) 
;model: 
U(alt1) = a[-0.1]*A[96,114,126,144] + b[-0.5]*B[25,28,31,34] + c[0.1]*C
[20,40,60,80] / 
U(alt2) = a*A                       + b*B                    + c*D
[25,45,65,85]                                      
$ 

To  prevent  dominance,  all  prior  names  must  be  identical  in  the  alternatives  that  are  to  be
compared. Every prior specified in one alternative must be specified in the other, and vice versa.
Failure to do this for any alternative pair will result in the dominance check not being performed for
that alternative pair, and a warning being issued. The order in which the priors are specified must
not vary across alternatives. If multiple model specifications are provided for the same underlying
design,  the  dominance  check  will  be  performed  for  each  model  specification.  Failure  of  the
dominance check by a choice situation on any of the model specifications will result in the design
being rejected.
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8.9 Handling probabilities and other attributes that must sum to a
number

In some situations, it is necessary to ensure that the attribute levels of multiple attributes sum to a
certain  number,  within  each  choice  alternative.  A  key  application  is  when  probabilities  are
attached to various outcomes. 

Consider  for  example  an  SC  choice  scenario  which  contains  two  alternative  travel  routes.  The
travel  times  via  these  routes  vary  from  one  trip  to  the  next,  resulting  in  what  could  broadly  be
called early, on time, and late trips, where each of these times may be experienced with a certain
probability.  The  travel  times  will  be  attributes  in  the  choice  scenario,  but  so  too  will  the
probabilities. The challenge then is to constrain the probabilities to sum to one.
 
In Ngene, such a constraint cannot readily be achieved with mechanisms such as the ;cond and ;
reject  properties.  An  alternative  approach  is  to  specify  levels  for  all  probabilities  bar  one,  then
define the final probability as one minus the sum of all  other probabilities. This can be achieved
using the attribute level  function feature,  by placing 'fcn()'  within the square brackets that  define
the attribute levels, and placing an expression within these round brackets. Syntax for the above
example is provided below:

Design
;alts = alt1, alt2
;rows = 12
;eff = (mnl,d)
;alg = swap
;model:
U(alt1) = b1[0.5] * prEarly[0.2,0.4] * Early[10,12,14]  +
          b2[0.2] * prOntime[0.5,0.3] * Ontime[20,22,24] +
          b3[-0.4] * prLate[fcn(1 - alt1.prEarly - alt1.prOntime)] 
                   * Late[25,27,29] /
U(alt2) = b1 * prEarly * Early +   
          b2 * prOntime * Ontime +
          b3 * prLate[fcn(1 - alt2.prEarly - alt2.prOntime)] * Late 
$

Care must be taken to ensure that no combination of explicitly defined probabilities can exceed
one. Note that each attribute in the function is defined by both the alternative and attribute names,
with a full stop placed in between. Also, in this example, the probability attributes enter the utility
expression only within an interaction (possible since version 1.1), although they could also enter
the utility expression as a main effect. At this point in time, only constants, attributes, and plus and
minus symbols can enter the expression. When functions are employed, only column based
algorithms can be used. This excludes the modified Federov and RSC algorithms, orthogonal
designs, and optimal orthogonal in the difference (OOD) designs.

8.10 Varying only a subset of attributes in each choice task

Choice tasks can become quite complex for respondents when the number of attributes is large,
which puts a significant cognitive burden on the respondent and may increase error variance and
attribute non-attendance. Instead of letting respondents trade off  on all  attributes in each choice
task, one can let respondents only trade off on a subset of attributes in each choice task. This can
be achieved by creating a partial profile design. 

In  typical  experiment  designs,  each  alternative  is  represented  by  a  full  profile  of  attributes  and
corresponding  attribute  levels.  For  example,  consider  the  experiment  in  Figure  8.22,  and  the
following syntax that generates an efficient experimental design:
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Design
;alts = hotelA*, hotelB*, neither
;rows = 12
;eff = (mnl,d)
;model:
U(hotelA)  = b1[-0.01]     * price[100,150,200]      + 
             b2[-0.2]      * stars[1,3,5]            + 
             b3[-0.001]    * distance[500,1000,1500] + 
             b4.dummy[0.3] * wifi[1,0]               + 
             b5.dummy[0.2] * breakfast[1,0]          + 
             b6.dummy[0.2] * pool[1,0]               +
             b7[0.0002]    * price * stars           /
U(hotelB)  = b1            * price                   + 
             b2            * stars                   + 
             b3            * distance                + 
             b4            * wifi                    + 
             b5            * breakfast               + 
             b6            * pool                    +
             b7            * price * stars           /
U(neither) = b0[-3.0]
$

Figure 8.22: Choice task with full profile with six (non-overlapping) attributes

One can reduce choice task complexity by forcing some of the attributes to have the same level
across  multiple  alternatives.  Such  a  design  is  referred  to  as  an  explicit  partial  profile  design  in
which overlap between attributes is explicitly shown. Figure 8.23 illustrates such a case in which
we have three attributes with  overlapping levels  in  each choice task.  It  is  clear  that  overlap can
only be created if there exist attributes (with the same attribute levels to choose from) that appear
in multiple alternatives. 
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Figure 8.23: Choice tasks with explicit partial profiles

In Ngene, the modified Federov algorithm can be used to generate efficient designs with explicit
partial  profiles.  In  order  to  achieve  this,  a  candidate  set  needs  to  be  created  externally,  for
example  in  Excel,  R,  or  Matlab.  Figure  8.24  illustrates  such  an  external  candidate  set  that
contains  all  13,608  possible  combinations  in  which  three  out  of  six  attributes  have  overlapping
levels across the two generic alternatives. Overlapping levels across alternatives are indicated in
grey (although such formatting should not exist in the actual file). Using such a large candidate set
can  make  the  modified  Federov  algorithm  very  slow.  It  is  typically  not  necessary  to  include  all
possible  combinations  in  the  candidate  set,  therefore  one  could  also  create  an  incomplete
candidate  set  that  only  contains  a  subset,  e.g.  1,000  randomly  selected  out  of  these  13,608
choice tasks. The candidate set can be used in the syntax as follows:

;alg = mfederov(candidates = explicit_partial_profiles.csv)

where explicit_partial_profiles.csv is the name of the file containing the (complete or
incomplete)  candidate  set.  Note  that  the  format  of  this  candidate  set  is  the  same  as  any  other
design that Ngene can read in for evaluation using ;eval (see Section 8.7). In other words, one
can use the format shown in Figure 8.24 (which has a header row that is ignored by Ngene, a first
column  indicating  that  we  are  generating  a  homogeneous  design  for  a  single  respondent,  a
second column with the choice task number, and all next columns are for attributes in the order in
which they appear within the syntax). Running the syntax then produces an experimental design
similar  to  the  one  shown  in  Figure  8.25  (again  for  convenience  using  grey  shading  to  indicate
attribute level overlap). 

There does not need to be a lot of intelligence in the candidate set, Ngene automatically selects
appropriate choice tasks from the candidate set.  In the syntax example above, with the asterisk
behind  hotelA  and  hotelB,  Ngene  automatically  removes  choice  tasks  in  which  both  profiles
are  identical,  automatically  avoids  choice  tasks  with  dominant  alternatives,  and  automatically
avoids  repetitions  of  the  same  choice  task  within  the  design  (see  Section  8.8  for  more
information). It is further possible to add constraints using the ;reject or ;require command in order
to automatically remove other choice tasks from the candidate set as well. The modified Federov
algorithm does the rest of the work in selecting the best choice tasks to include in the design. Note
that  that  the modified Federov algorithm cannot  guarantee attribute  level  balance,  hence,  whilst
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not strictly necessary, one may wish to add hard constraints on the number of times each attribute
level  appears  within  the  design,  or  alternatively  impose  a  soft  level  balance  constraint,  see
Section 8.1.

Figure 8.24: Candidate set with choice tasks consisting of explicit partial profiles

Figure 8.25: Efficient experimental design with explicit partial profiles

If  the  experiment  is  unlabelled  (i.e.  does  not  contain  labelled  alternatives,  including  ‘no  choice’
alternatives  like  neither)  and  only  contains  main  effects  (i.e.,  no  interaction  effects  such  as
price * stars), then it is possible to further reduce choice task complexity by showing implicit
partial profiles instead of explicit partial profiles. In an implicit partial profile design only a subset of
attributes is shown in each choice task, while varying this subset over choice tasks. Figure 8.26
shows an example in which levels for only three out of the six attributes are shown in each choice
task, with the implicit assumption that the levels of the attributes not shown are the same across
all alternatives (without actually showing the levels of these attributes).
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Figure 8.26: Choice tasks with implicit partial profiles showing only three attributes per
choice task

The  following  syntax  (where  we  removed  the  labelled  alternative  neither  as  well  as  the
interaction effect price * stars from the previous syntax) generates an implicit partial profile
design: 

Design
;alts = hotelA*, hotelB*
;rows = 12
;eff = (mnl,d)
;alg = mfederov(candidates = implicit_partial_profiles.csv)
;model:
U(hotelA)  = b1[-0.01]     * price[100,150,200,0]      + 
             b2[-0.2]      * stars[1,3,5,0]            + 
             b3[-0.001]    * distance[500,1000,1500,0] + 
             b4.dummy[0.3] * wifi[1,0]                 + 
             b5.dummy[0.2] * breakfast[1,0]            + 
             b6.dummy[0.2] * pool[1,0]                 /
U(hotelB)  = b1            * price                     + 
             b2            * stars                     + 
             b3            * distance                  + 
             b4            * wifi                      + 
             b5            * breakfast                 + 
             b6            * pool
$

In  the  syntax  above,  we  read  in  an  external  candidate  set  called
implicit_partial_profiles.csv that is created by the analyst (e.g. in Excel, R, or Matlab)
that consists of implicit  partial  profiles in which a subset of attributes are omitted in each choice
task.  Attributes  can be omitted by setting their  level  to  zero.  Figure 8.27 illustrates  what  such  a
candidate set may look like. In this example, we omit three out of the six attributes in each choice
task (shaded in grey), and we ensure that the remaining attributes are non-overlapping. This leads
to in total 1,088 possible choice tasks. This set is sufficiently small such that we can include this
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entire candidate set in the modified Federov algorithm, but if desired an incomplete candidate set
can  be  generated  with  a  subset  of  all  possible  combinations.  In  general,  the  total  number  of
possible  implicit  partial  profiles  is  much smaller  than the total  number  of  possible  explicit  partial
profiles.

In order to ensure that the attribute levels in the candidate set match the levels in the syntax, it is
important to make sure that 0 is one of the feasible levels of each attribute. In the above syntax, a
zero is added to the attribute levels of price, stars, and distance, while zeros for the dummy coded
variables are already present.

Figure 8.27: Complete candidate set with choice tasks consisting of implicit partial profiles

A resulting efficient experimental design generated by Ngene is shown in Figure 8.28 in which in
each choice task three attributes are shown to the respondent, while the other three attributes are
omitted (shaded in grey).

Figure 8.28: Efficient experimental design with implicit partial profiles
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8.11 Showing only a subset of alternatives in each choice task

In labelled experiments the number of  alternatives may be large,  such that  choice tasks can be
complex. For example, with five alternatives each with four attributes the respondents are asked
to evaluate 20 attribute levels in each choice task. Such complex choice tasks lead to a significant
cognitive burden on the respondent, which often means that a respondent adopts heuristic rules in
order to simplify the task and may not trade off  on all  alternatives and attributes.  Therefore,  the
analyst may wish to only show a subset of alternatives in each choice task. We call such a design
a  partial  choice  set  design,  and  is  sometimes  also  called  an  availability  design,  referring  to  the
availability of alternatives in choice tasks.

As an example, consider the syntax below that generates a design with five labelled alternatives
(car, train, bus, tram, and bike). An example choice task is shown in Figure 8.29.

Design
;alts = car, train, bus, tram, bike
;rows = 15
;eff = (mnl,d)
;model:
U(car)   = b1[0.3]                         + 
           b2[-0.05]  * ctime[15,20,25]    + 
           b3[-0.3]   * fuel[1,2]          + 
           b4[-0.4]   * toll[0,1]          /
U(train) = b5[0.2]                         + 
           b6[-0.04]  * ttime[10,15,20]    + 
           b7[-0.08]  * accegg[5,10,15]    + 
           b8[-0.08]  * transfer[0,5,10]   + 
           b9[-0.3]   * fare[2,3]          /
U(bus)   = b10[-0.2]                       + 
           b11[-0.06] * btime[15,20,25]    + 
           b7         * accegg             + 
           b8         * transfer           + 
           b9         * fare2[1,2]         /
U(tram)  = b12[0.1]                        + 
           b6         * ttime              + 
           b7         * accegg             + 
           b8         * transfer           + 
           b9         * fare2              /
U(bike)  = b13[-0.08] * biketime[20,30,40]
$

Figure 8.29: Choice task with a full choice set

Instead  of  showing  all  five  alternatives  in  each  choice  task,  in  order  to  reduce  choice  task
complexity  one  may  wish  to  show  only  three  alternatives  in  each  choice  task,  as  illustrated  in
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Figure 8.30.

Figure 8.30: Choice tasks with partial choice sets

Although  it  is  not  possible  to  let  Ngene  directly  determine  which  alternatives  to  show  in  each
choice task, Ngene can indirectly select and optimise the subset of alternatives to show in each
choice  task  by  using  the  modified  Federov  algorithm  together  with  a  specifically  constructed
candidate  set  as  shown  in  Figure  8.31.  This  candidate  set  (partial_choice_sets.csv)  is
externally created by the analyst (e.g., in Excel, R, or Matlab). In this example we aim to omit two
alternatives from each choice task by only showing a subset of three alternatives. Alternatives can
be omitted by assigning a large negative utility to it. This can be achieved by setting large positive
levels for attributes with a negative prior, or large negative levels for attributes with a positive prior.
In our syntax example, all priors are negative and hence we choose a positive large value 999 for
all  attributes. In the candidate set in Figure 8.31, the first  choice task omits alternatives car  and
train,  such  that  only  bus,  tram,  and  bike  are  shown  to  the  respondent  (other  alternatives  are
shaded  in  grey  for  illustration  purposes,  although  this  formatting  should  not  occur  in  the  actual
file). Note that the format of the external candidate set is the same as any other design that Ngene
can read in for evaluation using ;eval  (see Section 8.7).  The format shown in Figure 8.31 has a
header  row  that  is  ignored  by  Ngene,  a  first  column  indicating  that  we  are  generating  a
homogeneous design for a single respondent, a second column with the choice task number, and
all next columns are for attributes in the order in which they appear within the syntax.

In order to make the syntax consistent with this candidate set, we need to add 999 as a level to
each attribute. The following syntax can then be used to create a partial choice set design.
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Design
;alts = car, train, bus, tram, bike
;rows = 15
;eff = (mnl,d)
;alg = mfederov(candidates = partial_choice_sets.csv)
;model:
U(car)   = b1[0.3]                             + 
           b2[-0.05]  * ctime[15,20,25,999]    + 
           b3[-0.3]   * fuel[1,2,999]          + 
           b4[-0.4]   * toll[0,1,999]          /
U(train) = b5[0.2]                             + 
           b6[-0.04]  * ttime[10,15,20,999]    + 
           b7[-0.08]  * accegg[5,10,15,999]    + 
           b8[-0.08]  * transfer[0,5,10,999]   + 
           b9[-0.3]   * fare[2,3,999]          /
U(bus)   = b10[-0.2]                           + 
           b11[-0.06] * btime[15,20,25,999]    + 
           b7         * accegg                 + 
           b8         * transfer               + 
           b9         * fare2[1,2,999]         /
U(tram)  = b12[0.1]                            + 
           b6         * ttime                  + 
           b7         * accegg                 + 
           b8         * transfer               + 
           b9         * fare2                  /
U(bike)  = b13[-0.08] * biketime[20,30,40,999]
$

Instead of adding a large value to each attribute, it is sufficient to add it to only one linear coded
attribute  in  each  alternative  (e.g.  to  ctime,  ttime,  btime,  and  biketime).  If  at  least  one
attribute  of  an  alternative  has  a  very  large  negative  utility,  then  the  choice  probability  of  this
alternative becomes zero and the levels of the other attributes become irrelevant (i.e., can be set
to  any  value).  Since  adding  a  large  level  to  a  dummy  or  effects  coded  variable  leads  to
inconsistencies, the procedure described in this section does not work if the utility functions only
consist of dummy and/or effects coded variables. In the case priors are unknown, one can use a
small  (positive  or  negative)  prior  value,  and  use  an  appropriate  (positive  or  negative)  large
attribute  levels  to  indicate  an  omitted  alternative.  For  example,  in  case  we  only  know  that  the
coefficient  of  ctime  is  negative,  then  we  could  use  b2[-0.00001]*ctime
[15,20,25,9999999].

The syntax above can include constraints on attribute levels set by ;reject or ;require commands,
which  automatically  removes  invalid  choice  tasks  from  the  candidate  set.  Further  note  that  the
modified Federov relaxes the attribute level  balance constraint.  If  some degree of  attribute level
balance  is  required  in  the  design  one  may  wish  to  set  certain  upper  and  lower  limits  on  the
number of times each attribute level appears within the design, or alternatively impose a soft level
balance constraint, see Section 8.1.
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Figure 8.31: Candidate set with choice tasks consisting of partial choice sets

The complete candidate set may be very large, therefore one may wish to select a subset of rows.
For example, in our example there exist 294,516 possible choice tasks in which only three out of
five  alternatives  are  shown  to  a  respondent.  In  this  case  we  suggest  using  an  incomplete
candidate set with a random selection of, say, 1 per cent of all possible choice tasks.

A resulting efficient experimental design generated by Ngene is shown in Figure 8.32 in which in
each choice task three alternatives are shown to the respondent, while the other two alternatives
are omitted (shaded in grey for  convenience).  The corresponding choice probabilities calculated
by Ngene as shown in Figure 8.33 confirm that in each choice task two alternatives are omitted
since  they  have  a  zero  probability  of  being  chosen,  while  the  other  choice  probabilities  sum  to
one.  Note  that  that  the  modified  Federov  algorithm  cannot  guarantee  attribute  level  balance,
hence, whilst not strictly necessary, one may wish to add hard constraints on the number of times
each  attribute  level  appears  within  the  design,  or  alternatively  impose  a  soft  level  balance
constraint, see Section 8.1.

Figure 8.32: Efficient experimental design with partial choice sets
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Figure 8.33: Choice probabilities for partial choice set design



Chapter 9

Designs With Continuous Attribute Levels
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9 Designs With Continuous Attribute Levels

9.1 Theory of designs with continuous levels

Simply put,  any constraint  one places on a design will  impact  upon the overall  efficiency of  that
design  (where  efficiency  is  defined  in  the  terms  outlined  in  Chapter  7).  Orthogonality,  as
traditionally viewed within the literature (see Chapter 6), represents one such constraint. A second
constraint often imposed on designs is attribute level balance. Attribute level balance occurs when
each level of an attribute is forced to occur an equal number of times in the design. This constraint
is imposed so that each point in preference space (represented by the attribute levels) is covered
an  equal  number  of  times.  The  attribute  level  balance  constraint  is  often  imposed  on  efficient
designs, although this need not be the case. Typically, when this constraint is relaxed, a minimum
number of times each level must appear is imposed, otherwise the levels of the design will tend to
all  go  to  the  extremes  of  the  attribute  level  range,  thus  not  allowing  for  tests  of  non-linearity  in
preference (e.g., see Section 8.1).

Where such a constraint is maintained, the overall  efficiency of a design may be impacted upon
as changing one attribute level in one choice situation may result in an overall improvement in the
design, but such a change would require that another attribute level be changed somewhere else
in the design, possibly resulting in an overall worsening of overall level of efficiency of the design.
For example, consider an efficient design constructed using the following syntax. 

design
;alts = alt1, alt2, alt3
;rows = 8
;eff = (mnl,d,fixed)
;con
;model:
U(alt1) = b1[1.2] + b2[-0.6]*A[6,8,10,12] + b3[-0.4]*B[4,8] + b4[0.3] *C
[0,1] /
U(alt2) = b5[0.6] + b2         *A         + b3      *B      + b6[0.8] *C
      /
U(alt3) =           b2         *A         + b7[-1.0]*C                 
     $

Table 9.1 presents an efficient design generated based on the above syntax. The overall Dp-error

of the design is 0.799. In Table 9.1, we have highlighted the attribute level for the first attribute for
alternative  3  in  choice situation 2.  Keeping  the  remainder  of  the  design  fixed,  if  we change this
attribute level from a value of 8 to a value of 10, the Dp-error of the design will improve to 0.789,

however in doing this, this attribute will  no longer exhibit  the attribute level balance property (10
would  now  appear  three  times  whilst  8  would  now  appear  only  once  over  the  eight  choice
situations).  As such, to maintain attribute level  balance, we would be required to change one of
the  already  existing  attribute  levels  of  10  to  a  value  of  8.  If  we  change  the  level  10  in  choice
situation three, then the overall Dp-error of the design will worsen to a value of 0.820. If we change

the  level  10  in  choice  situation  seven  to  8,  then  the  overall  Dp-error  of  the  design  worsens  to

0.829. Thus, whilst changing the original value led to an overall improvement in the efficiency of
the  design,  the  attribute  level  balance  property,  which  requires  us  to  change  another  level  in
another  choice  situation  somewhere  else  in  the  design,  prevents  us  from maintaining  this  gain,
and in fact,  results in a worsening in the designs statistical  efficiency. As such, we would prefer
the existing design shown in  Table  9.1  to  one where we swap the attribute  levels  as  discussed
above. 



186 Ngene User Manual

© 2018 ChoiceMetrics

Table 9.1: Attribute level balance and efficient designs

Toner  et  al.  (1999),  Fowkes  (2000)  and  Kanninen  (2002)  offer  a  number  of  different  design
methods  which  we  collectively  call  optimal  choice  probability  designs  that  are  designed  to
overcome this problem. Both Toner et al. and Kanninen show analytically that utility or probability
balance  in  choice  tasks  represent  an  undesirable  property,  and  in  doing  so  suggest  rules  that
minimize the variance of estimates in an optimal manner, based on desirable or what Toner et al.
refer  to  as  magic  p’s.  Although  using  a  different  set  of  arguments,  Fowkes  (2000)  arrived  at  a
similar conclusion deriving a set of designs he termed boundary value designs. In each case, K-1
attribute levels are first generated for each J alternatives, typically using an orthogonal or optimal
orthogonal approach. The last Kth attribute for each alternative is then generated as a continuous
variable (usually a price attribute). The values of these continuous variables are chosen such that
the choice probabilities  take certain values that  minimize the elements  of  the AVC matrix  under
the assumption of non-zero prior parameters. Toner et al. (1999) achieves a similar result to those
reported by Kanninen and Fowkes. The boundary value method of Fowkes is somewhat different
in derivation although the implications remain the same.  Toner et al. (1999), Kanninen (2002) and
Johnson et al. (2006) have determined the desirable probabilities for a limited number of designs
(i.e.,  those  involving  two  alternatives),  although  non-linear  programming  may  be  used  to
determine  these  for  a  wider  number  of  designs.  The  boundary  value  method  of  Fowkes  is
somewhat different in derivation although the implications remain the same. Appendix 9A outlines
the  steps  required  for  generating  this  form  of  design.  We  now  discuss  how  to  generate  these
designs in Ngene. In all cases however, prior parameters are still required to generate this class
of designs.

9.2 Designs with continuous levels in Ngene

In order to generate an optimal choice probability design, the first step is to generate a design with
non-continuous  attribute  levels.  This  initial  design  should  have  the  same  number  of  design
dimensions (i.e., alternatives, attributes, attribute levels and choice situations) with the exception
of the Kth  attribute which is to be treated as continuous. For this attribute, any the levels can be
provided  as  long  as  they  do  not  violate  attribute  level  balance  and  hence  require  a  different
number  of  rows  be  generated.  For  example,  assuming  the  price  attribute  as  the  attribute  to  be
later treated as continuous, assigning it  two attribute levels for a design to be generated in nine
rows will require a change in the number of rows required. Also, whilst not necessary, the specific
levels chosen are best selected if they are within the range that will be allowed when the attribute
is later treated as continuous. For example,  if  in  the final  design, the analyst  will  allow the price
attribute  to  take  any  value  between  $0  and  $20,  then  the  attribute  levels  for  price  in  the  initial
design should be within this range also. In generating the initial design, any type of design can be
constructed. Note that, in generating the design with continuous attribute levels, only the attributes
that are allowed to take on continuous levels will  be changed. That is, all  other attributes will  be
fixed  based  on  the  initial  design.  Kanninen  (2002)  and  Johnson  et  al.  (2006)  suggest  using
optimal  orthogonal  designs as the initial  start  design,  however  other  design types might  provide
more efficient results, particularly if they are closer to the ‘optimal’ level of statistical efficiency.

To  demonstrate,  consider  the  following  two  sets  of  syntax  used  to  generate  potential  start
designs. The first  generates an optimal  orthogonal  design whilst  the second creates an efficient
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design.  In  specifying  the  optimal  orthogonal  design,  no  priors  are  required,  whilst  priors  are
required for the efficient design. We will use both to construct initial start designs using both sets
of syntax.

Design
;alts = Alt1, Alt2
;rows = 12
;orth = ood
;model:
U(Alt1) = b1 * X1[2,4,6] + b2 * X2[1,3,5] + b3 * X3[2,5,8] /
U(Alt2) = b1 * X1        + b2 * X2        + b3 * X3        
$

Design
;alts = Alt1, Alt2
;rows = 12
;eff = (mnl, d) 
;model:
U(Alt1) = b1[-0.2] + b2[0.3] * X1[2,4,6] + b3[0.4] * X2[1,3,5] + b4[-
0.6] * X3[2,5,8] /
U(Alt2) =            b2      * X1        + b3      * X2        + b4    
  * X3        
$

Figure  9.1  shows  the  two  designs  generated  using  the  above  syntax.  Both  designs  have  been
saved as part of a project as can be seen by their  appearance in the ‘Output’  tab of  the project
bar. The designs were saved as ‘Initial OOD.ngs’ and ‘Initial Efficient.ngs’ respectively. Although
not shown, the Dp-error of the efficient design was 0.058 versus a Dp-error of 0.154 for the optimal

orthogonal design based on the set or priors assumed in generating the efficient design.
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Figure 9.1: Two different initial designs

The next step in generating optimal choice probability designs is to construct the design, using the
initial design as the start point. As discussed in Section 8.6, an already saved design can be used
as  the  initial  design  when  searching  for  a  more  efficient  design  via  the  start  property.  Thus  for
example, to use the already saved ‘Initial OOD.ngd’ design as the start design, we would specify

;start = initial OOD.ngd

Kanninen  (2002)  and  Johnson  et  al.  (2006)  derived  analytically,  a  set  of  probabilities  that  will
result  in  an  ‘optimal’  MNL  design  (i.e.,  the  most  efficient  design  possible,  with  the  smallest
standard errors). These derivations however apply only to designs generated for MNL models as
well as for only a small subset of possible design dimensions (e.g., these probabilities are known
only  for  designs  with  two  alternatives  with  between  two  and  eight  attributes,  and  are  limited  to
designs  with  generic  parameters;  see  Appendix  9A).  Rather  than  limit  the  type  of  model  and
dimensions  of  the  design  allowed,  Ngene  uses  a  search  algorithm  known  as  the  Nelder-Mead
algorithm to determine the final attribute levels for the attribute that is to be treated as continuous
(see Appendix 9B).  Whilst  this  means that  the design cannot  be guaranteed to be ‘optimal’,  the
resulting design should be close to optimal. In any case, the user must specify that they wish to
use the Nelder-Mead algorithm when generating designs with continuous variables. This is done
via the alg property (see Section 8.6). The syntax to do this is 

;alg = neldermead

The Nelder-Mead algorithm has a number of associated parameters that may be useful in limiting
the amount of output reported. Unlike efficient designs, when one allows for continuous attribute
levels in a design, the number of possible designs effectively becomes infinite (e.g.,  an attribute
might  take  the  value  2.21421452  or  2.21421453  or  2.21421454)  with  very  slight  changes
producing  improvements  in  statistical  efficiency.  Specific  parameters  for  the  Nelder-Mead
algorithm are listed below. Note that these are option parameters, and the syntax above will work
without them. 

neldermead(converge=<float>, runs=<integer>, nointerim, seed=<integer>)

where 

converge: minimum distance required between the best and other all candidate solutions in order



189Designs With Continuous Attribute Levels

© 2018 ChoiceMetrics

to terminate (default=0.001). Distance is relative to attribute level lower and upper bounds.

runs: the number of runs to perform (default=1). Each run is an independent trial and begins with
an entirely new set of random allocations to the continuous attributes. The sole exception is the
first run where one copy of the original design is maintained.

nointerim:  only  report  improved  designs  upon  convergence,  not  as  they  are  found  (which  is
default). Duplicate designs will be reported if there is no improvement between restarts.

seed: a number to initialize the pseudo-random number generator. This allows experiments to be
repeated if so desired.

Note,  that  where  specified,  not  all  parameters  are  required.  Thus  for  example,  the  analyst  may
specify  a  convergence  criteria  in  addition  to  the  nointerim  criteria  but  omit  the  runs  and  seed
parameters.
Note  also  that  in  addition  to  these  parameters,  stoping  criteria,  as  reported  in  Section  8.6  may
also  be  applied  to  the  Nelder-Mead  algorithm.  Thus,  for  example  the  following  syntax  may  be
used.

;alg = neldermead(nointerim=0, stop=total(5000 iterations))

The final syntax used to generate a design with continuous variables is handled within the utility
specifications.  In  generating  a  design  with  continuous  attribute  levels,  the  analyst  must  specify
which attributes are to be treated as continuous as well as place a range on the levels that these
attribute  may take.  Traditionally,  attribute  levels  in  Ngene  are  specified  in  square  brackets  after
the  attribute  name,  with  different  levels  separated  by  commas  (e.g.,  X3[2,5,8]).  Where  an
attribute is to be treated as a continuous variable, the analyst must specify the lower and upper
values of the range separated by a colon (for example, X3[2:10] would allow the attribute levels
of  X3  to  take  any  value,  between  2  and  10).  Note  that  adding  a  second  colon  will  generate
discrete attribute levels, from the lower bound to the upper bound, with a step size specified after
the second colon (e.g.  [2:10:0.5]).  Complete syntax for  generating a  design with  continuous
levels  is  given  below.  In  the  syntax  shown,  the  start  design  is  given  as  the  ‘Initial  OOD.ngs’
design.  This  syntax  can  be  easily  changed  to  use  the  ‘Initial  Efficient.ngs’  as  the  initial  start
design.

Design
;alts = Alt1, Alt2
;rows = 12
;eff = (mnl, d)
;alg = neldermead(nointerim=0, stop=total(5000 iterations))
;start = initial OOD.ngd
;model:
U(Alt1) = b1[-0.2] + b2[0.3] * X1[2,4,6] + b3[0.4] * X2[1,3,5] + b4[-
0.6] * X3[2:10] /
U(Alt2) =            b2      * X1        + b3      * X2        + b4    
  * X3[2:10] 
$ 

Figure  9.2  shows  the  resulting  design  based  on  the  above  output,  whilst  Figure  9.3  shows  the
resulting design based on using ‘Initial  Efficient.ngs’ as the initial  design. A comparison of these
two Figures  suggests  that  using the efficient  design as  the initial  design  resulted  in  a  lower  Dp-

error (0.058) than the optimal orthogonal design (Dp-error = 0.072), hence hinting at the fact that

the results may be sensitive to the initial design assumed. The primary reason for this sensitivity
lays in the fact that ‘optimality’ is linked to the choice probabilities and by imposing too narrower a
range  on  the  values  that  a  continuous  variable  might  take,  the  algorithm  may  not  be  able  to
achieve these desirable probabilities. In any case, it  need not hold that using an efficient design
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as the start design will always be a better choice than using a non-efficient design. Nevertheless,
this  result  does  highlight  that  for  the  specific  example  chosen,  there  appears  greater  room  for
improvement in  terms of  statistical  efficiency for  the initial  optimal  orthogonal  design (Dp-error  =

0.154 to 0.072) then there was for the initial efficient design (Dp-error = 0.058 to 0.057).  

Examination of Figures 9.2 and 9.3 reveals that the attribute levels for the attributes that were not
allowed  to  take  continuous  levels  are  the  same  as  those  assumed  in  the  initial  designs  (see
Figure  9.1).  The  attribute  levels  of  attribute  X3  however  are  now  no  longer  fixed  integers,  but
rather continuous levels fixed within the range specified in the syntax. 

Figure 9.2: Continuous level design based using an optimal orthogonal design as the start
design

Figure 9.3: Continuous level design based using an efficient design as the start design

Figure 9.4 show the choice probabilities for the continuous attribute level design shown in Figure
9.2.  Whilst  the  choice  probabilities  are  not  exactly  the  same  within  each  choice  situation  (as
should occur if one used the analytical choice probabilities to design the experiment), there does
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appear  to  be  certain  probabilities  that  re-occur  over  the  design.  This  once  more  highlights
problems  with  trying  to  impose  utility  or  probability  balance  in  a  design  (see  Section  7.1.8),  as
such probabilities will typically result in a significant loss of statistical efficiency. 

Figure 9.4: Choice probabilities for a continuous level design 

The  examples  shown  above  are  for  MNL  designs  with  only  two  alternatives  and  generic
parameter  estimates.  As  suggested  however,  the  Nelder-Mead  algorithm  is  not  limited  to
problems  dealing  with  MNL  designs  or  to  problems  involving  only  two  alternatives.  Indeed,  the
procedures outlined above may be applied to any model type, as well as to experimental design
problems with any number of alternatives. Further, the method can also be applied with Bayesian
prior parameter distributions. Figure 9.5 shows a design generated with continuous attribute levels
for  a  panel  MMNL  with  generic  and  alternative  specific  parameters  allowing  for  Bayesian  prior
parameters based on the syntax below.  We present  this  Figure to  demonstrate the flexibility  of
the approach.

Design
;alts = Alt1, Alt2, Alt3
;rows = 12
;eff = (rppanel, d) 
;bdraws = gauss(2)
;rdraws = gauss(2)
;model:
U(Alt1)  =  b1[-0.2]  +  b2[n,0.3,0.1]  *  X1[2,4,6]  +  b3[(n,0.4,0.1)]  *  X2
[1,3,5] + b5[-0.6] * X3[2,5,8] /
U(Alt2) =            b2            * X1        + b4[(n,0.3,0.1)] * X2  
     + b5       * X3        
$ 
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Design
;alts = Alt1, Alt2, alt3
;rows = 12
;eff = (rppanel, d) 
;bdraws = gauss(2)
;rdraws = gauss(2)
;alg=neldermead
;start= RP panel efficient.ngd
;model:
U(Alt1)  =  b1[-0.2]  +  b2[n,0.3,0.1]  *  X1[2,4,6]  +  b3[(n,0.4,0.1)]  *  X2
[1,3,5] + b5[-0.6] * X3[2:10] /
U(Alt2) =            b2            * X1        + b4[(n,0.3,0.1)] * X2  
     + b5       * X3[2:10] 
$

Figure 9.5: Choice probability design with continuous attribute levels for a panel MMNL
model 

9.3 Appendix 9A Steps in generating choice designs with continuous
attribute levels

There exist three main steps in generating CP types of designs. We now outline these steps.

Step  1:  Generate  an  initial  start  design.  Kanninen  (2002,  2005)  and  Johnson  et  al.  (2006)
suggests that this initial design be such that it represents only k-1 attributes (i.e., the initial design
omits a single (common across alternatives) attribute for each of the alternatives). The kth omitted
attribute in CP designs must be continuous in nature, otherwise the method will  not work. Given
that  most  choice  problems  will  contain  a  price  or  cost  attribute,  Kanninen  suggests  that  the  kth

omitted attribute be that attribute (in transport problems, time attributes will often also be present,
and hence may also be used in generating CP designs). For best results, Johnson et al.  (2006)
recommends  that  the  initial  design  be  orthogonal  and  in  the  case  of  two  alternatives  with  all
attributes  taking two levels,  that  the  second alternative  be  constructed  using  the  foldover  of  the
first alternative. 
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Step  2:  Select  attribute  levels  for  the  kth  omitted  attribute  such  that  the  choice  probabilities  for
each choice situation in the design assume certain values. Note that as with efficient designs, the
generation of CP designs requires the use of prior parameter estimates in order to determine the
choice probabilities over the design. If zero-valued priors are assumed, as with optimal orthogonal
designs, then the choice probabilities will simply be fixed and equal to 1/J and hence it will not be
possible to generate the design. In allocating the attribute levels, the desirable choice probabilities
that the analyst should attempt to aim for are shown in Table 9A.1 for a small number of designs.
In  generating  values  for  the  kth  attribute,  the  analyst  may  have  to  let  go  of  the  attribute  level
balance  assumption  common  in  generating  designs,  and  further,  may  have  to  let  go  of  the
assumption that the attribute can only take on integer values. 

Table 9A.1: Optimal Choice probability values for specific designs (adapted Johnson et al.
2006)

The  probabilities  shown  in  Table  9A.1  were  derived  analytically.  Rather  than  rely  on  these
probabilities which are known only for  designs generated for  MNL models,  as well  as for  only a
small  subset  of  cases,  Ngene uses the Nelder  Mead algorithm to  search for  an optimal  design.
The Nelder Mead algorithm is discussed in Appendix 9B.

Step  3:  The  final  stage,  advocated  by  Kanninen,  is  to  update  the  prior  parameter  values  and
attribute  levels  so  as  to  optimise  the  AVC  matrix  for  the  data.  Seeing  that  discrete  choice
modelling  is  undertaken  on  choice  data  and  not  on  choice  designs,  Johnson  et  al.   (2006)
advocates using a large pilot or pretest sample, and/or stopping the main sample partway through
so as to update the prior parameter values used in generating the original design. With the new
updated priors, the levels of the changing attribute can be reworked so as to produce the desired
choice probabilities for the data. As such, over the course of data collection, different respondents
may  be  given  different  versions  of  the  design,  at  least  in  terms  of  what  they  observe  for  the
attribute that is allowed to change.

9.4 Appendix 9B The Nelder Mead algorithm

9B.1 Introduction

The Nelder-Mead method (Nelder  & Mead,  1965)  is  a  computational  technique  for  solving  non-
linear  optimisation  problems.  The  method  is  what  is  known  as  a  local  search  technique  (also
referred to as an incomplete method). This means that although the method will locate a solution
to a problem, that solution may only be locally optimal rather than globally optimal (so there may
exist a better solution that the method fails to find). The motivation for the use of local methods is
that guaranteeing the optimality of a solution is for many problems too computationally intensive to
be feasible and is often of little practical benefit. Although in theory there are situations where the
Nelder-Mead method will not terminate, in practice the finite precision and bounds of the floating
point numbers used in digital computers guarantee that the method will (eventually) converge and
terminate.

9B.2 Operation
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The  method  maintains  a  set  of  tentative  solutions.  The  size  of  this  set  is  determined  by  the
number  of  unknowns  in  the  problem.  For  a  problem  with  N  unknowns,  a  set  of  N+1  tentative
solutions will be maintained. With respect to optimising SP experimental designs with continuous
attributes,  the  number  of  unknowns  is  the  number  of  continuous  attributes  multiplied  by  the
number  of  rows  in  the  design.  For  the  initial  set  of  solutions,  the  levels  for  the  continuous
attributes  are  allocated  randomly.  Following  the  initial  random  allocation  of  attribute  levels,  the
algorithm  iteratively  either  improves  upon  the  current  worst  tentative  solution  or  shrinks  all
tentative solutions towards the best solution. The specific process is as follows.

9B.3 Reflection/Extension

The  centroid  of  the  set  of  tentative  solutions  (excluding  the  worst)  is  first  calculated.  A  new
tentative  solution  is  obtained  by  reflecting  the  worst  solution  through  this  centroid,  the  rationale
being that moving away from the worst solution towards the others should result in an improved
solution. If the reflected solution does not improve upon the objective value of the worst solution
the  procedure  skips  to  contraction.  Otherwise,  if  the  new  solution  is  an  improvement,  a  further
extension  away  from the  worst  solution  is  considered.  When  the  worst  solution  is  a  distance  d
from  the  centroid  then  the  reflected  and  extended  solutions  are  a  distance  of  2d  and  3d
respectively from the worst solution. The better of these two solutions replaces the worst tentative
solution and the iteration is complete.

9B.4 Contraction 

If reflection does not result in an improved solution, alternate solutions involving smaller changes
are  considered.  Two  solutions  are  considered:  one  halfway  between  the  current  worst  and  the
centroid,  the  second  halfway  between  the  centroid  and  the  reflected  solution.  Continuing  the
previous  discussion,  these  solutions  will  be  distances  of  0.5d  and  1.5d  from  the  worst  solution
respectively.  If  neither  of  these  solutions  improves  upon  the  worst  the  method  instead  applies
shrinking. Otherwise, the contracted solution with the better objective function valuation is adopted
in place of the current worst and the iteration is complete.

9B.5 Shrinking

If  neither  of  the  above  steps  has  produced  an  improved  solution,  then  all  tentative  solutions
(including  the  worst)  are  moved  towards  the  best  solution  by  a  factor  of  0.5,  irrespective  of
whether  this  leads  to  improvements  in  their  respective  objective  function  valuations.  This
concludes the iteration.

Unless  the  procedure  exhausts  its  computational  resources  (i.e.  a  specified  time  or  number  of
iterations has elapsed) it will continue to iterate until all tentative solutions are within a distance 
of the best solution. For a design with N rows and K continuous attributes,  is defined to be:

where α is a user-definable value within the range 0 < α < 1. Smaller values of a lead to tighter
convergence criteria and hence more iterations prior to convergence.

9B.6 Multiple Runs and Tries

As with most local search algorithms, the solution obtained will depend on the starting conditions
(the initial set of random tentative solutions). Running the procedure multiple times from different
starting  locations  ensures  that  a  single  bad  starting  location  does  not  unduly  prejudice  the  final
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outcome.  The  version  of  the  Nelder-Mead  procedure  implemented  in  Ngene  allows  multiple
repeated runs and tries for this reason.

Each run is entirely independent and may involve multiple tries. Tries are not independent. Within
a  run,  the  best  solution  from  each  try  is  conveyed  to  the  subsequent  try  (as  one  of  the  initial
tentative solutions) so only the first try of a run uses an entirely random set of initial solutions. This
ensures that each try within a run produces an improved (or at least not worsened) solution. A try
ends  when  computational  resources  are  exhausted  or  the  tentative  solutions  converge.  If
computational resources remain, a new try begins.

As  runs  are  independent,  additional  runs  do  not  necessarily  lead  to  improved  solutions.  It  must
also  be  noted  that  on  the  first  run,  a  single  copy  of  the  design  that  is  initially  passed  to  the
procedure is preserved as a tentative solution, meaning that on this run only, the solution set for
the first try is not entirely random.



Chapter 10

Formatting experiments
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10 Formatting experiments
The purpose of generating an experimental design is to create attribute levels for choice situations
in a survey. The respondent cannot be directly faced with the experimental design, as a matrix of
numbers does not have any meaning for the respondent. Instead, the experimental design matrix
has to be converted to choice situations that make sense to the respondent. 

Ngene has the capability of transforming the design matrix to actual choice situations that can be
shown to respondents. In the design window, clicking on the “Formatted scenarios” tab brings up
a new screen in which the choice situations in the design are presented in a format that can be
understood by  respondents  (see  Figure  10.1).  Each row in  the  design  will  be  put  in  a  separate
table that presents the alternatives and attributes in a choice setting. 

Figure 10.1:  Moving from the design matrix to actual choice situations

Different style sheets can be applied, changing the colors and fonts. Users can create their own 
stylesheets  (*.css  files)  and  put  them  in  the  Stylesheets  folder  found  within  the  Ngene  install
folder. An example of a different style sheet being applied is shown in Figure 10.2.
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Figure 10.2:  Style sheets change the look of the choice situations

Clicking on the “Configure scenario formatting” button brings up the scenario formatting screen as
shown in Figure 10.3. 

Figure 10.3:  Scenario formatting screen

The user can enter titles, headers and footers to the choice screens. Furthermore, the names of
the alternatives and attributes presented to the respondent can be entered, changing the names
obtained from the syntax file. This is shown in Figure 10.4.
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Figure 10.4:  Entering title, header and footer text, and change names of alternatives and
attributes

In case the user would like to  change the order  of  the attributes or  alternatives,  the appropriate
cell can be selected, and from the pull-down list the required alternative/attribute combination can
be selected, see Figure 10.5.

Figure 10.5:  Changing attribute order

To include radio buttons for the respondent to be able to select the preferred alternative, choices
have to be added. In the lower left corner, a choice can be added and named. Once at least one
choice has  been added,  it  can  be  selected  from the  pull-down menu,  see  Figure  10.6.  Choices
with  the  same  name  are  grouped,  i.e.  only  one  of  the  radio  buttons  in  such  a  group  can  be
selected. In some cases, multiple choices are required (such as a forced and an unforced choice
if a no-choice alternative is included).
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Figure 10.6:  Including choices in the choice experiment

Finally,  the  attribute  levels  can  be  formatted  by  clicking  on  the  “Edit”  button  on  the  left,  which
brings up the attribute formatting window, see Figures 10.7 and 10.8. For each attribute in each
alternative,  the  format  of  the  attribute  levels  can  be  altered,  such  that  it  does  not  show  just
numbers (coding), but shows the true levels to be presented to the respondent. The levels can be
formatted  for  each  attribute  separately,  or  for  multiple  attributes  at  the  same  time.  For  this
purpose,  select  multiple  attributes  on  the  left  hand  side  (using  <shift>-click  to  select  a  whole
range, or <ctrl>-click to add extra attributes). The numerical levels from the design and the actual
formatted levels are shown. Using the “#” symbol in the format adds the (numerical) level. Instead
of numerical levels, words can be used, etc.

Figure 10.7:  Formatting attribute levels (using numbers)
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Figure 10.8:  Formatting attribute levels (using text or symbols)

While  formatting  the  scenarios,  the  result  can  be  previewed  by  clicking  the  “Preview”  tab,  see
Figure 10.9.

Figure 10.9:  Previewing the formatted scenarios

After  formatting  the  scenarios,  the  scenario  formatting  screen  can  be  closed  by  pressing  “OK”.
One  can  go  back  to  the  design  and  display  the  final  formatted  choice  screens  (with  functional
radio buttons). The design is formatted using HTML coding, which can be viewed by clicking on
the  “HTML source  code”  tab,  see  Figure  10.10.  This  way,  one  can  more  readily  implement  the
choice  experiment  as  an  internet  survey,  although  adding  extra  questions,  managing  multiple
screens, and storing the results in a database requires extra work.



202 Ngene User Manual

© 2018 ChoiceMetrics

Figure 10.10:  Final formatted choice scenarios and HTML source code

If the design is saved, the design formatting will be included in the syntax so that the formatting is
preserved when the design is reopened. Clicking on the “Syntax” tab shows the syntax in which
extra lines have been added to describe the formatting, see Figure 10.11. It is recommended that
these  properties  not  be  altered  directly  from  the  syntax,  but  through  the  above  tools  instead.
Directly altering the properties might cause Ngene to crash.

Figure 10.11:  Formatting syntax
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Note  that  currently  only  the  first  design  will  be  shown  with  scenario  formatting.  So  if  multiple
designs are specified with the fisher property, only the first will be shown. 
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11 Syntax Reference
The following is an alphabetically ordered list of commands and properties for each command.

11.1 Definitions of syntax components

Routine
A  routine  consists  of  a  single  command  and  one  or  more  properties.  When  a  routine  is  run,  a
single  task  is  performed.  Below is  an example routine,  which  will  be  referred  to  in  the  following
definitions.

Design
;alts(model1) = car, bus, train
;rows = 12
;eff = model1(d)
;alg = swap(reset=10000, resetinc=5000)
;model(model1):
 U(car)   =   /
 U(bus)   =   /
 U(train) = 
$

Command 
(e.g. Design)
A command instructs Ngene to run a particular type of task. It needs to be configured with one or
more properties.

Property 
(e.g. alts, rows)
A property provides Ngene with information on how to run the task specified in the command. The
property word is specified immediately after a semicolon.

Property value
(e.g. 12, car)
A property value is a piece of information assigned to a property.

Property qualification 
(e.g. (model1))
Some  properties  can  be  specified  more  than  once.  When  this  happens,  each  property  that  is
repeated needs to be qualified by a label that is specified between brackets immediately after the
property.

Label 
(e.g. car,  model1)
A label is a user specified word that is used to identify something that has been defined in syntax.
In the above example, the label 'car'  identifies one of the alternatives, while 'model1' identifies a
single model specification. Labels cannot be reserved words.



206 Ngene User Manual

© 2018 ChoiceMetrics

Directive
(e.g. ;rows = 12)
A directive is the combination of a property and a property value. Any configured property will be
referred to as a directive in the manual and in error messages to improve clarity.

Parameter
(e.g. reset=10000)
Some properties allow additional information to be specified. These are specified in brackets as a
series  of  comma separated  parameter  name-parameter  value  pairs.  In  the  above  example,  the
alg=swap directive has two parameters specified that provide additional information.

11.2 How this manual specifies syntax

Some of  the  Ngene  syntax  is  very  complex,  and  hence  we  have  adopted  some  conventions  in
how we prescribe the syntax, so as to avoid ambiguity.

Syntax in italics is optional

User specified values
In many instances, the user will need to enter their own value into the syntax. e.g. 12 in ;rows=12.
These user specified values will be treated as follows in our syntax prescription:
<data type(label)>
where data type can be:

integer - a whole number
decimal - a number with any level of precision
string - a text value

The label will be a very concise description of what the user specified value is for, and will typically
be referred to in the comments section using italics ("label").

Text colour
Blue text is used to represent syntax that must be specified verbatim. e.g. ;con
Red text is used for other instructions, and should not be entered as is. Examples include user
specified values, [mutually | exclusive | alternatives] (see below), and repetition (
..., see below).

Mutually exclusive alternatives
Sometimes several options are available, but only one can be applied. In this case, the mutually
exclusive  options  are  surrounded  by  red  square  brackets  ("[]"),  and  separated  by  red  pipe
symbols ("|"). The orth property is a good example:
;orth = [ sim
        | seq
        | seq2
        | ood ]
where the four possible cases are:
;orth = sim
;orth = seq
;orth = seq2
;orth = ood

It is also possible to have multiple levels of square brackets, nested inside each other.
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Repetition
Often, several items, each with the same syntax rules, can be specified in some sort of list. They
may  be  separated  by  commas,  plus  symbols,  pipe  symbols  or  forward  slashes.  Rather  than
repeatedly list the same syntax prescription, the ... symbol is inserted after the relevant separator
symbol.  The  actual  syntax  that  can  be  repeated  will  be  highlighted  in  a  colour,  as  will  the
associated ... symbol and the separation character that immediately precedes it.

In the first example, the syntax that can be repeated is entirely highlighted:
<decimal(weight)> * <string(parameter)> , ...
This could be expanded to:
0.4*G1, 0.6*B1, 1.2*B2

In  the  second  example,  all  rows  of  syntax  that  can  be  repeated  are  spanned  a  vertical  line  of
colour:
 [ <string(parameter)>[<PRIOR>]
 | <string(parameter)>.d[<PRIOR> |...]
 | <string(parameter)>.e[<PRIOR> |...] 
 ]
 * 
 <string(attribute name)><LEVELS>
 * ...
+ ...
This could be expanded to:
G1[0.4] * att1[2,4,6] * att2[3,5,7] + G2.d[0.6|0.8] * att3 + G3[-1.7] *
att4[1,2,3]

Examples
Finally,  the  syntax  prescription,  while  unambiguous,  can  appear  very  confusing.  Closely
examining examples is a useful way to become familiar with how the syntax is applied.

11.3 Design

Used to generate designs.

11.3.1 alg

description: Specifies what algorithm to use when generating efficient designs.

values: ;alg  =   [  swap(random=<integer>,  swap=<integer>,
swaponimprov=<integer>,  reset=<integer>,  resetinc=
<integer>, <STOP>)
        | rsc(<STOP>)
        | rs(<STOP>)
        | rc(<STOP>)
        | sc(<STOP>)
        | r(<STOP>)
        | s(<STOP>)
        | c(<STOP>)
        | all
        | mfederov(candidates=<integer>|<string(name or
path)>, <STOP>) 
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        |  neldermead(converge=<float>,  runs=<integer>,
nointerim, seed=<integer>)
        | eval(<string(name or path)>) ]

where
<STOP> is
stop = [ total(<integer> [secs | mins | iterations])
       | noimprov(<integer> [secs | mins | iterations])
]

default: If the property is not specified, an efficient design search (;eff) will use
;alg=swap.

;alg  =  swap(random=500,  swap=1,  swaponimprov=40,  reset=10000,
resetinc=5000) (MNL model)
;alg  =  swap(random=500,  swap=1,  swaponimprov=40,  reset=10000,
resetinc=5000) (RP model)
;alg  =  swap(random=500,  swap=1,  swaponimprov=40,  reset=10000,
resetinc=5000) (RP panel model)
;alg  =  swap(random=500,  swap=1,  swaponimprov=40,  reset=10000,
resetinc=5000) (EC model)
;alg  =  swap(random=500,  swap=1,  swaponimprov=40,  reset=10000,
resetinc=5000) (EC panel model)
;alg  =  swap(random=500,  swap=1,  swaponimprov=40,  reset=10000,
resetinc=5000) (RPEC model)
;alg  =  swap(random=500,  swap=1,  swaponimprov=40,  reset=10000,
resetinc=5000) (RPEC panel model)
;alg  =  swap(random=500,  swap=1,  swaponimprov=40,  reset=10000,
resetinc=5000) (model averaging)

;alg = mfederov(candidates=200000)

;alg = neldermead(converge=0.001, runs=1)

If the stop parameter is not specified, the algorithm will  run indefinitely, and
will only terminate when the user chooses Stop.

comments: ;alg = swap
Elaborate swapping algorithm. 

random:  How  many  seed  iterations  to  perform  during  the  initial  phase  of
complete design randomization.
swap: How many swaps to perform for each attribute.
swaponimprov:  How  many  swaps  to  perform  for  each  attribute  after  an
improvement has been found by modifying that attribute.
reset: How many iterations with no improvement must elapse before a new
starting point with complete design randomization is generated.
resetinc:  How  many  iterations  to  increase  'reset'  by  after  each  complete
design randomization.

;alg = rsc (rs, rc, sc, r, s, c)
Relabelling(r), swapping(s) and cycling(c) algorithm. And combination of the
three techniques can be specified.

;alg = all
Attempt to evaluate all possible designs. This is only feasible for very small
designs.  The percentage of  all  possible  designs  evaluated  so  far  is  shown
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below the trace in the output window, in addition to the current evaluation. 

;alg = mfederov
Modified Federov algorithm.

candidates=<integer>: The maximum size of the candidate set.
candidates=<string(name  or  path)>:  Load  a  design  (as  a  .ngd  file  or  an
Excel  file)  and  use  all  of  its  choice  tasks  for  the  candidate  set  of  the
Modified Federov algorithm.

;alg = neldermead
Performs  a  local-search  to  allocate  the  continuous  attributes  of  a  design.
Discrete  attributes  will  not  be changed.  Note:  this  algorithm requires  that  a
pre-existing design be loaded using ;eval first.

converge:  minimum  distance  required  between  the  best  and  all  other
candidate  solutions  in  order  to  terminate.  Distance  is  relative  to  attribute
level lower and upper bounds.
runs: the number of runs to perform. Each run is an independent trial and
begins  with  an  entirely  new  set  of  random  allocations  to  the  continuous
attributes. The sole exception is the first run where one copy of the original
design is maintained.
nointerim: only report improved designs upon convergence, not as they are
found  (which  is  default).  Duplicate  designs  will  be  reported  if  there  is  no
improvement between restarts.
seed:  a  number  to  initialize  the  pseudo-random  number  generator.  This
allows experiments to be repeated if so desired.

;alg = eval
Evaluates an existing design (does not generate or optimize).

name or path: Either the filename of an open data file, or the complete path
of a data file.

;alg = <any algorithm>(stop = total(200 secs))
The algorithm <any algorithm> will stop after running for 200 seconds.

;alg = <any algorithm>(stop = total(3 mins))
The algorithm <any algorithm> will stop after running for 3 minutes.

;alg = <any algorithm>(stop = noimprov(10000 iterations))
The algorithm <any algorithm> will  stop if  no improvement  has been found
for 10000 iterations.

requirements:

incompatibilities
:

Factorial  designs  (;fact).  Factorial  designs  are  generated  with  a  fixed
algorithm.
Orthogonal designs (;orth). Orthogonal and orthogonal efficient designs are
generated with a fixed algorithm.
Design evaluation (;eval).
Continuous attributes and ;alg=mfederov.
Attribute  level  rejection  (;reject)  and  any  non  row  based  algorithm  (all
except ;alg=mfederov).
Attribute level requirements (;require) and any non row based algorithm (all
except ;alg=mfederov).

example(s): ;alg = rs
;alg = rsc(stop = total(15 mins))



210 Ngene User Manual

© 2018 ChoiceMetrics

;alg  =  (random=500,  swap=1,  swaponimprov=40,
reset=10000, resetinc=5000)
;alg = mfederov(candidates=200000)

relevant  manual
sections:

Appendix 7B: Steps in generating efficient SC designs
8.6: Algorithms for generating designs in Ngene
Appendix 9B: The Nelder Mead algorithm

11.3.2 alts

description: Specifies the alternatives in the model.

values: ;alts(<string(model  label)>)  =  <string(alternative  1
name)>*, <string(alternative 2 name)>* , ...

default: This property and its property values are mandatory.

comments: Names of  alternatives may contain numbers,  but  no spaces.  These names
need to be used when defining the utility functions in the model property. 

All  alternative  names  that  are  followed  by  an  optional  asterix  (*)  will  be
treated as unlabeled. A full discussion of the checks performed on unlabeled
alternatives is documented in Section 8.8.

;alts = 
When a single model specification is present in the syntax, the alts property
does not need to be qualified.

;alts(<string(model label)>) = 
When  multiple  model  specifications  are  present  in  the  syntax,  the  alts
property  needs  to  be  qualified  with  a  label.  This  label  will  also  be  used  to
qualify  the  utility  functions  specified  in  the  model  property.  In  this  way,
different model specifications can have different numbers of alternatives.

requirements:

incompatibilities
:

The alternative names cannot be reserved words.

example(s): ;alts = car, train, bus

;alts(model1) = car, train, bus
;alts(model2) = train, bus

relevant  manual
sections:

4.2: An example design syntax: Full factorial designs

11.3.3 bdraws

description: Specifies the type and number of draws for Bayesian prior parameters.

values: ;bdraws = [ random(<integer(R)>)
          | halton(<integer(H)>)
          | sobol(<integer(S)>)
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          | mlhs(<integer(M)>)
          | gauss(<integer(A)> , ...)
          ]

default: ;bdraws = halton(200) unless changed in the options dialog box.
If the property is not specified, the presence of Bayesian priors in the utility
expressions will determine whether Bayesian draws are drawn.

comments: ;bdraws = random
R pseudo-random draws.

;bdraws = halton
H quasi-random Halton draws.

;bdraws = sobol
S quasi-random Sobol draws.

;bdraws = mlhs
M draws using modified latin hypercube sampling.

;bdraws = gauss
Gaussian  quadrature  draws  with  A  abscissas.  One  can  specify  a  single
number of abscissas which will  be used for all  prior parameters, or provide
the number of abscissas for each prior parameter. In this case, the number
of abscissas per prior parameter are specified in a comma separated list in
the same order as the priors are introduced in the models.

The number of  Gaussian quadrature draws is  equal  to  the product  of  each
prior  parameter's  numbers  of  abscissas.  Thus,  Gaussian  quadrature  might
need a large number of rows when there are many prior parameters.

requirements: Lack of specification of any Bayesian priors will result in a warning. 

incompatibilities
:

example(s): ;bdraws = halton(100)
;bdraws = gauss(5)
;bdraws = gauss(1,3,2,3)

relevant  manual
sections:

7.3: Bayesian efficient designs

11.3.4 block

description: Specifies the number of blocks in the design.

values: ;block = <integer(number of blocks)>, 
         [minsum | minmax], 
         [ total([<integer> mins | <integer> secs]) 
         | noimprov([<integer> mins | <integer> secs])
         ], 
         newblocking

default: ;block = minsum, total(3 secs)
The <integer(number of blocks)> property value is mandatory.
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If the property is not specified, no blocking column is generated.

comments: <integer(numBlocks)>  (compulsory)
Simultaneous  orthogonal  or  efficient  designs  can  be  blocked,  i.e.  a  design
with  S  choice  situations  is  divided  into  smaller  designs  with  S/<integer(
number of blocks)> choice situations, where <integer(number of blocks)> is
the number of blocks. 

For a simultaneously efficient design, the blocking column is orthogonal with
all other attributes.

For  other  designs,  the  correlations  between  the  blocking  column  and  all
other  attributes  will  be  minimized  using  a  search  procedure.  The  blocking
column will  only be assigned for  these designs when the design window is
first  open,  to  prevent  this  calculation  slowing  down  the  efficiency
optimization.

minsum  (optional)
When  assigning  the  blocking  column  using  a  search,  minimizes  the  total
correlation values between the blocking column and all of the attributes.

minmax  (optional)
When  assigning  the  blocking  column  using  a  search,  minimizes  the
maximum  correlation  value  between  the  blocking  column  and  each  of  the
attributes.

total  (optional)
When  assigning  the  blocking  column  using  a  search,  spend  the  specified
number of seconds or minutes to find the best blocking column.

noimprov  (optional)
When  assigning  the  blocking  column  using  a  search,  accept  the  current
blocking  column  when  no  improvement  has  been  found  for  the  specified
number of seconds or minutes.

newblocking  (optional)
By default, if the design contains a blocking column, the levels of that column
will be preserved if an existing design is opened or evaluated with the ;eval
property. In some instances, the user may wish to generate a new blocking
column.  For  example,  the  blocking  could  be  performed  for  a  longer  time
period, to improve the quality of the blocking, or the number of blocks could
be  altered  (in  both  instances,  through  changes  to  the  ;block  property).  To
achieve this, add the 'newblocking' property value.

requirements:

incompatibilities
:

example(s): ;block = 3

;block = 2, minmax, noimprov(10 secs)

;block = 4, minsum, total(1 mins)

;block = 4, minsum, total(10 mins), newblocking

relevant  manual
sections:

6.2.4: Orthogonal fractional factorial designs
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11.3.5 bseed

description: Specifies  the  random  seed  for  the  'bdraws=random'  and  'bdraws=mlhs'
directives.

values: ;bseed = <integer>

default: ;bseed = random

comments: If bseed is not specified, the bdraws for random and mlhs will be completely
random each time the syntax is run. Otherwise, it uses the same seed each
time and therefore reproduces the same output each time.

requirements:

incompatibilities
:

example(s): ;bseed = 12345

relevant  manual
sections:

7.3: Bayesian efficient designs

11.3.6 con

description: Specifies  whether  constants  are  to  be  considered  when  determining  the
efficiency of a design.

values: ;con

default: If the property is not specified, constants are not considered in determining
the design efficiency.

comments: Only included whenever  constants  are  to  be considered in  determining the
design efficiency.

requirements:

incompatibilities
:

example(s): ;con

relevant  manual
sections:

7.2.2: Designs for estimating MNL models

11.3.7 cond

description: Specifies conditional expressions for attribute levels.

values: ;cond:
 [ if ( <LOGICAL EXPRESSION> , <LOGICAL EXPRESSION> )
 | fractional=<decimal(fractionalSize)%
 ]
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, ...

where
<LOGICAL EXPRESSION> is
 [ <VALUE>
   [ < | <= | > | >= | = | <> ]
   <VALUE>
 | <VALUE> 
   = 
   [<decimal(constant)> ,...]
 ]
 [ AND | OR ] ...

and
<VALUE> is
[ <string(alternative)>.<string(attribute)> 
| <decimal(constant)> 
| <VALUE> [ + | - ] <VALUE>
]

and
<VALUE> = [<decimal(constant)> , ...]
is equivalent to
<VALUE> = <decimal(constant)> OR ...

default:

comments: This  property  can  be  used  for  attribute  levels  that  are  conditional  on  other
attribute levels.
If  many attributes  are  related  through  the  conditional  expressions,  memory
problems  may  result.  The  solution  is  to  specify  a  suitably  low  value  of
fractionalSize. See 8.2.2: Constrained designs in Ngene for more details.

requirements: New attribute levels  cannot  be specified in  the cond property.  Instead,  all
possible  levels  must  be  declared  when  the  attribute  is  specified  in  the
model property, and these can then be constrained by the cond property.
Be careful, there is currently no check that the attribute levels you specify
in the cond property were specified in the model property, and levels that
are not in the later will be ignored in the former.

incompatibilities
:

Factorial designs (;fact).
Orthogonal designs (;orth).
Modified Federov algorithm (;alg=mfederov).
Multiple designs (i.e. use of the ;fisher property)
Attributes with a continuous specification

example(s): ;cond:
if(alt1.A = 10, alt2.B = [15,20,25])

relevant  manual
sections:

8.2.2: Constrained designs in Ngene
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11.3.8 eff

description: Generates  an  efficient  design,  and  specifies  the  efficiency  measure  to
optimize on.

values: ;eff = 
 <decimal(weight)> * <string(model name)>
 ([mnl | rp | rppanel | ec | ecpanel | rpec | rpecpanel
| ood],
 [d  |  a  |  b  |  s(<decimal(t  threshold)>)  |  wtp(<string
(wtp label)>) | dw | aw | bw | sw(<decimal(t threshold)>
) | imbalance | none], 
 [fixed | mean | median | dev | min | max])
+ ...

default: ;eff = 1 * (mnl, d, fixed)

weight: 1
t threshold: 1.96
model name: blank (corresponding to a single ;model property that has not
been qualified with a label)
wtp label: blank (corresponding to a single ;wtp property that has not been
qualified with a label)

comments: This  property  directs  Ngene  to  search  for  the  most  efficient  design,  where
the desired efficiency measure is specified through the property values.

The following efficiency measures are available:
d: d-error (based on the determinant of the AVC), minimized.
a: a-error (based on the trace of the AVC), minimized.
b:  utility  balance,  maximized.  Reported  as  a  percentage,  with  higher
percentages representing greater utility balance.
s:  s-efficiency  measure  (sample  size  based),  minimized.  Optionally
calculated with the user specified t threshold.
wtp:  willingness to pay efficiency, minimised. Optimizes on a willingness to
pay measure specified with the ;wtp property. If "wtp label" is not specified,
the single unqualified ;wtp property is  used to define the willingness to pay
measure.  If  "wtp  label"  is  specified,  the  ;wtp  property  qualified  with  "wtp
label" is used to define the willingness to pay measure.
dw: d-error, maximized.
aw: a-error, maximized.
bw: attribute level balance, minimized.
sw: willingness to pay efficiency, maximised.
imbalance:  a  measure  of  attribute  level  imbalance.  0  is  full  balance  (all
levels appear an equal number of times), and 1 is full imbalance.
none:  no  comparison  is  made  between  two  designs,  and  so  all  designs
considered during the search are reported. It is strongly recommended that
stopping  criteria  are  specified  for  the  search  algorithm  through  the  ;alg
property,  as  the  sheer  number  of  designs  that  are  found  will  quickly
overwhelm Ngene.

For  Bayesian  designs,  one  efficiency  measure  is  calculated  per  Bayesian
draw,  resulting  in  a  set  of  efficiency  measures  E.  These  measures  can  be
aggregated in a variety of ways:
mean: the mean E.
median: the median of E.
dev: the standard deviation of E.
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min: the minimum value in E.
max: the maximum value in E.
fixed: the efficiency measure using a fixed prior. The mean prior is used for
normally  distributed  Bayesian  priors,  and  the  midpoint  of  the  upper  and
lower bounds is used for uniformly distributed Bayesian priors.

The efficiency measures will  vary according to the type of model assumed.
The following model types are available:
mnl: multinomial logit model.
rp:  MMNL  model.  Random  parameters  need  to  be  specified  in  the  utility
expressions. Any error components specified will be ignored.
rppanel:  MMNL  model  accounting  for  panel  nature.  Random  parameters
need  to  be  specified  in  the  utility  expressions.  Any  error  components
specified will be ignored.
ec:  EC  model.  Error  components  need  to  be  specified  in  the  utility
expressions.  Any  random  parameters  specified  will  be  treated  as  non-
random.
ecpanel: EC model accounting for panel nature. Error components need to
be specified in the utility expressions. Any random parameters specified will
be treated as non-random.
rpec:  MMNL  model  with  error  components.  Random  parameters  and/or
error components can be specified in the utility  expressions, and all  will  be
considered.
rpecpanel:  MMNL  model  with  error  components,  accounting  for  panel
nature. Random parameters and/or error components can be specified in the
utility expressions, and all will be considered.
ood: optimal orthogonal designs. Only the d error can be optimised on.

Ngene  allows  multiple  sets  of  utility  expressions  to  be  specified  via  the
model property, with each set being labeled. For example:
;model(short): ...
;model(medium): ...
If  this  is  done,  the  eff  property  must  reference  the  correct  set  of  utility
expressions,  with  "model  name"  matching  the  label  in  the  desired  model
property. For example:
;eff = short(d)

If only a single set of utility expressions is specified, the model property does
not need to be qualified. For example:
;model: ...
If this is done, the eff property should not contain any value for "model name
". For example:
;eff = (d)

The  specification  of  an  efficiency  measure,  a  Bayesian  moment,  a  model
type,  and  a  reference  to  a  specific  set  of  utility  expressions  will  result  in  a
single  efficiency  value  for  any  given  design.  However,  multiple  efficiency
values can be additively combined in the ;eff property using the + operator.
Prior  to  summation,  each  efficiency  value  added  can  be  multiplied  by  "
weight", to place greater or lesser importance on each efficiency value. Any
number of individual efficiency measures can be added, although be warned
that this may slow down the search considerably,  especially if  panel  model
types are specified.

requirements:
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incompatibilities
:

Factorial designs (;fact).
Orthogonal designs (;orth).
Design evaluation (;eval).

example(s): ;eff = (mnl, s(3), fixed)
;eff  =  1.5  *  short(rp,  d,  mean)  +  2  *  medium(rp,  d,
mean) + long(rp, d, mean)
;eff = (ec, wtp(wtp_all), median)
;eff = (mnl, d) + 2 * (imbalance)

relevant  manual
sections:

7.2.1 Efficiency measures
8.1 Attribute level balance and fractional factorial designs

11.3.9 eval

description: Evaluates the specified data file.

values: ;eval = <string(name or path)>

default: The property value is mandatory.

comments: "name  or  path"  can  be  the  full  path  of  an  Excel  or  .CSV  data  file.
Alternatively, if  the workspace is managed, "name or path" can refer  to the
name of a data file in the current project.

A design will  be created using the information specified in the entire syntax
(utility expressions, priors etc), with the levels as specified in the data file.

The data file should not contain a header row. Each row represents a single
choice  situation.  The  first  column  must  contain  a  number  representing  the
design number. If there is only one design, this must be a column of 1's. The
second column must contain increasing choice situation numbers (1, 2, ...).
All subsequent columns must contain the design levels, with a single column
representing an attribute within an alternative. Columns in the data file will be
assigned  to  attributes  in  the  order  that  the  attributes  are  specified  in  the
syntax.

requirements:

incompatibilities
:

When ';eval'  is  specified,  the  design  is  generated  by  reading  in  the  design
levels from the specified data file. The following properties are an alternative
way  for  instructing  Ngene  how  to  generate  a  design,  and  hence  are
incompatible with ';eval'.

Factorial designs (;fact).
Orthogonal designs (;orth).
User specified algorithms (;alg).

example(s): ;eval = RawDesign.xls
;eval = C:\Store\RawDesign.xls

relevant  manual
sections:

8.7: Evaluating existing designs in Ngene
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11.3.10 fact

description: Generates a full or fractional factorial design.

values: ;fact

default: N/A

comments: Full factorial designs
To generate a full factorial design, specify ';rows=all'. Care must be taken, as
large design dimensions will lead to a design with a huge number of rows in
the full factorial, and Ngene will crash when it runs out of memory.

Fractional factorial designs
To generate a fractional factorial design, specify the number of desired rows
in  the  fractional  factorial  with  the  ';rows'  property.  The  design  will  be
populated with a random subset of the full factorial design.

Constraints
The  factorial  design  can  be  constrained  with  ';reject'  and  ';require',  but  not
'cond'.

requirements:

incompatibilities
:

Orthogonal  designs  (;orth).  Correlation  values  can  still  be  interrogated  in
the  design  window.  The  full  factorial  design  will  be  orthogonal  (using
Pearson  Product  Moment,  CP  Coefficient,  Point  Biserial  and   J  Index
correlation measures). Use ';orth' in place of 'fact' to achieve orthogonality
for fractional factorial designs, as they are unlikely to be orthogonal using ';
fact'.
Efficient designs (;eff). Efficient designs are merely an optimised fractional
factorial  design,  so  the  ';fact'  property  is  superfluous  when  an  efficient
design  is  desired.  Nonetheless,  all  available  efficiency  results  can  be
interrogated in the design window.
User specified algorithms (;alg).
Design evaluation (;eval).
Blocking (;block).

example(s): ;fact

relevant  manual
sections:

6.2.1 Full factorial designs
6.2.2 Fractional factorial designs

11.3.11 fisher

description: Specifies  the  design  names,  model  names  and  weights  that  are  used  to
construct  a  Fisher  matrix.  Used  with  pivot  designs  and  designs  with
covariates.

values: ;fisher(<string(fisher label)>) = 
 <string(design  label)>(<string(model  label)>[<decimal
(exact weight)> | <decimal(lower weight)>:<decimal(upper
weight)>] , ...)
+ ...

default:
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comments: Specifying multiple  model  labels  within  a  single  design (as  in  example  one
below) will cause a homogeneous design to be constructed. Specifying one
model label per design will generate heterogeneous designs.

Currently only one fisher property can be specified. This constraint is likely to
be relaxed in the future. Also, the formatted scenarios will only show the first
design. Again, this constraint will be relaxed in the future.

requirements:

incompatibilities
:

example(s): ;fisher(fish)  =  des1(small[0.33],  medium[0.33],  large
[0.34])               ? homogeneous design
;fisher(fish) = des1(small[0.33]) + des2(medium[0.33]) +
des3(large[0.34]) ? heterogeneous designs

relevant  manual
sections:

8.3.2 Pivot designs in Ngene
8.4.1 Designs with covariates

11.3.12 foldover

description: Specifies whether a fold-over design will be generated.

values: ;foldover

default: N/A (by default no fold-over design is generated)

comments: A fold-over design doubles the number of choice situations, but removes all
correlation between two-way interactions.

requirements: Orthogonal designs (;orth).

incompatibilities
:

Factorial designs (;fact).
User specified algorithms (;alg).
Design evaluation (;eval).
Attribute level rejection (;reject).
Attribute level requirements (;require).

example(s): ;foldover

relevant  manual
sections:

6.2.5 Orthogonal fractional factorial designs with two-way interactions

11.3.13 Formatting properties

A range of properties are appended to the syntax when design matrices are formatted using the
Scenario  formatting  system.  It  is  strongly  recommended  that  these  properties  are  only  modified
through this system, and not directly from the syntax. Directly editing these properties may cause
Ngene to crash when opening the design. Consequently, the syntax structure is not documented,
and the properties are only listed for your reference.
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11.3.13.1 formatattributes

11.3.13.2 formatchoices

11.3.13.3 formatstylesheet

11.3.13.4 formattable

11.3.13.5 formattabledimensions

11.3.13.6 formattablefooter

11.3.13.7 formattableheader

11.3.13.8 formattablestyle

11.3.13.9 formattitle

11.3.14 model

description: Specifies the model structure.

values: ;model(<string(label)>):
 U(<string(alternative)>) = 
  [ <string(parameter)>[<PRIOR>]
  | <string(parameter)>.d[<PRIOR> |...]
  | <string(parameter)>.e[<PRIOR> |...] 
  ]
  * 
  <string(attribute name)>[.ref | .piv | .covar]<LEVELS>
  * ...
 + ...
/ ...

where
<PRIOR> is
[ <decimal(fixed prior)>
|  (n,  <decimal(Bayesian  mean)>,         <decimal(Bayesian
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std dev.)>   )
|  (u,  <decimal(Bayesian  lower  bound)>,  <decimal(Bayesian
upper bound)>)
| n,  [ <decimal(rp mean)>        | __ | __ ] , [ <decimal
(rp std dev.)>   | __ | __ ]
| u,  [ <decimal(rp lower bound)> | __ | __ ] , [ <decimal
(rp upper bound) | __ | __ ]
| ec, [ <decimal(ec std dev.)>    | __ | __ ]
]

and
<LEVELS> is
[  [<decimal(level)>  ,  ...]  ([<integer(exact  frequency)>  |
<integer(low  frequency)>  -  [  <integer(high  frequency)>  |
inf ] ] , ...) 
| [<string(attribute name to mimic)>]
|  [fcn([<decimal(constant)>|<string(alternative  name)>.
<string(attribute name)>] [+|-] ...)]
|  [<decimal(lower  continuous  limit)>  :  <decimal(upper
continuous limit)>] 
|  [<decimal(lower  limit)>  :  <decimal(upper  limit)>  :
<decimal(step size)>] 
| [<decimal(pivot percentage)>% , ...] 
]

default:

comments: This  is  the  most  elaborate  property  to  be  specified  in  the  Design  command.  It
expresses the utility functions of each alternative (if one utility function is left out,
then this alternative is considered to be a no-choice option). 

Each  utility  function  is  a  linear  combination  of  parameters  and  attributes.
Parameter  names  and  attribute  names  are  user-defined  and  may  not  include
spaces. If for different alternatives the same parameter name is used, then this
parameter  is  considered  generic  over  these  alternatives.  Using  the  same
attribute  name  in  different  alternatives  does  not  have  an  impact  (although  this
can be used as a shortcut:  attributes in subsequent alternatives with  the same
name  and  no  levels  specified  will  assume  the  levels  of  the  first  attribute
instance).

Parameters and their priors
parameter[x]  specifies that x  is  the prior  value of  parameter,  where x  can be a
single  value  for  a  fixed  parameter,  or  can  denote  a  random  parameter
distribution, or may denote a Bayesian prior distribution (or a combination). For
some  designs  (such  as  orthogonal  designs)  x  need  not  be  specified  and  can
therefore  be  omitted.  For  generic  parameters,  the  prior  value  x  can  only  be
specified the first time and should be omitted in all other utility functions.

Fixed parameters with fixed priors: 
parameter [x]

Random parameters with fixed priors: 
parameter  [n,x,y]  for  normal  distribution  with  mean  x  and  standard  deviation  y
(requirements: y>=0),
parameter  [u,x,y] for uniform distribution with lower bound x  and upper bound y
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(requirements: y>x).

Error component with fixed prior:
parameter[ec,y]  for  normal  distribution  with  mean  0  and  standard  deviation  y
(requirements: y>=0).

Fixed parameters with Bayesian priors: 
parameter  [(n,x,y)]  for  Bayesian  normal  distribution  with  mean  x  and  standard
deviation y (requirements: y>=0),
parameter  [(u,x,y)]  for  Bayesian  uniform  distribution  with  lower  bound  x  and
upper bound y (requirements: y>x).

Random parameters with Bayesian priors: 
parameter  [n,(u,x1,y1),(n,x2,y2)]  for  normal  distribution  with  Bayesian  mean
distributed  with  a  uniform  distribution  (with  parameters  x1  and  y1)  and  a
Bayesian  standard  deviation  distribution  with  a  normal  distribution  (with
parameters x2 and y2). Other combinations of distributions can be made.

Fixed parameters with fixed priors for a dummy or effects coded attribute:
parameter.d[x|y|z]  for  specification  of  priors  for  the  first  three  dummy  coded
levels of the associated four level attribute.
parameter.e[x|y|z] for specification of priors for the first three effects coded levels
of the associated four level attribute.
The  associated  attribute  does  not  need  to  have  levels  specified.  If  levels  are
specified, there must be one more than the number of priors, and the levels will
internally  be  dummy  or  effects  coded  for  calculations  in  the  current  model
specification. Note however that in other model specifications that use the same
attribute, the specified levels may be used if  the parameter associated with the
attribute is not dummy or effects coded. In this way, the dummy or effects coding
is  associated  more  closely  with  the  parameter  specification  than  the  attribute
specification.

Attributes and their levels
attribute  [x]  specifies  that  x  is  the  range  of  attribute  levels,  where  x  denotes  a
discrete or continuous range of attribute levels, or may be relative attribute levels
pivoted around a reference level.

Discrete attribute levels: 
attribute [x1,x2,…]. Each level can only be specified once.

Non-balanced discrete attribute levels: 
attribute  [x1,x2,…](y1–z1,y2,…)  is  to  be  used  in  case  attribute  level  balance  is
not  required;  then  attribute  level  x1  is  required  to  appear  between  y1  and  z1
times, x2 is required to appear exactly y2 times etc. To specify a maximum that
equals the number of rows, specify "inf" for the maximum.

Continuous attribute levels: 
attribute  [x1:x2]. Specific algorithms, such as Nelder-Mead, are required to take
advantage  of  continuous  attribute  levels.  For  other  algorithms,  the  number  of
levels  generated  will  be  equal  to  the  number  of  rows  in  the  design,  and  the
levels will be equally spaced.

Discrete attribute levels with bounds and a step size: 
attribute [xLower:xUpper:stepSize] allows a large number of attribute levels to be
quickly  specified.  The  levels  xLower,  xLower+stepSize,  xLower+2*stepSize,  ...
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are  utilised,  until  the  upper  bound  xUpper  is  exceeded.  If  too  few  rows  are
specified, not all levels may be used in the design.

Attributes that maintain the same levels as another attribute:
attribute[other attribute] not only specifies that the levels of the other attribute be
used for attribute, but also that the levels of the two attributes will  be the same
for  any given row of  any given design.  This  is  useful  for  including scenarios  in
the experimental design.

Attribute level functions:
attribute[fcn(...)] will generate the attribute level by evaluating the function, which
can include constants,  attributes,  and plus  and minus  operators.  This  is  useful
for specifying probabilities. Refer to Section 8.9 for more details.

Reference and pivot attributes
attribute.ref[<one level>] indicates that the attribute is a reference attribute with a
single  level.  attribute.piv[x1,x2,...]  is  a  pivot  attribute,  where  the  levels  can  be
specified  as  positive  or  negative  absolute  values,  or  positive  or  negative
percentages.

Covariate attributes
attrib.covar[<one level>] indicates that the attribute is a covariate.

Interactions
The above specification does not adequately cover interactions, especially when
the  interactions  involve  dummy  coded  attributes.  For  precise  information  on
interactions, refer to Section 7.2.9, and Section 6.2.4.

requirements
:

incompatibili
ties:

example(s): ;model:
U(alt1) = b1 + b2 * A[0,1,2] + b3 * B[0,1]     /  
U(alt2) =      b2 * A        + b4 * C[0,1,2,3]
? b2 is generic
? b3 and b4 are alternative-specific

;model:
U(alt1) = b1[-1] + b2[2] * A[0:2]                + b3[0.5]
* B[0,1]     /  
U(alt2) =          b2    * C[1,2,3](1-3,1-3,2) + b4[0.3] *
D[0,1,2,3]
? all parameters have fixed priors,
? levels of attribute A are continuous,      
? levels of C need not be balanced 
?  (level  1  should  appear  1  to  3  times,  level  3  should
appear exactly twice)

;model:
U(alt1)  =  b1[-1]  +  b2[n,1,(u,0,0.2)]  *  A[0,1,2]  +  b3
[(n,0.5,0.1)] * B[0,1]   /  
U(alt2) =          b2                * A[1,2,3] + b4
[n,0.3,0.1]   * C[0,1,2,3]
? b1 is a fixed parameter with a fixed prior,
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?  b2  is  a  random  parameter  with  a  Bayesian  standard
deviation,
? b3 is fixed parameter with a Bayesian prior,
? b4 is a random parameter with fixed priors.

relevant 
manual 
sections:

4.2: An example design syntax: Full factorial designs

11.3.15 orth

description: Generates an orthogonal design.

values: ;orth = [ sim
        | seq
        | seq2
        | ood ]

default: ;orth = sim

comments: Generates  a  fully  orthogonal  design,  with  no  Pearson  Product  Moment
correlations between the levels of the attributes. The actual attribute pairs for
which  no  correlations  will  exist  depends  on  the  type  of  orthogonality
specified. There may not exist an orthogonal design with the number of rows
specified with ';rows'. Hence, the user-defined number of rows will  be used
as a lower bound.

Orthogonal  designs  may  be  blocked  using  ';block',  and  a  foldover  column
may be added using ';foldover'.

;orth = sim
Maintains  orthogonality  within  and across  all  alternatives.  This  may require
many rows to be generated in the design.

;orth = seq
Maintains  orthogonality  only  within  each  alternative.  Each  alternative  must
have the same attributes with the same levels.

;orth = seq2
Maintains  orthogonality  only  within  each  alternative.  Each  alternative  may
have different attributes with different numbers of levels.

;orth = ood
Generates  a  design  using  the  OOD  efficiency  measure  and  the  OOD
algorithm.

For greater detail  on the various types of  orthogonal  design, including their
generation within Ngene, refer to Chapter 6.

Efficient orthogonal designs
Specify ';eff'  in addition to ';orth'  to generate efficient orthogonal  designs. A
custom  algorithm  will  be  implemented  that  spans  all  possible  orthogonal
designs.

requirements:
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incompatibilities
:

Factorial  designs  (;fact).  Orthogonal  designs  are  fractional  factorial
designs,  and full  factorial  designs  are  orthogonal,  so  ';fact'  is  superfluous
when ';orth' is specified.
User specified algorithms (;alg).
Design evaluation (;eval).
Attribute level rejection (;reject).
Attribute level requirements (;require).

example(s): ;orth = seq

relevant  manual
sections:

6.2.4 Orthogonal fractional factorial designs

11.3.16 prec

description: Specifies the precision of all numbers reported in Ngene.

values: ;prec = <integer>

default: ;prec = 6 unless changed in the options dialog box.

comments: Naturally, all calculations are made with maximum precision, and outputs are
only rounded immediately prior to being reported.

requirements:

incompatibilities
:

example(s): ;prec = 8

relevant  manual
sections:

11.3.17 rdraws

description: Specifies the type and number of draws for random prior parameters.

values: ;rdraws = [ random(<integer(R)>)
          | halton(<integer(H)>)
          | sobol(<integer(S)>)
          | mlhs(<integer(M)>)
          | gauss(<integer(A)> , ...)
          ]

default: ;rdraws = halton(200) unless changed in the options dialog box.
If  the  property  is  not  specified,  the  presence  of  random priors  in  the  utility
expressions will determine whether random draws are drawn.

comments: ;rdraws = random
R pseudo-random draws.

;rdraws = halton
H quasi-random Halton draws.
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;rdraws = sobol
S quasi-random Sobol draws.

;rdraws = mlhs
M draws using modified latin hypercube sampling.

;rdraws = gauss
Gaussian  quadrature  draws  with  A  abscissas.  One  can  specify  a  single
number of abscissas which will  be used for all  prior parameters, or provide
the number of abscissas for each prior parameter. In this case, the number
of abscissas per prior parameter are specified in a comma separated list in
the same order as the priors are introduced in the models.

The number of  Gaussian quadrature draws is  equal  to  the product  of  each
prior  parameter's  numbers  of  abscissas.  Thus,  Gaussian  quadrature  might
need a large number of rows when there are many prior parameters.

requirements: Lack of specification of any random priors will result in a warning. 

incompatibilities
:

example(s): ;rdraws = halton(100)
;rdraws = gauss(5)
;rdraws = gauss(1,3,2,3)

relevant  manual
sections:

7.2.3: Designs for estimating random parameters models

11.3.18 reject

description: Specifies  which  combinations  of  attribute  levels  in  choice  situations  should
be rejected.

values: ;reject:
  <VALUE>
  [ < | <= | > | >= | = | <> ]
  <VALUE>
  [ AND | OR ] ... 
, ...

<VALUE> is
[ <string(alternative)>.<string(attribute)> 
| <decimal(constant)> 
| <VALUE> [ + | - ] <VALUE>
]

default: When the property is specified, a value is mandatory.

comments: This  property  will  prevent  certain  combinations  of  attribute  levels  from
appearing in the same row of the design. Logical expressions are specified
in this property, and if they evaluate to true for any potential row, the row is
rejected and cannot be placed in the design. In this way, it is possible to find
a  constrained  design.  (An  alternative  approach  is  to  use  the  ;require
property, where all logical expressions must evaluate to true when applied to
all rows of the design.) The ;reject property will only work on design search
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strategies  that  modify  designs  by  changing  an  entire  row:  factorial  designs
and  the  modified  Federov  algorithm.  To  specify  constraints  with  the
swapping algorithm, use the ;cond property instead.

Any number  of  independent  logical  expressions  can be  specified,  although
care must be taken. A large number of constraints will reduce the number of
rows available to populate the design with (i.e. the candidate set size). The
number of rows that do not violate the constraints should be at least equal to
the  number  of  rows  for  a  factorial  design,  and  greater  than  the  number  of
rows  for  the  modified  Federov  algorithm  (to  allow  some  row  exchange  to
take place).

requirements: Factorial designs (;fact) or a row based search algorithm (;alg=mfederov).

incompatibilities
:

Orthogonal designs (;orth).
Non row based search algorithms (all except ;alg=mfederov).

example(s): ;reject:
alt1.A + 1 > alt2.B ,
alt1.B = alt1.C and alt1.D <> 0

relevant  manual
sections:

8.2.2: Constrained designs in Ngene

11.3.19 rep

description: The number of draws to use in the sample of a panel based model.

values: ;rep = <integer>

default: When the property is specified, a value is mandatory.
When the property is not specified, the default is 200.

comments:

requirements:

incompatibilities
:

example(s): ;rep = 500

relevant  manual
sections:

7.2.3: Designs for estimating random parameters models

11.3.20 require

description: Specifies attribute level conditions that must be met for a choice situation to
be acceptable in the design.

values: ;require:
  <VALUE>
  [ < | <= | > | >= | = | <> ]
  <VALUE>
  [ AND | OR ] ... 
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, ...

<VALUE> is
[ <string(alternative)>.<string(attribute)> 
| <decimal(constant)> 
| <VALUE> [ + | - ] <VALUE>
]

default: When the property is specified, a value is mandatory.

comments: This property will  require that  certain  attribute level  conditions be met for  a
choice  situation  to  be  acceptable  in  the  design.  Logical  expressions  are
specified in this property, and all expressions must evaluate to true for a row
to  be  placed  in  the  design.  (An  alternative  approach  is  to  use  the  ;reject
property, where if  any logical  expression evaluates to true for  any potential
row,  the  row is  rejected  and  cannot  be  placed  in  the  design.)  The  ;require
property  will  only  work  on  design  search  strategies  that  modify  designs  by
changing  an  entire  row:  factorial  designs  and  the  modified  Federov
algorithm. To specify constraints with the swapping algorithm, use the ;cond
property instead.

Any number  of  independent  logical  expressions  can be  specified,  although
care must be taken. A large number of constraints will reduce the number of
rows available to populate the design with (i.e. the candidate set size). The
number  of  rows  that  meet  the  conditions  specified  in  the  ;require  property
should  be  at  least  equal  to  the  number  of  rows  for  a  factorial  design,  and
greater than the number of rows for the modified Federov algorithm (to allow
some row exchange to take place).

requirements: Factorial designs (;fact) or a row based search algorithm (;alg=mfederov).

incompatibilities
:

Orthogonal designs (;orth).
Non row based search algorithms (all except ;alg=mfederov).

example(s): ;require:
alt1.A + 1 > alt2.B ,
alt1.B < alt1.C

relevant  manual
sections:

8.2.2: Constrained designs in Ngene

11.3.21 rows

description: Specifies the number of choice situations.

values: ;rows = [ <integer>
        | all 
        ]

default: This property and its property value are mandatory.

comments: ;rows = <integer>
Specifies the exact number of choice situations to be generated. There may
not exist an orthogonal design with the specified number of rows. Hence, if
orthogonal  designs  are  specified  with  ';orth',  the  user-defined  number  of
rows will be used as a lower bound.
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;rows = all
This option is only available when a factorial  design is  specified with ';fact'.
The  maximum  number  of  choice  situations  will  be  generated  (i.e.,  the  full
factorial).  Care  must  be  taken,  as  large  design  dimensions  will  lead  to  a
design with a huge number of rows in the full factorial, and Ngene will crash
when it runs out of memory.

Specification  of  the  ';foldover'  property  will  double  the  number  of  choice
situations specified with ';rows'.

requirements: ';rows = all' requires that ';fact' be specified.
<integer> cannot exceed the size of the full factorial if the ';fact' property is
specified.

incompatibilities
:

example(s): ;rows = 12

relevant  manual
sections:

4.2: An example design syntax: Full factorial designs

11.3.22 rseed

description: Specifies  the  random  seed  for  the  'rdraws=random'  and  'rdraws=mlhs'
directives.

values: ;rseed = <integer>

default: random

comments: If rseed is not specified, the rdraws for random and mlhs will be completely
random each time the syntax is run. Otherwise, it uses the same seed each
time and therefore reproduces the same output each time.

requirements:

incompatibilities
:

example(s): ;rseed = 12345

relevant  manual
sections:

7.2.3: Designs for estimating random parameters models

11.3.23 start

description: Uses  the  specified  design  as  the  starting  design  for  an  efficient  design
search.

values: ;start = <string(name or path)>

default: When the property is specified, a value is mandatory.

comments: When performing an efficient design search, the seed design will be loaded
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from the data file specified by the ;eval property.

"name  or  path"  can  be  the  full  path  of  an  Excel  or  .CSV  data  file.
Alternatively, if  the workspace is managed, "name or path" can refer  to the
name of a data file in the current project.

The  starting  design  will  be  created  using  the  information  specified  in  the
entire  syntax  (utility  expressions,  priors  etc),  with  the  levels  as  specified  in
the data file.

The data file should not contain a header row. Each row represents a single
choice  situation.  The  first  column  must  contain  a  number  representing  the
design number. If there is only one design, this must be a column of 1's. The
second column must contain increasing choice situation numbers (1, 2, ...).
All subsequent columns must contain the design levels, with a single column
representing an attribute within an alternative. Columns in the data file will be
assigned  to  attributes  in  the  order  that  the  attributes  are  specified  in  the
syntax.

requirements: Efficient design search must be specified (;eff).

incompatibilities
:

example(s): ;start = RawDesign.xls

;start = C:\Store\RawDesign.xls

relevant  manual
sections:

8.6: Algorithms for generating designs in Ngene

11.3.24 store

description: Specifies how many designs to store in memory during a search.

values: ;store = [ <integer>
         | all 
         ]

default: 10

comments: ;store = <integer>
Retains the most recent <integer> designs in memory during a search, plus
the first design.

;store = all
Retains all designs in memory during a search, but the user must accept the
risk of memory issues.

Refer to the Options dialog box for more information.

requirements:

incompatibilities
:

example(s): ;store = 15
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relevant  manual
sections:

3.4: Output window

11.3.25 trimdist

description: Additionally  reports  Bayesian  efficiency  measures  using  a  subset  of  all
Bayesian draws.

values: ;trimdist = <decimal number(low)>, <decimal number(high)
>

default: The two property values are mandatory.
If  the  property  is  not  specified,  the  additional  Bayesian  efficiency  measure
outputs are not reported.

comments: This  allows  a  second  set  of  Bayesian  efficiency  measures  to  be  reported
using a subset of all available Bayesian draws. 

For  each  efficiency  measure,  L  draws  with  the  lowest  efficiency  measures
are removed, as are H draws with the highest efficiency measures,
where:
L = Round(<decimal number(low)> / <total number of draws>)
H = Round(<decimal number(high)> / <total number of draws>).
Only  the  remaining  draws  are  used  to  calculate  the  various  Bayesian
efficiency  moments  (mean,  minimum,  maximum,  standard  deviation,
median).  The draws discarded may vary from one efficiency measure (e.g.
d, a) to another.

requirements: Bayesian  priors  must  be  specified  in  the  utility  expressions  for  this  to  be
useful.

incompatibilities
:

example(s): ;trimdist = 10, 10

relevant  manual
sections:

11.3.26 wtp

description: Specifies  a  willingness  to  pay  expression  that  is  used  to  generate  a
willingness to pay efficiency measure.

values: ;wtp(<string(model label)>) = 
<string(wtp  label)>(  [  *  |  <decimal(weight)>  *  <string
(parameter)> , ... ] / <string(cost parameter)> )

default: When the property is specified, a value is mandatory.

comments: Multiple  wtp  efficiency  measures  can  be  generated,  so  long  as  each  is
labelled with a unique "wtp label". All specified parameters must exist in the
associated model (either the model specification labeled with "model label",
or otherwise the default unlabeled model if the wtp property is unqualified).
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If  a  star  is  specified  in  the  numerator,  all  non-cost  parameters  will  be
included in the wtp efficiency calculation. Alternatively, individual parameters
can be specified and weighted with "weight".

requirements:

incompatibilities
:

example(s): ;wtp(m1) = wtp1(0.4*G1, 0.6*B1 / G2),  ? weighted
           wtp2(* / G2)                ? all non-cost
parameters in the numerator

relevant  manual
sections:

7.2.1 Efficiency measures

11.4 Reserved words

There are a number of words that are reserved by Ngene, and may not be used for user defined
variables such as the names of alternatives, attributes, priors. These words are listed below.

Any of the property names listed in this chapter (alg, rows, model, etc)
Design
Any word that contains the following symbols: ?  ;  $  :  =  ,  .  |  (  )  [  ]  *  +  -
Any word that contains only numbers

It is recommended that user defined variable names consist only of alpha-numeric characters, and
that all other symbols be left out of the names. Failure to observe this might lead to unexpected
error messages or software crashes.
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12 Endnotes
1:  Labeled  choice  experiments  involve  studies  where  the  names  of  the  alternatives  on  offer
convey meaning to the respondents beyond the order in which they are shown to respondents (e.
g.,  the alternatives  may be labeled as  car,  bus  and train).  In  unlabeled choice experiments,  the
names of the alternatives are only meaningful in so far as they relate the order of the alternative
as shown to the respondent (e.g., Option A, Option B, etc.). In the later case, each alternative may
actually represent a car or a bus or a train in terms of the attribute levels shown to the respondent,
but  the  fact  that  the  alternative  resembles  one  of  these  modes  is  not  explicitly  stated  to  the
respondent.  An  exception  to  this  rule  exists  where  the  different  alternatives  are  treated  as  an
attribute in the experiment. Also, in many SC experiments, a type or brand of alternative is often
mentioned  in  the  scenario  descriptor  of  the  task.  In  such  cases,  all  the  alternatives  represent
different  versions  of  the  same  type  or  brand  (e.g.,  Option  A,  Option  B,  etc.,  represent  different
alternative buses). 

2:  A  degree  of  freedom  is  defined  here  as  the  total  number  of  parameters  (excluding  the
constants), plus 1. All constants are accounted for in the “plus 1”.

3:  For  example,  the  authors  once  constructed  a  survey  where  the  two  alternatives  represented
different  potential  dates.  One  attribute  in  the  experiment  was  that  the  potential  date  either  had
children or did not. Because the design required that one potential date always had children whilst
the other did not, problems arose, particularly with younger respondents, who always selected the
date  without  children.  This  occurred  to  the  point  where  no  information  could  be  gained  on  the
other attributes of the design. 

4:  The  term  asymptotic  refers  to  the  fact  that  it  is  consistent  in  large  samples,  or  it  is
representative as an average for small samples when the survey would be repeated many times.

5: The assumption of single respondent is just for convenience and comparison reasons and does
not have any further implications. Any other sample size could have been used, but it is common
in the literature to base it on a single respondent.

6:  The theoretical  lowest rate of  convergence for  quasi-random MC simulation is  O((lnK  R)  /  R),
which depends on the number of dimensions, K, such that in theory quasi-random MC simulation
can become quite slow for higher dimensions. The fastest theoretical rate of convergence is O(1/
R).  In  practice,  the  rate  of  convergence  seems  to  be  much  closer  to  this  faster  rate,  even  for
higher dimensions.

7: As an example, consider the 5th draw using 2 (the first prime number) as base. Then r = 5 can
be expressed using three digits as 101 in base 2, because 5 = 1.20 + 0.21 + 1.22. The 5th draw is
then given by 1.2-0-0 + 0.2-1-1 + 1.2-2-1 = 0.5 + 0 + 0.125 = 0.625.

8:  For  example,  suppose that  the  first  parameter  has  two  abscissas  and  the  second  parameter
has three. Let 1

(1) and 1
(2) denote the abscissas for the first parameter and 2

(1),  2
(2) and  2

(3)

the abscissas of the second parameter. Then the draws for  will be ( 1
(1), 2

(1)), ( 1
(1), 2

(2)), ( 1
(1),

2
(3)), ( 1

(2), 2
(1)), ( 1

(2), 2
(2)) and ( 1

(2), 2
(3)), hence 6 draws in total.

9: The minimum number of abscissas is typically two, such that with 10 random parameters, the
minimum  number  of  draws  possible  using  Gaussian  quadrature  is  210  =  1,024.  Using  three
abscissas per random parameter increases this number to 310 = 59,049.

10:  The  assumption  of  single  respondent  is  just  for  convenience  and  comparison  reasons  and
does  not  have  any  further  implications.  Any  other  sample  size  could  have  been  used,  but  it  is
common in the literature to normalize it to a single respondent.
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11:  If  Monte  Carlo  simulations  are  used  rather  than  the  true  analytical  second  derivatives  to
calculate the AVC matrix for each design matrix, the amount of computing time required may be
such  that  at  most  only  a  few  hundred  or  so  possible  designs  may  be  explored,  particularly  for
more advanced models  such as  the MMNL model  using Bayesian prior  parameter  distributions.
For this reason, using the true analytical second derivatives for the specified model is preferred,
yet even so, it is still unlikely that for designs of even a moderate size, all possible designs can be
evaluated.
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