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Neural circuits are notorious for the complexity of their organization. 
Part of this complexity is related to the number of different cell types 
that work together to encode stimuli. I will discuss theoretical results 
that point to functional advantages of splitting neural populations 
into subtypes, both in feedforward and recurrent networks. These 
results outline a framework for categorizing neuronal types based on 
their functional properties. Such classification scheme could augment 
classification schemes based on molecular, anatomical, and electro-
physiological properties.
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Propagating waves are large-scale phenomena widely seen in the 
nervous system, in both anesthetized and awake or sleeping states. 
Recently, the presence of propagating waves at the scale of microns–
millimeters was demonstrated in the primary visual cortex (V1) of 
macaque monkey. Using a combination of voltage-sensitive dye (VSD) 
imaging in awake monkey V1 and model-based analysis, we showed 
that virtually every visual input is followed by a propagating wave 
(Muller et al., Nat Comm 2014). The wave was confined within V1, and 
was consistent and repeatable for a given input. Interestingly, two 
propagating waves always interact in a suppressive fashion, and sum 
sublinearly. This is in agreement with the general suppressive effect 
seen in other circumstances in V1 (Bair et al., J Neurosci 2003; Reynaud 
et al., J Neurosci 2012).
To investigate possible mechanisms for this suppression we have 
designed mean-field models to directly integrate the VSD experi-
ments. Because the VSD signal is primarily caused by the summed 
voltage of all membranes, it represents an ideal case for mean-field 
models. However, usual mean-field models are based on neuronal 
transfer functions such as the well-known sigmoid function, or func-
tions estimated from very simple models. Any error in the transfer 
function may result in wrong predictions by the corresponding mean-
field model. To palliate this caveat, we have obtained semi-analytic 
forms of the transfer function of more realistic neuron models. We 
found that the same mathematical template can capture the trans-
fer function for models such as the integrate-and-fire (IF) model, the 

adaptive exponential (AdEx) model, up to Hodgkin–Huxley (HH) type 
models, all with conductance-based inputs.
Using these transfer functions we have built “realistic” mean-field mod-
els for networks with two populations of neurons, the regular-spiking 
(RS) excitatory neurons, showing spike frequency adaptation, and the 
fast-spiking (FS) inhibitory neurons. This mean-field model can repro-
duce the propagating waves in V1, due to horizontal interactions, as 
shown previously using IF networks. This mean-field model also repro-
duced the suppressive interactions between propagating waves. The 
mechanism of suppression was based on the preferential recruitment 
of inhibitory cells over excitatory cells by afferent activity, which acted 
through the conductance-based shunting effect of the two waves 
onto one another. The suppression was negligible in networks with 
identical models for excitatory and inhibitory cells (such as IF net-
works). This suggests that the suppressive effect is a general phenom-
enon due to the higher excitability of inhibitory neurons in cortex, in 
line with previous models (Ozeki et al., Neuron 2009).
Work done in collaboration with Yann Zerlaut (UNIC) for modeling, 
Sandrine Chemla and Frederic Chavane (CNRS, Marseille) for in  vivo 
experiments. Supported by CNRS and the European Commission 
(Human Brain Project).
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Current diagnoses of mental disorders are made in a categorical way, 
as exemplified by DSM-5, but many difficulties have been encountered 
in such categorical regimes: the high percentage of comorbidities, 
usage of the same drug for multiple disorders, the lack of any vali-
dated animal model, and the situation where no epoch-making drug 
has been developed in the past 30 years. NIMH started RDoC (research 
domain criterion) to overcome these problems [1], and some success-
ful results have been obtained, including common genetic risk loci [2] 
and common neuroanatomical changes for multiple disorders [3] as 
well as psychosis biotypes [4].
In contrast to the currently dominant molecular biology approach, 
which basically assumes one-to-one mapping between genes and 
disorders, I postulate the following dynamics-based view of psychiatric 
disorders. Our brain is a nonlinear dynamical system that can generate 
spontaneous spatiotemporal activities. The dynamical system is char-
acterized by multiple stable attractors, only one of which corresponds 
to a healthy or typically developed state. The others are pathological 
states.
The most promising research approach within the above dynamical 
view is to combine resting-state functional magnetic resonance imag-
ing, machine learning, big data, and sophisticated neurofeedback. 
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Yahata et  al. developed an ASD biomarker using only 16/9730 func-
tional connections, and it did not generalize to MDD or ADHD but 
moderately to schizophrenia [5]. Yamashita’s regression model of 
working memory ability from functional connections [6] generalized 
to schizophrenia and reproduced the severity of working-memory 
deficits of four psychiatric disorders (in preparation).
With the further development of machine learning algorithms and 
accumulation of reliable datasets, we hope to obtain a comprehensive 
landscape of many psychiatric and neurodevelopmental disorders. 
Guided by this full-spectrum structure, a tailor-made neurofeedback 
therapy should be optimized for each patient [7].
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The theta rhythm (4–12  Hz) is a prominent network oscillation 
observed in the mammalian hippocampus and is correlated with spa-
tial navigation and mnemonic processing. Inhibitory interneurons of 
the hippocampus fire action potentials at specific phases of the theta 
rhythm, pointing to distinct functional roles of interneurons in shap-
ing this rhythmic activity. One hippocampal interneuron type, the 
oriens-lacunosum/moleculare (O-LM) cell, provides direct feedback 
inhibition and regulation of pyramidal cell activity in the CA1 region. 
O-LM cells express the hyperpolarization-activated, mixed-cation cur-
rent (Ih) and, in vitro, demonstrate spontaneous firing at theta that is 
impaired upon blockade of Ih. Work using dynamic clamp has shown 
that in the presence of frequency-modulated artificial synaptic inputs, 
O-LM cells exhibit a spiking resonance at theta frequencies that is not 
dependent on Ih [1]. However, due to the somatic injection limitation 
of dynamic clamp, the study could not examine the potential con-
tributions of putative dendritic Ih or the integration of dendritically-
located synaptic inputs. To overcome this, we have used a database of 
previously developed multi-compartment computational models of 
O-LM cells [2].
We situated our OLM cell models in an in vivo-like context by inject-
ing Poisson-based synaptic background activities throughout their 
dendritic arbors. Excitatory and inhibitory synaptic weights were 
tuned to produce similar baseline activity prior to modulation of the 

inhibitory synaptic process at various frequencies (2–30 Hz). We found 
that models with dendritic inputs expressed enhanced resonant fir-
ing at theta frequencies compared to models with somatic inputs. We 
then performed detailed analyses on the outputs of the models with 
dendritic inputs to further elucidate these results with respect to Ih dis-
tributions. The ability of the models to be recruited at the modulated 
input frequencies was quantified using the rotation number, or aver-
age number of spikes across all input cycles. Models with somatoden-
dritic Ih were recruited at >50 % of the input cycles for a wider range of 
theta frequencies (3–9  Hz) compared to models with somatic Ih only 
(3–4 Hz). Models with somatodendritic Ih also exhibited a wider range 
of theta frequencies for which phase-locked output (vector strength 
>0.75) was observed (4–12  Hz), compared to models with somatic Ih 
(3–5 Hz). Finally, the phase of firing of models with somatodendritic Ih 
given 8–10 Hz modulated input was delayed 180–230° relative to the 
time of release from inhibitory synaptic input.
O-LM cells receive phasic inhibitory inputs at theta frequencies from 
a subpopulation of parvalbumin-positive GABAergic interneurons in 
the medial septum (MS) timed to the peak of hippocampal theta, as 
measured in the stratum pyramidale layer [3]. Furthermore, O-LM cells 
fire at the trough of hippocampal pyramidal layer theta in vivo [4], an 
approximate 180˚ phase delay from the MS inputs, corresponding to 
the phase delay in our models with somatodendritic Ih. Our results 
suggest that, given dendritic synaptic inputs, O-LM cells require soma-
todendritic Ih channel expression to be precisely recruited during 
the trough of hippocampal theta activity. Our strategy of leveraging 
model databases that encompass experimental cell type-specificity 
and variability allowed us to reveal critical biophysical factors that con-
tribute to neuronal function within in vivo-like contexts.

Acknowledgements: Supported by NSERC of Canada, an Ontario 
Graduate Scholarship, and the SciNet HPC Consortium.
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Extracellular recordings of electric potential, with a century old his-
tory, remain a popular tool for investigations of brain activity on all 
scales, from single neurons, through populations, to the whole brains, 
in animals and humans, in vitro and in vivo [1]. The specific informa-
tion available in the recording depends on the physical settings of the 
system (brain + electrode). Smaller electrodes are usually more selec-
tive and are used to capture local information (spikes from single cells 
or LFP from populations) while larger electrodes are used for subdural 
recordings (on the cortex, ECoG), on the scalp (EEG) but also as depth 
electrodes in humans (called SEEG). The advantages of extracellular 
electric potential are the ease of recording and its stability. Its problem 
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is interpretation: since electric field is long range one can observe 
neural activity several millimeters from its source [2–4]. As a conse-
quence every recording reflects activity of many cells, populations and 
regions, depending on which level we focus. One way to overcome 
this problem is to reconstruct the distribution of current sources (CSD) 
underlying the measurement [5], typically done to identify activity on 
systems level from multiple LFP on regular grids [6].
We recently proposed a kernel-based method of CSD estimation from 
multiple LFP recordings from arbitrarily placed probes (i.e. not neces-
sarily on a grid) which we called kernel Current Source Density method 
(kCSD) [7]. In this overview we present the original proposition as well 
as two recent developments, skCSD (single cell kCSD) and kESI (kernel 
Electrophysiological Source Imaging). skCSD assumes that we know 
which part of the recorded signal comes from a given cell and we 
have access to the morphology of the cell. This could be achieved by 
patching a cell, driving it externally while recording the potential on a 
multielectrode array, injecting a dye, and reconstructing the morphol-
ogy. In this case we know that the sources must be located on the cell 
and this information can be successfully used in estimation. In kESI we 
consider simultaneous recordings with subdural ECoG (strip and grid 
electrodes) and with depth electrodes (SEEG). Such recordings are 
taken on some epileptic patients prepared for surgical removal of epi-
leptogenic zone. When MR scan of the patient head is taken and the 
positions of the electrodes are known as well as the brain’s shape, the 
idea of kCSD can be used to bound the possible distribution of sources 
facilitating localization of the foci.

Acknowledgements: Polish Ministry for Science and Higher Edu-
cation (grant 2948/7.PR/2013/2), Hungarian Scientific Research 
Fund (Grant OTKA K113147), National Science Centre, Poland (Grant 
2015/17/B/ST7/04123).
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In mammals, circadian (~24  h) rhythms are mainly regulated by a 
master circadian clock located in the suprachiasmatic nucleus (SCN) 
[1]. The SCN consists of ~20,000 neurons, each of which generates 
own rhythms via intracellular transcriptional negative feedback loop 

involving PER-CRY and BMAL1-CLOCK. These individual rhythms of 
each neuron are synchronized through intercellular coupling via 
neurotransmitters including VIP [2]. In this talk, I will discuss that the 
synchronized periods via coupling signal strongly depend on the 
mechanism of intracellular transcription repression [3–4]. Specifically, 
using mathematical modeling and phase response curve analysis, we 
find that the synchronized period of SCN stays close to the popula-
tion mean of cells’ intrinsic periods (~24 h) if transcriptional repression 
occurs via protein sequestration. However, the synchronized period 
is far from the population mean when repression occurs via Hill-type 
regulation (e.g. phosphorylation-based repression). These results 
reveal the novel relationship between two major functions of the 
SCN-intracellular rhythm generation and intercellular synchronization 
of rhythms. Furthermore, this relationship provides an explanation for 
why the protein sequestration is commonly used in circadian clocks of 
multicellular organisms, which have a coupled master clock, but not in 
unicellular organisms [4].
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Found in all nervous systems, central pattern generators (CPGs) are 
neural circuits that produce flexible rhythmic motor patterns. Their 
robust and highly coordinated spatio-temporal activity is generated in 
the absence of rhythmic input. Several invertebrate CPGs are among 
the best known neural circuits, as their neurons and connections have 
been identified and mapped. The crustacean pyloric CPG is one of 
these flagship neural networks [1, 2]. Experimental and computational 
studies of CPGs typically examine their rhythmic output in periodic 
spiking-bursting regimes. Aiming to understand the fast rhythm nego-
tiation of CPG neurons, here we present experimental and theoretical 
analyses of the pyloric CPG activity in  situations where irregular yet 
coordinated rhythms are produced. In particular, we focus our study 
in the context of two sources of rhythm irregularity: intrinsic damage 
in the preparation, and irregularity induced by ethanol. The analysis of 
non-periodic regimes can unveil important properties of the robust 
dynamics controlling rhythm coordination in this system.
Adult male and female shore crabs (Carcinus maenas) were used for the 
experimental recordings. The isolated stomatrogastric ganglion was kept 



Page 4 of 112BMC Neurosci 2016, 17(Suppl 1):54

in Carcinus maenas saline. Membrane potentials were recorded intracellu-
larly from the LP and PD cells, two mutually inhibitory neurons that form 
a half-center oscillator in the pyloric CPG. Extracellular electrodes allowed 
monitoring the overall CPG rhythm. Conductance-based models of the 
pyloric CPG neurons and their associated graded synapses as described in 
[3, 4] were also used in this dual experimental and theoretical study.
Irregularity and coordination of the CPG rhythms were analyzed using 
measures characterizing the cells’ instantaneous waveform, period, duty 
cycle, plateau, hyperpolarization and temporal structure of the spiking 
activity, as well as measures describing instantaneous phases among 
neurons in the irregular rhythms and their variability. Our results illus-
trate the strong robustness of the circuit to keep LP/PD phase relation-
ships in intrinsic and induced irregularity conditions while allowing 
a large variety of burst waveforms, durations and hyperpolarization 
periods in these neurons. In spite of being electrically coupled to the 
pacemaker cell of the circuit, the PD neurons showed a wide flexibility 
to participate with larger burst durations in the CPG rhythm (and larger 
increase in variability), while the LP neuron was more restricted in sus-
taining long bursts in the conditions analyzed. The conductance-based 
models were used to explain the role of asymmetry in the dynamics 
of the neurons and synapses to shape the irregular activity observed 
experimentally. Taking into account the overall experimental and model 
analyses, we discuss the presence of preserved relationships in the non-
periodic but coordinated bursting activity of the pyloric CPG, and their 
role in the fast rhythm negotiating properties of this circuit.

Acknowledgements: We acknowledge support from MINECO 
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Particular behaviors are associated with different spatio-temporal pat-
terns of cortical EEG oscillations. A recent study suggests that the cor-
tically-projecting, parvalbumin-positive (PV+) inhibitory neurons in 
the basal forebrain (BF) play an important role in the state-dependent 
control of cortical oscillations, especially ~40  Hz gamma oscillations 
[1]. However, the cortical topography of the gamma oscillations which 
are controlled by BF PV+ neurons and their relationship to behavior 
are unknown. Thus, in this study, we investigated the spatio-temporal 
patterns and the functional role of the cortical oscillations induced or 
entrained by BF PV+ neurons by combining optogenetic stimulation 

of BF PV+ neurons with high-density EEG [2, 3] in channelrhodopsin-2 
(ChR2) transduced PV-cre mice. First, we recorded the spatio-temporal 
responses in the cortex with respect to the stimulation of BF PV+ neu-
rons at various frequencies. The topographic response patterns were 
distinctively different depending on the stimulation frequencies, and 
most importantly, stimulation of BF PV+ neurons at 40  Hz (gamma 
band frequency) induced a preferential enhancement of gamma 
band oscillations in prefrontal cortex (PFC) with a statistically signifi-
cant increase in intracortical connectivity within PFC. Second, optoge-
netic stimulation of BF PV+ neurons was applied while the mice were 
exposed to auditory stimuli (AS) at 40  Hz. The time delay between 
optogenetic stimulation and AS was tested and the phase response to 
the AS was characterized. We found that the phase responses to the 
click sound in PFC were modulated by the optogenetic stimulation 
of BF PV+  neurons. More specifically, the advanced activation of BF 
PV+ neurons by π/2 (6.25 ms) with respect to AS sharpened the phase 
response to AS in PFC, while the anti-phasic activation (π, 12.5  ms) 
blunted the phase response. Interestingly, like PFC, the primary audi-
tory cortex (A1) also showed sharpened phase response for the π/2 
advanced optogenetic BF PV+ neuron activation during AS. Consider-
ing that no direct influence of BF PV+ neurons on A1 was apparent in 
the response to stimulation of BF PV+ neurons alone, the sharpened 
phase response curve of A1 suggests a top-down influence of the 
PFC. This result implies that the BF PV+ neurons may participate in 
regulating the top-down influence that PFC exerts on primary sensory 
cortices during attentive behaviors, and supports the idea that the 
modulating activities of BF PV+ neurons might be a potential target 
for restoring top-down cognitive functions as well as abnormal frontal 
gamma oscillations associated with psychiatric disorders.
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With neuromechanistic modelling and psychoacoustic experiments we 
study the perceptual dynamics of auditory streaming (cocktail party 
problem). The stimulus is a sequence of two interleaved tones, A and 
B in a repeating triplet pattern: ABA_ABA_ (‘_’ is a silent gap). Initially, 
subjects hear a single integrated pattern, but after some seconds they 
hear segregated A_A_A_ and _B___B__ streams (build-up of streaming 
segregation). For long presentations, build-up is followed by irregular 
alternations between integrated and segregated (auditory bistability). 
We recently presented [1] the first neuromechanistic model of auditory 
bistability; it incorporates common competition mechanisms of mutual 
inhibition, slow adaptation and noise [2]. Our competition network is 
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formulated to reside downstream of primary auditory cortex (A1). Neu-
ral responses in macaque A1 to triplet sequences [3] encode stimulus 
features and provide the inputs to our network (Fig. 1A). In our model 
recurrent excitation with an NMDA-like timescale links responses across 
gaps between tones and between triplets. It captures the dynamics of 
perceptual alternations and the stimulus feature dependence of per-
cept durations. To account for build-up we incorporate early adaptation 
of A1 responses [3] (Fig. 1B, upper). Early responses in A1 are broadly 
tuned and do not reflect the frequency difference between the tones; 
later responses show a clear tonotopic dependence. This adaptation 
biases the initial percept towards integration, but occurs faster (~0.5 s) 
than the gradual build-up process (~5–10  s). The low initial probabil-
ity of segregation gradually builds up to the stable probability of later 
bistable alternations (Fig. 1B, lower). During build-up, a pause in pres-
entation may cause partial reset to integrated [4]. Our extended model 
shows this behavior assuming that after a pause A1 responses recover 
on the timescale of early adaptation. Moreover, the modeling results 
agree with our psychoacoustic experiments (compare filled and open 
circles in Fig. 1B, lower).
Conclusions For the first time, we offer an explanation of the discrep-
ancy in the timescales of early A1 responses and the more gradual build-
up process. Recovery of A1 responses can explain resetting for stimulus 
pauses. Our model offers, to date, the most complete account of the 
early and late dynamics for auditory streaming in the triplet paradigm.
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Auditory evoked fields (AEFs) observed in MEG experiments system-
atically present a transient deflection known as the N100  m, elicited 
around 100 ms after the tone onset in the antero-lateral Heschl’s Gyrus. 
The exact N100m’s latency is correlated with the perceived pitch of a 
wide range of stimulus [1, 2], suggesting that the transient component 
reflects the processing of pitch in auditory cortex. However, the biophys-
ical substrate of such precise relationship remains an enigma. Existing 
models of pitch, focused on perceptual phenomena, did not explain the 
mechanism generating cortical evoked fields during pitch processing 
in biophysical detail. In this work, we introduce a model of interacting 
neural ensembles describing, for the first time to our knowledge, how 
cortical pitch processing gives rise to observed human neuromagnetic 
responses and why its latency strongly correlates with pitch.
To provide a realistic cortical input, we used a recent model of the audi-
tory periphery and realistic subcortical processing stages. Subcortical 
processing was based on a delay-and-multiply operation carried out in 
cochlear nucleus and inferior colliculus [3], resulting in realistic patterns 
of neural activation in response to the stimulus periodicities. Subcorti-
cal activation is transformed into a tonotopic receptive-field-like repre-
sentation [4] by a novel cortical circuit composed by functional blocks 
characterised by a best frequency. Each block consist of an excitatory 
and an inhibitory population, modelled using mean-field approxi-
mations [5]. Blocks interact with each other through local AMPA- and 
NMDA-driven excitation and GABA-driven global inhibition [5].
The excitation-inhibition competition of the cortical model describes a 
general pitch processing mechanism that explains the N100m deflec-
tion as a transient state in the cortical dynamics. The deflection is rap-
idly triggered by a rise in the activity elicited by the subcortical input, 
peaks after the inhibition overcomes the input, and stabilises when 
model dynamics reach equilibrium, around 100  ms after onset. As a 
direct consequence of the connectivity structure among blocks, the 
time necessary for the system to reach equilibrium depends on the 
encoded pitch of the tone. The model quantitatively predicts observed 
latencies of the N100m in agreement with available empirical data 
[1, 2] in a series of stimuli (see Fig. 2), suggesting that the mechanism 
potentially accounts for the N100 m dynamics.
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Fig. 1  A Model schematic: tone inputs IA and IB elicit pulsatile 
responses in A1, which are pooled as inputs to a three-population 
competition network. Central unit AB encodes integrated, peripheral 
units A and B encode segregated. Mutual inhibition between units 
and recurrent excitation are incorporated with adaptation and noise. 
B A1 inputs show early initial adaptation, also if a pause is present. 
Build-up function shows proportion segregated increasing over time, 
here shown for three tone-frequency differences, DF, with no pause 
(dashed) or with a pause (solid curves). Time-snapshots from model 
(filled circles) agree with data (empty circles with SEM error bars, N = 8)

Fig. 2  N100 m predictions in comparison with available data [1, 2] for 
a range of pure tones (A) and HCTs (B)
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Retinal implants can restore vision to patients suffering photoreceptor 
loss by stimulating surviving retinal ganglion cells (RGCs) via an array 
of microelectrodes implanted within the eye [1]. However, the acu-
ity offered by existing devices is low, limiting the benefits to patients. 
Improvements may come by increasing the number of electrodes 
in new devices and providing patterned vision, which necessitates 
stimulation using multiple electrodes simultaneously. However, simul-
taneous stimulation poses a number of problems due to cross-talk 
between electrodes and uncertainty regarding the resulting activation 
pattern.
Here, we present a model and methods for estimating the responses of 
RGCs to simultaneous electrical stimulation. Whole cell in vitro patch 
clamp recordings were obtained from 25 RGCs with various morpho-
logical types in rat retina. The retinae were placed onto an array of 
20 stimulating electrodes. Biphasic current pulses with 500  µs phase 
duration and 50 µs interphase gap were applied simultaneously to all 
electrodes at a frequency of 10 Hz, with the amplitude of current on 
each electrode sampled independently from a Gaussian distribution.
A linear-nonlinear model was fit to the responses of each RGC using 
spike-triggered covariance analyses on 80  % of the recorded data. 
The analysis revealed a single significant principle component corre-
sponding to the electrical receptive field for each cell, with the second 
largest principle component having negligible effect on the neural 
response (Fig. 3a). This indicates that interactions between electrodes 
are approximately linear in their influence on the cells’ responses.
Furthermore, the spike-triggered ensemble showed two clusters (red 
and blue in Fig. 3a) corresponding to stimulation that had a net effect 
that was either anodic first or cathodic first. The electrical receptive 
fields for both anodic first and cathodic first stimulation were highly 
similar (Fig. 3b). They consisted of a small number (1–4) of electrodes 
that were close to the cell body (green dot).

The remaining 20  % of data were used to validate the model. The 
average model prediction root-mean-square error was 7  % over the 
25 cells. The accuracy of the model indicates that the linear-nonlinear 
model is appropriate to describe the responses of RGCs to electrical 
stimulation.
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Linking sensory coding and behavior is a fundamental question in 
neuroscience. We have addressed this issue in behaving monkey vis-
ual cortex (areas V1 and V4) while animals were trained to perform a 
visual discrimination task in which two successive images were either 
rotated with respect to each other or were the same. We hypoth-
esized that the animal’s performance in the visual discrimination task 
depends on the quality of stimulus coding in visual cortex. We tested 
this hypothesis by investigating the functional relevance of neuronal 
correlations in areas V1 and V4 in relation to behavioral performance. 
We measured two types of correlations: noise (spike count) correla-
tions and correlations in spike timing. Surprisingly, both methods 
showed that correct responses are associated with significantly higher 
correlations in V4, but not V1, during the delay period between the 
two stimuli. This suggests that pair-wise interactions during the spon-
taneous activity preceding the arrival of the stimulus sets the stage for 
subsequent stimulus processing and importantly influences behavio-
ral performance.
Experiments were conducted in 2 adult monkeys that were previ-
ously trained for the task. After 300  ms of fixation, the target stim-
ulus, consisting of a naturalistic stimulus, is shown for 300  ms, and 
after a random delay period (500–1200 ms), a test stimulus is shown 
for 300  ms. The test can either be identical to the target stimulus 
(match) or rotated with respect to the target (non-match). Monkey 
responded by pressing a button and was rewarded for a correct 
response with fruit juice. Two linear arrays with 16 recording chan-
nels each were used to record population activity in areas V1 and V4. 
The difficulty of the task is calibrated individually to have 70 % cor-
rect responses on average. The analysis is conducted on non-match 
condition, comparing activity in trials with correct responses with tri-
als where the monkey responded incorrectly. Noise correlations were 
assessed as pair-wise correlations of spike counts (method 1) and 
of spike timing (method 2). For method 1, z-scores of spike counts 
of binned spike trains are computed in individual trials. r_sc is com-
puted as Pearson correlation coefficient of z-scores in all available 
trials, balanced across correct/incorrect condition. For the method 
2, cross-correlograms were computed, from which the cross-corre-
lograms from shuffled trials are subtracted. Resulting function was 
summed around zero lag and normalized with sum of autocorrelo-
grams [1].

Fig. 3  a Spike triggered covariance showing the full set of stimuli 
(black dots) projected onto the first two principle components. 
Stimuli causing a spike formed two clusters: net cathodic first pulses 
(blue) and net anodic first pulse (red). b Electrical receptive fields 
superimposed on the electrode array are shown for the cathodic first 
(blue) and anodic first clusters (red)
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While firing rates of single units or of the population did not signifi-
cantly change for correct and incorrect responses, noise correlations 
during the delay period were significantly higher in V4 pairs, com-
puted with both r_sc method (p  =  0.0005 in monkey 1, sign-rank 
test) and with r_ccg method (p = 0.0001 and p = 0.0280 in monkey 1 
and 2, respectively, 50 ms integration window). This result is robust to 
changes in the length of the bin (method 1) and to the length of the 
summation window (method 2). In agreement with [2], we confirm the 
importance of spontaneous activity preceding the stimulus on perfor-
mance and suggest that higher correlations in V4 might be beneficial 
for successful read-out and reliable transmission of the information 
downstream.

References
1.	 Bair W, Zohary E, Newsome WT. Correlated firing in macaque visual 

area MT: time scales and relationship to behavior. J Neurosci. 2001; 
21(5):1676–97.

2.	 Gutnisky DA, Beaman CB, Lew SE, Dragoi V. Spontaneous fluctuations in 
visual cortical responses influence population coding accuracy. Cereb 
Cortex. 2016;1–19.

3.	 Cohen MR, Maunsell JH. Attention improves performance pri-
marily by reducing interneuronal correlations. Nat Neurosci. 
2009;12(12):1594–1600.

4.	 Nienborg HR, Cohen MR, Cumming BG. Decision-related activity in sen-
sory neurons: correlations among neurons and with behavior. Annu Rev 
Neurosci. 2012;35:463–83.

O7 
Input‑location dependent gain modulation in cerebellar nucleus 
neurons
Maria Psarrou1, Maria Schilstra1, Neil Davey1, Benjamin Torben‑Nielsen1, 
Volker Steuber1

Centre for Computer Science and Informatics Research, University 
of Hertfordshire, Hatfield, AL10 9AB, UK
Correspondence: Maria Psarrou ‑ m.psarrou@herts.ac.uk   
BMC Neuroscience 2016, 17(Suppl 1):O7

Gain modulation is a brain-wide principle of neuronal computation 
that describes how neurons integrate inputs from different presynap-
tic sources. A gain change is a multiplicative operation that is defined 
as a change in the sensitivity (or slope of the response amplitude) of 
a neuron to one set of inputs (driving input) which results from the 
activity of a second set of inputs (modulatory input) [1, 2].
Different cellular and network mechanisms have been proposed 
to underlie gain modulation [2–4]. It is well established that input 
features such as synaptic noise and plasticity can contribute to mul-
tiplicative gain changes [2–4]. However, the effect of neuronal mor-
phology on gain modulation is relatively unexplored. Neuronal inputs 
to the soma and dendrites are integrated in a different manner: whilst 
dendritic saturation can introduce a strong non-linear relationship 
between dendritic excitation and somatic depolarization, the relation-
ship between somatic excitation and depolarization is more linear. The 
non-linear integration of dendritic inputs can enhance the multiplica-
tive effect of shunting inhibition in the presence of noise [3].
Neurons in the cerebellar nuclei (CN) provide the main gateway 
from the cerebellum to the rest of the brain. Understanding how 
inhibitory inputs from cerebellar Purkinje cells interact with excita-
tory inputs from mossy fibres to control output from the CN is at 
the center of understanding cerebellar computation. In the present 
study, we investigated the effect of inhibitory modulatory input on 
CN neuronal output when the excitatory driving input was delivered 
at different locations in the CN neuron. We used a morphologically 
realistic conductance based CN neuron model [5] and examined the 
change in output gain in the presence of distributed inhibitory input 
under two conditions: (a) when the excitatory input was confined to 
one compartment (the soma or a dendritic compartment) and, (b), 
when the excitatory input was distributed across particular dendritic 
regions at different distances from the soma. For both of these con-
ditions, our results show that the arithmetic operation performed by 
inhibitory synaptic input depends on the location of the excitatory 

synaptic input. In the presence of distal dendritic excitatory inputs, 
the inhibitory input has a multiplicative effect on the CN neuronal 
output. In contrast, excitatory inputs at the soma or proximal den-
drites close to the soma undergo additive operations in the presence 
of inhibitory input. Moreover, the amount of the multiplicative gain 
change correlates with the distance of the excitatory inputs from the 
soma, with increasing distances from the soma resulting in increased 
gain changes and decreased additive shifts along the input axis. These 
results indicate that the location of synaptic inputs affects in a sys-
tematic way whether the input undergoes a multiplicative or additive 
operation.
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Accurate estimation of action potential (AP)-related metabolic cost 
is essential for understanding energetic constraints on brain connec-
tions and signaling processes. Most previous energy estimates of the 
AP were obtained using the Na+-counting method [1, 2], which seri-
ously limits accurate assessment of metabolic cost of ionic currents 
that underlie AP generation. Moreover, the effects of axonal geometry 
and ion channel distribution on energy consumption related to AP 
propagation have not been systematically investigated.
To address these issues, we return to the cable theory [3] that under-
lies our HH-type cortical axon model [4], which was constructed based 
on experimental measurements. Based on the cable equation that 
describes how ion currents flow along the cable as well as analysis of 
the electrochemical energy in the equivalent circuit, we derived the 
electrochemical energy function for the cable model,

where gNa
max (in a range of 50–650 mS/cm2), gK

max (5–100 mS/cm2), and 
gL = 0.033 mS/cm2 are the maximal sodium, maximal potassium, and 
leak conductance per unit membrane area, respectively; and VNa = 60, 
VK  =  −90 VL  =  −70  mV are the reversal potentials of the sodium, 
potassium, and leak channels, respectively. The gate variables m, h, 
and n are dimensionless activation and inactivation variables, which 
describe the activation and inactivation processes of the sodium and 
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potassium channels [4]. This equation describes the AP-related energy 
consumption rate per unit membrane area (cm2/s) at any axonal dis-
tance and any time. The individual terms on the right-hand side of the 
equation represent the contributions of the sodium, potassium, leak, 
and axial currents, respectively. Then we employed the cable energy 
function to calculate energy consumption for unbranched axons and 
axons with several degrees of branching (branching level, BL). Calcula-
tions based on this function distinguish between the contributions of 
each item toward total energy consumption.
Our analytical approach predicts an inhomogeneous distribution of 
metabolic cost along an axon with either uniformly or nonuniformly 
distributed ion channels. The results show that the Na+-counting 
method severely underestimates energy cost in the cable model by 
20–70 %. AP propagation along axons that differ in length may require 
over 15 % more energy per unit of axon area than that required by a 
point model. However, actual energy cost can vary greatly depending 
on axonal branching complexity, ion channel density distributions, 
and AP conduction states. We also infer that the metabolic rate (i.e. 
energy consumption rate) of cortical axonal branches as a function of 
spatial volume exhibits a 3/4 power law relationship.
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Modeling neuronal systems involves incorporating the two layers: a 
static map of neural connections (connectome), and biophysical pro-
cesses that describe neural responses and interactions. Such a model 
is called the ‘dynome’ of a neuronal system as it integrates a dynamical 
system with the static connectome. Being closer to reproducing the 
activity of a neuronal system, investigation of the dynome has more 
potential to reveal neuronal pathways of the network than the static 
connectome [1]. However, since the two layers of the dynome are 
considered simultaneously, novel tools have to be developed for the 
dynome studies. Here we present a visualization methodology, called 
`interactome’, that allows to explore the dynome of a neuronal system 
interactively and in real-time, by viewing the dynamics overlaid on a 
graph representation of the connectome.
We apply our methodology to the nervous system of Caenorhabditis 
elegans (C. elegans) worm, which connectome is almost fully resolved 
[2], and a computational model of neural dynamics and interac-
tions (gap and synaptic) based on biophysical experimental findings 
was recently introduced [3]. Integrated together, C. elegans dynome 

defines a unique set of neural dynamics of the worm. To visualize the 
dynome, we propose a dynamic force-directed graph layout of the 
connectome. The layout is implemented using D3 visualization plat-
form [4], and is designed to communicate with an integrator of the 
dynome. The two-way communication protocol between the layout 
and the integrator allows for stimulating (injecting current) into any 
subset of neurons at any time point (Fig. 4B). It also allows for simulta-
neously viewing the response of the network on top of the layout visu-
alized by resizing graph nodes (neurons) according to their voltage. In 
addition, we support structural changes in the connectome, such as 
ablation of neurons and connections.
Our visualization and communication protocols thereby display the 
stimulated network in an interactive manner and permit to explore dif-
ferent regimes that the stimulations induce. Indeed, with the interac-
tome we are able to recreate various experimental scenarios, such as 
stimulation of forward crawling (PLM/AVB neurons and/or ablation of 
AVB) and show that its visualization assists in identifying patterns of 
neurons in the stimulated network. As connectomes and dynomes of 
additional neuronal systems are being resolved, the interactome will 
enable exploring their functionality and inference to its underlying 
neural pathways [5].
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Objectively evaluating and selecting computational models of bio-
logical neurons is an ongoing challenge in the field. Models vary in 
morphological detail, channel mechanisms, and synaptic transmission 
implementations. We present the results of an automated method for 
evaluating computational models against property values obtained 

Fig. 4  A Visualization of C. elegans dynome, B communication dia-
gram between the dynome and the layout, C snapshots of visualiza-
tion of C. elegans during the PLM/AVB excitations (forward crawling)
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from published cell electrophysiology studies. Seven published deter-
ministic models of olfactory bulb mitral cells were selected from Mod-
elDB [1] and simulated using NEURON’s Python interface [2]. Passive 
and spike properties in response to step current stimulation pulses 
were computed using the NeuronUnit [3] package and compared to 
their respective, experimentally obtained means of olfactory bulb 
mitral cell properties found in the NeuroElectro database [4].
Results reveal that across all models, the resting potential and input 
resistance property means deviated the most from their experi-
mentally measured means (Rinput t test p  =  0.02, Vrest Wilcoxon-test 
p =  0.01). The time constant, spike half-width, spike amplitude, and 
spike threshold properties, in the order of decreasing average devia-
tion, matched well with experimental data (p > 0.05) (Fig. 5 top).
In three models, the property deviations were, on average, outside the 
95 % CI of the experimental means (Fig. 5 bottom), but these averages 
were not significant (t test p > 0.05). All other models were within the 
95 % CI, while the model of Chen et al. had the lowest deviation [5].
Overall, the majority of these olfactory bulb mitral cell models display 
some properties that are not significantly different from their experi-
mental means. However, the resting potential and input resistance 
properties significantly differ from the experimental values. We dem-
onstrate that NeuronUnit provides an objective method for evaluating 
the fitness of computational neuroscience cell models against publicly 
available data.

Acknowledgements: The work of JB, RG, and SMC was supported in 
part by R01MH1006674 from the National Institutes of Health.
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Two major mechanisms that underlie gamma oscillations are 
InterNeuronal Gamma (“ING”), which is related to tonic excitation of 
reciprocally coupled inhibitory interneurons (I-cells), and Pyramidal 
InternNeuron Gamma (“PING”), which is mediated by coupled popu-
lations of excitatory pyramidal cells (E-cells) and I-cells. ING and PING 
are thought to serve different biological functions. Using computer 
simulations and analytical methods, we [1] therefore investigate which 
mechanism (ING or PING) will dominate the dynamics of a network 
when ING and PING interact and how the dominant mechanism may 
switch.
We find that ING and PING oscillations compete: The mechanism 
generating the higher oscillation frequency “wins”. It determines 
the frequency of the network oscillations and suppresses the other 
mechanism. The network oscillation frequency (green lines corre-
sponding to the network topology given in Fig. 6C) corresponding to 

Fig. 5  The average deviations of models and cell electrophysiology 
properties as measured in multiples of the 95 % CI bounds of experi-
mental data means. Dashed line represents 1 CI bound threshold. Top 
rows show average deviations across all models for each cell property. 
Bottom rows show deviations across all cell properties for each model

Fig. 6  Oscillations in full and reduced networks of reciprocally 
coupled pyramidal cells and interneurons. A, B Illustrate topologies of 
reduced networks that generate “pure” ING and “pure” PING, respec-
tively, while C highlights the topology of a “full” network that could 
in principle generate either ING or PING oscillations or mixtures of 
both. D, E Frequency of pure ING-rhythm generated by the reduced 
network in A (blue line), pure PING-rhythm generated by the reduced 
network in b (red line), and rhythms generated by the full network in 
C (green line) as a function of mean current to I-cells I0,I and as func-
tion of mean current to E-cells I0,E, respectively. D Results for networks 
with type-I interneurons while E shows results for networks with 
type-II interneurons. Pyramidal cells are modeled as type-I Hodgkin–
Huxley neurons
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the network with type-I-phase-response-curve interneurons and type-
II-phase-response-curve interneurons is plotted in Fig.  6D, E, respec-
tively. We explain our simulation results by a theoretical model that 
allows a full theoretical analysis.
Our study suggests experimental approaches to decide whether 
oscillatory activity in networks of interacting excitatory and inhibi-
tory neurons is dominated by ING or PING oscillations and whether 
the participating interneurons belong to class I or II. Consider as 
an example networks with type-I interneurons where the external 
drive to the E-cells, I0,E, is kept constant while the external drive to 
the I-cells, I0,I, is varied. For both ING and PING dominated oscilla-
tions the frequency of the rhythm increases when I0,I increases (cf. 
Fig.  6D). Observing such an increase does therefore not allow to 
determine the underlying mechanism. However, the absolute value 
of the first derivative of the frequency with respect to I0,I allows a 
distinction, as it is much smaller for PING than for ING (cf. Fig. 6D). 
In networks with type-II interneurons, the non-monotonic depend-
ence near the ING-PING transition may be a characteristic hallmark 
to detect the oscillation character (and the interneuron type): 
Decrease (increase) of the frequency when increasing I0,E indicates 
ING (PING), cf. Fig. 6E. These theoretical predictions are in line with 
experimental evidence [2].
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A physiological interpretation of the biological rhythms, e.g., of the 
local field potentials (LFP) depends on the mathematical and com-
putational approaches used for its analysis. Most existing mathemati-
cal methods of the LFP studies are based on braking the signal into 
a combination of simpler components, e.g., into sinusoidal harmonics 
of Fourier analysis or into wavelets of the Wavelet Analysis. However, a 
common feature of all these methods is that their prime components 
are presumed from the onset, and the goal of the subsequent analysis 
reduces to identifying the combination that best reproduces the origi-
nal signal.
We propose a fundamentally new method, based on a number of deep 
theorems of complex function theory, in which the prime components 
of the signal are not presumed a priori, but discovered empirically [1]. 
Moreover, the new method is more flexible and more sensitive to the 
signal’s structure than the standard Fourier method.
Applying this method reveals a fundamentally new structure in the 
hippocampal LFP signals in rats in mice. In particular, our results sug-
gest that the LFP oscillations consist of a superposition of a small, 
discrete set of frequency modulated oscillatory processes, which we 
call “oscillons”. Since these structures are discovered empirically, we 
hypothesize that they may capture the signal’s actual physical struc-
ture, i.e., the pattern of synchronous activity in neuronal ensembles. 
Proving this hypothesis will help enormously to advance a principal, 
theoretical understanding of the neuronal synchronization mecha-
nisms. We anticipate that it will reveal new information about the 
structure of the LFP and other biological oscillations, which should 
provide insights into the underlying physiological phenomena and 
the organization of brains states that are currently poorly understood, 
e.g., sleep and epilepsy.
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Many animals, including insects and humans, stabilize the visual 
image projected onto their retina by following a rotating landscape 
with their head or eyes. This stabilization reflex, also called the optom-
otor response, can pose a problem, however, when the animal intends 
to change its gaze. To resolve this paradox, von Holst and Mittelstaedt 
proposed that a copy of the motor command, or efference copy, could 
be routed into the visual system to transiently silence this stabilization 
reflex when an animal changes its gaze [1]. Consistent with this idea, 
we recently demonstrated that a single identified neuron associated 
with the optomotor response receives silencing motor-related inputs 
during rapid flight turns, or saccades, in tethered, flying Drosophila [2].
Here, we expand on these results by comprehensively recording from 
a group of optomotor-mediating visual neurons in the fly visual sys-
tem: three horizontal system (HS) and six vertical system (VS) cells. 
We found that the amplitude of motor-related inputs to each HS and 
VS cell correlates strongly with the strength of each cell’s visual sen-
sitivity to rotational motion stimuli around the primary turn axis, but 
not to the other axes (Fig. 7). These results support the idea that flies 
send rotation-axis-specific efference copies to the visual system dur-
ing saccades—silencing the stabilization reflex only for a specific 
axis, but leaving the others intact. This is important because saccades 
consist of stereotyped banked turns, which involve body rotations 
around all three primary axes of rotation. If the gaze stabilization 

Fig. 7  The amplitudes of saccade-related potentials (SRPs) to HS 
and VS cells are strongly correlated with each cell’s visual sensitiv-
ity to rightward yaw motion stimuli. A Experimental apparatus. B 
Maximal-intensity z-projections of the lobula plate to visualize HS- or 
VS-cell neurites that are marked by a GAL4 enhancer trap line. C, D 
The amplitude of saccade-related potentials (SRPs) were inversely 
correlated with visual responses, when measured under rightward 
yaw motion stimuli, but not under clockwise roll motion stimuli. Each 
sample point corresponds to each cell type. Error bars indicate SEM
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system is impaired for only one of these axes, then the fly is expected 
to attempt to maintain gaze stability, through a combination of head 
and body movements, for the other two. This prediction is consistent 
with behavioral measurements of head and body kinematics during 
saccades in freely flying blow flies [3]. Together, these studies provide 
an integrative model of how efference copies counteract a specific 
aspect of visual feedback signals to tightly control the gaze stabiliza-
tion system.
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Associative learning in the fruit fly olfactory system has been studied 
from the molecular to the behavior level [1, 2]. Fruit flies are able to 
associate conditional stimuli such as odor with unconditional aversive 
stimuli such as electrical shocks, or appetitive stimuli such as sugar 
or water. The mushroom body in the fruit fly brain is considered to be 
crucial for olfactory learning [1, 2]. The behavioral experiments show 
that the learning can not be explained simply by an additive Hebbian 
(i.e. correlation-based) learning rule. Instead, it depends on the timing 
between the conditional and unconditional stimulus presentation. Yarali 
and colleagues suggested a dynamic model on the molecular level to 
explain event timing in associative learning [3]. Here, we present new 
experiments together with a simple phenomenological model for learn-
ing that shows that associative olfactory learning in the fruit fly repre-
sents value learning that is incompatible with Hebbian learning.
In our model, the information of the conditional odor stimulus is con-
veyed by Kenyon cells from the projection neurons to the mushroom 
output neurons; the information of the unconditional shock stimulus is 
represented by dopaminergic neurons to the mushroom output neu-
rons through direct or indirect pathways. The mushroom body out-
put neurons encode the internal value (v) of the odor (o) by synaptic 
weights (w) that conveys the odor information, v = w∙o. The synaptic 
strength is updated according to the value learning rule, Δw = η(s − v)
õ, where s represents the (internal) strength of the shock stimulus, õ 
represents the synaptic odor trace, and η is the learning rate. The 
value associated with the odor determines the probability of escaping 
from that odor. This simple model reproduces the behavioral data and 
shows that olfactory conditioning in the fruit fly is in fact value learn-
ing. In contrast to the prediction of Hebbian learning, the escape prob-
ability for repeated odor-shock pairings is much lower than the escape 
probability for a single pairing with a correspondingly stronger shock.
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The local field potential (LFP) in the extracellular space (ECS) of the 
brain, is a standard measure of population activity in neural tissue. 
Computational models that simulate the relationship between the LFP 
and its underlying neurophysiological processes are commonly used 
in the interpretation such measurements. Standard methods, such as 
volume conductor theory [1], assume that ionic diffusion in the ECS 
has negligible impact on the LFP. This assumption could be challenged 
during endured periods of intense neural signalling, under which local 
ion concentrations in the ECS can change by several millimolars. Such 
concentration changes are indeed often accompanied by shifts in the 
ECS potential, which may be partially evoked by diffusive currents [2]. 
However, it is hitherto unclear whether putative diffusion-generated 
potential shifts are too slow to be picked up in LFP recordings, which 
typically use electrode systems with cut-off frequencies at ~0.1 Hz.
To explore possible effects of diffusion on the LFP, we developed a 
hybrid simulation framework: (1) The NEURON simulator was used to 
compute the ionic output currents from a small population of corti-
cal layer-5 pyramidal neurons [3]. The neural model was tuned so that 
simulations over ~100 s of biological time led to shifts in ECS concen-
trations by a few millimolars, similar to what has been seen in experi-
ments [2]. (2) In parallel, a novel electrodiffusive simulation framework 
[4] was used to compute the resulting dynamics of the potential and 
ion concentrations in the ECS, accounting for the effect of electrical 
migration as well as diffusion. To explore the relative role of diffusion, 
we compared simulations where ECS diffusion was absent with simu-
lations where ECS diffusion was included.
Our key findings were: (i) ECS diffusion shifted the local potential by 
up to ~0.2  mV. (ii) The power spectral density (PSD) of the diffusion-
evoked potential shifts followed a 1/f2 power law. (iii) Diffusion effects 

Fig. 8  Power spectrum of ECS potential in a simulation including ECS 
diffusion (blue line) and a simulation without ECS diffusion (red line). 
Units for frequency and power are Hz and mV2/Hz, respectively
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dominated the PSD of the ECS potential for frequencies up to ~10 Hz 
(Fig.  8). We conclude that for large, but physiologically realistic ECS 
concentration gradients, diffusion could affect the ECS potential well 
within the frequency range considered in recordings of the LFP.
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Brain connectivity studies have revealed fundamental properties of 
normal brain network organization [1]. In parallel, they have reported 
structural connectivity abnormalities in brain diseases such as Alzhei-
mer’s disease (AD) [1, 2]. However, how these structural abnormali-
ties affect information processing and cognitive functions involved in 
brain diseases is still poorly understood. To deepen our understanding 
of this causal link, I developed two large-scale cortical models with 
normal and abnormal structural connectivity of diffusion tensor imag-
ing on aging APOE-4 non-carriers and carriers in the USC Multimodal 
Connectivity Database [2, 3]. The possession of the APOE-4 allele is 
one of the major risk factors in developing later AD, and it has known 
abnormalities in structural connectivity characterized by lower net-
work communication efficiency in terms of local interconnectivity and 
balance of integration and interconnectivity [2]. The two cortical mod-
els share other parameters and consist of 2.4 million spiking neurons 
and 4.8 billion synaptic connections. First, I demonstrate the biologi-
cal relevance of the models by confirming that they reproduce normal 
patterns of cortical spontaneous activities in terms of the following 
distinctive properties observed in vivo [4]: low firing rates of individual 
neurons that approximate log-normal distributions, irregular spike 
trains following a Poisson distribution, a network balance between 
excitation and inhibition, and greater depolarization of the average 
membrane potentials. Next, to investigate how the difference in struc-
tural connectivity affects cortical information processing, I compare 
cortical response properties to an input during spontaneous activity 
between the cortical models. The results show that the cortical model 
with the abnormal structural connectivity decreased the degree of 
cortical response as well as the number of cortical regions respond-
ing to the input (Fig.  9), suggesting that the structural connectivity 
abnormality observed in APOE-4 carriers might reduce cortical infor-
mation propagation and lead to negative effects in information inte-
gration. Indeed, imaging studies support this suggestion by reporting 
structural abnormality with lower network communication efficiency 

observed in the structural connectivity of both APOE-4 carriers and AD 
patients [1, 2]. This computational approach allowing for manipula-
tions and detailed analyses that are difficult or impossible in human 
studies can help to provide a causal understanding of how cognitive 
deficits in patients with brain diseases are associated with their under-
lying structural abnormalities.
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The seminal experiments of Mountcastle [1] over 60 years ago estab-
lished the existence of cortical minicolumns: vertical column-like 
arrays of approximately 80–120 neurons aligned perpendicular to the 
pial surface, penetrating all six cortical layers. Minicolumns have been 
proposed as the fundamental unit for cortical organisation. Minicol-
umn formation is thought to rely on gene expression and thalamic 
activity, but exactly why neurons cluster into columns of diameter 
30–50 μm containing approximately 100 neurons is not known.
In this presentation we describe a mechanism for the formation of 
minicolumns via gap-junction diffusion-mediated coupling in a net-
work of spiking neurons. We use our recently developed method of 
cortical “reblocking” (spatial coarse-graining) [2] to derive neuronal 
dynamics equations at different spatial scales. We are able to show 
that for sufficiently strong gap-junction coupling, there exists a mini-
mum block size over which neural activity is expected to be coherent. 
This coherence region has cross-sectional area of order (40–60  μm)2, 
consistent with the areal extent of a minicolumn. Our scheme regrids 
a 2D continuum of spiking neurons using a spatial rescaling theory, 
established in the 1980s, that systematically eliminates high-wave-
number modes [3]. The rescaled neural equations describe the bulk 
dynamics of a larger block of neurons giving “true” (rather than mean-
field) population activity, encapsulating the inherent dynamics of a 
continuum of spiking neurons stimulated by incoming signals from 
neighbors, and buffeted by ion-channel and synaptic noise.
Our method relies on a perturbative expansion. In order for this 
coarse-graining expansion to converge, we require not only a suffi-
ciently strong level of inhibitory gap-junction coupling, but also a suf-
ficiently large blocking ratio B. The latter condition establishes a lower 
bound for the smallest “cortical block”: the smallest group of neurons 
that can respond to input as a collective and cooperative unit. We 
find that this minimum block-size ratio lies between 4 and 6. In order 
to relate this 2D geometric result to the 3D extent of a 3-mm-thick 
layered cortex, we project the cortex onto a horizontal surface and 
count the number of neurons contained within each l × l grid micro-
cell. Setting l ≈  10  μm and assuming an average of one interneuron 
per grid cell, a blocking ratio at the mid-value B = 5 implies that the 
side-length of a coherent “macro-cell” will be L = Bl = 50 μm contain-
ing ~25 inhibitory plus 100 excitatory neurons (assuming an i to e 

Fig. 9  Responses to input to the left V1 in the two cortical models 
with normal/abnormal structural connectivity. A Average firing rates. 
B–D Cortical regions and cortical areas that significantly responded 
to the input
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abundance ratio of 1:4) in cross-sectional area L2. Thus the minicolumn 
volume will contain roughly 125 neurons. We argue that this is the 
smallest diffusively-coupled population size that can support coopera-
tive dynamics, providing a natural mechanism defining the functional 
extent of a minicolumn.
We propose that minicolumns might form in the developing brain as 
follows: Inhibitory neurons migrate horizontally from the ganglionic 
eminence to form a dense gap-junction coupled substrate that per-
meates all layers of the cortex [4]. Progenitor excitatory cells ascend 
vertically from the ventricular zone, migrating through the inhibitory 
substrate of the cortical plate. Thalamic input provides low-level stim-
ulus to activate spiking activity throughout the network. Inhibitory dif-
fusive coupling allows a “coarse graining” such that neurons within a 
particular areal extent respond collectively to the same input. The min-
imum block size prescribed by the coarse graining imposes constraints 
on minicolumn geometry, leading to the spontaneous emergence of 
cylindrical columns of coherent activity, each column centered on an 
ascending chain of excitatory neurons and separated from neighbor-
ing chains by an annular surround of inhibition. This smallest aggre-
gate is preferentially activated during early brain development, and 
activity-based plasticity then leads to the formation of tangible struc-
tural columns.
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Visual cortical areas in the macaque are organized according to an 
anatomical hierarchy, which is defined by specific patterns of ana-
tomical projections in the feedforward and feedback directions [1, 2]. 
Recent macaque studies also suggest that signals ascending through 
the visual hierarchy are associated with gamma rhythms, and top-
down signals with alpha/low beta rhythms [3–5]. It is not clear, how-
ever, how oscillations presumably originating at local populations can 
give rise to such frequency-specific large-scale interactions in a mech-
anistic way, or the role that anatomical projections patterns might 
have in this.
To address this question, we build a large-scale cortical network model 
with laminar structure, grounding our model on a recently obtained 
anatomical connectivity matrix with weighted directed inter-areal 
projections and information about their laminar origin. The model 
involves several spatial scales—local or intra-laminar microcircuit, 
inter-laminar circuits, inter-areal interactions and large-scale corti-
cal network—and a wide range of temporal scales—from slow alpha 
oscillations to gamma rhythms. At any given level, the model is con-
strained anatomically and then tested against electrophysiological 
observations, which provides useful information on the mechanisms 
modulating the oscillatory activity at different scales. As we ascend 
through the local to the inter-laminar and inter-areal levels, the model 
allows us to explore the sensory-driven enhancement of gamma 
rhythms, the inter-laminar phase-amplitude coupling, the relationship 
between alpha waves and local inhibition, and the frequency-specific 

inter-areal interactions in the feedforward and feedback directions [3, 
4], revealing a possible link with the predictive coding framework.
When we embed our modeling framework into the anatomical con-
nectivity matrix of 30 areas (which includes novel areas not present in 
previous studies [2, 6]), the model gives insight into the mechanisms 
of large-scale communication across the cortex, accounts for an ana-
tomical and functional segregation of FF and FB interactions, and pre-
dicts the emergence of functional hierarchies, which recent studies 
have found in macaque [4] and human [5]. Interestingly, the functional 
hierarchies observed experimentally are highly dynamic, with areas 
moving across the hierarchy depending on the behavioral context 
[4]. In this regard, our model provides a strong prediction: we propose 
that these hierarchical jumps are triggered by laminar-specific modu-
lations of input into cortical areas, suggesting a strong link between 
hierarchy dynamics and context-dependent computations driven by 
specific inputs.
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Synchronous firing of neurons is a prominent feature in many brain 
areas. Here, we are interested in the information transmission by the 
synchronous spiking output of a noisy neuronal population, which 
receives a common time-dependent sensory stimulus. Earlier experi-
mental [1] and theoretical [2] work revealed that synchronous spikes 
encode preferentially fast (high-frequency) components of the stimu-
lus, i.e. synchrony can act as an information filter. In these studies a 
rather strict measure of synchrony was used: the entire population has 
to fire within a short time window. Here, we generalize the definition 
of the synchronous output, for which only a certain fraction γ of the 
population needs to be active simultaneously—a setup that seems 
to be of more biological relevance. We characterize the information 
transfer in dependence of this fraction and the population size, by 
the spectral coherence function between the stimulus and the partial 
synchronous output. We present two different analytical approaches 
to derive this frequency-resolved measure (one that is more suited 
for small population sizes, while the second one is applicable to 
larger populations). We show that there is a critical synchrony frac-
tion, namely the probability at which a single neuron spikes within the 
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predefined time window, which maximizes the information transmis-
sion of the synchronous output. At this value, the partial synchronous 
output acts as a low-pass filter, whereas deviations from this critical 
fraction lead to a more and more pronounced band-pass filtering 
effect. We confirm our analytical findings by numerical simulations for 
the leaky integrate-and-fire neuron. We also show that these findings 
are supported by experimental recordungs of P-Units electroreceptors 
of weakly electric fish, where the filtering effect of the synchronous 
output occurs in real neurons as well.
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Many animals rely on olfactory cues to make perceptual decisions 
and navigate the environment. In the brain, odorant molecules are 
sensed by olfactory receptor neurons (ORNs), which convey olfactory 
information to the central brain in the form of sequences of action 
potentials. In many organisms, axons of ORNs expressing the same 
olfactory receptor converge to one or a few glomeruli in the first cen-
tral region (the antennal lobe in insects and the olfactory bulb in fish 
and mammals) where they make contact with their postsynaptic tar-
gets. Therefore, each glomerulus can be considered as a processing 
unit that relays information from a specific type of receptor. Because 
different odorants recruit different sets of glomeruli, and most glomer-
uli respond to a wide array of odors, olfactory information at this stage 
of processing is contained in spatiotemporal patterns of glomerular 
activity. How these patterns are decoded by the brain to guide odor-
evoked behavior, however, remains largely unknown.
In Drosophila, attraction and aversion to specific odors have been 
linked to the activation of one or a few glomeruli (reviewed in [1]) in 
the antennal lobe (AL). These observations suggest a “labeled-line” 
coding strategy, in which individual glomeruli convey signals of spe-
cific ethological relevance, and their activation triggers the execution 
of hard-wired behavioral programs. However, because these studies 
used few odorants, and a small fraction of glomeruli were tested, it is 
unclear how the results generalize to broader odor sets, and whether 
similar conclusions hold for each of the ~50 glomeruli of the fly AL. 
Moreover, how compound signals from multiple glomeruli are inte-
grated is poorly understood.
Here, we combine optical imaging, behavioral and statistical tech-
niques to address these questions systematically. Using two-photon 
imaging, we monitor Ca2+ activity in the AL in response to 84 odors. 
We next screen behavioral responses to the same odorants. Compar-
ing these data allows us to formulate a decoding model describing 
how olfactory behavior is determined by glomerular activity patterns 
in a quantitative manner. We find that a weighted sum of normal-
ized glomerular responses recapitulates the observed behavior and 
predicts responses to novel odors, suggesting that odor valence is 
not determined solely by the activity a few privileged glomeruli. This 
conclusion is supported by genetic silencing and optogenetic activa-
tion of individual ORN types, which are found to evoke modest biases 
in behavior in agreement with model predictions. Finally, we test the 
model prediction that the relative valence of a pair of odors depends 
on the identity of other odors presented in the same experiment. We 
find that the relative valence indeed changes, and may even switch, 

suggesting that perceptual decisions can be modulated by the olfac-
tory context. Surprisingly, our model correctly captured both the 
direction and the magnitude of the observed changes. These results 
indicate that the valence of olfactory stimuli is decoded from AL activ-
ity by pooling contributions over a large number of glomeruli, and 
highlight the ability of the olfactory system to adapt to the statistics of 
its environment, similarly to the visual and auditory systems.
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Recently, increasing attention has been drawn to human neurosci-
ence in network science communities. This is because recent fMRI and 
anatomical experiments have revealed that neural networks of normal 
human brain are scale-free networks. Thus, accumulated knowledges 
in a broad range of network sciences can be naturally applied to neu-
ral networks to understand functions and properties of normal and 
disordered human brain networks. Particularly, the degree exponent 
value of the human neural network constructed from the fMRI data 
turned out to be approximately two. This value has particularly impor-
tant meaning in scale-free networks, because the number of connec-
tions to neighbors of a hub becomes largest and thus functional role 
of the hub becomes extremely important. In this talk, we present the 
role of the hub in pattern recognition and dynamical problems in asso-
ciation with neuroscience.
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This study focuses on the relationship between the emotional 
response, decision and the hemodynamic responses in the prefron-
tal cortex. This is based on the computational emotional model that 
hypothesizes the emotional response is proportional to the discrep-
ancy between the expectancy and the actuality. Previous studies had 
shown that emotional responses are related to decisions [1, 2]. Specifi-
cally, the emotional responses of happy [3], sad [4], angry [5], jealous 
[6] emotions are proportional to the discrepancy between what one 
wants and what one gets [1, 3–7].
Methods Human subjects are asked to perform the classical behavio-
ral economic experiment called Ultimatum Game (UG) [8]. This experi-
mental paradigm elicits the interrelationship between decision and 
emotion in human subjects [3–6]. The hemodynamic responses of the 
prefrontal cortex were recorded while the subjects performed the UG 
experiment.
Results The results showed that the hemodynamic response, which 
corresponds to the neural activation and deactivation based on the 
metabolic activities of the neural tissues, are proportional to the emo-
tional intensity and the discrepancy between the expectancy and the 
actuality. This validates the hypothesis of the proposed emotional the-
ory [9–11] that the intensity of emotion is proportional to the dispar-
ity between the expected and the actual outcomes. These responses 
are also related to the fairness perception [7], with respect to the sur-
vival functions [9, 10] similar to the responses established for happy 
[1] emotion, and for fairness [12] experimentally. This is consistent with 
the computational relationship between decision and fairness [13].
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We aim to extract the intentional movement directions of the hemo-
dynamic signals recorded from noninvasive optical imaging tech-
nique, such that a brain-computer-interface (BCI) can be built to 
control a wheelchair based on the optical signals recorded from the 
brain. Real-time detection of neurodynamic signals can be obtained 
using functional near-infrared spectroscopy (fNIRS), which detects 
both oxy-hemoglobin (oxy-Hb) and deoxy-hemoglobin (deoxy-Hb) 
levels in the underlying neural tissues. In addition to the advantage of 
real-time monitoring of hemodynamic signals using fNIRS over fMRI 
(functional magnetic resonance imaging), fNIRS also can detect brain 
signals of human subjects in motion without any movement artifacts. 
Previous studies had shown that hemodynamic responses are corre-
lated with the movement directions based on the temporal profiles 
of the oxy-Hb and deoxy-Hb levels [1–5]. In this study, we will apply 
a phase space analysis to the hemodynamic response to decode the 
movement directions instead of using the temporal analysis in the 
previous studies.
Methods In order to decode the movement directions, human sub-
jects were asked to execute two different orthogonal directional 
movements in the front-back and right-left directions while the opti-
cal hemodynamic responses were recorded in the motor cortex of the 
dominant hemisphere. We aim to decode the intentional movement 
directions without a priori any assumption on how arm movement 
directions are correlated with the hemodynamic signals. Therefore, 

we used the phase space analysis to determine how the trajectories 
of oxy-Hb and deoxy-Hb are related to each other during these arm 
movements.
Results The results show that there are subpopulations of cortical 
neurons that are task-related to the intentional movement directions. 
Specifically, using phase space analysis of the oxy-Hb and deoxy-Hb 
levels, opposite movement direction is represented by the different 
hysteresis of the trajectories in opposite direction in the phase space. 
Since oxy-Hb represents the oxygen delivery and deoxy-Hb represents 
the oxygen extraction by the underlying brain tissues, the phase space 
analysis provides a means to differentiate the movement direction by 
the ratio between oxygen delivery and oxygen extraction. In other 
words, the oxygen demands in the subpopulation of neurons in the 
underlying tissue differ depending on the movement direction. This 
also corresponds to the opposite patterns of neural activation and 
deactivation during execution of opposite movement directions. Thus, 
phase space analysis can be used as an analytical tool to differentiate 
different movement directions based on the trajectory of the hyster-
esis with respect to the hemodynamic variables.
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Weakly electric fish use electric field generated by the electric organ 
in the tail of the fish. They detect objects by sensing the electric field 
with electroreceptors on the fish’s body surface. Obstacles in the 
vicinity of the fish distort the electric field generated by the fish and 
the fish detect this distortion to recognize environmental situations. 
Generally, weakly electric fish produce species-dependent electric 
organ discharge (EOD) signals. Frequency bands of the fish’s signals 
include a variety of frequencies, 50–600 Hz or higher than 800 Hz. The 
EOD signals can be disturbed by similar frequency signals emitted by 
neighboring weakly electric fish. They change their EOD frequencies 
to avoid jamming signals when they detect the interference of signals. 
This is called jamming avoidance response (JAR).
Electroreceptors of the fish read other electric fish’s EOD while they 
sense their own EOD. Therefore, when two weakly electric fish are 
close enough and they sense similar frequencies, their sensing ability 
by EOD is impaired because of signal jamming [1, 2]. The fish lowers 
its EOD frequency in response to the jamming signals when a slightly 
higher frequency of signals are detected and otherwise, raises its EOD. 
This response is shown in Fig.  10. The fish shift their EOD frequency 
almost immediately without trial and error.
The method of how to avoid jamming has been studied for a long 
time, but the corresponding neural mechanisms have not been 
revealed yet so far. The JAR of Eigenmannia can be analyzed by Lissa-
jous graphs which consist of amplitude modulations and differential 
phase modulations. Relative intensity of signals at each skin can show 
that the signal frequency is higher than its own signal frequency or 
lower [3].
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We suggest an algorithm of jamming avoidance for EOD signals, espe-
cially for wave-type fish. We explore the diagram of amplitude modu-
lation versus phase modulation, and analyze the shape over the graph. 
The phase differences or amplitude differences will contribute to the 
estimation of the signal jamming situation. From that, the jammed 
signal frequency can be detected and so it can guide the jamming 
avoidance response. It can provide a special measure to predict the 
jamming avoidance response. However, what type of neural structure 
is available in weakly electric fish is an open question. We need further 
study on this subject.
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Recent work has shown that retina ganglion cells (RGC) of salaman-
ders predict future sensory information [1]. It has also been shown 
that these RGC’s carry significant information about the future state 
of their own population firing patterns [2]. From the perspective of 
downstream neurons in the visual system that do not have independ-
ent access to the visual scene, the correlations in the RGC firing, itself, 
may be important for predicting the future visual input. In this work, 
we explore the structure of the generalized correlation in firing pat-
terns in the RGC, with a particular focus on coding efficiency. From 
the perspective of efficient neural coding, we might expect neurons 
to code for their own future state independently (decorrelation across 
cells), and to have very little predictive information extending forward 
in time (decorrelation in the time domain).
In this work, we quantify whether neurons in the retina code for their 
own future input independently, redundantly, or synergistically, and 
how long these correlations persist in time. We use published extra-
cellular multi-electrode data from the salamander retina in response 
to repeated presentations of a natural movie [1]. We find significant 
mutual information in the population firing that is almost entirely 
independent except at very short time delays, where the code is 
weakly redundant (Fig. 11). We also find that the information persists 
to delays of up to a few 100  ms. In addition, we find that individual 
neurons vary widely in the amount of predictive information they 
carry about the future population firing state. This heterogeneity may 

contribute to the diversity of predictive information we find across 
groups in this experiment.
The results in this study may provide useful information for building a 
model of the RGC population that can explain why redundant coding 
is only observed at short delays, or what makes one RGC more predic-
tive than another. Building this type of model will illustrate how the 
retina represents the future.
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Neural field models (NFMs) characterize the average properties of 
neural ensembles as a continuous excitable medium. So far, NFMs 
have largely ignored the extension of the dendritic tree, and its influ-
ence on the neural dynamics [1]. As shown in Fig. 12A, we implement 
a 3D-NFM, including the dendritic extent through the cortical layers, 
starting from a well-known 2D-NFM [2]. We transform the equation 
for the average membrane potential he for the point-like soma in the 
2D-NFM [2] to a full cable equation form (added parts in bold):
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Fig. 10  Jamming avoidance response

Fig. 11  Predictive information in the retinal response is coded for 
independently. Red the mutual information between the binary 
population firing patterns at times t and t + Δt, for 1000 randomly 
selected groups of 5 cells from our 31-cell population. Time is binned 
in 16.67 ms bins, and the (rare) occurrence of two spikes in a bin is 
recorded as a ‘1’. Blue the sum of the mutual information between a 
single cell response at time t and the future response of the group at 
time t + Δt. Error bars indicate the standard error of the mean across 
groups. All information quantities are corrected for finite-size effects 
using quadratic extrapolation [3]
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The 3D-NFM is modeled considering the dendritic tree as a single 
linear cable. Figure  12B shows the resulting resting potential along 
the extended dendrite for synaptic input in two different locations. 
Naively keeping the parameters of the 2D-NFM for the 3D-NFM results 
in a power spectral density (PSD) without an alpha rhythm resonance, 
see Fig. 12C. However, increasing the synaptic input by a factor fsyn can 
compensate for the dispersion along the dendrite and recovers the 
peak in the alpha band. We study the influence of varying the distri-
bution of synaptic inputs along the dendritic (vertical) dimension and 
of changing the (horizontal) area of the simulated cortical patch. We 
also provide an outlook on how to compare our results with local field 
potential recordings from real cortical tissues. We expect that 3D-NFMs 
will be used widely in the future for describing such experimental 
data, and that the methods used to extend the specific 2D-NFM used 
here [2] will generalize to other 2D-NFMs.
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Our previous results [1, 2] describe a computational anatomical model 
of the Xenopus tadpole spinal cord which includes about 1400 neu-
rons of seven types allocated on two sides of the body. This model 
is based on a developmental approach, where axon growth is simu-
lated and synapses are created (with some probability) when axons 
cross dendrites. A physiological model of spiking neurons with the 

generated connectivity of about 85,000 synapses produces a very reli-
able swimming pattern of anti-phase oscillations in response to simu-
lated sensory input [2].
Using the developmental model we generate 100 different sets of syn-
aptic connections (“connectomes”), and use this information to create 
a generalized probabilistic model. The probabilistic model provides 
a new way to easily generate tadpole connectomes and, remarkably, 
these connectomes produce similar simulated physiological behavior 
to those generated using the more complex developmental approach 
(e.g. they swim when stimulated). Studying these generated connec-
tivity graphs allows us to analyze the structure of connectivity in a 
typical tadpole spinal cord.
Many complex neuronal networks have been found to have “small 
world” properties, including those in the nematode worm C. elegans 
[3, 6], cat and macaque cortex and the human brain [4]. Small world 
networks are classified between regular and random networks, and 
are characterized by a high value of the clustering coefficient C and 
a relatively small value of the average path length L, when compared 
with Erdős-Rényi and degree matched graphs of a similar size. We used 
graph theory tools to calculate the strongly connected component 
of each network, which was then used to measure C and L. For the 
degree-matched network, these computations have been based on 
finding the probabilistic generating function [5]. By comparing these 
measures with those of degree matched random graphs, we found 
that tadpole’s network can be considered a small world graph. This 
is also true for the sub-graph consisting only of neurons on one side 
of the body, which displays properties very similar to those of the C. 
elegans network. Another important subgraph, comprising only the 
two main neuron types in the central pattern generator (CPG) network 
also shows small world properties, but is less similar to the C. elegans 
network.
Our approach allows us to study the general properties of the archi-
tecture of the tadpole spinal cord, even though in reality the actual 
network varies from individual to individual (unlike in C. elegans). This 
allows us to develop ideas about the organizing principles of the net-
work, as well as to make predictions about the network’s functionality 
that can be tested first in computer simulations and later in real ani-
mal experiments. In this work we combine several graph theory tech-
niques in a novel way to analyze the structure of a complex neuronal 
network where not all biological details are known. We believe that 
this approach can be applied widely to analyze other animals’ nervous 
systems.
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Over the years an extensive research endeavor has been given to 
understanding the brain’s cognitive function in a unified principle 

Fig. 12  A The 3D-NFM adds a dendritic dimension to the 2D one 
[1]. One single macrocolumn has inhibitory (I) and excitatory (E) 
subpopulations. B (Top) Discretization of the dendrite. (Bottom) 
Equilibrium membrane potential along the dendrite for two different 
synaptic inputs. C PSDs of he for the 2D- and 3D-NFM. Increasing the 
synaptic input recovers the lost alpha rhythm
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and to providing a formulation of the corresponding computational 
scheme of the brain [1]. The explored free-energy principle (FEP) 
claims that the brain’s operation on perception, learning, and action 
rests on brain’s internal mechanism of trying to avoid aberrant events 
encountering in its habitable environment. The theoretical measure 
for this biological process has been suggested to be the informational 
free-energy (IFE). The computational actualization of the FEP is car-
ried out via the gradient descent method (GDM) in machine learning 
theory.
The information content of the cognitive processes is encoded in the 
biophysical matter as spatiotemporal patterns of the neuronal corre-
lates of the external causes. Therefore, any realistic attempt to account 
for the brain function must conform to the physics laws and the under-
lying principles. Notwithstanding the grand simplicity, however, the 
FEP framework embraces some extra-physical constructs. Two major 
such extra-physical constructs are the generalized motions, which are 
non-Newtonian objects, and the GDM in executing the brain’s com-
putational mechanism of perception and active inference. The GDM is 
useful in finding mathematical solutions in the optimal problems, but 
not derived from a physics principle.
In this work, we cast the FEP in the brain science into the framework of 
the principle of least action (PLA) in physics [2]. The goal is to remove 
the extra-physical constructs embedded in the FEP and to reformulate 
the GDM within the standard mechanics arena. Previously, we sug-
gested setting up the minimization scheme of the IFE in the Lagrange 
mechanics formalism [3] which contained only primitive results. In the 
present formulation we specify the IFE as the information-theoretic 
Lagrangian and thus formally define the informational action (IA) as 
time-integral of the IFE. Then, the PLA prescribes that the viable brain 
minimizes the IA when encountering uninhabitable events by select-
ing an optimal path among all possible dynamical configurations in 
the brain’s neuronal network. Specifically, the minimization yields 
the mechanistic equations of motion of the brain states, which are 
inverting algorithms of sensory inputs to infer their external causes. 
The obtained Hamilton–Jacobi–Bellman-type equation prescribes the 
brain’s recognition dynamics which do not require the extra-physical 
concept of higher order motions. Finally, a neurobiological implemen-
tation of the algorithm is presented which complies with the hierar-
chical, operative structure of the brain. In doing so, we adopt the local 
field potential and the local concentration of ions in the Hodgkin–Hux-
ley model as the effective brain states [4]. Thus, the brain’s recogni-
tion dynamics is operatively implemented in a neuro-centric picture. 
We hope that our formulation, conveying a wealth of structure as an 
interpretive and mechanistic description of explaining how the brain’s 
cognitive function may operate, will provide with a helpful guidance 
for future simulation.
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Multivariate spike trains, obtained by recording multiple neurons simul-
taneously, is a key to uncovering information representation in the brain 
[1]. Other expressions used to refer to the same type of data include 
“multi-neuron spike train” [2] and “parallel spike train’” [3]. One approach 

to analyze spike trains is to use kernel methods, which are known to be 
among the most powerful machine learning methods. Kernel methods 
rely on defining a symmetric positive-definite kernel suited to the given 
data. This work proposes a general way of extending kernels on univari-
ate (or single-unit) spike trains to multivariate spike trains.
In this work, the mixture kernel, which naturally extends a kernel 
defined on univariate spike trains, is proposed and evaluated. There 
are many univariate spike train kernels proposed [4–9], and the mix-
ture kernel is applicable to any of these kernels. Considered abstractly, 
a multivariate spike train is a set of time points at which different types 
of events occurred. In other words, it is a sample taken from a marked 
point process. The method proposed in this paper is therefore applica-
ble to other data with the same structure.
The mixture kernel is defined as a linear combination of symmetric 
positive-definite kernels on the components of the target data struc-
ture, in this case univariate spike trains. The name “mixture kernel” 
derives from the common use of the word “mixture” to indicate a linear 
combination in physics and machine learning, for example in Gauss-
ian mixture models. One can prove that the mixture kernel is symmet-
ric positive-definite if coefficient matrix of the mixture is a symmetric 
positive-semidefinite matrix.
The performance of the mixture kernel was evaluated by kernel ridge 
regression for estimating the value of the parameter for generating syn-
thetic spike train data, and also the stimulus given to the animal as the 
spike trains were recorded. For synthetic data, multivariate spike trains 
were generated using homogenous Poisson processes. For real data, 
the pvc-3 data set [2] in the CRCNS (Collaborative Research in Compu-
tational Neuroscience) data sharing website was used, which is a 10-unit 
multivariate spike trains recorded from the primary visual cortex of a cat.

Acknowledgement: This work was supported in part by JSPS KAK-
ENHI Grant Numbers 21700121, 25280110, and 25540159.

References
1.	 Gerstner W, Kistler WM, Naud R, Paninski L. Neuronal dynamics. Cam-

bridge: Cambridge University Press; 2014.
2.	 Blanche T. Multi-neuron recordings in primary visual cortex, CRCNS.org; 

2009.
3.	 Grun S, Rotter S. Analysis of parallel spike trains. Berlin: Springer; 2010.
4.	 Paiva A, Park IM, Principe JC. A reproducing kernel Hilbert space frame-

work for spike train signal processing, Neural Comput. 2009;21(2):424–49.
5.	 Park IM, Seth S, Rao M, Principe JC. Strictly positive definite spike train 

kernels for point process divergences. Neural Comput. 2012;24:2223–50.
6.	 Park IM, Seth S, Paiva A, Li L, Principe JC. Kernel methods on spike train 

space for neuroscience: a tutorial. Signal Process Mag. 2013;30(4):149–60.
7.	 Li L, Park IM, Brockmeier AJ, Chen B, Seth S, Francis JT, Sanchez JC, 

Principe JC. Adaptive inverse control of neural spatiotemporal spike 
patterns with a reproducing kernel Hilbert space (RKHS) framework. IEEE 
Trans Neural Syst Rehabil Eng. 2013;21(4):532–43.

8.	 Shpigelman L, Singer Y, Paz R, Vaadia E. Spikernels: embedding spik-
ing neurons in inner product spaces. Adv Neural Inf Process Syst. 
2003;15:125–32.

9.	 Eichhorn J, Tolias A, Zien A, Kuss M, Rasmussen CE, Weston J, Logothetis 
N, Scholkopf B. Prediction on spike data using kernel algorithms. Adv 
Neural Inf Process Syst. 2004;16:1367–74.

P10 
Synchronization of burst periods may govern slow brain dynamics 
during general anesthesia
Pangyu Joo1

1Physics, POSTECH, Pohang, 37673, Republic of Korea
Correspondence: Pangyu Joo ‑ pangyu32@postech.ac.kr   
BMC Neuroscience 2016, 17(Suppl 1):P10

Researchers have utilized electroencephalogram (EEG) as an impor-
tant key to study brain dynamics in general anesthesia. Representa-
tive features of EEG in deep anesthesia are slow wave oscillation and 
burst suppression [1], and they have so different characteristics that 
they seem to have different origins. Here, we propose that the two 
feature may be a different aspect of same phenomenon and show 
that the slow oscillation could arise from partial synchronization of 
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bursting periods. To model the synchronization of burst periods, 
modified version of Ching’s model of burst suppression [2] is used. 
20 pyramidal neurons and 20 fast spiking neurons are divided into 
10 areas composed of 2 pyramidal and 2 fast spiking neurons so that 
each area exhibit burst suppression behavior independently. Then, 
all the pyramidal neurons are all to all connected and the connection 
strength modulates the amount of synchronization of burst periods. 
The action potentials of pyramidal neurons are substituted by 1 when 
the action potential larger than 0, and all other case 0. Then they are 
averaged over the neurons and convoluted with 50  ms square func-
tion to see the collective activity of the neurons. As shown in Fig. 13A, 
At high level of ATP recovery rate (JATP > 1), there are no suppression 
period so that slow oscillation does not appear regardless of synchro-
nization. At low level of ATP recovery rate (JATP = 0.5), we can observe 
that the slow oscillation appears with increasing amplitude and finally 
become burst suppression as relative connection strength increases 
(Fig. 13B). When the ATP recovery rate is 0, then the pyramidal neurons 
do not fire at all. These results suggest that the burst period synchro-
nization model could explain some important features of EEG during 
general anesthesia: the increasing slow oscillation amplitude as anes-
thesia deepen, significantly high activity in bursting period, and the 
peak max phase amplitude coupling in deep anesthesia.
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Synchronization in neural oscillations is a prominent feature of neural 
activity and thought to play an important role in neural coding. Theo-
retical and experimental studies have described several mechanisms 
for synchronization based on coupling strength and correlated noise 
input. In the olfactory systems, recurrent and lateral inhibition mediated 
by dendrodendritic mitral cell–granule cell synapses are critical for syn-
chronization, and intrinsic biophysical heterogeneity reduce the ability 
to synchronize. In our previous study, a simple phase model was used to 
examine how physiological heterogeneity in biophysical properties and 
firing rates across neurons affects correlation-induced synchronization 
(stochastic synchrony). It has showed that heterogeneity in the firing 

rates and in the shapes of the phase response curves (PRCs) reduced 
output synchrony. In this study, we extend the previous phase model 
to a conductance based model to examine how the density of specific 
ion channels in mitral cells impacts on stochastic synchrony. A recent 
study revealed that mitral cells are highly heterogeneous in the expres-
sion of the sag current, a hyperpolarization-activated inward current 
(Angelo, 2011). The variability in the sag contributes to the diversity of 
mitral cells and thus we wanted to know how this variability influences 
synchronization. Mitral cell oscillations and bursting are also regulated 
by an inactivating potassium current (IA). Based on these ion channels, 
we examined the effect of changing the current densities (gA, gH) on 
diversity of PRCs and of synchrony. In order to identify oscillatory pat-
terns of bursting and repetitive spiking across gA and gH to the model, 
two parameter bifurcation analysis was performed in the presence and 
absence of noise. Increasing gH alone reduces the region of bursting, but 
does not completely eliminate bursting, and PRCs changed much more 
with respect to gA than gH. Focusing on varying gA, we next examined 
a role of gA density and firing rate in stochastic synchrony by introduc-
ing the fluctuating correlated input resembling the shared presynaptic 
drives. We found that heterogeneity in A-type current mainly influenced 
on stochastic synchrony as we predicted in PRCs investigated theoreti-
cally, and diversity in firing rate alone didn’t account for it. In addition, 
heterogeneous population with respect to gA, given decent amount 
of gA density, showed better stochastic synchrony than homogeneous 
population in same firing rate.
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Introduction We estimate parameters of the inter-spike interval dis-
tributions in binaural neurons of the mammalian sound localization 
neural circuit, neurons of the lateral and medial superior olive [1]. We 
present equivalent descriptions of spike time probabilities using both 
standard and circular statistics. We show that the difference between 
sine function and beta density in the circular domain is negligible.
Results Estimation of the spike train probability density function 
parameters is presented in relation to harmonic and complex sound 
input. The resulting densities are expressed analytically with the use of 
harmonic and Bessel functions. Parameter fits are verified by numeri-
cal simulations of spike trains (Fig. 14).

Fig. 13  A The convoluted signal with different ATP recovery rates 
(JATP) and relative connection strengths (C). B Standard deviation of 
the convoluted signals
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Fig. 14  Comparison of circular probability density functions of sine 
and beta density. A Beta density with parameters a = b = 3.3818, 
matches closely that of the sine function, used as a probability 
density function (PDF). Beta density with parameters a = b = 3 
solid line, is matched by sine function y = 1.05 − 1.1 cos(2π x/1.1). B 
Cumulative distribution function (CDF) is shown for these densities 
together with the difference between the two CDFs multiplied by 
100 to visualize the comparison of the two distributions. C For testing 
different vector strengths we use uniform distributions with pre-set 
vector strengths (ρ = 0.8, 0.5 and 0.08)



Page 20 of 112BMC Neurosci 2016, 17(Suppl 1):54

Conclusions We use analytical techniques, where it is possible. We cal-
culate the one-to-one correspondence of vector strength parameters 
and parameters of circular distributions used for description of data. 
We show here introductory figure of our paper with the two repre-
sentative circular densities. We also use experimental data [2, 3] and 
simulated data to compare them with these theoretical distributions.
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EEG (electroencephalography) is one of most useful neuroimag-
ing technology and best options for BCI (Brain-Computer Interface) 
because EEG has portable size, wireless and well-wearing design in 
any situations. The key objective of BCI is physical control of machine 
such as cursor movement in screen and robot movement [1, 2]. In pre-
viously study, the motor imagery had used for represent of direction 
to movement [1, 2]. For example, the left hand imagery mapping to 
move the left, the right hand imagery mapping to move the right and 
both hand imagery mapping to move the forward. In this study, how-
ever, we considered only brain signals when a subject thinks directions 
to movements not motor imageries. We designed the recurrent neural 
networks which consist of 300–10,000 artificial linear neurons using 
Echo State Networks paradigm [3]. We also recorded EEG signals using 
Emotiv EPOC+ which has 16 channels (AF3, F7, F3, FC5, T7, P7, O1, O2, 
P8, T8, FC6, F4, F8, AF4 and two of reference). All raw data of channels 

were normalized and then used inputs to recurrent neural networks. 
For representation of directions, we had built Gaussian readouts which 
has preferred directions and fitted the Gaussian functions (Fig. 15). The 
firing rate of readout were high when the subject thought preferred 
direction. However, when the subject thought not preferred direc-
tion, the firing rate of readout slightly low down. For implement these 
readouts, all of neuros in recurrent neural networks had linearly con-
nected to all readouts and weights of these connections were trained 
by linear learning rules. In result, we considered 5 healthy subjects and 
recorded EEG signals for each directions. The readouts were showed 
well Gaussian fitted direction preference. In this study, we considered 
only two dimensions but many situations of BCI has three dimensional 
space. Therefore, our study which using Gaussian readouts should be 
extended to three dimensional version.
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The basal ganglia (BG) comprise a number of interconnected nuclei 
that are collectively involved in a wide range of motor and cognitive 
behaviors. The commonly accepted theory is that the BG play a piv-
otal role in action selection and reinforcement learning facilitated by 
the activity of dopaminergic neurons of substantia nigra pars com-
pacta (SNc). These dopaminergic neurons encode prediction errors 
when reward outcomes exceed or fall below anticipated values. The 
BG gate appropriate behaviors from multiple moto-cortical com-
mand candidates arriving at the striatum (BG’s input nuclei) but sup-
press competing inappropriate behaviors. The selected motor action 
is realized when the internal segment of the globus pallidus (GPi) 
(BG’s output nuclei) disinhibits thalamic neurons corresponding to the 
gated behavior. The BG network performs motor command selection 
through the facilitation of the appropriate behavior via the “direct” stri-
atonigral (GO) pathway and inhibition of competing behaviors by the 
“indirect” striatopallidal (NOGO) pathway.
Several modeling studies have showed plausibility of the above con-
cept in simplified cases, e.g. for binary action selection in response to 
a binary cue. However, in these previous models, the possible actions/
behaviors were represented in an abstract way, and did not have a 
detailed implementation as specific neuronal patterns actuating the 
muscular-skeletal apparatus. To address these details, the motor sys-
tem in the present study includes a 2D-biomechanical arm model in 
the horizontal plane to simulate realistic reaching movements. The 
arm consists of two segments (upper arm and forearm) and has two 
joints (shoulder and elbow) controlled by four monoarticular (flexor 
and extensor at each joint) and two bi-articular (shoulder and elbow 
flexor, and shoulder and elbow extensor) muscles. The neural compo-
nent of the model includes the BG, the thalamus, the motor cortex, 
and spinal circuits. The low-level spinal circuitry contains six moto-
neurons (each controlling one muscle), and receives proprioceptor 
feedback from muscles. Cortical neurons provide inputs to the spinal Fig. 15  Design of recurrent neural networks and readouts
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network. Their activity is calculated by solving an inverse problem 
(inverting the internal model) based on the initial position of the arm, 
reaching distance and direction.
In the model, reaching movements in different directions were used 
as a set of possible behaviors. We simulated movements in response 
to a sensory cue defining the target arm position. The cortex gener-
ated signals corresponding to the cue and all possible motor com-
mands and delivered these signals to the BG. The resulting neuronal 
patterns in the motor cortex were calculated as a convolution of the 
thalamic activity and all possible motor commands. The function of 
BG was to establish the association between the cue and the appropri-
ate action(s) by adjusting weights of plastic corticostriatal projections 
through reinforcement learning. The BG model contained an explora-
tory mechanism, operating through the subthalamic nucleus (STN) 
that allowed the model to constantly seek better cue-action associa-
tions that deliver larger rewards. Reinforcement learning relied on the 
SNc dopaminergic signal that measured trial-to-trial changes in the 
reward value, defined by performance errors.
Using this model, we simulated several learning tasks in the condi-
tions of different unexpected perturbations. When a perturbation was 
introduced, the model was capable of quickly switching away from 
pre-learned associations and learning novel cue-action associations. 
The analysis of the model reveals several features, that can have gen-
eral importance for brain control of movements: (1) potentiation of 
the cue-NOGO projections is crucial for quick destruction of preexist-
ing cue-action associations; (2) the synaptic scaling (the decay of the 
cortical-striatal synaptic weights in the absence of dopamine-medi-
ated potentiation/depression) has a relatively short time-scale (10–20 
trials); (3) quick learning is associated with a relatively poor accuracy 
of the resultant movement. We suggest that BG may be involved in a 
quick search for behavioral alternatives when the conditions change, 
but not in the learning of skilled movements that require good 
precision.
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The current field of neuroscience investigates the brain at scales vary-
ing from the whole organ, to brain slices and down to the single cell 
level. The technological advances miniaturization of electrode arrays 
has enabled the investigation of neural networks comprising several 
neurons by recording electrical activity from every individual cell in 
the network. This level of complexity is key in the study of the core 
principles at play in the machinery of the brain. Indeed, it is the first 
layer of complexity above the single cell that is still tractable for the 
human scientist without needing to resort to a ‘Big Data’ approach. In 
light of this, we strive to create topologically well-defined neural net-
works, akin to mathematical directed graphs, as a model systems in 
order to study the basic mechanisms emerging in networks of increas-
ing complexity and varying topology. This approach will also yield 
statistically sound and reproducible observations, something which is 
sought after in neuroscience [1].
The first step in realizing such a well-defined neural network is to reli-
ably control the guidance of individual axons in order to connect the 
network of cells in a controlled way. For this purpose, we present a 
method consisting of obstacles forcing the axon to turn one way or 
the other. The setup is made of PolyDiMethylSiloxane (PDMS) which 
is microstructured by ways of state of the art photolithography proce-
dures. Two tunnels of 5  µ height are patterned into a block of 100  µ 
thick PDMS and connected in the shape of a T-junction (Fig.  16). Pri-
mary cortical neurons are inserted via entry holes at the base of the 
tunnels. The entry angle of the bottom tunnel (“vertical part of the T”) 
into the junction is varied between 20° (steep entry) and 90° (vertical 

entry). We observe that the axons prefer to turn towards the smaller 
angle. We show how this observed angular selectivity in axon guid-
ance can be explained by a simple model and how this principle 
can be used to create topologically well-defined neural networks 
(Fig. 16B).
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The reliability of our memories is nothing short of remarkable. Thou-
sands of neurons die every day, synaptic connections appear and 
disappear, and the networks formed by these neurons constantly 
change due to various forms of synaptic plasticity. How can the 
brain develop a reliable representation of the world, learn and retain 
memories despite, or perhaps because of, such complex dynamics? 
Here we consider the specific case of spatial navigation in mammals, 
which is based on mental representations of their environments—
cognitive maps—provided by the network of the hippocampal place 
cells—neurons that become active only in a particular region of the 
environment, known as their respective place fields. Experiments 
suggest that the hippocampal map is fundamentally topological, i.e., 
more similar to a subway map than to a topographical city map, and 
hence amenable to analysis by topological methods [1]. By simulating 
the animal’s exploratory movements through different environments 
we studied how stable topological features of space get represented 
by assemblies of simulated neurons operating under a wide range of 
conditions, including variations in the place cells’ firing rate, the size 
of the place fields, the number of cells in the population [2,3]. In this 
work, we use methods from Algebraic Topology to understand how 
the dynamic connections between hippocampal place cells influence 
the reliability of spatial learning. We find that although the hippocam-
pal network is highly transient, the overall spatial map encoded by the 
place cells is stable.

Acknowledgements: The work was supported by the NSF 1422438 
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Fig. 16  A The T-junction assay with an entry angle of 20°. The axon is 
expected to prefer a right-turn at this angle. B A simple model is con-
structed where the direction of growth of the axon is proportional to 
area (red) it can explore
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Correlations among neurons spiking activities play a prominent role 
in deciphering the neural code. Various models were proposed to 
understand the pairwise correlations in the population activity. Mod-
eling these correlations sheds light on the functional organization of 
the nervous system. In this study, we interpret correlations in terms of 
population coupling, a concept recently proposed to understand the 
multi-neuron firing patterns of the visual cortex of mouse and monkey 
[1]. We generalize the population coupling to its higher order (PC2), 
characterizing the relationship of pairwise firing with the population 
activity. We derive the practical dimensionality reduction method for 
extracting the low dimensional representation parameters, and test 
our method on different types of neural data, including ganglion cells 
in the salamander retina onto which a repeated natural movie was 
projected [2], and layer 2/3 as well as layer 5 cortical cells in the medial 
prefrontal cortex (MPC) of behaving rats [3].
For the retinal data, by considering the correlation between the pair-
wise firing activity and the global population activity, i.e., the second 
order population coupling, the three-cell correlation could be pre-
dicted partially (64.44 %), which suggests that PC2 acts as a key circuit 
variable for third order correlations. The interaction matrix revealed 
here may be related to the found overlapping modular structure 
of retinal neuron interactions [4]. In this structure, neurons interact 
locally with their adjacent neurons, and in particular this feature is 
scalable and applicable for larger networks.
About 94.79  % of three-cell correlations are explained by PC2 in the 
MPC circuit. The PC2 matrix shows clear hubs’ structure in the cortical 
circuit. Some neuron interacts strongly with a large portion of neurons 
in the population, and such neurons may play a key role in shaping 
the collective spiking behavior during the working memory task. The 
hubs and non-local effects are consistent with findings reported in the 
original experimental paper [3].
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Several computational models of motor control, although apparently 
feasible, fail when simulated in 3-dimensional space with redundant 
manipulators [1, 2]. Moreover, it has become apparent that the details 
of musculoskeletal simulations, such as the muscle model used, can 
fundamentally affect the conclusions of a computational study [3].
There would be great benefits from being able to test theories involv-
ing motor control within a simulation framework that brings realism 
in the musculoskeletal model, and in the networks that control move-
ments. In particular, it would be desirable to have: (1) a musculoskel-
etal model considered to be research-grade within the biomechanics 
community, (2) afferent information provided by standard models of 
the spindle afferent and the Golgi tendon organ, (3) muscle stimu-
lation provided by a spiking neural network that follows the basic 
known properties of the spinal cord, and (4) a cerebellar network as 
part of adaptive learning.
Creating this type of model is only now becoming practical, not only 
due to faster computers, but due to properly validated musculoskel-
etal models and simulation platforms from the biomechanics commu-
nity, as well as mature software and simulations techniques from the 
computational neuroscience community. We show how these can be 
harnessed in order to create simulations that are grounded both by 
physics and by neural implementation. This pairing of computational 
neuroscience and biomechanics is sure to bring further insights into 
the workings of the central nervous system.
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The same neuron may play different functional roles in the neural cir-
cuits to which it belongs. For example, neurons in the Tritonia pedal 
ganglia may participate in variable phases of the swim motor rhythms 
[1]. While such neuronal functional variability is likely to play a major 
role the delivery of the functionality of neural systems, it is difficult 
to study it in most nervous systems. We work on the pyloric rhythm 
network of the crustacean stomatogastric ganglion (STG) [2]. Typi-
cally network models of the STG treat neurons of the same functional 
type as a single model neuron (e.g. PD neurons), assuming the same 
conductance parameters for these neurons and implying their syn-
chronous firing [3, 4]. However, simultaneous recording of PD neurons 
shows differences between the timings of spikes of these neurons. This 
may indicate functional variability of these neurons. Here we modelled 
separately the two PD neurons of the STG in a multi-neuron model of 
the pyloric network. Our neuron models comply with known correla-
tions between conductance parameters of ionic currents. Our results 
reproduce the experimental finding of increasing spike time distance 

http://dx.doi.org/10.7554/eLife.03476
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between spikes originating from the two model PD neurons during 
their synchronised burst phase. The PD neuron with the larger calcium 
conductance generates its spikes before the other PD neuron. Larger 
potassium conductance values in the follower neuron imply longer 
delays between spikes, see Fig. 17.
Neuromodulators change the conductance parameters of neurons 
and maintain the ratios of these parameters [5]. Our results show that 
such changes may shift the individual contribution of two PD neu-
rons to the PD-phase of the pyloric rhythm altering their functional-
ity within this rhythm. Our work paves the way towards an accessible 
experimental and computational framework for the analysis of the 
mechanisms and impact of functional variability of neurons within the 
neural circuits to which they belong.
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In recent years, a significant amount of biomarkers and endopheno-
typic signatures of psychiatric illnesses have been identified, how-
ever, only a very limited number of computational models in support 
thereof have been described so far [1]. Furthermore, the few existing 
computational models typically only investigate one possible mecha-
nism in isolation, disregarding the potential multifactoriality of the 
network behaviour [2]. Here we describe a computational instantia-
tion of an endophenotypic finding for schizophrenia, an impairment in 
gamma entrainment in auditory click paradigms [3].
We used a model of primary auditory cortex from Beeman [4] and 
simulated a click entrainment paradigm with stimulation at 40 Hz, to 

investigate gamma entrainment deficits, and at 30 Hz as a control con-
dition. We explored the multifactoriality by performing an extensive 
parameter search (approx. 4000 simulations). We focused on synaptic 
and connectivity parameters of the fast spiking inhibitory interneu-
rons in the model (i.e. number and strength of and, GABAergic decay 
times at I-to-E and I-to-I connections, independently). We performed 
a time–frequency analysis of simulated EEG signals and extracted the 
power in the 40 Hz and the 30 Hz band, respectively. Using the power 
in the 40  Hz band for 40  Hz stimulation we identified regions in the 
parameter space showing strong reductions in gamma entrainment. 
For these we calculated cycle-averaged EEG signals and spike time his-
tograms of both network populations, in order to explore the dynam-
ics underlying the reduction in gamma power.
We find three regions in the parameter space which show strong reduc-
tions in gamma power. These three regions, however, have very differ-
ent parameter settings and show very different oscillatory dynamics. 
The first, which produces the strongest reduction, is characterised by a 
strong prolongation of decay times at I-to-E synapses and strong and 
numerous I-to-E connections. Cycle-averaged spike histograms show a 
broadening of distributions which indicate that the overall synchrony 
is reduced, leading to the strong reduction in gamma power. However, 
this parameter setting also produced a strong reduction of power in the 
30 Hz control condition, which is not seen experimentally. The second 
region, is characterized by prolonged I-to-I decay times together with 
numerous and strong I-to-I connectivity. Here, a second peak appears in 
the cycle-average spike histogram of the excitatory population, which 
leads to a loss of synchrony and thus a reduction in gamma power. The 
third parameter region, is also characterized by prolonged I-to-I decay 
times. Moreover, it is associated with a reduction in I-to-I connection 
numbers and strengths together with strong I-to-E connections. Here, 
we found that in every second cycle, the spike histogram of the inhibi-
tory neurons showed two peaks, one at the beginning and one in the 
middle of the cycle. This second peak then inhibited the excitatory neu-
rons’ response to the next stimulation. Hence, the EEG signal showed 
beat-skipping, i.e. every second gamma peak was suppressed, resulting 
in a decrease in gamma power.
Performing an extensive parameter search in an in silico instantiation 
of an endophenotypic finding for schizophrenia, we have identified 
distinct regions of the parameter space that give rise to analogous 
network level behaviour found in schizophrenic patients using elec-
trophysiology [3]. However, the oscillatory dynamics underlying this 
behaviour substantially differ across regions. These regions might cor-
respond to different subtypes of schizophrenic patients and hence, 
subtypes of what might have different targets for alleviating the defi-
cits because of their differences in underlying dynamics.
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Fig. 17  The time distances between the first and second spikes of 
the simulated PD neurons as a function of the gK and gCaT conduct-
ances of the neuron with variable conductances. A first spikes. B Sec-
ond spikes. The PD neuron with fixed conductances had gK = 1.5768 
μS and gCaT = 0.0225 μS
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In the brain, representations of the external world are encoded by pat-
terns of neural activity. It is critical that representations be stable, but 
still easily moved between. This phenomenon has been modeled at 
the network level as auto associative memory. In auto associative net-
work models, such as the Hopfield network, representations, or mem-
ories, are stored within synaptic weights and form stable fixed points, 
or attractors [1]. Spike frequency adaptation (SFA) provides a biologi-
cally plausible mechanism for switching between stabile fixed points 
in the Hopfield network. In the present work we show that for low lev-
els of SFA networks will stabilize in a representation that corresponds 
to the nearest memory activity space, regardless of strength. In net-
works with higher levels of SFA only the pattern corresponding to the 
strongest memory, or a global minimum in activity space. The effects 
of SFA are similar to fast, or thermodynamic noise, but also allows for 
deterministic destabilization of memories leading to periodic activa-
tion of memories through time. We argue that control of SFA level is 
a universal mechanism for network-wide attractor selectivity. SFA is 
tightly regulated by the neurotransmitter acetylcholine (ACh) and can 
be changed on behaviorally relevant timescales. To support this claim 
we demonstrate that SFA controls selectivity of spatial attractors in 
a biophysical model of cholinergic modulation in cortical networks 
[2, 3]. This model produces localized bumps of firing. A region with 
enhanced recurrent excitation acts as an attractor for the bump loca-
tion and selectivity for these regions is quickly diminishes as SFA level 
increases [3]. When multiple spatial attractors of varying strengths are 
stored in a network moderate increases SFA level will lead to the weak 
attractors being destabilized and activity localizing within the strong-
est attractor. This effect is qualitatively similar to the effects of SFA in 
the Hopfield network. These results indicate that ACh controls mem-
ory recall and perception within the cortex by regulation of SFA and 
explain the important role cholinergic modulation plays in cognitive 
functions such as attention and memory consolidation [4].
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Dynamic neural representations underlie cognitive processing and are 
an outcome of complex interactions of network structural properties 
and cellular dynamics. We have developed a new framework to study 
dynamics of network representations during rapid memory forma-
tion in the hippocampus in response to contextual fear conditioning 
(CFC) [1]. Experimentally, this memory paradigm is achieved by expos-
ing mice to foot shocks while in a novel environment and later testing 
for behavioral responses when reintroduced to that environment. We 
employ the average minimum distance (AMD) functional connectivity 

algorithm to spiking data recorded before, during, and after CFC 
using implanted stereotrodes. Comparing changes in functional con-
nectivity using cosine similarity, we find that stable functional repre-
sentations correlate well with animal performance in learning. Using 
extensive computer simulations, we show that the most robust 
changes compared to baseline occur when the system resides near 
criticality. We attribute these results to emergence of long-range cor-
relations during the initial process of memory formation. Furthermore, 
we have developed a generic model using a generalized Hopfield 
framework to link formation of novel memory representation to 
functional stability changes. The network initially stores a single rep-
resentation, which is to exemplify biologically already stored (old) 
memories, and is then presented a new representation by freezing 
a randomly chosen fraction of nodes from a novel pattern. We show 
that imposing fractional input of the new representation may partially 
stabilize this representation near the phase transition (critical) point. 
We further show that invoking synaptic plasticity rules may fully sta-
bilize this new representation only when the dynamics of the network 
reside near criticality. Taken together these results show, for the first 
time, that only when the network is at criticality can it stabilize novel 
memory representations, the dynamical regime which also yields 
an increase of network stability. Furthermore, our results match well 
experimental data observed from CFC experiments.
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Self-organized critical states (SOCs) and stochastic oscillations (SOs) 
are simultaneously observed in neural systems [1], which appears to 
be theoretically contradictory since SOCs are characterized by scale-
free avalanche sizes but oscillations indicate typical scales. Here, we 
show that SOs can emerge in SOCs of small size systems due to tem-
poral correlation between large avalanches at the finite-size cutoff, 
resulting from the accumulation-release process in SOCs. In contrast, 
the critical branching process without accumulation-release dynamics 
cannot exhibit oscillations. The reconciliation of SOCs and SOs is dem-
onstrated both in the sandpile model and robustly in biologically plau-
sible neuronal networks. The oscillations can be suppressed if external 
inputs eliminate the prominent slow accumulation process, providing 
a potential explanation of the widely studied Berger effect or event-
related desynchronization in neural response. The features of neural 
oscillations and suppression are confirmed during task processing in 
monkey eye-movement experiments. Our results suggest that finite-
size, columnar neural circuits may play an important role in generating 
neural oscillations around the critical states, potentially enabling func-
tional advantages of both SOCs and oscillations for sensitive response 
to transient stimuli. The results have been published in [2].
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Neural field theory [1] has addressed numerous questions regarding 
brain dynamics and its interactions across many scales, becoming 
a highly flexible and unified framework for the study and prediction 
experimental observables of the electrical activity of the brain. These 
include EEG spectra [2, 3], evoked response potentials, age-related 
changes to the physiology of the brain [4], epileptic seizures [5, 6], and 
synaptic plasticity phenomena [7]. However, numerical simulations of 
neural field models are not widely available despite their extreme use-
fulness in cases where analytic solutions are less tractable. This work 
introduces the features of NeuroField, a research-ready library applica-
ble to simulate a wide range of neural field based systems involving 
multiple structures (e.g., cortex, cortex and thalamic nuclei, and basal 
ganglia). The link between a given neural field model, its mathematical 
representation (i.e., a delay-partial differential equations system with 
spatial periodic boundary conditions) and its computational imple-
mentation is described. The resulting computational model has the 
capability to represent from spatially extended to neural-mass-like 
systems, and it has been extensively validated against analytical solu-
tions and against experiment [1–10]. To illustrate its flexibility, a range 
of simulations modeling a variety of arousal-, sleep- and epilepsy-state 
phenomena is presented [8, 9]. NeuroField has been written using 
object-oriented programming in C++ and is bundled together with 
MATLAB routines for quantitative offline analysis, such as spectral and 
dynamic spectral analysis.
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How can we decode the neural activation patterns (Fig. 18A)? This is a 
key question in neuroscience. We as scientists have the luxury of con-
trolling the stimulus, based on which we can find the meaning of the 
spikes (Fig. 18C-right). However, as shown in Fig. 18A (and C-left), the 
problem seems intractable from the point of view of the brain itself 
since neurons deeply embedded in the brain do not have direct access 
to the stimulus. In [1] and related work, we showed that the decoding 
problem seems intractable only because we left out the motor system 
from the picture. Figure  18D shows how motor action can help pro-
cesses deeply embedded in the brain can understand the meaning of 
the spikes by generating motor behavior and observing the resulting 
change in the neural spikes. Here, a key principle is to generate motion 
that keeps the neural spike pattern invariant over time (Fig.  18E), 
which allows the following to coincide (1) the property of the motion 
(diagonal movement) and (2) the encoded property of the input (45° 
orientation). Using reinforcement learning, we showed that the invari-
ance criterion leads to near optimal state-action mapping for synthetic 
and natural image inputs (Fig.  18F, G), where the encoded property 
of the input is mapped to congruent motor action. Furthermore, we 
showed that the receptive fields can be learned simultaneously with 

Fig. 18  Concept (A–E) and simulation results (F–H). A Four activi-
ties without any clear meaning. b Activities in A are V1 response to 
oriented lines. C Comparison of brain’s view of spikes (left; apparently 
intractable) and scientist’s view of spikes (right; decoding possible). 
D Visuomotor agent set up. E Invariance principle. F Ideal state(s)-
action(a) mapping R(s, a) (a), learned R(s, a) (b: synthetic input), 
learned R(s, a) (c: natural input). G Input (a), initial gaze trajectory (b), 
and learned gaze trajectory (c). H Learned state-action mapping (a: 
unordered; b: reordered rows), and learned receptive fields (c: unor-
dered; d: reordered as b) [1]
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the state-action mapping (Fig.  18H). The main lesson we learned is 
that the encoding/decoding framework in neural code can lead to 
a dead end unless the problem is posed from the perspective of the 
brain itself; and the motor system can play an important role in the 
shaping of the sensory/perceptual primitives (also see [2]).
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The brain performs computation by updating its internal states in 
response to external inputs. Neurons, synapses, and the circuits are 
the fundamental units for implementing brain functions. At the sin-
gle neuron level, a neuron integrates synaptic inputs and generates 
spikes if its membrane potential crosses the threshold. At the synapse 
level, neurons interact with each other to enhance or depress their 
responses. At the network level, the topology of neuronal connec-
tion pattern shapes the overall population activity. These fundamen-
tal computation units of different levels encompass rich short-term 
dynamics, for example, spike-frequency adaptation (SFA) at single 
neurons [1], short-term facilitation (STF) and depression (STD) at 
neuronal synapses [2]. These dynamical features typically expand a 
broad range of time scale and exhibit large diversity in different brain 
regions. Although they play a vital part in the rise of various brain 
functions, it remains unclear what is the computational benefit for 
the brain to have such variability in short-term dynamics.
In this study, we propose that one benefit for having multiple dynami-
cal features with varied time scales is that the brain can fully exploit 
the advantages of these features to implement which are otherwise 
contradictory computational tasks. To demonstrate this idea, we con-
sider STF, SFA and STD with increasing time constants in the dynamics 
of a CANN. The potential brain regions with these parameter values 
are the sensory cortex, where the neuronal synapses are known to be 
STD-dominating. We show that the network is able to implement three 
seemingly contradictory computations, which are persistent activ-
ity, adaptation and anticipative tracking (see Fig. 19). Simply state, the 
role of STF is to hold persistent activity in the absence of external drive, 
the role of SFA is to support anticipative tracking for a moving input, 
and the role of STD is to eventually suppress neural activity for a static 
or transient input. Notably, the time constants of SFA and STD can be 
swapped with each other, since SFA and STD have the similar effects on 
the network dynamics. Nevertheless, we need to include both of them, 
since a single negative feedback modulation is unable to achieve both 
anticipative tracking and plateau decay concurrently. The implementa-
tion of each individual computational task based on a single dynamical 
feature has been studied previously. Here, our contribution is on reveal-
ing that these tasks can be realized concurrently in a single neural cir-
cuit by combined dynamical features with coordinated time scales. We 
hope that this study will shed light on our understanding of how the 
brain orchestrates its rich dynamics at various levels to realize abun-
dant cognitive functions.
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The neocortex is composed of 6 different layers. In the primary visual 
cortex (V1), the functional architecture of basic stimulus selectiv-
ity is experimentally found to be similar across these layers [1]. The 
organization in functional columns justifies the use of cortical models 
describing only two-dimensional layers and disregarding functional 
organization in the third dimension.
Here we show theoretically that already small deviations from an exact 
columnar organization can lead to non-trivial three-dimensional func-
tional structures (see Fig. 20). Previously, two-dimensional orientation 
domains were modeled by Gaussian random fields, the maximum 
entropy ensemble, allowing for an exact calculation of pinwheel den-
sities [2]. Pinwheels are points surrounded by neurons preferring all 
possible orientations and these points generalize to pinwheel strings 
in three dimensions. We extend the previous two-dimensional model 
characterized by its typical scale of orientation domains to a three-
dimensional model by keeping the typical scale in each layer and 
introducing a columnar correlation length. We dissect in detail the 
three-dimensional functional architecture for flat geometries and 
for curved gyri-like geometries with different columnar correlation 
lengths. The model is analyzed analytically complemented by numeri-
cal simulations to obtain solutions for its intrinsic statistical parame-
ters. We find that (i) pinwheel strings are generally curved, (ii) for large 

Fig. 19  Networks implement different computations. A Persistent 
activity; network can sustain activity after removing stimulus. B 
Adaptation; network activity attenuates to background level given 
continuous stimulus. C Anticipative tracking; D network response 
leads moving stimulus in a certain speed
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curvatures closed loops and reconnecting pinwheel strings appear 
and (iii) for small columnar correlation lengths a novel transition to a 
rodent-like interspersed organization emerges.
This theory extends the work of [2, 3] by adding a columnar dimension 
and supplements the work of [4] by a rigorous statistical treatment of 
the three-dimensional functional architecture of V1. Furthermore, the 
theory sheds light on the required precision of experimental tech-
niques for probing the fine structure of the columnar organization in 
V1.
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Curiosity in humans appears to follow an inverted U-shaped function 
of unpredictability: stimuli that are neither too predictable nor too 
unpredictable evoke the greatest interest [1]. Rewarding moderate 

sensory unpredictability is an effective strategy for reinforcing explora-
tions that improve our predictive models of the world [1, 2]. However, 
the computations and neural circuits underlying this unpredictability-
dependence of curiosity remain largely unknown.
A rodent model of curiosity would be useful for elucidating its under-
lying neural circuitry, because more specific manipulation techniques 
are available than in humans. It has been shown that mice prefer 
unpredictable sounds to predictable ones when the sounds are paired 
with light [3]. However, frequency of stimulus presentation was a 
potential confound in this study. Furthermore, a more systematic sam-
pling of stimulus unpredictability is necessary to determine whether a 
rodent analogue of the U-shaped curve indeed exists.
We have devised an operant conditioning paradigm building on [3], 
using sensory stimuli as “reward” to quantify the rewardingness of 
various levels of sensory predictability for rats. Rats (Long Evans, male) 
are placed in a soundproofed chamber with two nosepoke holes. A 
combination of sound and light stimuli is presented whenever the rat 
pokes the active hole; no stimulus is associated with the inactive hole 
(counterbalanced across subjects).
We hypothesize that reward is also a U-shaped function of stimulus 
unpredictability in rats, and that this is due to a Bayesian precision 
weighting placing more importance on deviations from reliabile pre-
dictions. This departs from previous learning-based accounts [2]. There 
are five experimental conditions, systematically varied in unpredict-
ability of the sound stimuli (as quantified by entropy H), and a control 
condition, in which a nosepoke in neither hole has any consequence 
(Fig. 21). Specifically, the sound stimuli are random sequences of two 
possible 125-ms sound snippets of equal value to the rat, with their 
frequencies of occurrence varied across conditions to vary H. Each 
sequence contains eight such snippets. Across all conditions, the 
light stimulus simply remains on while the sound is being played; it 
is added to enhance the rats’ responding to auditory stimuli [3]. We 
predict that the rats’ active nosepoke responses will be maximally 
increased at intermediate H (Fig. 21).
In preliminary experiments for conditions 0 and 2 (N = 3 each; three 
sessions), rats preferred the active hole to the inactive, replicating the 
earlier results in mice [3]. Moreover, as hypothesized, rats responded 
more to the active hole in condition 2 (mean = 15.0, SD = 5.32) than 
in condition 0 (mean = 11.3, SD = 4.05); t(22) = 1.91, p = 0.0345 (one-
tailed t test). We note that in mice, most across-condition differences 
did not emerge until around session 7 [3].
The proposed assay quantifies the rewardingness of sensory unpre-
dictability in rats. By systematically varying the entropy of the sound 
sequence, we can probe the computations behind the putative unpre-
dictability-driven reward. The assay can furthermore be used to study 
the effect of pharmacological or genetic manipulations on unpredicta-
bility-driven reward, in order to validate mechanistic implementations 
of such computations.

Fig. 20  A Three-dimensional orientation domains with columnar 
correlation length of Λ. B String singularities of orientation domains 
in A. Typical scale of cats Λ ≈ 1 mm

Fig. 21  Schematic of the sound stimuli used in all conditions, and 
the predicted reward for each
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Recently we developed a three-stage optimization method for fitting 
conductance-based models to data [1]. The method makes novel use 
of Latin hypercube sampling (LHS), a statistical space-filling design, 
to determine appropriate weights automatically for various error 
functions that quantify the difference between empirical target and 
model output. The method uses differential evolution to fit param-
eters active in the subthreshold and suprathreshold regimes (below 
and above action potential threshold). We have applied the method 
to spatially extended models of layer 3 pyramidal neurons from the 
prefrontal cortex of adult rhesus monkeys, in which in  vitro action 
potential firing rates are significantly higher in aged versus young 
animals [2]. Here we validate our optimization method by testing its 
ability to recover parameters used to generate synthetic target data. 
Results from the validation fit the voltage traces of the synthetic target 
data almost exactly (Fig.  22A–C), whether fitting a model with 4 ion 
channels (10 parameters), or 8 ion channels (23 parameters). The opti-
mized parameter values are either identical to, or nearby, the original 
target values (Fig. 22D–F), except for a few parameters that were not 
well constrained by the simulated protocols. Further, our LHS-based 
scheme for weighting error functions is significantly more efficient at 
recovering target parameter values than by weighting all error func-
tions equally, or by choosing weights manually. We are now using the 
method to fit models to data from several young, middle-aged, and 

aged monkeys. Adding new conductances to the model, and allow-
ing altered channel kinetics in the axon initial segment versus the 
soma, improves the quality of the model fits to data. We use published 
results from empirical studies of layer 3 neocortical pyramidal neurons 
to determine whether the optimized parameter sets are biologically 
plausible.
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In this work, an algorithm to build self-growing and self-organizing 
neuron network according to external signals is presented, in attempt 
to build neuron network with high intelligence. This algorithm takes a 
bionic way to build complex neuron network. We begin with very sim-
ple external signals to provoke neurons.
In order to propagate the signals, neurons will seek to connect to each 
other, thus building neuron networks. Those generated networks 
will be verified and optimized, and be treated as seeds to build more 
complex networks. Then we repeat this process, use more complex 
external signals, and build more complex neuron networks. A paral-
lel processing method is presented, to enhance the computation 
efficiency of the presented algorithm, and to help build large scale of 
neuron network with reasonable time. The result shows that, neuron 
network built by our algorithm can self-grow and self-organize as the 
complexity of the input external signals increase. And with the screen-
ing mechanism, neuron network that can identify different input 
external signals is built successfully (Fig. 23).
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Fig. 22  A–C Membrane potential of the synthetic target (black), and 
of randomly chosen members of the final population (colors, overlaid 
almost exactly), from three validation studies. Optimized 10 and 23 
parameters in A–C respectively. D–F Parameter values used to gener-
ate synthetic data (black lines), and mean ± standard deviation of 
values recovered in the searches (colored circles), normalized to the 
range used in the optimization Fig. 23  Neuron network generated by our algorithm
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The efficient organization and communication of brain networks 
underlies cognitive processing, and disruption in resting state brain 
network has been implicated in various neuropsychiatric conditions 
including addiction disorder. However, few studies have focused 
on whole-brain networks in the maladaptive consumption of natu-
ral rewards in obesity and binge-eating disorder (BED). Here we use 
a novel multi-echo resting state functional MRI (rsfMRI) technique 
along with a data-driven graph theory approach to assess global and 
regional network characteristics in obesity and BED.
We collected multi-echo rsfMRI scans from 40 obese subjects (includ-
ing 20 BED patients) and 40 healthy controls, and used multi-echo 
independent component analysis (ME-ICA) to remove non-BOLD 
noise. We estimated the normalized correlation across mean rsfMRI 

signals in 90 brain regions of the Automated Anatomical Labeling 
atlas, and computed global and regional network metrics in the bina-
rized connectivity matrix with density threshold of 5–25  %. In addi-
tion, we confirmed the observed alterations in network metrics using 
the Harvard-Oxford atlas which was parcellated into 470 even-sized 
regions.
Obese subjects exhibited significantly reduced global and local effi-
ciency as well as decreased modularity in the whole-brain network 
compared to healthy controls (Fig.  24). Both BED patients and the 
obese subjects without BED exhibited the same alteration of network 
metrics compared with healthy controls, but two obese groups did 
not differ from each other. In regional network metrics, bilateral puta-
men, thalamus and right pallidum exhibited profoundly decreased 
nodal degree and efficiency in obese subjects, and left superior fron-
tal gyrus showed decreased nodal betweeness in obese subjects (all 
p  <  0.05, Bonferroni correction). Network-based statistics revealed a 
cortico-striatal/cortico-thalamic network with significantly decreased 
functional connectivity which consisted of bilateral putamen, palli-
dum, thalamus, primary motor cortex, primary somatosensory cortex, 
supplementary motor area, paracentral lobule, superior parietal lob-
ule, superior temporal cortex and left amygdala. Interestingly, when 
examining the same network properties but using only single-echo 
rsfMRI data analysis without ME-ICA, we find no significant differences 
between groups.
Therefore, using data-driven graph theory analysis of multi-echo 
rsfMRI data, we highlight more subtle impairments in cortico-striatal/
cortico-thalamic networks in obesity that have previously been asso-
ciated with substance addictions. We emphasize global impairments 
in network efficiency in obesity with disrupted local network organi-
zation closer to random networks. Mathematically capturing brain 
network alterations in obesity provides novel insights into potential 
biomarkers and therapeutic targets.
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Neurons receive balanced excitatory and inhibitory inputs, a phe-
nomenon thought to be essential for a variety of computations [1–3]. 
Inhibitory synaptic plasticity is an obvious candidate for imposing this 
balanced input regime [2,4], leaving excitatory synapses available to 
learn patterns and memories. Recent experimental work seems to 
agree with that notion of collaborative excitatory and inhibitory plas-
ticity [4], but recent models do not take direct interactions into con-
sideration. Instead, learning rules are usually tuned to indirectly but 
constructively interact via the firing-rates they elicit [3,5]. Without 
proper parameter tuning, this can be problematic because excitatory 
and inhibitory synaptic plasticity models may have different homeo-
static set points, making synaptic weights fluctuate wildly (Fig.  25A, 
B; green lines). Here we present a hybrid model of inhibitory synaptic 
plasticity that combines the simplicity of spike-based models with 
the addition of a excitatory/inhibitory input dependence. It captures 
recent experimental findings showing that changes at inhibitory syn-
apses are strongly correlated with the balance between excitation and 
inhibition and that inhibitory synapses do not change when excita-
tory input is blocked [4]. Essentially, our model is a symmetric spike-
timing-dependent plasticity (STDP) rule in which the learning-rate is 
controlled by excitatory and inhibitory activities—a spike-timing- and 
current-dependent plasticity (STCDP) model. Balance is maintained, 
but the learning rule does not impose fixed-point attractor dynam-
ics to post-synaptic neurons, because there is no change in inhibi-
tory synapses once the total input is balanced. Inhibitory synapses 
change depending on excitatory synapses, which means that plastic-
ity depends on at least three synaptic participants (trisynaptic) instead 
of only two (bisynaptic). We show that when combined with an excita-
tory synaptic plasticity model, both excitatory and inhibitory weights 
converge to stable values, as the firing-rate reaches the fixed-point 

Fig. 24  A Disrupted resting state brain network in obese subjects. B 
Global network properties network-based statistics
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imposed by the excitatory learning rule (Fig.  25B; yellow lines). More 
importantly, the learning rule allows efficient and stable learning of 
new weights when the balance is disrupted, opening the door for 
effective and stable learning of arbitrary synaptic patterns.
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Neural oscillations—the periodic synchronisation of neuronal spik-
ing—is a common feature of brain activity, with several hypothesised 
functions relating to information flow, attention and brain state [1]. 
Previous experimental work has shown that oscillatory activity corre-
lates with moments of heightened attention, and that communication 
between different brain areas is often marked by an increase in oscil-
latory coherence between the regions [2]. Theoretical and modelling 
work has helped to explore the mechanisms behind neuronal oscilla-
tions, and some of their effects on neural coding and signal propaga-
tion [3]. Recently, theoretical studies have explored how resonance 

might affect signal processing [4, 5] and how information can be prop-
agated along different pathways according to oscillatory phase and 
frequency [6].
We expand this work here by studying how resonance at the single neu-
ron level might be used for frequency-dependent gating of informa-
tion flow in neuronal networks. We show that in feed-forward spiking 
network simulations background oscillations can synchronise or desyn-
chronise the spikes of a propagated signal, changing its content and 
emphasis from rate code to synfire code or vice versa. Such a mechanism 
can modulate information flow without rewiring the signal pathways 
themselves, allowing to select for specific downstream readout targets. 
Building on this idea, we can create entire pathways that can be selec-
tively (in-)activated by different background oscillatory frequencies 
without changing the connectivity of the network. We hypothesise that 
neuronal resonance, combined with resonance in synapses and network 
motifs, can allow for precise oscillatory gating of information in cortex. 
Building on previous studies of resonance and oscillatory signal propaga-
tion [4,5,6] we propose a plausible mechanism for how fast and precise 
frequency-dependent gating might be achieved in the brain.

Acknowledgements: Research was supported by a Sir Henry Dale 
Royal Society and Wellcome Trust Research Fellowship (WT100000).

References
1.	 Buzsáki G. Rhythms of the brain. Oxford: Oxford University Press; 2011.
2.	 Engel AK, Fries P, Singer W. Dynamic predictions: oscillations and syn-

chrony in top-down processing. Nat Rev Neurosci. 2001;2(10):704–16.
3.	 Wang XJ. Neurophysiological and computational principles of cortical 

rhythms in cognition. Physiol Rev. 2010;90:1195–1268.
4.	 Richardson MJE, Brunel N, Hakim V. From subthreshold to firing-rate 

resonance. J Neurophysiol. 2003;89:2538–54.
5.	 Hahn G, Bujan AF, Frégnac Y, Aertsen A, Kumar A. Communication 

through resonance in spiking neuronal networks. PLoS Comput Biol. 
2014;10(8):e1003811.

6.	 Akam T, Kullmann DM. Oscillatory multiplexing of population codes for 
selective communication in the mammalian brain. Nat Rev Neurosci. 
2014;15(2):111–22.

P37 
Phenomenological neural model for adaptation of neurons 
in area IT
Martin Giese1, Pradeep Kuravi2, Rufin Vogels2

1Section Computational Sensomotorics, CIN & HIH, Department 
of Cognitive Neurology, University Clinic Tübingen, Germany; 2Lab. Neuro 
en Psychofysiologie, Dept. Neuroscience, KU Leuven, Belgium
Correspondence: Martin Giese ‑ martin.giese@uni‑tuebingen.de   
BMC Neuroscience 2016, 17(Suppl 1):P37

For repeated stimulation neurons in higher-level visual cortex show 
adaptation effects. Such effects likely influence repetition suppres-
sion paradigms in fMRI studies and the formation of high-level after-
effects, e.g. for faces [1]. A variety of theoretical explanations has been 
discussed, which are difficult to distinguish without detailed electro-
physiological data [2]. Meanwhile, detailed physiological experiments 
on the adaptation of shape-selective neurons in inferotemporal cortex 
(area IT) have provided constraints that help to narrow down possible 
neural processes. We propose a neurodynamical model that repro-
duces a number of these experimental observations by biophysically 
plausible neural circuits. Our model uses the mean-field limit and con-
sists of a neural field of shape-selective dynamic linear-threshold neu-
rons that are augmented several adaptation processes: (i) spike-rate 
adaptation; (ii) an input fatigue adaptation process, modeling adapta-
tion in earlier hierarchy levels and of afferent synapses; (iii) a firing-rate 
fatigue adaptation process that models adaptation dependent on the 
output firing rates of the neurons. The model with a common parame-
ter set is compared to results from several studies about adaptation in 
area IT. The model reproduces the following experimentally observed 
effects: (i) shape of the typical PSTHs of IT neurons; (ii) temporal 
decay for repeated stimulation of the same neurons with many rep-
etitions of the same stimulus [3] (Fig. 26A); (iii) dependence of adapta-
tion on efficient and ineffective adaptor stimuli, which stimulate the 

Fig. 25  A Schematics representing the neuronal network. A 
group of 2000 excitatory neurons and 500 inhibitory neurons are 
recurrently connected with sparse connectivity and the excitatory 
neurons receive random input from an external pool of neurons. B 
Excitatory neurons’ mean firing-rate (top), mean excitatory weight 
onto excitatory neurons (middle) and mean inhibitory weight onto 
excitatory neurons (connections marked as plastic in A). Simulation 
of the neuronal network with a spike-based inhibitory learning rule 
is represented by green lines (STDP) while simulation with our novel 
spike-timing- and current-dependent learning rule is shown in yellow 
(STCDP). The dashed lines represent the fixed points imposed by the 
excitatory (high) and inhibitory (low) learning rules. The low fixed 
point only exists for the inhibitory STDP model (simulation repre-
sented by the green lines)
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neuron strongly or only moderately [4] (Fig. 26B); (iv) dependence of 
the strength of the adaptation effect on the duration of the adaptor 
(Fig.  26C). A mean field model with several additional adaptive pro-
cesses can account for the observed experimental effects, where all 
introduced processes were necessary to account for the results. Espe-
cially the observed dependence on the effectivity of the adaptor can-
not be reproduced without an appropriate mixture if an input fatigue 
and a firing-rate fatigue mechanism. This suggests that adaptation in 
IT neurons is significantly influenced by several biophysical processes 
with different spatial and temporal scales.
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Ion channels are fundamental constituents determining the function 
of single neurons and neuronal circuits. To understand their complex 
interactions, the field of computational modeling has proven essential: 
since its emergence, thousands of ion channel models have been cre-
ated and published as part of detailed neuronal simulations [1]. Faced 
with this large variety of models, it is difficult to determine how par-
ticular models relate to each other, to the interpretability of simula-
tions and, importantly, to experimental data.
Here, we present a framework within which we analyzed a pilot set of 
2378 voltage- or calcium-dependent published ion channel models 
for the NEURON simulator [1]. We extracted annotated metadata from 

all associated publications, helping identify their use in simulations 
(e.g. the animal type, neuron type or area of compartmental models) 
and the provenance of ion channel models as they were derived from 
other published work. This categorical and relational metadata is com-
bined with quantitative evaluations of all channel models: individual 
channels are characterized by their responses to voltage clamp pro-
tocols. With subsequent cluster analysis, we extract topologies of ion 
channel similarity and genealogy, identifying redundancy and groups 
of common channel kinetics.
The result of this large-scale assay of published work is freely accessi-
ble through interactive visualizations (see Fig. 27A) on the Ion Channel 
Genealogy (ICG) web-resource [2], providing a tool for model discovery 
and comparison. Bridging the gap between model and experiment, 
our resource allows classifying new channel models and experimental 
current traces within the topology of all models currently in the data-
base (see Fig. 27B, C). The ICG framework thus allows for quantitative 
comparison of ion channel kinetics, experimental and model alike, 
aimed to facilitate field-wide standardization of experimentally-con-
strained modeling.
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Neuronal subthreshold oscillations underlie key mechanisms of infor-
mation discrimination in single cells while dynamic synapses provide 
channel-specific input modulation. Previous studies have shown 
that intrinsic neuronal properties, in particular subthreshold oscilla-
tions, constitute a biophysical mechanism for the emergence of non-
trivial single-cell input/output preferences (e.g., preference towards 

Fig. 26  Simulation results. A Decay of neural activity for multiple 
repetitions of the same stimulus. B Experiment adapting with effec-
tive and ineffective stimuli. C Dependence of the PSTH on adaptor 
duration and unadapted response (black)

Fig. 27  A Visualizations available on the web-resource [2] for model 
browsing. B Schematic of upload and evaluation. Both experimental 
current traces and mod files can be uploaded to our servers, where 
they are scored and compared to all models currently in the data-
base. C Exemplary result of automated comparison: Current traces 
(recorded from “Ramp” and “Activation” voltage clamp protocols) of 
the uploaded model (red) together with mean (1st, 2nd, 3rd, 4th) and 
individual (gray) traces of the four most similar clusters of channel 
models in the database

http://icg.neurotheory.ox.ac.uk
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decelerating vs. accelerating input trains of the same average rate) [1, 
2]. It has also been shown that short-term synaptic dynamics, in the 
form of short-term depression and/or short-term facilitation, can pro-
vide a channel-specific mechanism for the enhancement of the post-
synaptic effects of temporally specific input sequences [3, 4]. While 
intrinsic oscillations and synaptic dynamics are typically studied inde-
pendently, it is reasonable to hypothesize that their interplay can lead 
to more selective and complex temporal input processing.
Here, we extend and refine our previous computational study on the 
interaction between subthreshold oscillations and synaptic depres-
sion [5]. In particular, we investigated whether, and under which 
conditions, the combination of intrinsic subthreshold oscillations 
and short-term synaptic dynamics can act synergistically to enable 
the emergence of robust and channel-specific selectivity in neuronal 
input–output transformations. We calculated analytically the voltage 
trajectories and spike output of generalized integrate-and-fire (GIF) 
model neurons in response to temporally distinct trains of input EPSPs. 
In particular, we considered triplets of input EPSPs in a range that cov-
ers intrinsic and synaptic time scales, and analyzed the model output 
as intrinsic and synaptic parameters were varied.
Our results show that intrinsic and synaptic dynamics interact in a 
complex manner for the emergence of specific input–output trans-
formations. In particular, precise non-trivial preferences emerge from 
synergistic intrinsic and synaptic preferences, while broader selectiv-
ity is observed for mismatched intrinsic and synaptic dynamics. We 
discuss the conditions for robustness of the observed input/output 
relationships.
We conclude that the interaction of intrinsic and synaptic properties 
can enable the biophysical implementation of complex and chan-
nel-specific mechanisms for the emergence of selective neuronal 
responses. We further interpret our results in the light of experimental 
evidence describing distinct short-term synaptic dynamics in different 
afferents converging onto the same neuron, as in the case of parallel 
and climbing fiber inputs to cerebellar Purkinje cells, and advance spe-
cific hypotheses that link heterogeneous synaptic dynamics of distinct 
pathways onto the same post-synaptic target to their distinct compu-
tational function. We also discuss the impact of single-channel/single-
neuron temporal input discrimination in the context of information 
processing based on heterogeneous elements.
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Neural activity in awake primate early visual cortex exhibits transients 
with intervals of 250-300 ms. Experimental work by us and others has 
shown that these transients are related to microsaccadic eye move-
ments [1, 2]. These short transients are followed by periods of steady 
activity that last until the next microsaccade (Fig. 28A).
We found that computational models of excitatory-inhibitory spik-
ing networks organized in a structure of columns and hypercolumns, 
are able to represent relevant stimulus information when subjected 
to 3–4  Hz saccade-like transients. The simulated networks expressed 
evoked responses with power in the alpha–beta band (~8–25  Hz) as 
well as gamma rhythmic activity (~25–80  Hz) similar to in  vivo local 
field recordings in monkey V1 (Fig. 28A, B).
We show that in phase I, the model produces large-scale spatial syn-
chrony and pronounced alpha–beta power. In phase II the model 
exhibits narrow-band gamma oscillations with spatially local syn-
chrony. The activity in the model network (rate and timing coding) in 
phase I mainly reflects feedforward input (Fig.  28C, D), whereas, the 
network activity in phase II was dominated by recurrent connections 
(Fig. 28C, E).
The model network activity closely matches that found in experi-
ments. The simulation results suggest that transient phase (phase I) 
allows for resetting the network and rapid feedfoward processing of 
novel information, whereas detailed processing and contextualiza-
tion by recurrent activity take place in the period of steady gamma 
activity (phase II). Therefore we arrived at hypotheses on the func-
tional interpretation of phases I and II that can be possibly tested in 

Fig. 28  A Time–frequency representation of local field potential 
(LFP) locked to a microsaccade (MS) recorded in primate V1. B Time–
frequency representation of simulated LFP. C Schematic represen-
tation of the model network illustrating input (injection current), 
recurrent connection pattern and output (spike trains). D The input 
to the neurons is best reflected in the simulated spike trains (output) 
during phase I, quantified by mutual information (MI). E Recurrent 
connection pattern is best reflected in the output during phase II



Page 33 of 112BMC Neurosci 2016, 17(Suppl 1):54

an experimental setup. First, because of the reset of network activity 
by a microsaccade, phase I is the optimal time window to switch infor-
mation flow among competing networks through a top-down signal. 
This indicates that signals related to visual attention are most likely to 
occur just after a saccade. Second, the increased efficacy of recurrent 
connections during phase II indicate that contextualization operations 
such as figure-ground segregation [3] and contour completion occur 
in the steady phase ~100 ms after the onset of a (micro)saccade.
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In recent years, several experimental observations have confirmed 
the emergence of self-organized criticality (SOC) in the brain at dif-
ferent scales [1]. At large scale, functional brain networks obtained 
from fMRI data have shown that node-degree distributions and prob-
ability of finding a link versus distance are indicative of scale-free and 
small-world networks regardless of the tasks in which the subjects 
were involved [2]. At small scale, the study of neuronal avalanches in 
networks of living neurons revealed power-law behavior in both spa-
tial and temporal scales [3]. It is also shown that functional networks 
of the brain are strikingly similar to those derived from the 2D Ising 
model at critical temperature [4] and the 2D abelian sandpile model 
[5].
The importance to see whether brain network’s scaling properties 
associated with healthy conditions are altered under various patholo-
gies and how structural defects of a system at criticality can affect its 
functional connectivity motivated us to study robustness of func-
tional networks of 2D Ising model at critical point against elimina-
tion of structural sites. The results showed that the statistics of the 
functional network indicative of criticality (evident in healthy brain 
controls), such as power-law behavior and small-worldness remained 
robust against random elimination of structural sites up to percola-
tion limit (see Fig.  29). The resulting functional network maintained 
its key properties orders of magnitude higher than those of the same 
system poised in a super-critical or sub-critical state. These results 
can show that self-organized critical behavior, besides having unique 

advantages like fasciliation of alteration of functional patterns, optimi-
zation of information transfer and maximization of correlation length, 
shows striking robustness against structural deficits. Taking into 
account brain’s long-range anatomical connections and compensatory 
mechanisms like neuroplasticity, if the results of this study are general-
izable to the brain, they may help to explain the delay in clinical diag-
nosis of multiple neurodegenerative diseases in which possible deficit 
in functional connectivity among brain regions contribute to the cog-
nitive dysfunctions.
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Signal transmission is of interest from both fundamental and clinical 
perspective and has been well studied in nonlinear science and com-
plex networks [1, 2]. In particular, in nervous systems, cognitive pro-
cessing involves signal propagation through multiple brain regions 
and the activation of large numbers of specific neurons [3–6]. In 
information propagation through brain regions, each part, known as 
generator, activated locally as information comes to it from neighbor-
ing generators. Although the problem is well studied in the context 
of complex networks, our focus here is on the effect of the intrinsic 
dynamical properties of the reciprocal generators on the propagation 
of signal.
In this study we explored the propagation of information in a chain of 
neurons and networks. As signal propagate through the chain of net-
works, the firing rate of networks show a fluctuation as host network 
(the network which receive signal). Here the response is the amplitude 
of fast Fourier transform of firing rates of each network. If the host net-
work has sufficiently higher intrinsic firing rate than others, signal can 
transfer with higher amplitude, otherwise, other networks will not get 
affected. As a result of propagation of signal, for the former case, all 
networks will show a peak in frequency domain at exactly the same 
frequency as input signal (Fig.  30A), but with different amplitude 
which show the efficacy of transmitted information. Also the same 
result can obtain by a chain of single LIF neurons (Fig. 30B). As phase 
response curve of the chain and it response to signal show, if the host 
neuron has higher firing rate (call it leader neuron), the propagation 

Fig. 29  Relevant parameters of functional network of 2D Ising 
model at critical point versus fraction of defect to the structural cells. 
A Power-law exponent of degree-distribution, B small-worldness 
measure, C average degree

Fig. 30  Inhomogeneity of input current on host network, increases 
the response of network. A, B Response of networks of neurons and 
chain of neurons, for different inhomogeneity on host network and 
host neuron, respectively
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of information will be enhanced. But this higher firing rate has a limit 
which after that the whole chain will act asynchronously and results 
the loss of information was aimed to propagate.
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Alzheimer’s disease (AD) is the main form of dementia and is charac-
terised clinically by cognitive decline and impairments to memory 
function. One of the key histopathological features of AD thought to 
cause this neurodegeneration is the abnormal aggregation of the pro-
tein amyloid-β (Aβ) [1]. Transgenic mouse models that overexpress Aβ 
are used to investigate the potential functional consequences of this 
amyloidopathy in AD. In this study we use in  vitro electrophysiology 
data recorded from PDAPP transgenic mice (a mouse model of amy-
loidopathy) and their wild-type littermates to parameterise a hip-
pocampal network model [2]. The aim of the study is to investigate 
how amyloidopathy alters gamma frequency oscillations within the 
hippocampus, which is one of the regions first affected in AD.
We use a synaptically connected network of excitatory pyramidal neu-
rons and inhibitory interneurons to simulate the gamma frequency 
activity [3]. Each cell is described by a single-compartment Hodg-
kin–Huxley type equation, with the properties of the voltage-gated 
channels fit to the intrinsic properties measured experimentally, 
which included stimulated firing frequency data and the associated 
action potentials from CA1 pyramidal neurons and three-types of CA1 
interneuron. Network activity is either driven deterministically via a 
direct stimulus, such as a step pulse or a theta wave, or via a stochastic 
input. We perform power spectral density analysis to analyse the oscil-
latory activity.
Our model focuses on gamma frequency oscillations, which lie in the 
30–100  Hz range, because of the associations with attention, sen-
sory processing and potentially of most relevance to AD, with learn-
ing and memory. It has been shown that within the hippocampus 
gamma oscillations enable cross-talk between distributed cell assem-
blies, with low frequency gamma associated with coupling between 
the CA1 and the CA3 region and fast frequency gamma associated 
with coupling between the CA1 and the medial entorhinal cortex [4]. 
EEG measurements from AD mouse models have identified network 
hypersynchrony alongside decreased gamma activity, with the role 
of interneurons in this process highlighted. [5]. By incorporating the 
pyramidal neuron and interneuron data in our model we aim to learn 
more about which parameters are most significant in these effects and 

to further understanding of the effects of amyloidopathy on oscilla-
tory activity.
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The strengths of excitatory synapses in cortex and hippocampus have 
been shown to follow a rightward-skewed or long-tailed distribu-
tion [1,2]. Such distributions can be achieved in recurrent balanced 
networks [3, 4], after synaptic modification by spike-timing depend-
ent plasticity (STDP) [5] and synaptic scaling [6]. Recently, long-tailed 
distributions have also been observed for inhibitory synapses in cul-
tured cortical neurons [7], confirming early findings in hippocampal 
slices [8]. However, the conditions and plasticity mechanisms neces-
sary for achieving long-tailed distributions of inhibitory synapses are 
unknown. Furthermore, different forms of inhibitory STDP have been 
reported, but their effect on the distribution of inhibitory synaptic effi-
cacies are largely unknown [9-11].
Here we investigate how plasticity in the inhibitory synapses in a self-
organised recurrent neural network (SORN [12]) with leaky integrate-
and-fire neurons can lead to long-tailed distributions of synaptic 
weights. We examine different inhibitory STDP (iSTDP) rules and char-
acterize the conditions under which right-skewed shapes of inhibitory 
synaptic weight distributions are obtained while a balance between 
excitation and inhibition is maintained. While the ratio of long-term 
potentiation to long-term depression in iSTDP affects the shape 
of the distribution, a variety of window shapes for iSTDP can each 
achieve long-tailed distributions of inhibitory weights. We find that 
a precise balance of excitation and inhibition can be achieved with a 
strongly right-skewed distribution of inhibitory weights. Our results 
suggest that long-tailed distributions of inhibitory weights could be 
a ubiquitous feature of neural circuits that employ different plasticity 
mechanism.
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Single pulse transcranial magnetic stimulation (TMS) is a technique 
which (at moderate intensities) activates corticomotor neuronal out-
put cells transynaptically and evokes a complex descending volley in 
the corticospinal tract. Rusu et al. developed a computational model 
of TMS induced I-waves that reproduced observed epidural record-
ings in conscious humans [1]. In humans, epidural responses can be 
recorded in anaesthetized subjects during surgery or conscious sub-
jects with electrodes implanted for the treatment of chronic pain. Such 
opportunities are uncommon and invasive. The effects of TMS can be 
non-invasively studied using surface electromyography (EMG) record-
ings from the hand first dorsal interosseous (FDI) muscle.
We simulated the surface EMG signal due to TMS of motor cortex in 
the hand FDI muscle. Our model comprises a population of cortical 
layer 2/3 cells, which drive layer 5 cortico-motoneuronal cells with 
excitatory and inhibitory synaptic inputs as in [1]. The layer 5 cells in 
turn project to a pool of motoneurons, which are modeled as an inho-
mogeneous population of integrate-and-fire neurons to simulate 
motor unit recruitment and rate coding. The input to motoneurons 
from cortical layer 5 consists of TMS-induced spikes and baseline fir-
ing. We modeled baseline firing with a Poisson drive to layer 2/3 cells. 
Hermite-Rodriguez functions were used to simulate motor unit action 
potential shape. The EMG signal was obtained from the summation of 
motor unit action potentials of active motor units. Parameters were 
tuned to simulate recordings from the FDI muscle.
Our simulated EMG signals match experimental surface EMG record-
ings due to TMS of motor cortex in the hand FDI muscle in shape, 
size and time scale both at rest and during voluntary contraction (see 

Fig. 31). The simulated EMG traces exhibit cortical silent periods (CSP) 
that lie within the biological range.
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Axons growing in vivo or in culture may adhere to each other and form 
a connected network, which subsequently guides the paths of newly 
arriving axons. We investigated the development of such a network 
formed by growing axons in primary cell culture.
Olfactory epithelium explants from mouse embryos (day 13–14) were 
cultured on laminin substrate for 2 days and then recorded using DIC 
or phase contrast videomicroscopy for up to 24 h. The growing axons 
established a dense network within which large fascicles of axons 
were progressively formed. Within the recorded time period, the net-
work remained stable, with limited further gowth of the axons but 
with ongoing rearrangement in the network structure. Based on seg-
mentation of the recorded images, we determined the principal net-
work characteristics (including the total length, the total number of 
vertices, and the network anisotropy) and their evolution in time.
This quantitative characterization permitted an analysis of the mecha-
nisms of the observed network coarsening. We relate the network 
dynamics to the elementary processes of zippering, during which 
two axons or axon fascicles progressively adhere to each other [1]. We 
compare the structural features of the network (such as the distribu-
tion of vertex angles) with those reported in an electron microscopy 
investigation of a plexus of sensory neurites in Xenopus embryo [2]. 
We show that both our ex vivo study and the in vivo study of Ref. [2] 
support a similar underlying mechanism of the formation of the axon 
network.
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Fig. 31  Comparison of simulated and experimental EMG during A 
rest, B 10 % maximum voluntary contraction
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The source of cortical variability and its influence on signal processing 
remain an open question. We address the latter, by studying two types 
of randomly connected networks of quadratic integrate-and-fire neurons 
with balanced excitation-inhibition that produce irregular spontaneous 
activity patterns (Fig.  32A): (a) a deterministic network with strong syn-
aptic interactions that actively generates variability by chaotic dynamics 
(internal noise) and (b) a stochastic network that has weak synaptic inter-
actions but receives noisy input (external noise), e.g. by stochastic vesicle 
releases. These networks of spiking neurons are analytically tractable in 
the limit of a large network-size and slow synaptic-time-constant. Despite 
the difference in their sources of variability, spontaneous (baseline) activ-
ity patterns of these two models are indistinguishable unless majority 
of neurons are simultaneously recorded. We characterize the network 
behavior with dynamic mean field analysis and reveal a single-parameter 
family that allows interpolation between the two networks, sharing nearly 
identical spontaneous activity (Fig. 32B). Despite the close similarity in the 
spontaneous activity, the two networks exhibit remarkably different sen-
sitivity to external stimuli. Input to the former network reverberates inter-
nally and can be successfully read out over long time. Contrarily, input to 
the latter network rapidly decays and can be read out only for short time. 
This is also observed in the significant changes in the spiking probability 
of evoked responses across this family (Fig. 32C). The difference between 

the two networks is further enhanced if input synapses undergo activity-
dependent plasticity, producing significant difference in the ability to 
decode external input from neural activity. We show that, this difference 
naturally leads to distinct performance of the two networks to integrate 
spatio-temporally distinct signals from multiple sources. Unlike its sto-
chastic counterpart, the deterministic chaotic network activity can serve 
as a reservoir to perform near optimal Bayesian integration and Monte-
Carlo sampling from the posterior distribution. We describe implications 
of the differences between deterministic and stochastic neural computa-
tion on population coding and neural plasticity.
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To accommodate constantly changing environmental and metabolic 
demands, breathing should be able to vary flexibly within a range of fre-
quencies. The respiratory neural network in the pre-Botzinger complex 
of the ventrolateral medulla controls and flexibly maintains the breath-
ing rhythm, coordinating network-wide bursting to signal the inspiratory 
phase of the breath. The frequency of this rhythmic activity is controlled 
by a number of neuromodulators, the majority of which are excitatory. 
Therefore, the central pattern generator for rhythmic respiratory activity 
should possess two seemingly contradictory properties: it has to be able 
to change frequency in response to excitatory input, but it also has to 
preserve stable rhythmic activity under a wide range of conditions.
A persistent sodium current (INaP) been identified as one of the key cur-
rents for generation of inspiratory activity [1]. It has been shown that 
some of the neurons in Pre-BotC possess an intrinsic bursting mecha-
nism, which relies on inactivation of this current. Higher expression 
of INaP correlates with higher burst frequency of a single pacemaker 
neuron [2]. However, the INaP pacemaker mechanism can only func-
tion within very narrow ranges of external excitation—NaP depend-
ent pacemaker tends to switch to tonic firing after a small increase in 
depolarizing current [3].
In this combined experimental and computational study, we tested 
the effect of the persistent sodium blocker Riluzole (RIL) in several dif-
ferent levels of continuous depolarization, simulated by application of 
K+. Whereas increased potassium increases the bursting frequency of 
the control network, in the presence of RIL the increased potassium 
does not alter the bursting frequency (Fig. 33). These findings indicate 

Fig. 32  A Schematic illustrations of the two balanced QIF networks 
models considered in the present study. The left network consists 
of strongly coupled neurons without noise, while the right network 
consists of weak coupling among neurons with noisy input. B Nearly 
identical rate autocorrelation functions in the two networks. The red 
line (C0) represents the value of the autocorrelation at time 0 and cyan 
line (C∞) is the value of auto-correlation function in the limit of large 
t. C Change in spiking probability for different network connectivity 
strengths (g̃), after being stimulated by a brief input at time t = 0

Fig. 33  Summary of experiment on the effect of riluzole on the 
dependence of burst frequency on potassium concentration. 
Without riluzole (left), the frequency increases steadily with increasing 
potassium concentration. With riluzole present (right), the frequency 
remains essentially constant with increasing potassium concentration
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that INaP is responsible for flexible modulation of respiratory rhythm, 
but there is another mechanism, which can sustain rhythmic activity in 
its absence. We developed a computational model which incorporates 
a Calcium sensitive Non-specific cationic current (IcaN) in addition to 
INaP. Our simulations indicate that IcaN and INaP can maintain the rhythm 
in respiratory neurons in the presence of RIL, and are capable of pro-
viding stable oscillations in the presence of tonic excitation by K+.
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Relaxation training (RT)is a behavioral therapy that has been applied 
in stress management, muscle relaxation and other health benefit. 
However, compared to short-term meditation training, previous stud-
ies did not show the significant differences in brain changes following 
same amount of RT [1,2]. One possible reason might derive from the 
insensitive correlation based routine functional connectivity method 
that could not reveal training-related changes in effective connectiv-
ity (directed information flow) among these distributed brain regions. 
Here, we applied a novel spectral dynamic causal modeling (spDCM) 
to resting state fMRI to characterize changes in effective connectivity.
Twenty-three healthy college students were recruited through campus 
advertisements and received 4  weeks of RT (10  h in total), previously 
reported in our randomized studies [1, 2]. All neuroimaging data were col-
lected using an Allegra 3-Telsa Siemens scanner and processed using the 
Data Processing Assistant for Resting-State fMRI, which is based on SPM 
and Resting-State fMRI Data Analysis Toolkit [3]. For each participant, the 
subsequent standard procedures included slice timing, motion correc-
tion, regression of WM/CSF signals, and spatial normalization [3]. Based 
on previous literature, we specified four regions of interest within default 
mode network (DMN)—medial prefrontal cortex (mPFC), posterior cin-
gulate cortex (PCC), and bilateral inferior parietal lobule (left IPL and right 
IPL), same coordinates as in previous spDCM studies [4]. A standard DCM 
analysis involves a specification of plausible models, which are then allows 
the model parameters to be estimated following Bayesian model selec-
tion. In both pre- and post-RT conditions, the procedure selected the fully 
connected model as the best model with a posterior probability of almost 
1. The fully connected model had 24 parameters describing the extrin-
sic connections between nodes, the intrinsic (self-connections) within 
nodes and neuronal parameters describing the neuronal fluctuations 
within each node. We used Bayesian Parametric Average to quantify the 
differences between pre- and post-RT, and a classical multivariate test—
canonical variate analysis to test for any significances in these differences 
[4]. Our results showed no significant differences in causal relationships 
among the above nodes following RT (all P > 0.05).
Conclusions Four weeks of RT could not induce significant changes 
in effective connectivity among DMN nodes. Long-term RT effect on 
brain changes warrants further investigation.
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Implicit learning (IL) occurs without goal-directed intent or conscious 
awareness but has important influences on our everyday function-
ing and overall health such as environmental adaptation, developing 
habits and aversions. Most of IL studies used event-related poten-
tials (ERPs) to study brain response by taking the grand average of all 
event-related brain signals. How neuron oscillation (EEG frequency 
band) involves in IL remains unknown. Moreover, ERP analysis requires 
brain signals that are not only time locked, but also phase locked to 
the event, therefore the information with phase locked signals are 
missed and not presented in potentials. To address this issue, we 
applied time–frequency analysis and cluster-based permutation test 
in this study.
Fifteen healthy participants were recruited to perform three ses-
sions of triplets learning task (TLT), an IL task commonly used in the 
field [1]. Three successive cues were presented and participants were 
asked to observe the first two cues and only respond to the third cue 
(target) by pressing corresponding keys. During the task, EEG signals 
were recorded. Cluster based permutation on alpha and theta band 
is used to deal with family-wise error rate and in the same time, help 
to find out difference occurred in specific time range along with spa-
tial information among different triplet types.
Base on the behavioral result, overall learning occurs in session1, 
while triplet-specific learning takes place in session2. We find signifi-
cant difference in both alpha (8–13 Hz) and theta (4–8 Hz) frequency 
band. For alpha band, power modulation shows significant differ-
ence between high versus low frequency triplet group in session2 
in the frontal cortex. For theta band, theta power shows significant 
difference between session1 and session3 in the frontal cortex. It 
started from as early as target onset until the end of the trial in high 
frequency triplet group. However, in the low frequency triplet group, 
the power differential occurs later, from around 1000 ms till the end 
of the next trial.
Conclusions Behavioral result showed that the brain learned the regu-
larity of sequence implicitly. Alpha power modulation indicated that 
the brain allocated resource in attention among two different triplet 
types. Theta power modulation showed the difference of memory 
processing and retrieval among two different triplet types. Our results 
indicated that participants did not find the regularity of the triplet 
types till the end of the study, but the brain in fact reacts to these two 
different triplet types differently.
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Downbeat nystagmus (DBN) is a common eye fixation disorder that is 
linked to cerebellar pathology. DBN patients are treated with 4-amino-
pyridine (4-AP), a K channel blocker, but the underlying mechanism is 
unclear. DBN is associated with an increased activity of floccular tar-
get neurons (FTNs) in the vestibular nuclei. It was previously believed 
that the reason for the increased activity of FTNs in DBN is a patho-
logical decrease in the spike rate of their inhibitory Purkinje cell inputs, 
and that the effect of 4-AP in treating DBN could be mediated by an 
increased Purkinje cell activity, which would restore the inhibition 
of FTNs and bring their activity back to normal [1]. This assumption, 
however, has been questioned by in vitro recordings of Purkinje cells 
from tottering (tg/tg) mice, a mouse model of DBN. It was shown that 
therapeutic concentrations of 4-AP did not increase the spike rate of 
the Purkinje cells, but that they restored the regularity of their spiking, 
which is impaired in tg/tg mice [2].
Prompted by these experiments, Glasauer and colleagues performed 
computer simulations to investigate the effect of the regularity of 
Purkinje cell spiking on the activity of FTNs [3]. Using a conduct-
ance based FTN model, they found that changes in the regularity of 
the Purkinje cell input only affected the FTN spike rate when the 
input was synchronized. In this case, increasing the regularity of the 
Purkinje cell spiking resulted in larger gaps in the inhibitory input to 
the FTN and an increased FTN spike rate. These results predict that the 
increased irregularity in the Purkinje cell activity in DBN should lead to 
a decreased activity of the FTNs, rather than the increased activity that 
is found in experiments, and they are therefore unable to explain the 
therapeutic effect of 4-AP.
However, the model by Glasauer and colleagues does not take 
short-term depression (STD) at the Purkinje cell—FTN synapses into 
account. We hypothesized that this absence of STD could explain 
the apparent contradiction between the experimental [2] and com-
putational [3] results. To study the role of STD in the pathology and 
4-AP treatment of DBN, we used a morphologically realistic conduct-
ance based model of a cerebellar nucleus (CN) neuron [4, 5] as an 
FTN model to simulate the effect of irregular versus regular Purkinje 
cell input. The coefficients of variation of the irregular and regu-
lar Purkinje cell spike trains during DBN and after 4-AP treatment, 
respectively, were taken from recordings from wild-type and tg/tg 
mice [6], which served as a model system for DBN. We presented the 
FTN model with synchronized and unsynchronized input and found 
that, for both conditions, irregular (DBN) input trains resulted in 
higher FTN spike rates than regular (4-AP) ones. In the presence of 
unsynchronized Purkinje cell input, the acceleration of the FTN spike 
output during simulated DBN and the deceleration during simulated 
4-AP treatment depended on STD at the Purkinje cell synapses. Our 
results provide a potential explanation for the pathology and 4-AP 
treatment of pathological nystagmus.
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In many neuronal systems that exhibit high trial-to-trial variability 
the time-dependent firing rate is thought to be the main information 
channel for time-dependent signals. However, for nerve cells with low 
intrinsic noise and highly oscillatory activity synchronization, mode 
locking and frequency locking seem to be of major importance. Here, 
we present an extension to the linear response theory [1, 2] for the 
leaky integrate-and-fire neuron model to second order and demon-
strate how the time-dependent firing rate can exhibit features that 
are reminiscent of mode-locking and frequency-locking. Although 
our theory allows to predict the response to general weak time-
dependent signals, the second-order effects are best demonstrated 
using cosine signals as in Fig. 34A. We consider a leaky integrate-and-
fire model for which the subthreshold voltage, Fig.  34B, is subject to 
the signal and to Gaussian white noise. Whenever the voltage hits the 
threshold, it is reset to zero and a spike time is recorded in the raster 
plot, Fig. 34C. The firing rate can be obtained numerically by averag-
ing over the spike trains or via a perturbation approach similar to the 
weakly nonlinear analysis in [3]. We find that the firing rate can exhibit 
pronounced nonlinear behavior as can be seen from the excitation of 
a harmonic oscillation in Fig. 34D. Further effects that are not shown in 
Fig. 34 but are revealed by our analysis are a signal-dependent change 
of the mean firing rate and a pronounced nonlinear response to the 
sum of two cosine signals.
Summary and conclusions Here we demonstrate that the time-
dependent firing rate (equivalent to the instantaneous population rate 
for neurons driven by a common stimulus) can exhibit pronounced 

Fig. 34  Nonlinear modulation of the firing rate by a cosine signal. A 
Signal, B subthreshold voltage, C rasterplot, D The time-dependent 
firing rate (red, noisy trace) is significantly different from the linear 
theory (dashed line) but is accurately described by the second-order 
response (solid line)
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nonlinearities even for weak signal amplitudes. The linear theory does 
not only give quantitatively wrong predictions but also fails to capture 
the timing of the modulation peaks. Hence, our theory has not only 
implications for sinusoidal stimulation that is commonly used to study 
dynamic properties of nerve cells but also demonstrates the relevance 
of the nonlinear response for the encoding of complex time-depend-
ent signals.

Acknowledgements: This work was supported by the BMBF (FKZ: 
01GQ1001A) and the DFG (research training group GRK1589/2).

References
1.	 Brunel N, Chance FS, Fourcaud N, Abbott LF. Effects of synaptic noise 

and filtering on the frequency response of spiking neurons. PRL. 
2001;86(10):2186–9.

2.	 Lindner B, Schimansky-Geier L. Transmission of noise coded versus addi-
tive signals through a neuronal ensemble. PRL. 2001;86(14):2934–7.

3.	 Brunel N, Hakim V. Fast global oscillations in networks of integrate-and-
fire neurons with low firing rates. Neural Comput. 1999;11(7):1621–71.

P53 
Behavioral embedding suggests multiple chaotic dimensions 
underlie C. elegans locomotion
Tosif Ahamed1, Greg Stephens1,2

1Biological Physics Theory Unit, Okinawa Institute of Science 
and Technology, Okinawa 904‑0495, Japan; 2Department of Physics 
and Astronomy, Vrije Universiteit Amsterdam
Correspondence: Tosif Ahamed ‑ tosif.ahamed@oist.jp   
BMC Neuroscience 2016, 17(Suppl 1):P53

Behavior is the primary output of an organism; genetic and neu-
ral circuits, no matter how complex, seek to optimize this output. A 

quantitative understanding of behavior is therefore crucial to our 
understanding of biological processes. A key characteristic of natural 
behavior is variability; even the most stereotyped movements such 
as reaching to a target, which are similar in aggregate, can vary sub-
stantially from trial to trial. In motor control such variability is often 
ascribed to noise in the sensorimotor control circuit. On the other 
hand, deterministic dynamical systems can generate variability intrin-
sically when operating in a chaotic regime. Differentiating between 
the two is important as they generate separate mechanistic predic-
tions about how variability is generated in the brain. Here, we use 
tools from nonlinear dynamics to understand behavioral variability 
in the movement of C. elegans. We reconstruct a 6-dimensional phase 
space by developing a novel extension of multivariate singular sys-
tems analysis [1] and applying it to a low-dimensional but complete 
representation of worm postures obtained from videos of freely forag-
ing worms [2]. At a coarse level, the reconstructed phase space natu-
rally separates into three stereotyped behaviors: forward locomotion, 
reversals and turns (Fig.  35A, B). However, there is also substantial 
variability at finer scales, which is reflected in positive maximal Lya-
punov exponents (MLE) [3] within trajectories corresponding to each 
individual behavior (Fig. 35C). The MLEs calculated this way differ sig-
nificantly from MLEs calculated from a random shuffle of the data that 
preserves its linear structure (or power spectrum). This implies that the 
positive MLEs, which indicate sensitive dependence to initial condi-
tions in C. elegans behavior are a result of nonlinear structure present 
in the dynamics. These results are strengthened by the fact that we 
observe little inter-animal variability in the estimated values of MLE, 
additionally the values also agree well with the estimated time scales 
of the three behaviors. Based on these observations we propose that 
C. elegans behavior might be driven by the activity of multiple cou-
pled chaotic attractors. We expect our analysis will also be relevant in 
understanding global neural dynamics, recently imaged in freely-mov-
ing worms [4].
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Understanding how assemblies of neurons encode information 
requires recording of large populations of cells in the brain. In recent 
years, multi-electrode arrays and large silicon probes have been devel-
oped to record simultaneously from thousands of electrodes packed 
with a high density. However, these new devices challenge the clas-
sical way to do spike sorting. First, the large number of electrodes 
preclude approaches based on manual clustering. Even automatic 
approaches need to be fast enough to handle the amount of extracel-
lular data. Second, the density of the electrodes is high enough so that 
a single spike will be detected on many electrodes. So the different 
channels must be processed simultaneously. Third, within a large and 
dense array of electrodes, overlapping spikes are rather the rule than 
the exception, and it is known that classical clustering methods can-
not easily capture the synchronous occurrence of two spikes from two 
different cells [1].

Fig. 35  Phase space portrait and divergence of nearby trajectories. 
A The top panel shows the orthogonal relationship between the 
forward and reversal behaviors, while the bottom panel shows the 
transition from reversal to an omega turn in the phase space. To aid 
visualization color coding is done by radial distance from the origin. 
B Escape response visualized in the phase planes. When the worm 
is hit with a laser impulse, it makes a reversal, followed by an omega 
turn and then resumes forward crawling. Color map encodes time 
in frames. C Divergence curves for the three different attractors. 
Y-axis shows the exponential of the divergence between neighbor-
ing trajectories plotted on a semilog scale on the y axis, each curve 
corresponds to a single worm (n = 12). λL is estimated by calculating 
the slope of the linear region. Boxplots show the range of λL obtained 
from different animals
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Here we developed a new software to solve all these aforementioned 
issues, based on a highly automated algorithm to extract spikes from 
extracellular data, and show that this algorithm reached near optimal 
performance both in vitro and in vivo. The algorithm is composed of 
two main steps: (1) a “template-finding” phase to extract the cell tem-
plates, i.e. the pattern of activity evoked over many electrodes when 
one neuron fires an action potential; (2) a “template-matching” phase 
where the templates are matched onto the raw data to find the loca-
tion of the spikes. The manual intervention by the user is reduced to 
the minimal, and the time spent on manual curation did not scale with 
the number of electrodes. For the template-finding phase, we start by 
detecting all the possible times in the raw data that could contain a 
spike. Spikes are then clustered into groups using a density-based 
clustering derived from [1], and we then extract the template corre-
sponding to each group. In the fitting phase, we match the templates 
onto the raw data with a method that allows amplitude variation for 
each template [2]. The algorithm is written in Python and is entirely 
parallelized such that it can handle large amount of data. It also pro-
vides a graphical user interface so that the output of the algorithm can 
be checked, and to refine the sorting.
We tested our algorithm with large-scale data from in vitro and in vivo 
recordings, from 32 and up to 4225 electrodes. In all cases, we esti-
mated its performance on data with ground truth, i.e. cases where the 
solution to the sorting problem is at least partially known. The perfor-
mance was always close to the maximal expected performance. There-
fore, our method appears as a general solution to sort spikes from 
large-scale extracellular recordings.
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When tracking fine motor behaviors in human body parts, passive 
marker-based tracking is one of the best-suited methods not only 
because of its high spatial precision and temporal resolution, but also 
allowing high degrees-of-freedom [1]. However, the passive marker 
approach suffers from identity confusion problem (Fig.  36A) between 

the markers. As the speed of motion increases, sufficient sampling rate 
is required to avoid the problem. In a recent study [2], we reported 
that the problem still occurs even with the sampling rate significantly 
higher than the Nyquist sampling rate. The study suggested a sampling 
rate criterion to avoid identity problem for the worst-case condition.
In this poster, the confusion problem is tested in more realistic human 
motor control behavior. Grids of 3 × 3 markers with different distances 
(1, 1.5 and 2  cm) were attached to a skilled piano player’s right hand 
(Fig.  36B). The experimental task was repeated right-hand alterna-
tive keystrokes between D#5 and D#7 (two octave) with a tempo of 
176 bpm for 10 s. This is an excerpt from Liszt’s La Campanella, which 
requires fast horizontal jump of the right-hand. These motions were 
recorded with 7 optical motion capture cameras (Qualisys Ltd. Oqus 
400) changing the sampling rates from 50 to 200 Hz. The maximum fre-
quency components of these hand movements were lower than 8 Hz.
The probability of successful tracking is measured by counting the 
number of successful repetition of the center marker (Fig.  36C). Esti-
mated required sampling rates for successful tracking (where the 
probabilities reach 100 %) were 101, 137z, and 181 Hz (fitted to piece-
wise linear functions by expectation maximization). The theoretically 
predicted values are 176, 235, and 353 Hz [2].
We found that the required sampling rates are lower than the theoreti-
cal criterion. This is because the theoretical prediction was developed 
to avoid the worst case where marker trajectories overlap from perfect 
periodic motion; not realistic for human movement, which has vari-
ability. Our results show that in practical situations involving human 
movements, the sampling criterion can be weakened considerably. 
But, it should be note that a motion slower than 10  Hz still requires 
more than 100 Hz, which far exceeds the Nyquist sampling rate.
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Objects are represented in sensory systems by continuous mani-
folds due to sensitivity of neuronal responses to changes in physical 
features such as location, orientation, and intensity [1]. It has been 
hypothesized that object identity can be decoded from high level rep-
resentations, by simple downstream readout networks. What makes 
certain sensory representations better suited for invariant decoding 
of objects by downstream networks? We generalize Gardner’s statisti-
cal mechanical analysis of points [2, 3] and establish a replica theory of 
linear classification of manifolds synthesizing statistical and geomet-
ric properties of high dimensional signals. We show how changes in 
the dimensionality, size, and shape of the object manifolds affect the 
capacity and the distribution of configurations in downstream percep-
trons (Fig. 37).
Our analysis shows how linear separability of the manifolds depends 
intimately upon the dimensionality, size and shape of the the mani-
folds. These properties are expected to differ at different stages in the 
sensory hierarchy. Thus, the present work enables systematic analysis 
of the degree to which this reformatting enhances the capacity for 
object classification in different sensory processing stages. The present 
work lays the groundwork for a computational theory of neuronal pro-
cessing of objects in the presence of variability, providing quantitative 
measures for assessing the properties of representations in biological 
and artificial neural networks.

Fig. 36  Experimental design and result. A Marker confusion. Grey 
dots are markers. d1, d2 are the distances between markers, ts is the 
sampling latency, v is speed of marker. Green lines show the markers, 
which identified as same. Left correct identification right example of 
marker confusion. B Experimental set up. Red dots are keys to press by 
the thumb and the little finger during repeats. C The probabilities of 
continuous marker identification
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The pre-Bötzinger complex (PBC) is an essential rhythmogenic brain-
stem nucleus located in the ventrolateral medulla. Rhythmic output 
from the PBC is relayed through premotor and motor neurons to the 
diaphragm and intercostal muscles to drive the active inspiratory 
phase of respiration. The specific biophysical mechanisms responsible 
for generating rhythmic bursting and network synchronization are not 
well understood and remain a highly controversial topic within the 
field. A wide variety of biophysical mechanisms have been proposed to 
explain the origins of intrinsic bursting and rhythmogenesis including 
persistent sodium currents [1, 2], calcium-activated nonspecific cation 
channels [2, 3], inositol trisphosphate (IP3) signaling [2], and synaptic 
mechanisms [4]. Computational simulations of these models produce 
similar patterns of bursting and network synchronization compared 
to each other and experimental recordings despite having different 
underlying mechanisms. In this theoretical study we demonstrate a 
method to differentiate between biophysically distinct models using 
phase response curves (PRCs). PRCs characterize the change in phase 
of an oscillator as a function of the timing of a perturbation to the sys-
tem. Depolarizing and hyperpolarizing perturbations were generated 
by incorporating the light sensitive channels, Channelrhodopsin-2 

and Archaerhodopsin, respectively, into our conductance based PBC 
models. A library of model PBC neurons was generated by varying the 
conductance of each ion channel over equally spaced intervals. PRCs 
were then calculated for each neuron capable of producing rhythmic 
bursting. Preliminary results found that in general depolarizing pertur-
bations produced qualitatively similar PRCs and could both advance 
or delay the next cycle. Conversely, hyperpolarizing perturbations pro-
duced qualitatively distinct PRCs depending on the combination of 
conductance magnitudes. In conclusion, these PRCs provide a method 
for differentiating models of intrinsic bursting and rhythm generation 
based on underlying biophysical mechanisms and provide a means for 
interpreting experimentally derived PRCs from the PBC.
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Oscillatory local field potentials (LFPs) are extracellularly recorded poten-
tials with frequencies of up to ~500 Hz. They are associated with a num-
ber of physiological functions in health and disease and complement the 
information obtained by analysis of spikes. Because multiple neuronal 
processes contribute to the LFP, the signal is inherently ambiguous and 
more difficult to interpret than spikes [1]. However, the biophysical origin 
of LFPs is well understood in the framework of volume conductor theory 
[4]. Using “LFPy” [3], a python package that implements this framework, 
we construct a pyramidal cell model in CA1 hippocampus which gener-
ates extracellular potentials. Our pyramidal cell model receives inhibitory 
synaptic input from four different types of CA1 interneuron populations. 
These interneuron models are taken from a previous, experimentally 
constrained inhibitory network model developed to understand sponta-
neous theta (4–12 Hz) rhythms as expressed in an intact hippocampus 
preparation [2]. We investigate the contribution of the different inhibi-
tory cell type interactions to the extracellular potential. In our current 
model we placed a virtual electrode probe along the vertical axis of the 
pyramidal cell to record its output in a layer dependent manner. We iden-
tified distinct regimes where specific interneuron cell type interactions 
distinctively affect the polarity, amplitude and frequency of the LFP sig-
nal (Fig. 38). We also distinguish between regimes where synaptic con-
nection strengths preserve the extracellular potential frequency versus 
those that lead to lag or abolishment of the extracellular rhythm. In this 
way, our model helps us understand the cellular contributions to extra-
cellular field patterns that arise in experimental recordings as a function 
of biologically relevant network states when the efficacy of inhibitory 
connections dynamically varies.

Fig. 37  Theoretical predictions (lines) and numerical simulation 
(markers) are shown. A1 Classification of line segments. (Solid) lines 
embedded in the margin, (dotted) lines touching the margin, (striped) 
interior lines .A2 Capacity α = P/N of a network N = 200 as a function 
of R (line length) with margins κ = 0, 0.5. A3 Fraction of configura-
tions at capacity with κ = 0. (red) lines in the margin, (blue) touching 
the margin, (black) interior lines. B1 D2 balls, B2 capacity α = P/N 
for κ = 0 for large D = 50 and R ∝ D−1/2 as a function of R

√

D. (Blue 
solid) αD(0, R) compared with α0(R

√

D) (red square). (Inset) capacity α 
at κ = 0 for 0.35 ≤ R ≤ 20 and D = 20: (blue) theoretical α compared 
with approximate form (1 + R−2)/D (red dashed). C1 2D L1 balls. C2 
Fraction of configurations as a function of radius R at capacity with 
κ = 0. (red) entire manifold embedded, (blue) touching margin at a 
single vertex, (gray) touching with two corners (one side), (purple) 
interior manifold
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Feed-forward networks often have many more output neurons than 
input neurons. This is thought to enable them to project neuronal 
activity patterns into a higher dimensional space. When such expan-
sion recoding is combined with sparse representations it provides 
a powerful way to increase the separation between activity patterns 
[1–4]. In the input layer of the cerebellar cortex, granule cells (GCs) 
integrate sensorimotor input from the less numerous mossy fibre 
afferents (MFs), with each GC sampling from only 2 to 7 local MFs. 
Recent work has revealed that this sparse sampling of input by GCs 
provides an optimal tradeoff between information transmission and 
sparsification over a range of activity levels [4]. Moreover, theories 
of cerebellar function have linked expansion recoding under sparse 
regimes to pattern separation and associative learning [5, 6]. However, 
the relationship between the feedforward excitatory synaptic connec-
tivity and the learning performance is poorly understood.
To investigate how the number of MF inputs per GC affects the perfor-
mance we simulated a model of an 80µ ball of the MF-GC feedforward 
layer with either random or clustered MF activation. The connectivity 

profile of the network was constrained with recent anatomical data [4]. 
MF stimulation was modeled as random binary patterns with varying 
levels of population activity and correlation, and GCs as high-thresh-
old rectified linear units. We then measured the speed at which gran-
ule cell population activity can be used to classify random patterns via 
backpropagation learning as the number of synaptic inputs was var-
ied. We found that the largest speedup of learning in the GC activity 
(compared to learning based on the MF inputs) occurred when each 
GC received only a few synaptic inputs. We probed this result by ana-
lyzing the eigenvalues of the covariance matrix of the population-level 
activity, finding that sparse sampling of MF inputs allows GCs to both 
expand and decorrelate MF activity patterns. Interestingly, this feature 
is robustly preserved even in the presence of clustered inputs. In sum-
mary, we find that sparse sampling combined with sparsification of 
activity allows GCs to optimize both pattern expansion and pattern 
decorrelation.
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Computational models of spiking cortical networks are implemented 
using a variety of approaches from large scale models with simplified 
point neurons and anatomically inspired connectivity, to networks on 
smaller scales with morphologically and biophysically detailed neu-
rons. In between these scales many published models have used inter-
mediate representations of neurons (e.g. conductance based with one 
compartment or abstract morphologies). These studies, and the asso-
ciated modelling scripts, provide many potential starting points for 
experimental and theoretical neuroscientists wishing to use biologi-
cally constrained cortical models in their investigations. In addition, 
there are an increasing number of public neuroinformatics resources 
which are providing structured experimental data on the electrophysi-
ology, connectivity and morphology of cortical neurons. While these 
modelling and experimental resources should lead to a proliferation 
in well constrained cortical models there remain a number of practi-
cal and technical barriers to more widespread development and use of 
such models among researchers.
The Open Source Brain (OSB) initiative (http://www.opensourcebrain.
org) is a resource for collaborative development of models in compu-
tational neuroscience. Sharing of models in standardised represen-
tations such as NeuroML 2 [1] and PyNN is encouraged and actively 
supported on the site. Conversion of cell and network models to 
NeuroML allows them to be visualised and analysed in 3D in a stand-
ard web browser through the OSB website. We have recently added 

Fig. 38  Example of the spatial attenuation of the extracellular poten-
tial signal for a particular set of inhibitory connections. The temporal 
traces at two electrode locations are represented with blue and green 
dots accordingly. Average over the absolute maximum extracellular 
potential amplitudes is shown in 2D space. According to the sche-
matic the rate of the extracellular signal spatial attenuation generated 
by the pyramidal cell is approximately 400 μ

http://www.opensourcebrain.org
http://www.opensourcebrain.org
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a feature to allow simulations to be executed on our servers (e.g. by 
conversion to NEURON) and the results displayed within the browser. 
We have been actively converting published cortical models to Neu-
roML format and making these available on OSB. These range from 
point neuron models [2, 3], to abstract [4] and detailed [5] multicom-
partmental models. We are working to develop these and others into a 
curated set of cortical models in a common format which can be used 
as the basis for new models. We have also developed frameworks for 
importing resources from neuroinformatics datasets such as the Allen 
Institute Cell Types database (http://celltypes.brain-map.org) and Neu-
roMorpho.org (http://neuromorpho.org). We have greatly improved 
compatibility between PyNN and NeuroML, allowing the modeller 
freedom to choose between procedural (Python) and declarative 
(XML) model specification. We have also extended a model optimi-
sation framework (https://github.com/NeuralEnsemble/NeuroTune) 
facilitating generation of new NeuroML models from electrophysi-
ological data. All of this work is aimed at making existing cortical mod-
els easier to access, visualise and simulate, simplifying development 
of new models based on these prototypes, and ensuring the latest 
experimental datasets can be used to constrain and validate complex 
models of cortical function.
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Adaptation refers to the general phenomenon that a neural system 
dynamically adjusts its response property according to the statistics of 
external inputs [1]. In response to a prolonged constant stimulation, 
neuronal firing rates always first increase dramatically at the onset of 
the stimulation; and afterwards, they decrease rapidly to a low level 
close to background activity (see Fig.  39A). This attenuation of neu-
ral activity seems to be contradictory to our experience that we can 
still sense the stimulus after the neural system is adapted [2]. Thus, it 
prompts a question: where is the stimulus information encoded dur-
ing the adaptation? Here, we investigate a computational model in 
which the neural system employs a dynamical encoding strategy dur-
ing the neural adaptation: at the early stage of the adaptation, the 
stimulus information is mainly encoded in the strong independent 
firings; and as time goes on, the information is shifted into the weak 
but concerted responses of neurons (see Fig. 39B). We find that short-
term plasticity [3], a general feature of synapses, provides a natural 
mechanism to achieve this goal. Furthermore, we demonstrate that 
with balanced excitatory and inhibitory inputs, this correlation-based 
information can be read out efficiently. The implications of this study 
on our understanding of neural information encoding are discussed.

Conclusions We have explored a dynamical encoding strategy in 
neural adaptation. By constructing a computational model, we show 
that this can be achieved through varying the information encoder 
during the adaptation, that is, at the early stage of the adaptation, the 
stimulus information is mainly encoded in the strong and independ-
ent firings of neurons; and as time goes on, the stimulus information is 
shifted into the weak but concerted responses of neurons. This shift of 
information encoder can be naturally implemented via STP, a general 
feature of synapses.
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There is training room for a mouse. In the room, there are two lights 
which is used as a cue for reward, and there are two reward zone. 
If a mouse go left reward zone when the left light cue turns on, the 
mouse gets reward, and if a mouse go right reward zone when the 
right light cue turns on, the mouse gets reward. The reward is given 
by brain stimulation from the electrode implanted in MFB. A pair of 
mice trained individually in the room in order to make them under-
stand the meaning of two light cues. After individual training, the 
two mice released in the same training room at the same time. In this 
experiment, 15 out of 19 pairs showed tendency to separate their own 
reward zone.
In order to explain the rodent behavior, we made a computational 
rodent model. This model is based on Rescorla–Wagner Model. We 
defined a success rate as probability that a mouse is in the correct 
reward zone when any cue is given. In each trial, the model mouse 
learns the left success rate and the right success rate by reinforcement 
learning. In this model, we assume that success rates for the left cue 
and right cue are independent and we eliminate social interaction 
between two model mice.
Results The simulation result is given in below figures. Figure 40A is a 
graph of success rate of a pair of model mice which shows rule between 
them. You can see the right que success rate of mouse1 and the left que 
success rate of mouse2 converge to 1, but the left que success rate of 
mouse1 and the right que success rate of mouse2 converge below 0.4. 
It means that mouse1 tends to move only when the right cue is given, 

Fig. 39  Firing rates, synaptic efficacy and cross-correlation change 
during the adaptation. A The time course of firing rates and the 
averaged synaptic efficacy of the network during the adaptation. 〈ux〉 
is temporally enhanced during the adaptation due to the STF, but in 
the long term, strong STD drives the synaptic efficacy to background 
level. Stimulation is during 0–1500 ms. B The enhancement of cross-
correlation between neurons during the adaptation
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and mouse2 tends to move only when the left cue is given. Our model 
mice, however, shows this rule with less probability than actual behav-
ior result. Figure 40B, C 43 % of model mice showed rule, but 79 % of 
actual mice showed rule in behavior experiment.
Conclusion If we assume the mouse as a simple independent creature 
which doesn’t have social element, they show rules with lower prob-
ability than the actual mouse in behavior experiment. It means that 
we can’t regard the mouse as a non-social creature. Therefore, we have 
to add the social factors such as empathy or cooperation to simulate 
actual rodent behavior.
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The visual system recognizes objects in natural scenes without dif-
ficulty, even when most objects are partially occluded. The neural 
basis of this capacity is unknown. Recent results from primate area 
V4, an intermediate stage in the shape processing pathway, suggest 
that feedback from higher cortices may be important for the emer-
gence of V4 shape selective signals [1] when animals are engaged in 
discriminating partially occluded shapes. Here we implement predic-
tive coding, which has been previously applied to explain responses 
in early visual areas [2], to investigate possible mechanisms under-
lying robust discrimination of partially occluded shapes in V4. We 
propose that higher cortical areas such as prefrontal cortex (PFC) 
make predictions about V4 activities; when these PFC signals are 
relayed via feedback to V4, they can reproduce the delayed peak 
of V4 responses observed in experiments. With a model (Fig.  41A) 
composed of PFC and V4 units that are selective for different input 
features, we capture response characteristics of V4 and PFC meas-
ured in experiments, by combining feed-forward sensory inputs 
and feedback predictions to maximize the posterior probability of 
the responses. We found that inclusion of the feedback predictions 
results in stronger shape-selective responses across a range of occlu-
sion levels (Fig. 41B), thus maintaining robust discrimination of par-
tially occluded shapes (Fig. 41C).
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Neurons in the brain often exhibit complex activity patterns, with 
fluctuations on time scales of several seconds. The generation of com-
plex patterns is critical for directing movements, and is likely to be 
involved in processing time-varying input (such as speech). However, 
it is not yet understood how networks of spiking neurons, with time 
constants of only a few milliseconds, could exhibit such slow dynam-
ics. This should be contrasted with rate-based neural networks, which 
can be easily trained to generate arbitrary complex activity patterns in 
a reservoir-based manner [1] by an iterative training method (FORCE 
learning [2]). So far, however, FORCE learning has not led to successful 
training of spiking neural networks.
Here, we analyze the stability of the networks that result from such 
learning schemes. For linear rate-based networks, we can analytically 
predict the full dynamic property of the networks. As the network’s 
recurrent connectivity reaches the “edge of chaos”, the neuronal 
activity exhibits a broad distribution of phase, providing appropriate 
basis for generating the fluctuations. For weaker recurrent connectiv-
ity, however, the phase distribution becomes much narrower. In this 
case, the trained network exhibits highly non-normal structure, which 
becomes unstable even under small perturbations. Our analysis also 
illuminates the source of instability in training spiking networks, 
which is mainly due to the rectified nature of the neuronal output. 
In numerical simulations, rectified-linear rate networks exhibit nar-
row phase distribution, even with strong recurrent connectivity near 
the edge of chaos. Moreover, introducing spiking-dynamics further 

Fig. 40  A Success rate of two model rats which shows rule between 
them (blue dots represent the left cue success rate of model rat1, 
orange plus represent the right cue success rate of model rat1, yellow 
cross represent the left cue success rate of model rat2, and purple 
line represent the right cue success rate of model rat2). B Simulation 
result (600 iterations). C Behavior experiment result (19 pairs)

Fig. 41  A Schematic of the V4-PFC network model. B Optimal 
representation of the shape-selective V4 responses as a function of 
occlusion level. C Neuronal responses with a noise projected onto the 
test shape-selective (unit 1)/non-selective (unit 2) V4 response plane, 
before (top) and after (bottom) the feedback inputs from PFC. Feed-
back inputs move the responses away from the unity line, improving 
shape discriminability under occlusion
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reduces the width of the distribution, leading to highly unstable 
network dynamics. Our result reveals the limitation of the reservoir-
based approaches, and may lead to more stable, alternative training 
methods.
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The brain must be able to quickly identify environmental states based 
on sensory inputs and select appropriate actions. To obtain neurons 
that respond selectively to states with short response latencies, a neu-
ral plasticity rule is required. Spike timing dependent plasticity (STDP) is 
known to find the earliest predictors of spatiotemporal spike patterns 
without supervision. While this feature of STDP is often seen as a hin-
drance when aiming to reproduce an exact target output spike train, 
we exploit it to generate short-latency, reliable pattern recognition.
There are, however, some difficulties in using STDP in real-world 
continuous scenarios. In models, presynaptic firing rates are often 
assumed to be stationary or have constant correlation for simpli-
fication, and STDP rule parameters must be closely fitted to form a 
stable fixed point in the postsynaptic firing rate and normalise post-
synaptic activity. Any deviation from these requirements can cause 
the postsynaptic neuron to become quiet before it is able to form 
strong selectivity, or exhibit a runaway effect that makes the neuron 
responsive to a large set of inputs. Soft-bound STDP with a weight-
dependent attractor has been suggested as a means for stabilising 
postsynaptic activity, but this actively hinders separation of spati-
otemporal patterns from background noise: as during learning the 
synaptic weight moves away from the attractor, noisy input becomes 
more likely to undo these weight changes. Furthermore, activity-
dependent scaling also aims to keep the postsynaptic neuron active 
indefinitely, so neurons may lose any learned selectivity when 
enduring long periods of background noise. Interpolations between 
different types of STDP have been suggested, but a problem of bal-
ance between premature selectivity and longtime noise robustness 
remains.
We solve this dilemma by including a slow continuous potentia-
tion in our model, which depends on metabolic cost of maintaining 
strong synapses and slowly vanishes as neurons become selective. It 
is independent of pre- or postsynaptic activity and can recover silent 
neurons if a metabolic cost function allows it to. Together with neg-
ative-integral STDP as taken from experimental data, it stabilises the 
activity of untrained neurons for a much wider range of rule param-
eters and heterogeneous input activity. Our model maintains a uni-
modal weight distribution while the postsynaptic neuron has not yet 
become selective, but does not impair the formation of selectivity 
to spatiotemporal patterns. Selectivity is quickly achieved as soon 
as patterns are present, even after enduring long periods of noise. 
Connections that only present noise, represent only other patterns, 
or present only late parts of a trained pattern become ineffective as 
the neuron becomes selective, and may be pruned. Any selectivity 
is hence ensured to represent actual spatiotemporal spike patterns 

that were at some point present in the postsynaptic neuron’s inputs. 
This makes the process of training neurons to detect environmental 
states encoded as spatiotemporal patterns more robust to variations 
in input statistics and rule parameters, thus easing application in 
larger-scale networks.
Our model of fast pattern detection may apply specifically to the stria-
tum of the basal ganglia where fast reliable decisions need to be made 
within milliseconds. Unsupervised learning should coexist with rare 
dopaminergic reinforcement to continuously form new representa-
tions of environmental events and decide which of these events are 
behaviourally important and which can safely be ignored.
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Standard approaches for modeling the neuronal effects of electri-
cal fields and currents (such as [1, 2]) apply transmembrane current 
to Hodgkin–Huxley membrane patches without regard to ion fluxes 
and conservation of ions inside and outside the cell. We propose cel-
lular models that reflect polarization and preserve the biophysics of 
the spaces the neurons are embedded within. By including ion fluxes 
and maintaining conservation of mass and charge, the gradients of 
ionic concentrations both within and outside of the neuron can be 
accounted for. This requires characterizing the ionic fluxes with elec-
trodiffusion, such that ionic charge gradients as well as ionic concen-
tration gradients drive flux. This electrodiffusion mechanism, derived 
from Nernst-Planck flux equation, not only allows for more accurate 
modeling of physiological and pathophysiological conditions with 
substantial ionic and volume changes, but it also provides a means 
to model application of electrical stimulation. The model being devel-
oped here builds on recent one-compartment model development 
in [3] that extends the Hodgkin–Huxley formalism in several distinct 
ways, most notably in using conservation to track all ion fluxes and 
volume changes to determine the extra- and intra-cellular concen-
trations. The proposed model also extends the model in [3] to a two 
compartment model which allows for simulation of neuronal polari-
zation with control applied in the direction of a soma-dendritic axis.
We first characterize the resultant model dynamics in the absence 
of any control stimulus and compare these to the dynamics seen 
with standard diffusion. In particular, the dynamics are characterized 
through trajectories of dynamically evolving variables, with a focus on 
bifurcation structure at points where the dynamics transition from dif-
ferent states such as normal firing, seizure, or spreading depression. 
We then simulate the effects of applying excitatory or inhibitory con-
trol on these dynamics and optimize the dynamics of the neuron to 
be consistent with experimental evidence. Such a model gives very 
different results from the customary approach to modeling the effects 
of electrical stimulation, where the stimulation is applied internally or 
externally to a neuron without taking the nature of the charge carri-
ers present into account. There are a variety of effects of excitatory and 
inhibitory stimulation observed now that could not be possible before, 
and we can describe the trajectories of the effects of such stimulation 
in ways that shed light on multiple experimental scenarios.
This type of model development offers the ability to understand a 
wide variety of previously unexplained experimental observations for 
both excitatory and inhibitory stimulation. Doing so offers a platform 
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for us to study electrical feedback control of neuronal systems and to 
offer model-based control strategies for pathological dynamics such 
as seizures and spreading depression.
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A major issue in using spiking neural circuits for pragmatic tasks such 
as speech recognition is how to parameterize them. Here, we apply a 
hybrid Differential Evolution/Markov Chain Monte Carlo (DE/MCMC) [1, 
2] approach to estimate optimal parameters for a spiking neural circuit 
that is used for real time speech recognition [3] from raw auditory input 
using PSWEEP2 (rveale.com/software.php). To avoid the expensive 
training step, we use a surrogate measure of word recognition perfor-
mance. Specifically, we maximize average within-word similarity in the 
neural circuit’s state space trajectory, while simultaneously minimizing 
between-word similarity. We executed the algorithm for 7000 genera-
tions (48 h of runtime) using 2016 cores of the super computer Big Red 
II at Indiana university. The average fitness increases significantly with 
successive generations. Panel a is a visualization of the first 3 principle 
components of the state space for the exemplars of each different word 
category (shown as different colors). The different categories move to 
take more distant trajectories through the state space with successive 
generations. We verify that the state-space separation is a good sur-
rogate measure of word recognition performance by taking the set of 
circuits with the highest fitness from the first, middle, and last 100 gen-
erations and training readout neurons for the 7-word corpus. Word rec-
ognition performance increases from 19 to 71 to 85 % (Fig. 42).
Finally, we evaluated the performance benefit of adaptation to sen-
sory stimuli via synaptic plasticity mechanisms, to make pragmatic 
use of our previous work investigating auditory habituation [4]. We 
take the most performant parameter points that were found during 
the parameter sweep, and test their fitness before and after expo-
sure to 100 presentations of the word stimuli while a nearest-neigh-
bor temporally asymmetric Hebbian plasticity model of spike timing 
dependent plasticity (STDP) is implemented in all excitatory synapses. 
Although sensitive to STDP model parameters, Panel B shows that 
word recognition performance can be improved by as much as 8 % by 
familiarizing a neural circuit to the type of sensory stimulus that it will 
be used to compute. This follows previous findings by Triesch et al. [5], 
who reported similar effects in non-spiking neural networks.
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The brain is a complex nonlinear dynamic system comprising multiple 
different types of subsystems. Each subsystem encodes different types 
of information, and its states are context-dependent. Unlike sensory 
or motor processing occurring at relatively early or terminal stages 
of functional hierarchy, cognitive processes, including learning, infer-
ence, and top-down attention, require interactions between brain’s 
multiple subsystems. The associated neural dynamics inevitably leave 
an imprint on neural activity patterns over a wide areas of cortex.
Considerable progress has been made toward understanding such func-
tional network dynamics. This includes the causal connectivity [1], its 
extension to distinguish causality from correlation within nonseparable 
weakly connected dynamic systems [2], and the integrated information 
theory to quantify the effect of a neuronal network connectivity on the 
increase in the amount of information above and beyond the capability of 
a single locally connected network [3, 4]. However, none of these methods 
is applicable to real-time analyses when the network size is large.
Here I develop a simple and efficient computational framework for 
analyzing cortical dynamics both in time and space, arising from 
complex interactions between brain’s multiple subsystems. Accom-
modating the fact that both a covariance and a gram matrix can be 
computed by using a combination of a certain idempotent matrix with 
a data matrix, I derive a set of matrix operators F, with which one set 
of eigenvectors associated with a covariance matrix of data and of 
mean-corrected data can be transposed to another set of eigenvec-
tors associated with a gram matrix, and vice versa (see Fig.  43). For 
example, suppose that a d-by-n data matrix is a set of time-series data 
recorded from multiple locations of cortices where d and n refers to 
the number of electrodes and time points, respectively, and d ≪ n. 
One can then perform a singular value decomposition (SVD) for the 
d-by-d covariance or gram matrix to obtain an associated eigenvector 
set, followed by applying matrix operator F′ to the eigenvector set to 
convert it to the eigenvector set of their counterparts. There is no need 
to perform SVD for n-by-n matrix whose computational load is high. If 
n ≪ d, then one could simply start with performing the SVD for the 
n-by-n matrix, followed by applying the matrix operator F to its eigen-
vector set. It is noted that the acquired d-by-1k eigenvectors and n-by-
1k eigenvectors correspond to dominant cortical neural activities and 
phase difference distributions, respectively.
Conclusion An efficient computational framework for analyzing corti-
cal dynamics both in time and space is proposed, taking into account 
the relationship between a covariance and a gram matrix. For analyzing 

Fig. 42  A Fitness evolution generation 0–4000 (first 3 principle 
components). Each color is a different word class, each line a different 
utterance token of the word. B Change in state space trajectory from 
STDP adaptation
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neural data acquired from multiple locations of cortices, the frame-
work replaces the SVD with a simple matrix operator F so as to reduce a 
heavy computational load of performing SVD on large-size data matri-
ces. In doing so, it allows efficient bidirectional transformation between 
dominant neural activities and phase difference distributions.
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Neurons in the adult visual cortex of mice prefer to make synapses 
with neurons responding to similar visual features. As such a bias in 
connectivity is not observed at the time of eye opening, it has been 
proposed that the functional subnetworks are formed through rewir-
ing of recurrent synaptic connections, induced by visual experience 
[1]. However, it is not clear according to which rules this structure 
develops. The emergence of feature specific wiring was recently dem-
onstrated in a balanced network model with appropriate rules of func-
tional synaptic plasticity [2]. In this model, however, connectivity was 
evaluated based on the strength of already existing synapses, and 
the structure of the network remained unchanged throughout the 
simulation.
Referring to recent findings of homeostatic regulation of cortical activity 
in rodent visual cortex in vivo [3], we employ here a structural plasticity 
rule based on firing rate homeostasis described previously [4] for simu-
lating network restructuring during sensory stimulation. We show that, 
next to other biologically meaningful properties, feature specific con-
nectivity also emerges in a balanced network of changing structure (see 
Fig. 44), using a plasticity rule that does not depend on spike timing.
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The interconnections of a model of the corticothalamic system [1] 
define an 8-dimensional parameter space where specific combina-
tions of dimensions correspond to one of the three loops of the sys-
tem (e.g., intracortical, corticothalamic and intrathalamic). The form of 
the steady-state equation of the corticothalamic system imposes an 
odd number of solutions, which in terms of dynamics correspond to 
fixed points of the system. Here, the structure of regions with different 
number of solutions is systematically investigated within physiologi-
cally valid ranges of synaptic couplings representing different brain 
states [2, 3]. For instance, Fig.  45A, Bdisplay the regions where the 

Fig. 43  Computational framework for analyzing space–time cortical 
dynamics. T is an idempotent projection matrix

Fig. 44  Network connectivity before and after sensory stimulation. 
A, B. Connectivity matrix, pre- and post-synaptic neurons are sorted 
according to their preferred orientation (PO) and subdivided into 
groups. C, D. Mean output connectivity plotted against the difference 
between pre and post PO
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steady state equation has one, three or five solutions for two 3-dimen-
sional subsets of the full space. These results show how small changes 
in the connectivity can cause additional roots of the steady state equa-
tion to appear or vanish. More importantly, they illustrate the effect 
of intracortical feedback: for more than one solution to exist the total 
intracortical feedback needs to be negative (inhibitory). The occur-
rence of multiple roots happens for parameter values that characterize 
normal arousal states [3], indicating that the approach presented here 
has a potential to (i) quantify and predict the existence of additional 
(abnormal) arousal states and (ii) categorize subtle differences in states 
such as anesthesia, coma [4].
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Deep brain stimulation (DBS) is used as a therapeutic procedure to treat 
symptoms of several neurological and neuropsychiatric disorders. In 
particular it is used to treat motor symptoms of Parkinson’s disease (PD) 
by delivering high-frequency regular stimulation to subcortical targets. 
Hypokinetic symptoms of PD are associated with excessive oscillatory 
synchronized activity in the beta frequency band, and effective DBS is 
believed to suppress it. An alternative way to stimulate neural circuits 
is an emerging technology of optogenetics. It is an experimental tech-
nique and it is not clear if it eventually will be possible to implement 
it in clinical practice. However it is used as an experimental tool, and 
maybe, in time, it will be developed into safe therapeutic technique.

The goal of his study is to explore how effective an optogenetic 
stimulation in comparison with electrical stimulation in their network 
effects on elevated synchronized oscillatory activity. We use a model 
for the basal ganglia activity [1], which was developed to reproduce 
experimentally observed beta-band activity patterns [2]. We intro-
duce electrical stimulation as well as optogenetic stimulation of two 
types: excitatory via channelrhodopsin and inhibitory via halorodop-
sin. We explore the effect of different stimulation types on oscillatory 
synchronized dynamics and consider the efficacy of stimulation for 
different kind of network’s dynamics.
All three modes of stimulation can decrease beta synchrony that is 
commonly associated with hypokinetic symptoms of Parkinson’s dis-
ease. Generally speaking, growing intensity of stimulation leads to 
larger suppression of the beta-band synchronized oscillatory activ-
ity. But the actions of different stimulation types on the beta activity 
may differ from each other. Electrical DBS and optogenetic excitation 
have somewhat similar effects on the network. Both of these stimula-
tion types cause desynchronization and suppression of the beta-band 
bursting. As intensity of stimulation is growing, they synchronize the 
network at higher (non-beta) frequencies in a close to tonic spik-
ing dynamics. Optogenetic inhibition effectively reduces spiking and 
bursting activity of the targeted neurons.
We compare the stimulation modes in terms of the minimal effective 
current delivered to basal ganglia neurons in order to suppress beta 
activity below a threshold: the less stimulation current is needed to 
suppress the activity, the more efficacious stimulation is. We found 
that optogenetic inhibition usually requires less effective current than 
electrical DBS to achieve beta suppression. Optogenetic excitation, 
while as not efficacious as optogenetic inhibition, still usually requires 
less effective current than electrical DBS to suppress beta activity.
Thus our results suggest that optogenetic stimulation may introduce 
less of effective currents to a neuron than conventional electrical DBS, 
but still achieve sufficient beta activity suppression. Optogenetics is 
presently not used in humans. However, it was implemented in the 
basal ganglia of non-human primates [3]. So we suppose our results 
may motivate further research into applicability of optogenetic tech-
nologies in humans. Optogenetic stimulation is also used as a research 
tool. Our results suggest that it may be more effective than electrical 
stimulation in control of synchronized oscillatory activity, because it 
does its job with less current injected into the neurons.
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Fig. 45  Three dimensional subsets of the 8D corticothalmic coupling 
space. A, B Regions with 1, 3 or 5 roots are enclosed by surfaces (blue, 
violet and yellow respectively). The sharp transition between zones 
of 1–3 roots along the vee axis (excitatory intracortical feedback) 
indicates the plane at which the total intracortical feedback (vee + vei) 
changes sign. The difference between A, B is the value of vei (inhibi-
tory intracortical feedback). In a the probability of having multiple 
roots is lower than in B
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It has been suggested that variability in spike patterns of individual 
neuron is largely due to noisy fluctuations caused by asynchronous 
synaptic inputs balanced near the threshold regime [1–3]. In this 
regime, small fluctuations in synaptic inputs to a neuron do cause 
output spikes; because the membrane potential is maintained below 
but close enough to the threshold potential. To successfully transfer 
signals under such noisy conditions, it is proposed that a few relatively 
stronger synapses and/or an assembly of nearly synchronous ones 
form “signaling inputs” [4]. Thus one fundamental question is how 
such relatively strong signaling input modifies the spiking activity of 
a post-synaptic neuron which receives noisy background inputs bal-
anced near the threshold regime. Nonetheless, analytical studies on 
the effect of the signaling input under such conditions are scarce even 
with the popular leaky integrate-and-fire (LIF) neuron model. Here we 
analytically study the impact of a specified signaling input on spike 
timing of the postsynaptic LIF neuron which receives noisy inputs at 
the threshold regime. To this end, we first revisit Fokker–Planck anal-
ysis of a first spike-timing distribution when the LIF neuron receives 
noisy synaptic inputs, but no signaling input, at the threshold regime. 
We then perform perturbation analysis to investigate how a signal-
ing input modifies this first spike-timing distribution. Fortunately, we 
could solve all terms of perturbation analytically and find the exact 
first spike-timing distribution of the postsynaptic neuron; it is appli-
cable to not only excitatory but also inhibitory input. This analytical 
solution allows us to describe the statistics of output spiking activity 
as a function of background noise, membrane dynamics, and signaling 
input’s timing and amplitude.
The proposed analysis of signaling input provides a powerful frame-
work for studying information transmission, neural correlation, and 
timing-dependent synaptic plasticity. Among them, we investigate 
the impact of common signaling inputs on population activities of 
postsynaptic neurons. Using mixture models based on our analytical 
first spike-timing distribution, we calculate the higher-order interac-
tions [5] of postsynaptic neurons in different network architectures. 
Comparing these results with higher-order interactions, measured 
from experimental data in monkey V1 [6], we try to answer whether 
one can reveal network architecture, responsible for the ubiquitously 
observed sparse activities.
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Recently, a study [1] has found by recording the activities of neurons 
in monkeys performing a contour detection task that the response 
properties of the primary visual cortex (V1) change continuously 

during perceptual learning. In particular, the figure-background con-
trast was continuously enhanced in the course of learning. However, 
the exact neural circuit mechanisms that causes the V1 responses 
to change during perceptual learning remain unclear. In order to 
understand how the underlying neural network needs to change, we 
here train a multi-layered neural network model to perform the con-
tour detection task on the very same visual stimuli as in the experi-
ments and investigate the network’s performance and the resulting 
synaptic weight structure.
In this study, we first model the V1 representation of each visual 
stimulus by using a non-classical receptive field model (NCRF) which 
takes into account orientation selective inhibition [3]. We further 
assume that the higher visual areas (up to a decision unit) are hierar-
chically structured, read out the V1 activity, and learn to change their 
synaptic weights to optimally perform the contour detection task. 
AGREL (attention-gated reinforcement learning) algorithm [2], which 
considers feedback connections and biologically plausible local syn-
aptic adjustments, is applied to train the network (see Fig.  46). We 
found that the multi-layered model trained with AGREL could repli-
cate the behavioral performance increase in a contour detection task 
as observed in experiments. Moreover, learning the network model 
structure showed enhanced synaptic weights in the region of the 
detected contour. It further demonstrated that “predictive” feedback 
signals from higher layers facilitate the responses of V1 neurons to 
the contour and thus increased the figure-background contrast in 
V1 with improved behavioral performance. The results suggest that 
the experimental observed V1 response facilitation could be caused 
by selective synaptic strengthening of feed-forward and feed-back 
pathways.
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Fig. 46  V1 representations of the stimuli and simulation results of 
the model. A V1 representations of the stimuli by using NCRF model. 
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What can we know about a high-dimensional dynamical system if we 
can only observe a very small part of it? This problem of spatial sub-
sampling is common to almost every area of research where spatially 
extended, time evolving systems are investigated, and is particularly 
severe when assessing population spiking dynamics in neuroscience. 
Previous studies have shown that subsampling can lead to spuri-
ous results when assessing the dynamical state of spiking activity, in 
particular when discriminating whether neural networks operates at 
criticality [1, 2]. Here we present further insight why the distance to 
criticality is systematically overestimated, and introduce a novel esti-
mator which for the first time allows to correctly infer the distance to 
criticality even under strong subsampling.
Neuronal systems have been proposed to operate close to criticality, 
because in models criticality maximizes information processing capac-
ities [e.g. 3]. Indeed, power-law distributions of the avalanche size, an 
indication of criticality, have been found for local field potentials from 
in vitro systems [1] to humans in vivo [4]. However, for neuronal sys-
tems criticality also comes with the risk of spontaneous runaway activ-
ity, which may lead to pathological states like epilepsy. Experiments 
indeed indicate that spiking activity in rats, cats, and monkeys is in a 
sub-critical regime, thereby keeping a safety-margin from criticality 
[5]. Quantifying the precise distance to criticality may help to shed 
light on how the brain maximizes its information processing capacities 
without risking runaway activity.
In neural systems, critical dynamics is typically compared to dynam-
ics from models that resemble branching processes [1]. Their dynam-
ics are controlled by a single parameter, the expected number σ of 
postsynaptic spikes generated by one individual spike, showing either 
stationary dynamics (sub-critical, σ  <  1) or transient growth (super-
critical, σ > 1). For σ = 1 branching processes are critical and produce 
heavy tailed avalanche size distributions. We used a driven branching 
process, which allows to exactly match the model neuron firing rate to 
that observed in experiments for any σ. We propose a stochastic rep-
resentation of subsampling and show that under subsampling estab-
lished approaches to inferring σ are substantially biased. We derived 
a novel approach based on multistep regression [6], which for the first 
time allows to quantify the distance to criticality even under strong 
subsampling. Our method generalizes to auto-regressive processes 
with both additive and multiplicative noise, making it widely applica-
ble in diverse fields of research. We validate our method by applying 
subsampling to simulated branching networks with invasion, and also 
to a network of integrate-and-fire neurons.
We applied this method to spike recordings from awake macaque 
monkeys prefrontal cortex, cat visual cortex, and rat hippocampus. We 
found that neuronal population activity operates close to criticality, 
but in a subcritical regime with 0.94 < σ < 0.995. These results point 
at a novel universal organization principle: spiking dynamics in vivo is 
in a subcritical regime which does not yield maximum, but sufficient 
information processing capacity, and at the same time keeps a safety-
margin from unstable supercritical states.
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Inferring the dynamics of a system from observations is a challenge, 
even if one can observe all system units or components. The same task 
becomes even more challenging if one can sample only a small frac-
tion of the units at a time. As a prominent example, spiking activity in 
the brain can be accessed only for a very small fraction of all neurons 
in parallel. These limitations do not affect our ability to infer single 
neuron properties, but it influences our understanding of the global 
network dynamics or connectivity: Subsampling can hamper inferring 
whether a system shows scale-free topology or scale-free dynamics 
(criticality) [1, 2]. Criticality is a dynamical state that maximizes infor-
mation processing capacity in models, and therefore is a favorable 
candidate state for brain function. Experimental approaches to test 
for criticality extract spatio-temporal clusters of spiking activity, called 
avalanches, and test whether they followed power laws. Avalanches 
can propagate over the entire system, thus observations are strongly 
affected by subsampling. We developed a formal ansatz to infer ava-
lanche distributions in the full system from spatial subsampling using 
both analytical and numerical approaches.
In the mathematical model subsampling from exponential distribu-
tion does not change the class of distribution, but only its parameters. 
In contrast, power law distributions, despite their alias “scale-free”, do 
not manifest as power laws under subsampling [2]. We study changes 
in distributions to derive “subsampling scaling” that allows to extrap-
olate the results from subsampling to a full system: P(s) = psubPsub(s/
psub) where P(s) is the original distribution, Psub is the one under sub-
sampling, and psub =

N
M is the probability to sample a unit, N—

number of sampled units, M—system size. In the model with critical 
avalanches, subsampling scaling collapses distributions for any N 
(Fig. 47B). However, for subcritical models, no distribution collapse is 
observed (Fig.  47D). Thus we demonstrate that subsampling scaling 
allows to distinguish critical from non-critical systems. With the help of 
this novel method we studied dissociated cortical cultures. For these 
we artificially subsampled recordings by considering only fraction of 
all 60 electrodes. We find that in the first days subsampling scaling 
does not collapse distributions well, whereas mature cultures (~from 
day 21) allow for a good collapse, indicating development toward criti-
cality (Fig. 47C, E).
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Information theory provides a generic framework for study-
ing statistical dependencies, and is widely used in neuroscience. 
However, a correct estimation of the involved quantities can be 
challenging. For example, a correct estimation of transfer entropy 
(TE), TE(X  →  Y)  =  I(X−, Y|Y−), or active information storage (AIS), 
AIS(X) =  I(X−, X), requires past state variables X− and Y− that encode 
all information about the past that is relevant when predicting X or Y 
[1]. For a spiking neuron, states can be defined by transforming the 
spike train into a binary sequence of spike counts in sufficiently small, 
equally spaced bins with some bin size Δt (Fig. 48A). For neurons, how-
ever, it is unclear how many past bins a sufficient state variable typi-
cally comprises. In practice, past states have often been limited to only 
one time bin to reduce the complexity of estimation. This points at the 
main challenge one faces when estimating TE and AIS: A reliable esti-
mation of probabilities from recorded data becomes more and more 
difficult with increasing complexity of the state variables, i.e. with 
considering more past bins. We used AIS for single spiking neurons to 
estimate (a) how much memory there is, (b) how long it reaches typi-
cally into the past, (c) the (non-)linear contributions of the memory. To 
this end, we first examined the performance of different estimators 

for a realistic model neuron [2] whose AIS can be directly computed 
(dashed line, Fig.  48B). Using constant external drive we simulated a 
recording of 12 h. In a model-free approach, probabilities were directly 
estimated from relative frequencies using the standard ‘plugin’ esti-
mator or the ‘NSB’ estimator [3]. In addition, we fitted a generalized 
linear model (GLM) whose predictions constitute an estimator that is 
constrained to linear contributions. For all these estimation strategies, 
the number of past bins k and thus the time range was systematically 
varied (Fig. 48B). We then applied the same estimators to in vitro and 
in vivo recordings (Fig. 48c, d) of 3 h and 1 h duration.
Considering a very small number k of past bins can lead to a sub-
stantial underestimation of AIS. Increasing the number of past bins, 
however, leads to severe positive bias of the model-free estimators 
when the complexity of the past state becomes too large. This mani-
fests in the estimators exceeding the true AIS (Fig.  48B). Assuming 
a point process with linear contributions (GLM), in contrast, allows 
a robust estimation but does not capture non-linear effects. This 
approach can also be used to take the global past activity of the 
neural population into account, thereby unveiling redundancies in 
the activity of the single neuron with the population activity. While 
the model neuron intrinsically has only linear dependencies on its 
past, it is surprising that, in  vitro, there also seem to be very little 
non-linear contributions and a lot of redundancy. In  vivo, the non-
linear contributions are more prominent and the memory is clearly 
non-redundant.
We thus showed that appropriate embedding is necessary, otherwise 
AIS is underestimated and likewise, TE might be mis-estimated. Fur-
thermore, our results suggest that in vivo the information processing 
is more evolved.
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Fig. 47  Subsampling scaling in model and experiment. Left branch-
ing process model; right: experiments on developing cultures A 
Avalanche size counts f(s) from the full and the subsampled critical 
model; N: number of sampled neurons. B Under subsampling scaling, 
all f(s) collapse. C Collapse of subsampled avalanche-size distribution 
from the culture at the age of 21 days. D For subcritical models, the 
same scaling ansatz does not result in a collapse. E No collapse of f(s) 
from the culture at age 7 days

Fig. 48  Relative active information storage as a function of the time 
range of the past state for different estimators
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The nature of a directed relationship (or lack thereof ) between brain 
areas is a fundamental topic of inquiry in computational neuroscience 
[1]. A particular focus of such inquiry is in regards to the analysis of 
information flows in a network [2], and such investigations take place 
at all levels of analysis, from interregional connectivity in fMRI imag-
ing data [3] down to directed relationships between spike trains at the 
neuronal level [4].
In all of the aforementioned studies, information theory provides the 
primary tool, transfer entropy (TE) [5], for analysis of such directed rela-
tionships. TE measures the predictive gain about state transitions in a 
target time-series from observing some source time-series. While the 
TE has been used extensively to analyse recordings from fMRI, MEG 
and EEG for example [1–3], fewer applications [4] have been made to 
spiking time-series. Although one can apply temporal binning on such 
time-series before measuring TE on the resultant binary time-series 
[4], it remains unclear: (a) how to set parameters for this approach (e.g. 
bin sizes), (b) whether an estimate can be achieved by avoiding tem-
poral binning and instead working directly with continuous-valued 
time stamps of spikes, and (c) whether such an estimate would actu-
ally improve on binning approaches.
Recent theoretical developments have pointed to how transfer 
entropy may be derived from continuous-valued time-stamps of 
spikes directly, using spike rates conditioned on previous spike his-
tories [6]. Yet, it is not immediately obvious how an estimator for this 
form would be constructed, and indeed construction of such an esti-
mator has previously defaulted to a binning or discretisation of time 
[7]. Here, we propose an estimator for this continuous-time point-
process formulation of TE that remains in the continuous-time regime 
by harnessing a nearest-neighbours approach [8] to matching (rather 
than binning) inter-spike interval (ISI) histories and future spike-times. 
By retaining as much information about ISIs as possible, this estimator 
is expected to improve on properties of TE such as robustness to noise 
and undersampling, bias removal, and sensitivity, etc. We are currently 
implementing the proposed estimation algorithm in open-source 
code (i.e. contributing to JIDT [9] and TRENTOOL [10]), and evaluating 
the properties of the algorithm particularly in comparison to temporal 
binning approaches.
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As new technologies expand the capacity for making large-scale 
measurements of neural activity, there is a growing need for meth-
ods to rapidly characterize behavior and its dependence on stimuli. In 
typical experiments, an animal is presented with a stimulus on each 
trial and has to select a response among several options. Since such 
experiments are costly, a problem of practical importance is to learn 
the animal’s psychometric choice functions from a minimal amount of 
data. Here we show that one can achieve substantial speedups over 
traditional randomized designs via active learning, in which stimuli are 
selected adaptively on each trial according to an information-theoretic 
criterion, as shown in Fig.  49. Specifically, we model behavior with a 
multinomial logistic regression model, in which the probability of 
each choice given a stimulus depends on a set of linear weights. Our 
work extends previous work on this problem [1–3] in several impor-
tant ways. First, we incorporate an explicit lapse rate to account for the 
fact that observers may occasionally make errors on “easy” trials due 
to lapses in concentration or memory [4]. Second, we develop an effi-
cient method based on Markov Chain Monte Carlo (MCMC) sampling 
that is accurate in settings in which the log-likelihood is not concave, 
for example as in the presence of lapse rates. Third, we extend consid-
eration for multiple-alternative responses, extending previous work 
for binary responses. We compare the performance of our sampling-
based method to one based on a local (Laplace) approximation to 

Fig. 49  Example of active learning, simulated with a three-alterna-
tives model on 1D stimulus. After each observation, the psychometric 
functions are estimated based on the accumulated data, and the next 
stimulus is chosen to maximize the expected information gain. The 
estimated psychometric functions (solid lines) quickly approach the 
true functions (dashed lines) through the adaptive and optimal choice 
of stimuli
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the posterior [5], and show that failure to incorporate lapse rates can 
have deleterious effects on the accuracy of inferred parameters under 
both methods. We test our method on simulated data, as well as on 
an experimental dataset concerning the multiple-alternative choice 
behavior of monkeys [6], demonstrating that active sampling of the 
stimulus space facilitates the learning of the psychometric function 
significantly, as well as suggesting that the full range of the multi-
dimensional stimulus could have been exploited more efficiently 
using our active learning framework. Finally, we discuss the compara-
tive advantages and disadvantages of the different methods, and how 
one might adapt these algorithms to achieve best results.
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Surprisingly, large-scale population recordings often show signatures 
of low-dimensional dynamics, that is, variations in a small number of 
common factors explain most of the dependence among neurons 
[1–3]. This supports the idea that a large neuronal network is imple-
menting necessary computations described by continuous low-
dimensional nonlinear dynamics. Sufficient amount of redundancy in 
the population activity would allow us access to the internal computa-
tion process of interest even when we only observe a small subset of 
neurons. Thus, it is necessary to deduce the latent dynamics from neu-
ral time series in order to understand if and how neural systems oper-
ate in this regime. There are several latent variable models that aim 
at recovering the latent dynamics, howerver, they make inadequate 
assumptions in favor of fast inference [4]. Here we describe an approxi-
mate inference method that recovers the latent dynamics under a nat-
ural generative model with minimal assumptions.
We implemented a probabilistic method to extract shared low-dimen-
sional latent dynamics from multi-channel neural recordings (LFP and 
spike trains) to reveal how neural population encodes information, 
and how multiple functional neural populations dynamically interact 
with each other. Key assumptions of our model are: (1) each neural 
signal represent a noisy mixture of common latent dynamics, and (2) 
latent dynamics are independent and temporally smooth (with pos-
sibly different time scales). We use autoregressive generalized linear 
model driven by latent dynamics. Unlike most of the literature [5], we 
do not impose linear dynamics as a prior on the latent process, instead 
we use a general gaussian process prior which provides a flexible 
framework for imposing structure such as smoothness. However, as a 

result, the exact posterior inference is intractable, thus we developed 
a variational method to find a Gaussian approximation to the posterior 
[6]. Our inference algorithm is memory-efficient and fast: both linear in 
time using a low-rank approximation of the covariance. We compare 
our method on both simulated systems and real data from V1 driven 
by drifting gratings. For a population of 148 V1 neurons, 11.4  % of 
the variance was explained by a shared 4-dimensional latent process, 
while 10 % of the variance was explained by independent variability 
of each neuron. We recovered orientation dependent embedding that 
faithfully encode the stimulus drive on average, and the population-
wide trial-to-trial modulation. In conclusion, we present an efficient 
and scalable method to recover underlying dynamics from noisy par-
tial observations to study neural code and computation.
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Recently, energy landscapes of the resting state functional brain net-
work have been researched using the pairwise maximum entropy 
model (MEM). This approach considers not only activities of nodes but 
also interactions among nodes in modeling brain networks and thus 
estimating energy landscapes of the brain state [1, 2]. From the energy 
landscape models, we can identify major stable states (local minima) 
and estimate transition rates among stable states.
The brain networks of the resting states are known to be affected by 
brain diseases or treatments. In the pairwise MEM, such effects corre-
spond to changes in the parameters of the baseline activities and pair-
wise interactions.
In the present study, we investigated the energy landscape and its 
robustness of the subcortical human brain network that plays a central 
role in the human brain. The subcortical brain regions we examined 
were 15 regions of interests (ROIs); hippocampus, amygdala, caudate, 
putamen, pallidum, thalamus, nucleus accumbens, and brainstem. To 
construct a pairwise MEM for spontaneous interactions among sub-
cortical brain regions, we used resting state fMRI (rs-fMRI) data of the 
human connectome projects, which contains 468 people’s data. The 
blood oxygen level-dependent signals in the ROI were first binarized 
to represent states (zero for inactive, one for active states) of the ROI, 
and thereby 215 brain states were considered. The parameters of the 
MEM were fitted to reproduce observed activation patterns of the rs-
fMRI data. The constructed MEM showed high accuracy of fit (~92.6 %) 
and reliability (~99.9 %).

http://arxiv.org/abs/1601.00670
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We found symmetric properties for the left and right hemispheres, and 
confirmed estimated parameters grossly reflecting the known ana-
tomical connectivity of the subcortical brain. We further investigated 
the robustness of the system by perturbing the global weight for inter-
actions, parameters for baseline activities of ROI and parameters for 
interactions between pairs of all ROIs (1906 edges), one by one from 
the original MEM. Alteration of the energy landscapes after perturba-
tion was measured with respect to the number of local minima. We 
found that the number of the local minima of the subcortical system 
without any perturbation is very high. This implies that the subcorti-
cal brain system is optimal in the sense of its largest coverage of local 
minima (maximal number of local minima). This result suggests that 
brain was built to have multiple stable states. We also found differ-
ent categories of parameters that affect the energy landscape of the 
resting state. For example, small increase in the pairwise parameter 
between the caudate and putamen dramatically reduced the numbers 
of the local minima while reduction in this parameter did not change 
the energy landscape.
In conclusion, MEM analysis of resting state functional network would 
be an important tool to understand principles of the brain organiza-
tion and could be useful in researching brain disease.

References
1.	 Watanabe T, Hirose S, Wada H, Imai Y, Machida T, Shirouzu I, Konishi S, 

Miyashita Y, Masuda N. A pairwise maximum entropy model accu-
rately describes resting-state human brain networks. Nat Commun. 
2013;4:1370.

2.	 Watanabe T, Hirose S, Wada H, Imai Y, Machida T, Shirouzu I, Konishi S, 
Miyashita Y, Masuda N. Energy landscapes of resting-state brain networks. 
Front Neuroinform. 2014;8:12.

P83 
Local repulsive interaction between retinal ganglion cells can 
generate a consistent spatial periodicity of orientation map
Jaeson Jang1, Se‑Bum Paik1,2

1Department of Bio and Brain engineering, Korea Advanced Institute 
of Science and Technology, Daejeon 34141, Republic of Korea; 2Program 
of Brain and Cognitive Engineering, Korea Advanced Institute of Science 
and Technology, Daejeon 34141, Republic of Korea
Correspondence: Jaeson Jang ‑ jaesonjang@kaist.ac.kr   
BMC Neuroscience 2016, 17(Suppl 1):P83

Orientation map in the primary visual cortex (V1) is of great interest 
among functional maps in the brain, but its developmental mecha-
nism has been under debate. A recently suggested idea is that a moiré 
interference pattern between ON and OFF retinal ganglion cells (RGCs) 
can develop a quasi-periodic structure of orientation map [1] (Fig. 50A). 
In this model, the mosaics of ON and OFF RGCs that are in hexagonal 
lattice patterns generate a periodic interference pattern and induce a 
cortical orientation preference map. This model successfully explains 
the mechanism of map development, but two questions remain unan-
swered yet; (1) How does the hexagonal pattern of RGC mosaic develop 
and (2) how is the angle alignment (θ) between ON and OFF RGC 
mosaics (Fig.  50A) restricted to seed the consistent spatial periodicity 
of orientation map? Here, we suggest that a local repulsive interaction 
between the nearby cells is enough to develop hexagonal RGC mosaics 
and consistent alignment of ON and OFF mosaics.
To validate this idea of developmental process of cell mosaic, we 
assumed a local repulsive force between the nearby cells as a func-
tion of distance between two cells (Fig. 50B), which induces a gradual 
shift of cell position. In our model simulations, we confirmed that 
this model could develop a hexagonal pattern in the monotypic RGC 
mosaic (Fig.  50C, D). Next, we examined how the angle alignment 
between ON and OFF mosaics can be achieved by homotypic (ON–ON 
or OFF–OFF) and heterotypic (ON–OFF) interaction between RGCs. We 
simulated the development of ON and OFF mosaics as we allow a het-
erotypic interaction and gradually reduce the distance between two 
mosaics (Fig. 50E). When two mosaics get closer enough, we observed 
that the angle alignment between ON and OFF mosaics was limited to 
low angles (Fig. 50F). Finally, we analyzed previously reported cat RGC 
mosaic data [2, 3] and concluded that the data suggests the existence 

of heterotypic repulsive interaction between ON and OFF mosaics, as 
our model predicted.
Our results suggest that a local repulsive interaction between RGCs can 
develop a hexagonal pattern in mosaics and restrict the angle align-
ment between ON and OFF RGC mosaics to generate a constant spatial 
period of orientation map. This model may provide a complementary 
mechanism of the retinal origin of periodic functional maps in the brain.
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When we see an ambiguous visual stimulus such as Necker cube, our 
perceived state switches periodically between two possible interpre-
tations. This phenomenon, called bistable perception, is considered 
important to the study of dynamic mechanism of sensory perception. 
In particular, the time duration of each perceptual state, termed “phase 
duration”, seems to be a crucial factor to understanding the temporal 
features of underlying neural activity during sensory perception under 
this condition, which has not been studied intensively yet.
In this study, we assume that phase duration is intrinsically corre-
lated with time delay in cognitive tasks, such as decision making from 
sensory information. Our hypothesis is that the periodic switching 
in bistable perception is a repeated process of decision making and 
reveals the time scale required for this decision task. To confirm our 
hypothesis, we performed a human psychophysics experiment using 
the “racetrack” type stimulus [1], which can induce a motion percep-
tion from both bistable illusion and real motion by varying the coher-
ence parameter, c (Fig.  51A). We examined the relationship between 

Fig. 50  Local repulsive interaction develops a consistent interference 
between mosaics. A Moiré pattern of RGC. B Developmental model 
of RGC mosaic with local repulsive interaction between nearby cells. 
C Developed cell mosaic. D Autocorrelation of developed mosaics. e 
Approach between ON and OFF mosaics induces a gradual reinforce-
ment of heterotypic interaction. F Angle alignment between mosaics 
(θ) is limited to low angles as mosaics approach (*: p < 0.05, Ranksum 
test, error bar: SE)
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the phase duration, τ, under illusory motion (c = 0) and the response 
delay for coherent motion with different degrees of ambiguity (c > 0, 
Fig.  51B). Our result showed that the response delay in the coherent 
motion detection task (c  >  0) was highly correlated with the phase 
duration in the bistable illusory motion perception (c =  0) (Fig.  51C, 
N  =  19, R  =  0.61, p  <  0.01, Pearson’s correlation coefficient). For a 
systematic analysis of subjects’ performance for these two tasks, we 
designed a theoretical model of simple double-well energy potential 
[2] (Fig.  51D). The model could successfully replicate the correlation 
between phase duration and response delay in each task, suggesting 
that bistable perception and perceptual decision making processes 
may share a common neural mechanism (Fig. 51C).
Conclusions Our findings show that the phase duration of bistable 
perception is highly correlated with the response time of a cognitive 
task. Our simple model suggests that the bistable perception can 
be interpreted as perceptual decision making process under highly 
ambiguous condition and share similar temporal dynamics.
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Orientation map in the primary visual cortex (V1) is one of the most 
studied functional maps in the brain. In higher mammals such as 

monkeys and cats, preferred orientation of each V1 neuron appears 
continuous and periodic across cortical space. On the other hand, in 
rodents, it appears completely discontinuous, forming a structure 
called salt-and-pepper map. However, the developmental mechanism 
of salt-and-pepper orientation maps remains unclear. Previously, a 
model study suggested that a moiré interference pattern between ON 
and OFF retinal ganglion cell (RGC) mosaics can seed a periodic orien-
tation maps (Fig. 52A), and a salt-and-pepper map can also be devel-
oped when the spatial periodicity of interference pattern is very short 
[1]. However, our analysis suggests that the spatial periodicity of map, 
estimated from rat RGC mosaics data, is not small enough to generate 
a salt-and-pepper structure (Fig. 52B, C). To address this issue, here we 
suggest that feedforward convergent wiring between retina and V1 is 
a crucial factor that decides the structure of orientation map.
To find a convergence condition that develops salt-and-pepper map, 
we modulated two parameters in our simulations: (1) the convergence 
range of V1 cells and (2) the sampling ratio of RGCs within the range. 
The regularity of orientation map was estimated from the measure-
ment of the preferred orientation difference between local neurons 
(Fig. 52D). We found that a salt-and-pepper map was developed with 
low sampling ratio and large convergence range, while a smooth map 
was developed when convergence range was relatively small and 
sampling ratio was high (Fig.  52E). To further analyze the map struc-
ture generated by our model, we compared the profile of correlation 
between local receptive fields structure in our simulated V1 map to the 
previous observation in animal experiment [2]. We confirmed that our 
salt-and-pepper map model well matched the statistics of observed 
experimental data.
Conclusions Our result suggests that a salt-and-pepper map can be 
developed by sparse and long-range convergence in feedforward wir-
ing, while smooth map can be developed by localized convergence. 
We suggest that the condition of feedforward convergence between 
retina and V1 is a critical factor to determine the structure of orienta-
tion map.

Fig. 51  Correlation between bistable perception and perception 
under ambiguous signal. A Racetrack stimulus. Rotational motion can 
be either illusory or ambiguous depending on coherence. B Example 
response of racetrack. Perceived motion can be bistable (top) or 
follows actual motion with response time (bottom). C Subjects’ 
(black) and model’s (red) phase duration and response time are highly 
correlated. D Double-well energy model to describe behavior during 
bistable perception and perceptual decision making task

Fig. 52  The simulation model for developmental mechanism of salt-
and-pepper map by feedforward convergence between retina and 
V1. A Moiré interference between ON and OFF RGC mosaics. B Moiré 
interference with small and large alignment angles can generate 
various range of periodicity, S. C From rat RGC mosaics, both smooth 
and salt-and-pepper map can be developed. D Spatial distribution of 
preferred orientations of V1 cells by different convergence conditions; 
Smooth map model (high sampling ratio and large convergence 
range), Salt-and-pepper map model (low sampling ratio and short 
convergence range). E The structure of orientation map depending 
on convergence range and sampling ratio
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In neural imaging data, various types of spatio-temporal activity pat-
terns are observed which may reflect dynamic features of informa-
tion processing in the brain [1, 2]. Classification of these patterns is 
required to analyze the brain activity further. However, development 
of analysis tool for spatio-temporal neural activity pattern has been 
regarded difficult because of highly complex connections between 
neurons and nonlinearity of activity patterns. In this study, we sug-
gest a novel method of classifying activity patterns in two aspects: 
spatial geometry and temporal dynamics. We show that our method 
efficiently categorizes complicated spatio-temporal patterns in brain.
First, we defined meaningful activity as salient distribution of highly 
activated parts. Its spatial feature could be described by size and 
peak amplitude (Fig.  53A), temporal feature by velocity and disper-
sion of activity (Fig. 53A). Thus, we designed geometric profile as two-
dimensional profile of instantaneous neural activity, by measuring 
the topography of supra-threshold area with a shifting threshold. This 
profile contains the information of size, peak amplitude, and geomet-
ric contours of meaningful activity. With this method, we could readily 
estimate similarity or correlation of different activities in terms of size, 
peak amplitude, and amplitude contour (Fig. 53B).
Next, we defined propagation profile as a characteristic of tempo-
ral displacement of activity on each direction against time and angle 
axis. We measured trajectory and speed of activity using a normalized 
cross-correlation. This profile intuitively shows dominant trajectory, 
speed change and dispersion of the activity: how disperse to every 
direction. So we can compare activities: whether the activity is moving 
straight or curved trajectories, or whether the activity propagation is 
accelerating or not (Fig. 53C).
Our new method can easily perform not only classification of over-
all dynamics in brain, but also a simplified description of complex 

patterns (Fig.  53D), that may be applicable to the analysis of various 
kinds of brain imaging data.
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Synaptic plasticity is considered the core mechanism of learning and 
memory [1]. However, how plasticity can specifically modulate synap-
tic connections to generate short term or long term memory has not 
been understood completely. Here we introduce a theoretical model 
which suggests that a key mechanism of short term and long term 
memory can be implemented by a small difference in spike-timing-
dependent-plasticity (STDP) rule. (Fig. 54A).
To test our idea, we designed simulations using a model feedforward 
neural network where two types of synaptic plasticity are imple-
mented; asymmetric STDP (AS) [2] and symmetric STDP (SS). We 
defined the memory as the ability of a system to retrieve a consistent 
response spike pattern when we repeatedly introduce an identical 
pattern of spikes, and then we examined the performance of the sys-
tem in terms of memory sustainability and appendability.
In our simulations, a network with AS showed performances similar to 
short-term memory while a network with SS showed long-term mem-
ory like properties. Memory in an AS Network decayed as a function of 
time, while memory in a SS network did not show a noticeable decay 
(Fig. 54B). Moreover, when a new input pattern was given to the net-
work in addition to old memory, AS system replaced old memory with 
new memory pattern (Fig.  54C), while SS system maintained the old 
memory together with a newly trained memory (Fig. 54D).
Based on our findings, we suggest a new memory system called hybrid 
memory that is capable of showing intermediate properties between 
a long-term memory and a short-term memory (Fig. 54B, hybrid). This 
model suggests that transition between short term and long term 
memory might not be discrete but gradual.
Conclusions We have shown that our model network can implement 
different types of memory performance from the variation of plasticity, 

Fig. 53  A novel index effectively describes different neural activity 
patterns obtained from imaging. A Neural activity obtained from 
optical imaging could be analyzed with appearance and propagation. 
B Appearance index of four distinct sample. C Propagation index of 
straight trajectory (top) and curved trajectory (bottom). D Propagation 
Index of non-dispersive sample (top) and dispersive sample (bottom)
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Fig. 54  Different learning rules reproduce volatile/nonvolatile 
memory system. A Spike timing dependent plasticity. B Memory 
decaying properties of different learning rule. Poisson spikes are given 
for 1000 s to simulate decaying environment. C, D Multiple patterns 
was given to the system every 200 s. C Memory performance of each 
pattern in AS memory system. D Memory performance of each pat-
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or learning rule. Our results imply that the various types of memory 
may be originated from a small difference in the shape of STDP kernel.
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It is still not known clearly which encoding mechanism that neurons 
utilize for coding of sensory information. One of the proposed encod-
ing mechanism is latency coding which suppose that first-spike latency 
conveys much of the information about the stimulus. In this context, 
Pankratova et al. [1] studied the effects of noise on the first-spike latency 
dynamics of stochastic the Hodgkin–Huxley (HH) neuron, and obtained a 
bell-shaped dependence of mean response time of the neuron on noise 
intensity, emerging a phenomenon called “noise delayed decay” (NDD). 
Later, this finding have been extensively studied by using complex neu-
ronal networks [2]. On the other hand, neurons exchange information via 
coupling at the special location called synapse. Thus, coupled neurons 
in networks play a decisive role on the phenomenon occurring in neu-
ronal networks. Majority of the studies examining the NDD effect assume 
that coupling strength among coupled neurons is constant and the fact 
that synapses are plastic, that is, coupling strength among neurons can 
change with time, have been neglected. To present the effects of plastic-
ity or time-varying-coupling strength Birzu et al. [3] studied the effects 
of time-periodic coupling strength (TPCS) on the firing dynamics of a 
globally coupled array of FHN neurons. Here, our aim is to present the 
effects of the frequency of TPCS on the NDD phenomenon in a scale-free 
network of HH neurons. We construct the network with N =  200 neu-
rons modeled by a stochastic HH equation including ion channel noise, 
and average degree of kavg = 4. We consider that the coupling strength 
among coupled units changes with time-periodic fashion as proposed in 
[3]. To measure the mean latency and jitter of the network, the first-spike 
times of each neuron are recorded. For the comparison purpose, we give 
the constant coupling strength effect on the latency dynamics of scale-
free network. Obtained result are depicted in Fig. 55.
Conclusions It is seen that mean latency and jitter of the first-spike 
times exhibit a damped sine wave dependence on the frequency of 
TPCS, indicating that TPCS can significantly increase or decrease the 
latency time which passes until sensing of the suprathreshold stimu-
lus by each neuron at fixed intensity of channel noise (S = 100 μm2). 
The frequencies of TPCS greater than ω = 2 m s−1 are not significantly 
affect the mean latency and jitter of the network, as compared to the 
constant coupling strength. As a result, with finely tuned values of the 
frequency of TPCS input signal detection performance of the scale-
free network can be prominently increased by mitigating the response 
time of the each neuron.
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Linking sensory coding and behavior is a fundamental question in 
neuroscience. We have addressed this issue in behaving monkey vis-
ual cortex (areas V1 and V4) while animals were trained to perform a 
visual discrimination task in which two successive images (target and 
test stimuli, with a delay period in between) were either rotated with 
respect to each other or were the same. We hypothesized that animal’s 
performance in the visual discrimination task depends on the qual-
ity of stimulus coding in visual cortex. We tested this hypothesis by 
investigating the power spectral density of spiking signal from single 
neurons (spectra) and of pairs of neurons (cross-spectra) in relation 
to correct and incorrect behavioral responses. Our analysis shows 
that spectral properties systematically change with behavioral per-
formance. Correct responses are associated with significantly higher 
spectra during the delay period. Cross-spectra of correct responses 
are significantly lower during the target period but significantly higher 
afterwards (delay period and test period). Spectral properties of single 
neurons and even more of pair-wise interactions therefore change 
within the trial, presumably following functional demands of stimu-
lus processing in different epochs of the trial. Interestingly, differen-
tial dynamics in visual cortex sustains successful versus unsuccessful 
behavioral performance.
Preprocessing methods are used in order to avoid biases due to lim-
ited measurement time. The spike train is multiplied with Hanning 
window for low frequencies up to 22 Hz and with Slepian multitapers 
for frequencies between 24 and 140  Hz [1]. We use 300  ms window 
of sustained activity during stimulus periods and 500  ms window of 
activity during the delay period. Spectrum and cross spectrum are 
computed with Fast Fourier transform (Matlab, Mathworks). The cross-
spectrum being a complex function, we consider its absolute value. 
Spectra are averaged in bins of 6 Hz. The variance and the covariance 
of the spiking signal are computed as sums over frequencies of auto 
and cross-spectra, respectively, up to the cut-off frequency (140 Hz).

Fig. 55  The statistics of the first-spike occurrence times (amplitude 
of TPCS ε0 = 0.2, cell size S = 100 μm2, frequency of suprathreshold 
signal f = 20 Hz and amplitude of it A = 4μA/cm2). A Mean latency of 
the network, B jitter of the network
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Auto spectra are significantly higher in correct compared to incorrect 
trials in most of frequency bands in both V1 and V4 areas (p < 0.05 in 
21 and 22 out of 24 frequency bands in V1 and V4, respectively, one-
tailed sign-rank test). Consistently, the variance is significantly higher 
for correct responses (p < 10−4 in V1 and p = 0.0014 in V4. Cross-spec-
tra are lower in correct trials during target period (18 and 10 out of 24 
frequency bands are significant in V1 and V4, respectively, no signifi-
cant effect in remaining bands) but higher in delay period (11 and 20 
bands are significant in V1 and V4, respectively, no effect in remain-
ing bands) and test period (19 and 13 significant bands in V1 and V4, 
respectively, no effect in remaining bands). Consistently, the covari-
ance is significantly lower for correct responses during target stimu-
lus (p = 0.0003, p = 0.0002 in V1 and V4) and higher during the delay 
(p < 10−4 in V1 and V4) and the test stimulus (p < 10−4 in V1 and V4). 
Our results show that spectra and cross spectra change during behav-
ioral task and that spectral information in visual cortex might be highly 
relevant for behavioral performance.
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Formulating predictive models of single neuron dynamics has become 
a challenge taken up by many researchers ever since Hodgkin and 
Huxley published their widely accepted phenomenological model of 
electrophysiological dynamics of the squid giant axon [1]. Advances 
include, amongst others, modelling complex cells (such as cells of the 
stomatogastric ganglion (STG) in lobster and crab [2]) or increasingly 
automated modelling methods [3]. However, for each problem solved, 
new ones emerge. One such problem has been pointed out by Golo-
wasch et al. [4] who discovered that averaging multiple measurements 
from the same cell type can produce models that fail to reproduce the 
behaviour of the target cells. This issue does not only affect methods 
that rely on averaging to achieve better signal-to-noise ratio but more 
generally all methods that examine ion channels in separate prepa-
rations. This includes classical voltage clamp, in which different ionic 
conductances are measured in separate individual cells because many 
pharmacological blockers cannot be fully reversed.
We here propose a different approach for parameter estimation aim-
ing to build a model based on data from a single, individual cell. The 
proposed method consists of the consecutive use of a voltage clamp 
like protocol and parameter estimation in a current clamp mode. For 

the ‘voltage clamp protocol’ we use genetic algorithms (GA) to evolve 
a set of ‘highlighting’ voltage waveforms and specific observation win-
dows, so that the resulting currents within the windows depend on a 
highlighted parameter but not so much on the values of other param-
eters. These parameter-specific waveforms are then applied to a live 
neuron (so far in simulation) and the resulting currents are observed 
and fitted with another GA, focusing on the highlighted parameters 
for each of the voltage waveforms. The resulting model is then trans-
ferred into current clamp, where the parameters are again estimated 
using a GA. The neuron models in the GA population are coupled 
to the observed cell to achieve a degree of synchronization and so 
smooth the error landscape. The coupling is reduced adiabatically 
until the model neurons and experimental cell remain synchronized 
with (virtually) no coupling.
We found that combining voltage and current clamp works particu-
larly well since the fitness landscape in voltage clamp has few local 
minima but is fairly shallow whereas the opposite is true for the cur-
rent clamp mode. We can hence find approximate parameter values 
from arbitrary initial guesses in our ‘voltage clamp’ mode and once the 
parameters are in the right area, they can be refined in current clamp. 
Our method can produce accurate models of cells in the crab STG for 
the cases of one, two, three and four-spike bursters. Table 1 shows the 
resulting parameter values for the example of a one-spike burster cell 
illustrated in Fig. 56.
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Table 1  Estimated parameters for one-spike burster STG cell

fPar C gNa ENa gKd EKd gA EA gCa Ca0 Caf Cat gKCa EKCa gleak Eleak

Min 0.1 0 0 0 −100 0 −100 0 0.01 14 20 0 −100 0 −100

Max 10 800 100 200 0 75 0 5 0.1 16 250 300 0 1 0

Real 0.628 50 50 100 −80 5 −80 4 0.05 14.96 200 250 −80 0.01 −50

Estim. 0.613 62.07 39.05 95.77 −76.09 4.622 −88.59 3.912 0.0438 15.59 194.7 246.2 −80.22 0.0106 −50.15

Fig. 56  One-spike burster and estimated model as in Table 1
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Experimental measurements often can only provide limited data from 
animals’ sensory systems. As a result, data driven models are similarly 
limited. However, in order to make biologically relevant predictions, it 
is important to consider inputs representative of the full sensory input 
space. Here we present a full size model of the early olfactory system 
of honeybees that extrapolates inputs from the limited subset of avail-
able experimental observations.
Our model comprise olfactory receptor neurons (ORNs), local neu-
rons (LNs) and projection neurons (PNs) organized in 160 glomeruli. 
The ORN response patterns are generated using a set of ordinary dif-
ferential equations describing the binding and activation of receptors 
as in [2]. The parameters for these processes are chosen to match the 
statistical distribution of experimental observed quantities in [3, 4] as 
well as the statistics of asymptotic responses to time-invariant odours 
at high concentration observed in calcium imaging of glomeruli with 
bath-applied Ca dyes [5]. To generate the PN responses, we considered 
a network in which PNs and LNs both receive excitatory input from 
ORNs in the same glomerulus and inhibitory input from LNs in all glo-
meruli. The connectivity between PNs and LNs is based on the corre-
lation between the activities of their respective glomeruli as in [5]. A 
rate model, derived using the leaky integrate-and-fire model with the 
assumption of constant input, is used to determine the input–output 
relationship.
We tested our ORN model with continuous stimuli and short pulses. 
The average normalized ORN responses to a chemical stimulus are 
qualitatively similar to that of biological ORNs measured by electro-
antennogram recordings [4] as shown in Fig. 57, except that the time 
scale of response latency is a little smaller in the model. This can be 
explained by the lack of temporal filtering of input conductance to 
output spiking in our rate model. The responses of PNs driven by ORN 
activity can be compared to calcium imaging data with back-filled 
PNs [6], which confirms that the responses of our model PNs can rep-
licate key features of those of biological PNs. With appropriate data, 
our model can be generalized to the early olfactory systems of other 
insects. It hence provides a possible basis for future numerical studies 
of olfactory processing in insects.
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Rhythmic neural activity is believed to play a central role in neural 
computation. Oscillatory brain activity has been associated with myr-
iad functions such as homeostasis, attention, and cognition as well as 
neurological and psychiatric disorders, including Parkinson’s disease, 
schizophrenia, and depression [1]. Numerous studies have shown that 
that non-invasive stimulation, such as repetitive transcranial magnetic 
stimulation (rTMS) and Transcranial Alternating Direct Current Stimu-
lation (TACS), provide the means of modulating large-scale oscillatory 
brain dynamics by perturbing and/or entraining both resting state 
and task activity [2]. These stimulation-induced perturbations of neu-
ral oscillations have been shown to alter cognitive performance and 
perception, effects that are further known to depend on brain state 
prior and during stimulation [3]. Yet, the surge of interest in these 
approaches is compromised by the existence of complex interference 
patterns between exogenous and endogenous dynamics.
To better understand oscillatory responses evoked during rhythmic 
stimulation, we simulated a spiking cortical network built of excita-
tory and inhibitory cells, expressing resting state alpha synchrony and 
subjected to pulsatile forcing at frequencies in the range of 1–100 Hz. 
Varying stimulation parameters—such as frequency and amplitude—
we evaluated the influence of stimulation on the spectral properties of 
the network’ global neuroelectric output. The network was composed 
of recurrently connected Poisson neurons with propagation delays, 
linear adaptation, spatially profiled and sparse synaptic connections 
and noisy inputs. To model exogenous influences, we used continu-
ous trains of phasic pulses and stimulated the network globally (all 
neurons identically), to mimic TMS-like signals. For every stimulation 
condition, we also measured the neurons mean firing rate, the mean 
network spike coherence and non-linearity metric. Multiple spectral 
patterns could be observed in the network’s responses, both in the 
power and frequency domains, indicating a plurality of responses to 
shifts in stimulation frequency and/or amplitude. Network responses 
to slower/weaker stimulation were expectedly found to be shaped 
by entrainment and resonance: resonance curves defining the ampli-
tude of the system’s responses were revealed, alongside the charac-
teristic Arnold tongues, where stimulus-locking can be achieved. The 

Fig. 57  Experimental ORN responses to stimulus measured by elec-
tro-antennogram recordings in [5] (top, black line) is qualitative similar 
to the average normalized ORN responses to stimulus (1-hexanol at 
concentration 0.1 M) predicted by our model (bottom)
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individual firing rates of the neurons and resulting spike coherence 
(assessing the degree of spiking synchronization) were both strongly 
tied to the stimulation forcing. In contrast, for stimulation frequencies 
higher than 50 Hz, a different mechanism was found to dominate the 
network dynamics: stimulation pulses shaped the system’s response 
via a non-linear acceleration (NLA) on ongoing oscillatory activity. The 
network peak frequency was gradually shifted, leading to a transition 
from the alpha to the beta band, and for forcing parameters that did 
not recruit neither resonance nor entrainment. Also, NLA led the net-
work in a state of weak oscillatory power, where individual neurons 
were found in a state of intense, irregular spiking. By investigating 
closely the network non-linear interactions for each stimulation con-
ditions, we found that high-frequency forcing induces synergetic and 
non-linear, large-scale effects [4]. Our results provide new computa-
tional perspectives about the response of synchronous spiking neural 
networks in which firing rates, spike coherence and emergent oscil-
latory activity can be exogenously modulated using dynamic inputs. 
Taken together, our results suggest that the action of forcing on oscil-
lating neural systems must be regarded as strongly non-linear, and 
input features must be considered as control parameters.
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Perceptual decision-making is an intricate process implicating the 
coordinated activity of multiple brain areas [1, 2]. Recent experimen-
tal studies demonstrate the existence of a complex interplay between 
decision-related neural events and transient working memory pro-
cesses [1], implemented by distributed circuits where specific sub-
populations appear to be differentially involved in the evidence 
accumulation process and subsequent behavioral outcomes [2]. This 
results in observable divergences in choice-specific neuronal dynam-
ics, unfolding as reproducible trajectories throughout the network’s 
state-space [1] and hinting at the dissipative nature of the underly-
ing dynamical system, which executes cognitively relevant processing 
through transient trajectories.
Despite this evidence, the majority of modeling studies addressing 
reward-modulated decision-making tend to simplify the formaliza-
tion of environmental representations in the cortex as stable, attractor 
states corresponding to discrete environmental states [3]. Even models 
involving transient-based computations often simplify sensory stimuli 
to a discrete set of inputs transduced as stochastic point processes [4]. 
These simplifications potentially draw an incomplete picture of neural 
dynamics and therefore provide limited insights into the true nature of 
computation in neural circuits.

To overcome this issue, we take one step towards realistic in silico 
experimental settings by using structured virtual environments to 
obtain rich sensory input to drive model neural systems using the 
ROS-MUSIC toolchain [5]. It allows us to simulate robotic agents in 
virtual 3D environments performing a realistic perceptual decision 
task, which can be directly equated to experimental data. The robotic 
simulation generates realistic and structured sensory data which is 
encoded to spiking neural activity using a nonlinear encoding process, 
as formalized in [6]. The encoded sensory data is then used as input to 
a balance recurrent neural circuit.
In this study, we investigate the emergent dynamical features of neu-
ral activity when the agent is navigating a virtual T-maze. We observe 
decision-specific sequences of neural activity akin to experimental 
evidence [1], revealing possible processing strategies employed by 
the neural substrate. Furthermore, we investigate the role of different 
adaptation/plasticity mechanisms in shaping the system’s dynamics. In 
order to equate our results with those of other studies, we attempt to 
partition the network state-space into discrete activity clusters, which 
carry relevant information that could potentially be used to drive rein-
forcement learning algorithms.

Acknowledgements: We acknowledge partial support the Helmholtz 
Alliance through the Initiative and Networking Fund of the Helmholtz 
Association and the Helmholtz Portfolio theme “Supercomputing and 
Modeling for the Human Brain”, EuroSPIN and the German Federal 
Ministry for Education and Research (BMBF Grant 01GQ1343).

References
1.	 Harvey CD, Coen P, Tank DW. Choice-specific sequences in parietal cortex 

during a virtual-navigation decision task. Nature. 2012;484(7392):62–8.
2.	 Shadlen MN, Kiani R. Decision making as a window on cognition. Neuron. 

2013;80(3):791–806.
3.	 Jitsev J, Morrison A, Tittgemeyer M Learning from positive and negative 

rewards in a spiking neural network model of basal ganglia. In: The 2012 
international joint conference on neural networks (IJCNN). IEEE; 2012.

4.	 Duarte R, Morrison A. Dynamic stability of sequential stimulus repre-
sentations in adapting neuronal networks. Front Comput Neurosci. 
2014;8(124).

5.	 Weidel P, Duarte R, Djurfeldt M, Morrison A. ROS-MUSIC toolchain (in 
preparation).

6.	 Eliasmith C, Anderson CH. Neural engineering: computation, representa-
tion, and dynamics in neurobiological systems. MIT Press; 2004.

P94 
Modulation of tuning induced by abrupt reduction of SST cell 
activity
Jung H. Lee1, Ramakrishnan Iyer1, Stefan Mihalas1

1Allen Institute for Brain Science, Seattle, WA 98109, USA
Correspondence: Jung H. Lee ‑ jungl@alleninstitute.org   
BMC Neuroscience 2016, 17(Suppl 1):P94

Inhibitory interneurons have been considered pivotal in orchestrating 
pyramidal neurons. Indeed, the optogenetic perturbation of inhibitory 
cell types confirmed its validity. Recent studies [1, 2] have found that 
the optogenetic stimulation of somatostatin positive (SST) interneu-
rons, one of the three major inhibitory types, sharpens the tuning of 
visual neurons, but its effect was conspicuous only when the optoge-
netic activation of SST cells was turned off abruptly. Specifically, with 
4-s presentation of visual stimuli, the 1-s activation of SST cells resulted 
in a sharper tuning, whereas 4-s activation did not induce significant 
sharpening [2], which leads to a question: “Why does the length of 
optogenetic stimulation render such a striking difference?” Lee et  al. 
suggested that the 1-s activation sharpens the tuning curve due to 
the rebound activity of PV cells, and El-Boustani et  al. suggested the 
reduction of co-activation between PV and Pyr cell activity; see Ref. [2] 
for the details.
In our study, we investigate the potential mechanisms underlying the 
disparate effects between short and long activations of SST cells by 
using the firing rate equations that expresses the interactions among 
Pyr, SST and PV cells conveyed via cell-type specific connections 
reported by Pfeffer et  al. [3]. Our model consists of five populations: 
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two pyramidal populations (Pyr1, 2), two PV cell populations (PV1, 2) 
and SST cell population. We assume that Pyr1 and Pyr2 in close prox-
imity respond to preferred and non-preferred stimuli, respectively. 
The two pyramidal populations excite the shared SST cell population 
which sends inhibition back to them. Since SST cells are known to be 
connected to distant presynaptic pyramidal cells via long-horizontal 
connections [4], the two SST populations in close proximity would 
receive (almost) identical inputs, making the two SST populations 
redundant. PV1 and PV2, which receive identical external background 
inputs, interact with Pyr1 and Pyr2, respectively. Pyr1 and Pyr2 are not 
directly connected, but they can indirectly interact with each other 
through SST cell population.
Our model replicates the paradoxical finding that not 4-s activa-
tion of SST cells but 1-s activation leads to the sharper responses of 
V1 neurons. In our model, PV cells provide synchronized inhibition to 
pyramidal cells despite their distinctive receptive fields when SST cell 
activation is abruptly turned off. If SST cells are stimulated during the 
entire period of simulations (4  s), the induced synchronous inhibi-
tion from PV cells to pyramidal cells is not strong enough to induce 
sharper responses. We also found that this synchronous inhibition can 
be induced by the activation of VIP cells, raising the possibility that VIP 
cells regulate V1 neural responses with the proposed mechanism.
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Vasoactive intestinal polypeptide positive (VIP) inhibitory interneu-
rons are commonly found in the superficial layers of cortices [1]. They 
are distinct from other major cortical inhibitory cell types in terms of 
connectivity and cellular mechanisms and exclusively inhibit somato-
statin (SST) cells in visual cortex. This property is consistent with the 
interneuron-selective interneuron group, which has been proposed 
recently [2]. Indeed, bitufted cells in this group express VIP. Moreover, 
VIP cells have nicotinic receptors rarely found in SST and parvalbumin 
positive (PV) cells [3]. These recent studies lead to the hypothesis that 
VIP cells play unique functions in cortical areas, which can be sup-
ported with evidence. The optogenetic activation of cingulate cortex 
of mouse elicited a strong response in VIP cells of V1, suggesting the 
central roles of VIP cells in top-down gain control [4]. Also, VIP cells are 
nonspecifically depolarized when a mouse runs [5].
VIP cells disinhibit pyramidal cells by suppressing SST cell activity. That 
is, when VIP cells are activated, pyramidal cell activity increases due 
to reduction of inhibition from SST cells, which accounts for the gain 
modulation. However, the advantage of VIP cell activation induced by 
locomotion is not clear. We hypothesized that VIP cell activation leads 
to better perception of moving objects since all visual objects would 
appear to be in motion when a mouse runs. The strong surround sup-
pression could prevent visual neurons from responding to those effec-
tive movements. In this sense, VIP cell activation may be beneficial to 

the mouse running, as the enhanced VIP cell activity reduces surround 
suppression.
Here we use a computational model of V1 consisting of multiple 
cortical columns to address if VIP cell activation can enhance per-
ception on moving objects. Our computational model is based on 
an earlier multiple column model [6], and we refined it by incor-
porating VIP, SST and PV cells into the superficial layers of the 
model. To build this refined model, we used two strategies. First, 
we inferred the time course of synaptic events and the number of 
connections from both experimental data [7] and parameters from 
the earlier model. Second, we identified the minimal set of interco-
lumnar connections necessary for reproducing lateral interactions 
observed in visual cortex [8]. To examine whether the enhanced VIP 
cells could enhance responses to moving objects, we simulated a 
single moving object by stimulating the columns sequentially in the 
model. Our simulation results support our hypothesis: the column 
responses during sequential stimulation increase as we increase 
inputs to VIP cells.
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Brains are adept at creating an impressively accurate internal model 
of their surrounding based on incomplete and noisy sensory data. 
Understanding this inferential prowess is not only interesting for neu-
roscience, but may also inspire computational architectures and algo-
rithms for solving hard inference problems. Here, we give an overview 
of our work on probabilistic inference with brain-inspired spiking net-
works, their advantages compared to classical neural networks and 
their implementation in neuromorphic hardware.
In the neural sampling framework, we interpret spiking activity as sam-
pling from distributions over binary random variables. By exploiting 
the dynamics of spiking neurons with conductance-based synapses, 
we have shown that their activation function can become symmetric in 
the high-conductance state, which in turn enables Glauber-like dynam-
ics in ensembles of noise-driven LIF networks [1, 2]. This allows the 
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straightforward construction of LIF networks that sample from previously 
defined probability distributions.
When the parameters of the distribution are not well-defined, they need 
to be learned from data. Due to their analogy to classical neural networks 
such as Boltzmann machines, LIF networks are amenable to the same 
learning algorithms and can be shown to match the performance of their 
equally-sized abstract counterparts when trained on classical machine-
learning datasets such as MNIST. However, spiking neural networks 
endowed with short-term plasticity can travel more efficiently through 
their associated state space, allowing them to simultaneously become 
good generative and discriminative models of learned data, which is 
notoriously difficult with conventional techniques such as Gibbs sam-
pling. This finding points towards a distinct advantage of spike-based 
computation and communication, which is relevant in any scenario 
where spiking neural networks need to be able to escape local attractors.
This computational advantage of spiking sampling networks can be 
further bolstered by emulation on an accelerated neuromorphic sub-
strate. The core idea behind these devices is the direct emulation of 
biological neuronal dynamics in VLSI circuits. Such hardware can far 
surpass simulators running on conventional computing architectures 
both in terms of speed and power consumption, but with the caveat of 
having limited parameter precision, as well as other sources of disrup-
tive noise [3, 4]. With some additional modifications, we have shown 
how LIF networks can become robust to certain types of parameter 
noise—both during training and during operation– thereby making 
them amenable to a neuromorphic implementation with an accelera-
tion factor of 104 compared to biological real-time.
An even more compelling argument for neuromorphic spike-based 
inference can be made when considering that learning (in particular, 
the simulation of synaptic plasticity) is by far the most time-consum-
ing factor in simulations. In an effort to make expectation–maximiza-
tion learning compatible with existing neuromorphic devices, we have 
developed a network model that can use double-exponential STDP 
with 4–6 bit weight resolution for learning and spike-based homeosta-
sis for stabilization and robustness.
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One present challenge in electrical stimulation for epiretinal prosthe-
ses is how to avoid stimulating axons of passage in the nerve fiber 
layer (NFL) that originate from distant regions of the ganglion cell layer 

(GCL). Co-stimulation of target retinal ganglion cells and overlying 
axons results in irregular visual percepts, which can significantly limit 
perceptual efficacy [1, 2]. This research explores how the characteristic 
distributions of fiber orientation in different retinal layers result in dif-
ferences between the activation of the axon initial segment and axons 
of passage. Specifically, axons of passage of retinal ganglion cells are 
characterized by a narrow distribution of fiber orientations, dominated 
by the direction of passage towards the optic disk. In contrast, proxi-
mal axons in the GCL tend to have a wider distribution of orientations.
A model of extracellular stimulation that captures the effects of neu-
rite orientation has been developed using a modified version of the 
standard volume conductor model, known as the cellular composite 
model [3], embedded in a four layer model of the retina. The cellular 
composite model is used in this analysis as it addresses a number of 
limitations of conventional volume conductor models and more accu-
rately captures the spatiotemporal properties of neural tissue.
By generalizing the model to allow for analysis of fibers with arbitrary 
orientations, simulations have been conducted to investigate the 
interaction of neural tissue orientation, electrode placement, and stim-
ulation pulse duration and amplitude.
Through an exhaustive parameter search, a set of stimulation pulse 
durations, amplitudes and electrode positions are proposed to achieve 
selective activation of axon initial segments. Using appropriate multi-
ple electrode configurations and higher frequency stimulation, prefer-
ential activation of the axon initial segment is shown to be possible for 
a range of realistic electrode-retina separation distances (Fig. 58).
These results establish a quantitative relationship between the time-
course of stimulation and physical properties of the tissue, such as 
fiber orientation.
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Fig. 58  A Simulation geometry showing the four modeled layers: 
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Neural spike trains are commonly characterized as a Poisson point 
process. However, the Poisson assumption is a poor model for spiking 
in auditory nerve fibers because it is known that interspike-intervals 
display positive correlation over long time scales and negative corre-
lation over shorter time scales. It has been suggested that ion chan-
nel opening and closing might not be well described by Markov 
models. Instead, fractal ion channel gating could be used to take into 
account the involvement of proteins in the conformational changes of 
sub-states in the channel gating kinetics. Using a detailed biophysi-
cal model, we tested the hypothesis that fractal ion channel gating is 
responsible for short and long term correlations in the auditory nerve 
spike trains.
We developed a biophysical model based on the well-known Med-
dis model of the peripheral auditory system [1]. We introduced bio-
physically realistic ion channel noise to an inner hair cell membrane 
potential model that includes (i) fractal fast potassium channels, (ii) 
deterministic slow potassium channels, and (iii) a stochastic Markov 
model for noisy calcium channels. We used Fano factor as a measure 
of firing correlation.
We showed that the resulting simulated Fano factor time curves 
have all the common attributes of the Fano factor of experimentally 
recorded spike trains in the auditory nerve fibers, except the time scale 
of corelation. Our model thus replicates macro-scale stochastic spiking 
statistics in the auditory nerve fibers due to modeling stochasticity at 
the micro-scale of potassium and calcium ion channels.
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During naturalistic whisker motion, subsets of neurons in the same 
barreloid of the rat ventroposterior medial thalamus (VPM) respond 
synchronously with temporal precision to different kinetic features of 
whisker movement (spike-time coding) [1]. Multiple synchronously 
firing VPM cells can trigger temporally precise responses in the soma-
tosensory cortex, such as those observed during full whisker deflec-
tion or active touch, but the minimum number of synchronously firing 
VPM cells needed to reliably drive the spiking of cortical cells is not 
known.
In this study, we use the Blue Brain Project’s digital reconstruction of 
a somatosensory microcircuit of a juvenile rat [2] to characterize how 
many synchronously firing VPM cells are needed to reliably drive indi-
vidual cells of different morphological types in the rat somatosensory 

cortex. We activate an increasing number of synchronously firing VPM 
fibers (with in  vivo VPM spike trains from experiments published in 
[1]) in both simulations of single cells, and simulations of the whole 
reconstructed microcircuit with only a small number of active VPM fib-
ers. We find that inhibitory neurons in layers 3 and 4 quickly approach 
maximum spike-timing reliability when receiving input from 10 to 15 
synchronously firing VPM neurons. Excitatory neurons in layers 3 and 4 
require substantially more synchronous VPM fibers, but less than excit-
atory neurons in layers 5 and 6 (see Fig. 59). With an average of eight 
synapses per connection, these numbers are significantly higher than 
what has been observed in a previous in silico study in the cat visual 
cortex [3]. In addition to the difference in animal and sensory system, 
we show that this decrease of reliability can be partly explained by 
a lower synaptic release probability in  vivo than in  vitro caused by a 
lower extracellular calcium concentration in  vivo [4], which is taken 
into account in our simulations [2].
Finally, we describe how the requirement for synchronous, redundant 
VPM inputs limits the maximum amount of asynchronous, temporally 
precise VPM activity (in subsets of synchronous VPM neurons) that can 
be reliably encoded in a neocortical microcircuit.
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Experimental studies on the spinal cord (SC) have shown that SC is 
not a simple relay station for transmitting information to and from 
supraspinal centers but “it is a highly evolved and complex part 

Fig. 59  A Mean spike-timing reliability (similar correlation-based 
measure as in [3], but with firing rate adaption). The reliability of the 
VPM input is 0.55. B Mean probability of firing within 2–12 ms after 
the initial input VPM spike in each trial. C Mean ratio of spikes occur-
ring within 2–12 ms after a VPM spike, out of all spikes. Mean of 30 
(L3/4 excitatory), 50 (L5/6 exc.), 40 (L3/4 inhibitory) and 30 cells (L5/6 
inh.) respectively
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of the CNS that has considerable computational ability” [1]. Limb 
movements are planned and initiated by the brain but they cannot 
be performed without a spinal cord and the intricate feedback sys-
tems that reside within it [2]. In the last years, computational models 
have been devised in order to explain the role of the spinal cord in 
the translation from motor intention to motor execution [3], in sen-
sorimotor control and learning of movements [4], in investigating 
how the supraspinal centers can control the cord [5], for providing 
evidence that CNS can plan and control movements without a rep-
resentation of complex bodily dynamics because the creation and 
coordination of dynamic muscle forces is entrusted to the spinal 
feedback mechanisms [6], for investigating how the central nervous 
system coordinates the activation of both α and γ motoneurons dur-
ing movement and posture [7].
Here we propose a computational model of the local interneuron 
networks within SC to evaluate how spinal and supraspinal centers 
can interact for performing a movement. We model a one-degree of 
freedom system representing an arm learning and executing reach-
ing movements. The model incorporates the key anatomical and 
physiological features of the neurons in SC, namely interneurons Ia, Ib 
and PN and Renshaw cells, and their interconnections [2]. The model 
envisages descending inputs coming from both rostral and caudal M1 
motor cortex and cerebellum (through the rubro- and reticulo-spinal 
tracts), local inputs from both Golgi tendon organs and spindles, and 
its output is directed towards α motoneurons, which also receive 
descending inputs from the cortex and local inputs from spindles. 
The model envisages virtual muscle [8] for modeling musculoskeletal 
mechanics and proprioceptors.
Our simulations show that the CNS may produce elbow flexion move-
ments with different properties by adopting different strategies for the 
recruitment and the modulation of interneurons and motoneurons. 
One interesting results is that the speed-accuracy tradeoff predicted 
by the Fitts’ law [9] does not follow from the structure of the system, 
that is capable of performing fast and precise movements, but arises 
from the strategy adopted to produce faster movements, by starting 
from a pre-learned set of motor commands useful to reach the tar-
get position and by modifying only the activations of the PN and α 
neurons.
Other simulations show that when a suddenly variation of the target 
position happens after the onset of a learned movement, the descend-
ing inputs from the cerebellum can be exploited for the online correc-
tion of the movement trajectory by regulating the activity of PN cells. 
This result agrees with the experimental studies suggesting that the 
CNS modulates interneurons networks to execute a visually guided 
online correction.

References
1.	 Burke RE. Spinal cord. Scholarpedia. 2008;3(4):1925.
2.	 Pierrot-Deseilligny E, Burke DJ. The circuitry of the human spinal cord: 

neuroplasticity and corticospinal mechanisms. Cambridge: Cambridge 
University Press; 2012.

3.	 Bullock D, Grossberg S. VITE and FLETE: Neural modules for trajectory 
formation and tension control. Volitional Action. 1989;253–97.

4.	 Tsianos GA, Goodnes J, Loeb GE. Useful properties of spinal circuits for 
learning and performing planar reaches. J Neural Eng. 2014;11:1–21.

5.	 Raphael G, Tsianos GA, Loeb GE. Spinal-like regulator facilitates control of 
a two-degree-of-freedom wrist. J Neurosci. 2010;30:9431–44.

6.	 Buhrmann T, Di Paolo EA. Spinal circuits can accommodate interaction 
torques during multijoint limb movements. Front Comput Neurosci. 
2014;8:1–18.

7.	 Li S, Hao M, He X, Marquez JC, Niu CM, Lan N. Coordinated alpha and 
gamma control of muscles and spindles in movement and posture. Front 
Comput Neurosci. 2015;9:1–15.

8.	 Cheng EJ, Brown IE, Loeb GE: Virtual Muscle: a computational approach 
to understanding the effects of muscles properties on motor control. J 
Neurosci Methods. 2000;101:117–30.

9.	 Fitts PM. The information capacity of the human motor system in control-
ling the amplitude of movement. J Exp Psychol. 1954;47(6):381–91.

P101 
A computational model for investigating the role of cerebellum 
in acquisition and retention of motor behavior
Rosa Senatore1,2, Antonio Parziale1, Angelo Marcelli1
1Department of Information and Electrical Engineering and Applied 
Mathematics, University of Salerno, Fisciano (SA), 81100, Italy; 2Laboratory 
of Neural Computation, Istituto Italiano di Tecnologia, Rovereto (TN), 
38068, Italy
Correspondence: Rosa Senatore ‑ rsenatore@unisa.it   
BMC Neuroscience 2016, 17(Suppl 1):P101

Experimental studies on the cerebellum (CB) have provided a large 
body of knowledge about its anatomical and physiological features, 
the neural processes and the phenomena of synaptic plasticity occur-
ring within both the cerebellar cortex and nuclei [1]. The emerging 
picture is that the CB plays a crucial role in the acquisition and/or 
retention of motor behaviors and is involved in several cognitive func-
tions [2, 3], therefore several CB models and simulations of its neural 
processes have been proposed [3–5]. Here we investigated, through 
a modeling approach, the role of the CB in three different behaviors: 
vestibulo-ocular reflex (VOR) adaptation, motor learning, and eyeblink 
conditioning. Different cerebellar areas are involved in these functions: 
the control of the amplitude and timing of the VOR involves the ves-
tibulocerebellum, learning novel limb movements involves the lat-
eral cerebellar cortex and its connections to the dentate nucleus and 
acquisition of the eyeblink conditioned responses involves cerebellar 
cortex areas (lobule HVI) connected to the interposed nucleus[1, 3]. 
It is noteworthy that the CB is characterized by the remarkable regu-
larity and geometrical structure of its circuits: cerebellar neurons are 
arranged in a highly regular manner as repeating units, the cerebel-
lar microcomplexes [1]. Therefore the uniform structure of the CB and 
the contribution of different cerebellar areas to specific behaviors raise 
the possibility that different behaviors are based on a common ‘neural 
computation within the cerebellum’.
We developed a model (using the Leabra framework in emergent neu-
ral simulation software [6]) that incorporates the key anatomical and 
physiological features of the cerebellar microcomplex, whose behav-
ior was analyzed for investigating the neural processes occurring dur-
ing the acquisition of novel motor behaviors, classically conditioned 
responses and VOR adaptation. Since the neural circuits involved in 
these behaviors present some differences, in terms of the input/out-
put areas sending signals to or receiving signals from the CB, we devel-
oped three models, which share the same core network, made up of 
a set of cerebellar microcomplexes (comprising cerebellar cortex neu-
rons and their connections to nuclear and olivary neurons), but which 
include different anatomical connections from/to different extra cer-
ebellar regions: (a) “VOR model”, comprising the vestibulocerebellum 
(flocculus and vestibular nucleus) and its connections with the dor-
sal cap region of the inferior olive and oculomotor nuclei; (b) “Motor 
model”, comprising the lateral cerebellum (lateral cerebellar cortex 
and dentate nucleus) and its anatomical connections with the inferior 
olive, thalamus and motor cortex; (c) “Conditioning model”, compris-
ing the lobule HVI of the cerebellar cortex and its connections to the 
interposed nucleus, and their external connections with the dorsal 
accessory olive, red nucleus and oculomotor nuclei.
Our simulations suggest that the CB performs the same computa-
tional operation on whichever afferent information it receives, that 
the appearance of the ‘teaching’ signal conveyed by the climbing fib-
ers could be the explanation for functional differentiation and that 
different types and sites of synaptic plasticity are involved in different 
behaviors.
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In cognitive neuroscience, the issue of how semantic categories (e.g. 
animals, tools, fruits/vegetables) are organized in the brain is still 
debated (Caramazza and Mahon 2006). Some authors postulate that 
semantic categories are explicitly represented in specific brain areas 
developed through evolutionary pressure for rapid classification and 
categorization of animals, tools and foods (Caramazza and Shelton 
1998). Other researches argue that semantic categories are not explic-
itly represented, instead emerge from distributed semantic knowledge 
(Martin 2007; Tyler and Moss 2001). However, a little is known about 
how semantic knowledge is structured within the brain for fast and 
efficient emergence of semantic categories. In this paper, we hypoth-
esize that semantic knowledge is supported by a large-scale brain 
network that shows the properties of segregation and integration. To 
test this hypothesis, we first examine where semantic knowledge is 
nested in the brain; we present functional neuroimaging studies sug-
gesting that semantic knowledge (e.g. visual, auditory, tactile; action, 
olfactory/gustatory) is grounded in modality specific association brain 
areas (e.g. visual association areas, auditory association areas, soma-
tosensory association areas) (Barsalou 2008; Goldberg et  al. 2006). 
Then, we derive the connectivity between brain areas where semantic 
knowledge is nested from Hagmann’s connectivity matrix (Hagmann 
et al. 2008) freely available. Finally, we examine the properties of the 
connectivity matrix using graph measures including clustering coeffi-
cient and characteristic path length. Our findings show that a large-
scale brain network of features exhibit the small world property with 
high clustering coefficient (C = 0.48) and low path length (L = 2.49).
These properties indicate a balance between segregation (high clus-
tering) and integration (low path length) that are essential for the 
fast and efficient emergence of semantic categories from distributed 
semantic knowledge.
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Dystonia is a movement disorder that produces involuntary sustained 
muscle contractions. Different types of dystonia likely involve primary 
or induced pathologies across multiple brain areas including basal 
ganglia, thalamus, cerebellum, and sensory and motor cortices. Due 
to lack of therapeutic alternatives, much current treatment involves 
paralyzing affected muscles directly with painful injections of botuli-
num toxin. Primary motor cortex (M1) represents a potential target for 
therapy. M1 pathological dynamics in some forms of dystonia include 
hyperexcitability and altered beta oscillations. In order to further 
develop understanding of motor cortex involvement in this disease 
and to look at potential drug cocktails (multitarget polypharmacy), 
we developed a multiscale model of M1 across spatial scales, rang-
ing from molecular interactions, up to cellular and network levels. The 
model contains 1715 compartmental model neurons with multiple 
ion channels and intracellular molecular dynamics [1, 2]. Wiring and 
arrangements of cellular layers of the model was based on previously 
recorded electrophysiological data obtained from mouse M1 circuit 
mapping experiments. Simulations were run in the NEURON simula-
tor and intracellular dynamics utilized the reaction–diffusion module 
[3]. The chemophysiological component of the simulation focused on 
calcium (Ca) handling, and Ca regulation of hyperpolarization-acti-
vated cyclic nucleotide-gated (HCN) channels. The Ca signaling was 
modeled in conjunction with intracellular cytosolic and endoplasmic 
reticulum (ER) volumes, inositol triphosphate (IP3) production via a 
metabotropic glutamate receptor signaling cascade, and ER IP3 and 
ryanodine receptors (RYR) which release ER Ca into the cytosol. The 
model reproduced the pathological dynamics providing hyperexcit-
ability and synchronous beta oscillations across cortical layers. We 
applied independent random variations to multiple ion channel den-
sities (multiple cell membrane channels: HCN, channels for Na, K, Ca; 
RYR, IP3 channels in ER), to identify pathological and physiological 
simulation sets. Experiments with these models demonstrated degen-
eracy, with multiple routes that produced the pathological syndrome. 
In most cases, there was no single parameter alteration which would 
induce the change from pathological to physiological dynamics. We 
used support vector machines to assess the high dimensional param-
eter space to provide overall direction for passage from an overall 
pathological to an overall physiological region of parameter space, 
enabling prediction of multitarget drug cocktails that would be likely 
to move the system from dystonic to physiological dynamics.

Acknowledgements: Research supported by NIH grant R01 
MH086638, NIH grant U01 EB017695, NIH grant R01 NS064046, NIH 
grant R01 DC012947.

References
1.	 Neymotin SA, McDougal RA, Bulanova AS, Zeki M, Lakatos P, Terman D, 

Hines ML, Lytton WW. Calcium regulation of HCN channels supports 
persistent activity in a multiscale model of neocortex. Neuroscience. 
2016;316:344–66.

2.	 Neymotin SA, McDougal RA, Sherif MA, Fall CP, Hines ML, Lytton 
WW. Neuronal calcium wave propagation varies with changes in 



Page 66 of 112BMC Neurosci 2016, 17(Suppl 1):54

endoplasmic reticulum parameters: a computer model. Neural Comput. 
2015;27:898–924.

3.	 McDougal RA, Hines ML, Lytton WW. Reaction–diffusion in the NEURON 
simulator. Front Neuroinform. 2013;7:28.

P104 
Effect of network size on computational capacity
Salvador Dura‑Bernal1, Rosemary J. Menzies2, Campbell McLauchlan2, 
Sacha J. van Albada3, David J. Kedziora2, Samuel Neymotin1, William W. 
Lytton1, Cliff C. Kerr2

1Department of Physiology & Pharmacology, SUNY Downstate Medical 
Center, Brooklyn, NY 11023, USA; 2Complex Systems Group, School 
of Physics, University of Sydney, Sydney, NSW 2006, Australia; 3Institute 
of Neuroscience and Medicine (INM‑6), Jülich Research Centre and JARA, 
Jülich, Germany
Correspondence: Cliff C. Kerr ‑ cliff@thekerrlab.com   
BMC Neuroscience 2016, 17(Suppl 1):P104

There is exceptionally strong circumstantial evidence that organisms 
with larger nervous systems are capable of performing more complex 
computational tasks. Yet relatively few studies have investigated this 
effect directly, instead typically treating network size as a fixed prop-
erty of a simulation while exploring the effects of other parameters. 
Recently, Diehl and Cook [1] found that network performance did 
increase modestly with network size; however, larger networks also 
required longer training times to achieve a given performance. In this 
work, we directly addresses the relationship between network size and 
computational capacity by using a biomimetic spiking network model 
of motor cortex to direct a virtual arm towards a target via reinforce-
ment learning [2]. The reaching task was performed by a two-joint 
virtual arm controlled by four muscles (flexor and extensor muscles 
for shoulder and elbow joints). These muscles were controlled by a 
neural model that consisted of excitatory and inhibitory Izhikevich 
neurons in three cortical populations: a proprioceptive population, 
which received input from the current arm position; a motor popula-
tion, which was used to drive the arm muscles; and a sensory popula-
tion, which served as the link between the proprioceptive and motor 
populations. The model was trained to reach the target using explora-
tory movements coupled with reinforcement learning and spike-tim-
ing dependent plasticity (STDP). The model was implemented using 
NEURON.
A major challenge in scaling network size is that not all properties of 
the network can be held constant. As shown by van Albada et al. [3], 
while first-order properties (such as average firing rate) can be main-
tained, there are limitations in preserving second- and higher-order 
statistical properties (such as noise correlations). Thus, we explored 
multiple different ways of scaling the connectivity of the network, 
including (a) preserving connection probability, scaling connection 
weight to be inversely proportional to model size, and increasing 
the variance of the external drive; and (b) reducing connection prob-
ability to preserve average node degree and leaving other parameters 
unchanged. In addition, we explored scaling each of the neuronal 
population groups versus only scaling the sensory (processing) popu-
lation group. Large differences were observed in network dynamics 
and statistics based on different scaling choices. However, the rela-
tionship between network size and task performance was significant 
only for certain specific choices of model parameters. Overall, task 
performance is highly sensitive to the network’s metaparameters, such 
as STDP learning rates. We found that these must be optimized spe-
cifically for different network sizes; otherwise, differences in suitabil-
ity of these parameters overwhelm the intrinsic advantages of larger 
networks. In conclusion, while network size does affect computational 
capacity, the relationship is strongly dependent on the manner in 
which the scaling is implemented.
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NEURON is a widely used neuronal simulator, with over 1600 pub-
lished models. It enables multiscale simulation ranging from the 
molecular to the network level. However, learning to use NEURON, 
especially running parallel simulations, requires much technical train-
ing. NetPyNE (Network development Python package for NEURON) 
greatly facilitates the development and parallel simulation of biologi-
cal neuronal networks in NEURON, potentially bringing its benefits to 
a wider audience, including experimentalists. It is also intended for 
experienced modelers, providing powerful features to incorporate 
complex anatomical and physiological data into models.
NetPyNE seamlessly converts a set of high-level specifications into a 
NEURON model. Specifications are provided in a simple, standardized, 
declarative format, based solely on Python’s lists and dictionaries. The 
user can define network populations and their properties, including 
cell type, number or density. For each cell type, the user can define 
morphology, biophysics and implementation, or choose to import 
these from existing files (HOC templates or Python classes). Cell mod-
els for each population can be easily changed, and several models can 
be combined to generate efficient hybrid networks, e.g. composed of 
Hodgkin–Huxley multicompartment cells and Izhikevich point neu-
rons. NetPyNE provides an extremely flexible format to specify connec-
tivity, with rules based on pre- and post-synaptic cell properties, such 
as cell type or location. Multiple connectivity functions are available, 
including all-to-all, probabilistic, convergent or divergent. Addition-
ally, connectivity parameters (e.g. weight, probability or delay) can 
be specified as a function of pre/post-synaptic spatial properties. This 
enables implementation of complex biological patterns, such as delays 
or connection probabilities that depend on distance between cells, or 
weights that depend on the post-synaptic neuron’s cortical depth. The 
subcellular distribution of synapses along the dendrites can be speci-
fied, and is automatically adapted to the morphology of each model 
neuron. Learning mechanisms, including spike-timing dependent plas-
ticity and reinforcement learning, can be readily incorporated.
Using the high-level network specifications, NetPyNE instantiates the 
full model (all cells and connections) as a hierarchical Python structure 
including the NEURON objects necessary for simulation. Based on a set 
of simulation options (e.g. duration, integration step), NetPyNE runs 
the model in parallel using MPI, eliminating the burdensome task of 
manually distributing the workload and gathering data across com-
puting nodes. Optionally NetPyNE plots output data, such as spike 
raster plots, LFP power spectra, connectivity matrix, or intrinsic time-
varying variables (e.g. voltage) of any subset of cells. To facilitate data 
sharing, the package saves and loads the high-level specifications, 
instantiated network, and simulation results using common file for-
mats (Pickle, Matlab, JSON or HDF5). NetPyNE can convert instantiated 
networks to and from NeuroML, a standard data format for exchang-
ing models in computational neuroscience.
NetPyNE has been used to develop a variety of multiscale models: pri-
mary motor cortex with cortical depth-dependent connectivity; the 
claustrum; and sensorimotor cortex that learns to control a virtual arm. 
The package is open source, easily installed, and includes compre-
hensive online documentation, a step-by-step tutorial and example 
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networks (www.neurosimlab.org/netpyne). We believe this tool will 
strengthen the neuroscience community and encourage collabora-
tions between experimentalists and modelers.
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A focal visual stimulus can evoke widespread neural activation far 
beyond the directly stimulated site, a phenomenon referred to as the 
“cortical point spread” (CPS). The lateral connections among neurons 
in the early visual cortex have been proposed as a likely anatomi-
cal conduit for the CPS, and recent functional studies on humans [1] 
and non-human primates [2] demonstrated that the CPS is spatially 
anisotropic, spread preferentially along with the axis of stimulus ori-
entation, dubbed as ‘coaxial anisotropy.’ Although these two seminal 
studies documented the coaxial anisotropy robustly in two different 
species, there are several remaining questions to be further explored. 
First, previous human psychophysical studies reported substantial 
degrees of inhomogeneity in association field characteristics over the 
visual space (e.g., crowding effects), which implies the presence of cor-
responding inhomogeneity of coaxial anisotropy. Second, the animal 
study [2] examined the coaxial anisotropy only from V1 of two mon-
keys, and the human study [1] reported a substantial degree of indi-
vidual differences and inter-areal differences. The current study is set 
out to address these two aspects of coaxially anisotropic CPS.
We acquired time series of functional magnetic resonance imaging 
(fMRI) measurements in V1 while human individuals viewed a ring or 
wedge of Gabor patches that slowly drifted along the radial or tan-
gential axis over a spatially extended (up to 8° in radius) region of 
retinotopic space (Fig.  60A). The orthogonal combination of two dif-
ferent drifting direction and stimulus orientation generated two inter-
esting viewing conditions: coaxial and orthoaxial conditions (boxed 
and unboxed panels, respectively, in Fig.  60A). For individual gray 
matter units (2  mm iso volume voxels) in the early visual cortex (V1, 
V2, V3), we quantified the degree and sign of coaxial anisotropy by 
comparing the width of fMRI response profiles between the coaxial 
and orthoaxial conditions. In specific, we first estimated the width of 
CPS at the half of its maximum response respectively for two viewing 
conditions  −  coaxial condition (Wc) and orthoaxial condition (Wo), 

then computed coaxial anisotropy index by taking the singed contrast 
between these two width estimates: CAI = (Wc − Wo)/(Wc + Wo).
Results The results replicated those in the previous study [1]: in all 
of the subjects inspected, the width of CPS was significantly greater 
along the coaxial axis than along the orthoaxial axis (Student’s t test, 
p < 0.001), and the CAIs ranged from +0.05 to +0.15 (Fig. 60B). In addi-
tion, we found two interesting new findings: first, coaxial anisotropy 
tended to decrease along the processing hierarchy (V1  >  V2  >  V3; 
Fig. 60C); second, coaxial anisotropy tended to be more pronounced 
along the cardinal axes (horizontal meridians in particular) in retino-
topic space.
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Bistable perception—involuntary fluctuation over time in perceptual 
appearance despite unchanging physical stimulation on sensory organs—
has been a popular tool for exploring neural loci substantiating transitions in 
perceptual awareness. To track observers’ ongoing percepts, experimenters 
make the observers actively report binary states of their perception. Unfor-
tunately, observers’ engagement in perceptual tracking is likely to invite the 
brain activities that are not associated directly with perceptual transition 
per se, but rather reflect the cognitive processes ensuing from temporal 
sequences of perceptual transitions. We reasoned that, in a computational 
perspective, the latter, post-transition component of bistable perception is 
majorly driven by two separate quanta of uncertainty: unexpected (UU) and 
expected uncertainty (EU), which have been proposed to relate to neuro-
modulatory systems of norepinephrine and acetylcholine, respectively [1]. 
We found the Dynamic Belief Model (DBM) [2] particularly relevant to the 
concurrent measurement of those two quanta of uncertainty (i) because 
it is capable of updating the moment-to-moment, expected probability 
of binary events based on a recent history of those events (Fig. 61A) and 
(ii) because this probability directly estimates EU whereas the disparity 
between the expected probability and perceived outcome quantize UU.

Fig. 60  Stimuli and fMRI results. A The snapshot of traveling Gabors 
are shown for the four different conditions. The black arrows represent 
a moving direction of wedge or ring. B Significant (yellow, t test 
p < 0.001) coaxial anisotropy in all subjects. C Coaxial anisotropy 
across visual areas (V1, V2, V3)

Fig. 61  Bayesian estimation to predict BOLD dynamics around 
switch. A Bayesian inference model of iteratively updated prior, input 
likelihood, and combined posterior. B (Upper) Uncertainty-driven 
BOLD estimated from Bayesian model locked to transition under 
different duration conditions. Time-series is built purely from real 
behavior history. (Lower) Average % BOLD signal of ACC region in 8 
subjects (14 sessions)

http://www.neurosimlab.org/netpyne
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With the DBM in hand, we predicted the time courses of UU and EU 
(red curves in Fig.  61B), and explored the cortical loci substantiating 
those two kinds of uncertainty by acquiring fMRI measurements while 
human observers viewed a ‘structure-from-motion (SfM)’ display, in 
which ambiguous 2D motion of coherently moving dots gives per-
ceptual alternations in 3D motion perception between bistable states, 
clockwise vs counterclockwise rotational motion. To compensate for 
the temporal resolution of fMRI activity, we slowed down the dynam-
cis of bistable perception using the intermittent stimulation tech-
nique, which allowed us to identify gray-matter units (voxels) whose 
variability in fMRI time course can be explained by UU or EU.
As expected from previous studies, cortical activity increased substan-
tially during the transition periods in many distributed brain regions. 
More importantly, the fMRI time series in these transition-locked 
regions were explained by the weighted linear sum of the time series 
of UU and EU quantity, some exhibiting greater weights for UU and 
others greater weights for EU. In additions, the time series of pupil size 
of the observers resembled the predicted time courses of UU, con-
sistent with the previously reported tight linkage between UU and 
the LC-NE system. We conclude that the cortical activities previously 
claimed as being responsible for triggering perceptual transition are 
likely to reflect two post-transition cognitive quanta of uncertainty.
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Optimization of decision-making often requires the effective inte-
gration of sensory and value information, particularly when sensory 
inputs are ambiguous and the criterion for the successful decision 
changes stochastically over time (e.g., a hitter making ‘strike’ or ‘ball’ 
decisions by integrating visual information and an umpire’s calls). 
We adapted this ‘sensory-value integration’ situation to a laboratory, 
where 30 human subjects classified ring stimuli into ‘small’ or ‘large’ 
based on the perceived ring size and the trial-by-trial feedback (‘cor-
rect’ or ‘incorrect’) for judgment. The key manipulation was, unbe-
knownst to subjects, to induce a slight amount of bias, favoring either 
‘small’ or ‘large’ choices, or staying ‘unbiased’. Inspired by previous ani-
mal studies (Corrado et al. 2005; Lau and Glimcher 2005; Busse et al. 
2011), we developed a Linear-Nonlinear-Poisson model to describe 
the dynamics of how humans adapt their moment-to-moment per-
ceptual decision to subtle, yet volatile environmental feedbacks. The 
integration process takes place at the Linear stage where a decision 
variable is formed by combining the sensory information in the cur-
rent trial and the reward/choice information histories. This is followed 
by the nonlinear stage where softmax rule is applied to translate the 
decision variable into probability for the ensuing Poisson stage. Fit-
ting the model to the data set of each individual allowed us to explore 
the individual differences in optimal sensory-value integration in our 
task. Our L–N–P model effectively depicted, and generated as well, the 
temporal dynamics of human subjects’ perceptual choices made in an 
environment with volatile and stochastic feedbacks. The correlation 
analysis identified a set of latent model parameters (e.g., reward kernel 
weight) that are tightly linked to the individual differences in ability to 
adapt their decision to abrupt changes in feedback. The ideal decision-
maker analysis indicated that human subjects are generically subopti-
mal in forming an effective reward kernel for translating feedbacks in 
the past trials into action values in the upcoming trials.
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Human listeners seem effortless in recognizing a rapid stream of 
speech sounds uttered by their fellow speakers, thus being capable 
of readily participating in conversation. However, it remains poorly 
understood how the brain represents the basic processing unit of such 
fluent speech perception, phoneme. In a computational perspective, 
phoneme perception is a reverse engineering of speech production, 
where the goal is to infer from noisy acoustic signal which phonetic 
gesture is the one that was most probably intended by a speaker. This 
‘probabilistic inferential’ nature of computations makes the Bayesian 
framework attractive. Here we developed a Bayesian algorithm that 
captures the two characteristic phenomena of phoneme perception, 
(1) sharp transitions in perception (categorization) and (2) enhanced 
discriminability (differentiation) at around phoneme boundaries, 
and then explored how this algorithm can be implemented in plastic 
human brains.
Our model posits (i) that the brain has the probabilistic knowledge 
of frequencies of phonetic stimuli prior to forming the likelihood of 
phoneme stimuli based on noisy sensory signals (prior and likeli-
hood beliefs), (ii) that the brain combines these two knowledges to 
form a posterior distribution of probability (posterior belief ), and (iii) 
that the brain ‘optimally’ utilizes this single posterior belief to concur-
rently perform the categorization and discrimination tasks. The major 
latent variables of our interest were the shape of the prior probabil-
ity distribution function (prior PDF) and the width of the likelihood 
PDF. The parameters for these two PDFs were estimated by fitting 
the model to the behavioral data in a pair of psychophysical experi-
ments, where human subjects both categorized and discriminated the 
acoustic stimuli comprising the cyclic transition among three voiced 
stop consonant–vowel syllables, /ba/-/da/-/ga/, varying in the place of 
articulation (labial-alveolar-velar). The behaviorally constrained mod-
els revealed the prior PDF with the three modes whose peaks corre-
spond to the three prototypical phoneme syllables and the posterior 
PDF with large variance.
Having identified the prior and likelihood PDFs used by the optimal 
Bayesian listener, we explored plausible neural mechanisms for imple-
menting those PDFs. Going beyond previous attempts, our proposal of 
Bayesian implementation offers a formal account for how the unequal 
frequency of acoustic stimuli, i.e., stimulus prior, is developmentally 
translated into an unequal distribution of sensory neurons via well-
known canonical principles of neural plasticity (‘neural remapping’). 
Specifically we propose that sensory neurons, stimulus tuning prefer-
ences of which were equally distributed initially, iteratively shift their 
tuning curves toward an experienced stimulus (‘attractive shift’) as a 
function of their current responsitivity to that stimulus (Fig.  62). The 
population distribution of sensory tuning curves that were shaped 
by this remapping scenario, when plugged into typical probabilistic 
population coding schemes, reproduced qualitatively the human lis-
teners’ performances in the both phoneme tasks. Our model exercise 
on tuning width also shed new light on how the optimal tuning width 
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of sensory neurons (broad tuning in our case) can be constrained by 
the task requirements (categorical perception) and the stimulus envi-
ronments (biased prior) imposed on a given sensory system (speech 
perception).
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Identifying a universal feature of brain dynamics during anesthetic-
induced unconsciousness has been an important work for both prac-
tical use of monitoring depth of general anesthesia and scientific 
knowledge about the nature of consciousness. However, it is difficult 
because anesthetics with different mechanism of action (MOA) induce 
distinct brain dynamics. From the perspective of complex system sci-
ence, we claim that the dynamics generated by conscious brain is more 
complex compared to one from anesthetic-induced unconscious brain 
regardless of anesthetic types. To test the hypothesis, we used keta-
mine and propofol which fall into two distinct anesthetic groups [1]. 
Disorder and complexity of electroencephalogram (EEG) signals were 
analyzed before and after bolus injection of drugs. For the analysis, 
we employed Shannon entropy (SE) and fluctuation complexity (FC), 
which are information theory-based measures quantifying disorder 
and complexity, respectively [2]. The study shows that ketamine and 
propofol both reduced the complexity (p  <  0.00001 for both) of EEG 
signals from the whole brain area (Fp1, F3, T3, P3) while each respec-
tively increased (p =  0.000112) and decreased (p  <  0.00001) disorder 
of the signal (Fig. 63). The finding supports our claim and suggests con-
sidering the EEG complexity as a common measure of consciousness.
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The concept of the self-organized criticality is applied to many natu-
ral and economical systems [1–4]. The distribution of neural avalanche 
in neural models obeys a power law with exponents of the mean-field 
theory. Neural avalanches in cultured neocortical network show self-
organized criticality over long stable period with exponent −1.5 of 
the power law for the distribution of the neural avalanche [1]. We con-
sider a modified integrate-and-fire model introduced by Levina, Her-
rmann and Geisel (LHG model) [2]. We extend the LHG model on the 
complex networks such as fully-connected network, random network, 
small-world network, and scale-free networks. In the LHG model the 

Fig. 62  Interaction between tuning curve and prior in population 
tuning. A Bias map for combinations of tuning curve width and prior 
sharpness. Negative bias means that perception of a near-/ba/stimu-
lus was biased toward/ba/, namely categorical perception. Three 
inset plots on ordinate and abscissa show the cases of the lowest/
median/highest concentration parameters of tuning curve and prior 
peak, respectively. B Discrimination difference map. Negative number 
indicates that between-phoneme condition outperformed near-/ba/
condition. C Tuning curves of population neurons that was marked 
as green squares in A, B. Location of tuning centers were marked as 
dots for 60 neurons, and tuning curves of 30 out of those 60 neurons 
were drawn below

Fig. 63  A SE and FC values of Fp1 channel for three different states, 
which are wakeful, ketamine-induced, and propofol-induced states, 
are averaged over subjects (n = 29 for ketamine-induced, n = 20 for 
propofol-induced and n = 49 for wakeful states). Error bars represent 
standard errors. Wakeful state has the intermediate SE value between 
ones of two other states. For FC value, however, wakeful state has the 
highest one and both anesthetized states have smaller ones, forming 
a concave relationship between three states. B Each dot manifests 
averaged SE and FC values of one subject over 23 10 s-long epochs 
overlapping 5 s each other. Error bars here also indicate standard 
errors. Most wakeful states have higher FC values compared to ones 
of unconscious states and have intermediate SE values. Ketamine-
induced states are mainly located in the lower right part when 
propofol-induced states are clustered at the lower left part of the 
area in SE–FC plot. C FC values of EEG signals from the whole brain 
area, covering pre-frontal, frontal, temporal, and parietal regions, 
significantly decreased during ketamine-induced loss of conscious-
ness (p < 0.0001). D All FC values of the signals from different regions 
were also significantly reduced during propofol-induced unconscious 
state (p < 0.0001)
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membrane potential of a neuron is accumulated from input potential 
and random external input. In a fully connected network we observed 
the power law with exponent −1.57 as shown in Fig.  64. The expo-
nent of the power law depends on the network structure of the neural 
systems.
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The experimental approach using in  vitro slices of the rat limbic sys-
tem has been applied to identify mechanisms underlying epilepti-
form activity in ictal-like events [1]. We prepared combined slices of 
the rat hippocampus-entorhinal cortex and placed them in artificial 
corticospinal fluid that contained 4-aminopyridine (4AP). Field poten-
tial recordings were made with a microelectrode array composed of 
6 ×  10 microelectrodes with inter-electrode spacing of 500  μm (see 
Fig.  65A) when synchronous activity was induced by 4AP. Channels 
with high artifact rates were rejected, and the signal for each remain-
ing channel was divided into 10 s windows without overlap. For each 
window, adjacency matrices, or binary networks, were estimated via 

inter-channel connections based on spectral coherence in different 
frequency bands, including delta, theta, alpha, beta, gamma, ripple, 
and fast ripple. Topological properties of the inter-channel networks 
were assessed by calculating global and local efficiency [2]. As ictal-
like events were initiated, global efficiency started to decrease and 
local efficiency started to increase, and the changes were maintained 
during ictal-like epileptiform activity (see Fig.  65B). Such changes 
related to a shift in connection topology to a regularized pattern are in 
line with the findings for the whole brain in a rat model [3].
Conclusions Although the initiation and propagation of epileptiform 
activity may not be fully appreciated due to the spatially isolated 
structure in the in vitro slice preparation, the pattern of ictal-like syn-
chronous activity in the limbic system was related to changes in con-
nection topology that may reflect a shift in brain states.
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Deep brain stimulation (DBS) method for suppression of epileptic sei-
zure is being developed mostly based on clinical experiences because 
the suppression mechanism by electrical stimulation is still unclear. As 
such, it is difficult to improve efficacy of the DBS method. The study 
of computational models allows to predict and analyze the effect of 
electrical stimulation by computer simulation such that it can help to 
determine optimum stimulation parameters to suppress seizure activ-
ity in various conditions.

Fig. 64  Distribution of avalanche size for LHG model on the fully-
connected network. The distribution function of avalanche size 
shows the power law with exponent −1.57

Fig. 65  A Microelectrodes placed to cover both entorhinal cortex 
and hippocampus. B Temporal changes in global and local efficiency 
around the time of ictal-like epileptiform activity. The red vertical line 
indicates the initiation of ictal-like events and the time series in blue 
displays recorded field potentials
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In this paper, we propose a hippocampal network model which por-
trays propagation characteristics of seizure-like events (SLEs) and sup-
pression phenomena by electrical stimulation. The model is composed 
of four sub-networks representing EC, DG, CA3 and CA1 and well-
known synaptic pathways between sub-networks. Each sub-network 
consists of excitatory and inhibitory neurons which are described by 
Izhikevich’s model [1]. Besides synaptic transmission [2], electrical 
field transmission [3] between neurons is also considered. Input gains 
of neurons are controlled by interaction strengths between sub-net-
works which are calculated by Granger causality analysis. We adopt 
the “potassium accumulation hypothesis” in order to replicate sup-
pression effect by electrical stimulation [4, 5]. The effectiveness of the 
model is confirmed by comparing the simulation results with experi-
mental data which were measured in rat hippocampal slice (horizon-
tal, 400um) in bicuculline bath application. Local field potentials are 
recorded using micro-electrode array (MEA) and electrical stimulation 
(130 Hz, 500 µA, biphasic, 3–5 s) is applied manually in EC by an addi-
tional depth electrode when SLE is initiated.
Following Fig. 66 shows time domain signals recorded in in vitro meas-
urement and generated from the computer model, respectively. After 
stimulation, the SLE in EC is suppressed immediately, while SLEs in 
other areas still remained. The simulation results show similar wave-
forms with experimental data.
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Transfer entropy [1] is the established method for quantifying the 
effective connectivity among neurons.
It has been shown in simulations [2] that measuring it from simulta-
neously recorded spike trains of neurons can detect the underlying 
connections and therefore reconstruct a neuronal network from its 
observed dynamics. Being interpreted as the predicted information 

transfer, it quantifies the directed non-linear interactions between 
time series as a model-free method regardless of the underlying inter-
action type, which could be either inhibitory or excitatory.
Making the distinction between excitatory and inhibitory synapses, 
however is important in order to understand the underlying principles 
of spatiotemporal patterns in functional networks.
In our study we describe a method for the measuring of interaction 
types, based on the concept of local transfer entropies [3]. In contrast 
to the averaging across all configurations of variables of the source 
process and the target process as in the Transfer Entropy estimation, 
the local transfer entropy quantifies the effect of a specific configura-
tion of variables on how they either inform or misinform on the future 
of the target process. For example observing the presynaptic neuron 
fire and then observing the postsynaptic neuron fire is informative for 
an excitatory connection, but misinformative for an inhibitory connec-
tion. On average, knowing the past of the source process of an inhibi-
tory or excitatory connection are both predictive of the future of the 
target process, but local transfer entropies of specific variable configu-
rations have opposite signed values for each interaction type respec-
tively. Sorting the local entropies according to interaction type yields 
the quantity we call sorted local transfer entropy that aims to identify 
inhibitory and excitatory synapses from recorded spike trains.
We validate this method with simulated spike trains from the Izhikevich 
model [4] of cortical neuronal networks, by following a previous paper 
[2]. The random network is noise-driven and consists of 800 excita-
tory and 200 inhibitory neurons. Synapses have random delays and 
the synaptic strengths evolved according to a spike-timing plasticity 
rule, before the recordings for the analysis are collected. Using Transfer 
Entropy and the new quantity Sorted Local Transfer Entropy, we recon-
struct the networks and distinguish inhibitory from excitatory synapses. 
The use of two decision boundaries for classifying inhibitory and excita-
tory synapses separately improves the overall network reconstruction.
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Developing robots that can perform autonomous exploration in unfa-
miliar environment is one of the challenges in robotics. Autonomously 
navigating robots are generally equipped with an obstacle avoidance 
(OA) system based on sensors such as Light Detection and Ranging 
(LIDAR) and camera to detect obstacles as well as complex algorithms 
to correct the noise of sensors [1]. Interestingly, rodent brain shows 
remarkable reliability to noise in OA [2] through using neurons special-
ized in processing spatial orientation and spatial boundary called head 
direction cell (HDC) [3] and boundary vector cell (BVC) [4], respectively. 
Therefore, building a bioinspired OA system with neural network that 
consists of neuromorphic HDC and BVC may help increase the effi-
ciency of autonomous navigation. Hence, we built a neural network for 
OA consisting of all-to-all synaptic connections between six HDCs, four 
BVCs, and two motor neurons where HDC and BVC were constructed 
as multi-compartment Hodgkin–Huxley models using the NEURON 
based on full morphology and electrophysiological properties in vitro 

Fig. 66  Recording data (A) and simulation results (B) of SLE suppres-
sion effect by electrical stimulation
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[5, 6]. Each HDC was modeled to spike at specific preferred directions 
separated by 60°, BVCs were modeled to spike at boundaries of cardi-
nal directions and motor neurons were modeled to spike with Gauss-
ian white noise as a background noise. We also built a virtual rat that 
navigated within a 1  m  ×  1  m environment whose trajectory was 
controlled by spikes of motor neurons receiving synaptic inputs from: 
(1) HDCs, (2) BVCs and (3) both HDCs and BVCs. Number of obstacle 
detection (detection number: DN) and the time spent during obstacle 
collision (collision time: CT) were analyzed to compare the efficiency 
of neural network for OA.
We first verified that our neuromorphic HDC and BVC models could 
mimic the experimentally recorded electrophysiological properties 
in  vitro and in  vivo: HDCs reached maximum firing rate at each pre-
ferred direction, and BVCs increased their firing rate as the virtual rat 
approached boundaries. Using such neuromorphic HDC and BVC mod-
els, we investigated the roles of HDC and BVC in neural network for OA. 
Firstly, we performed the control simulation where virtual rat was con-
trolled with neural network without neither HDC nor BVC and observed 
that DN was 40 and CT was 137 s. When HDC was added to the neu-
ral network, the result was similar to control simulation, (DN  =  38 
and CT = 139 s), indicating HDC alone cannot perform OA efficiently. 
When BVC alone was included in the neural network, DN substantially 
increased and CT decreased compared to control model (DN =  110 
and CT =  73  s), indicating that OA efficiency increased. Finally, when 
both HDC and BVC were included in the neural network, the OA perfor-
mance was most efficient (DN = 139 and CT = 39 s). These results sug-
gest that our neural network model composed of neuromorphic HDC 
and BVC neurons can successfully perform OA even with background 
noise. Therefore, here we suggest the bioinspired neural network that 
consists of neuromorphic computational model of HDC and BVC could 
serve as a new approach to build an efficient OA system.

Acknowledgements: This study was supported by the Basic Sci-
ence Research Program through the National Research Foundation 
of Korea funded by the Ministry of Science, ICT and Future Planning 
(NRF-2013R1A1A2053280).

References
1.	 Zohaib M, Pasha M, Riaz R, Javaid N, Ilahi M, Khan R. Control strate-

gies for mobile robot with obstacle avoidance. J Basic Appl Sci Res. 
2013;3(4):1027–36.

2.	 Vorhees CV, Williams MT. Assessing spatial learning and memory in 
rodents. ILAR J. 2014;55(2):310–32.

3.	 Taube JS, Muller RU, Ranck JB Jr. Head-direction cells recorded from the 
postsubiculum in freely moving rats. I. Description and quantitative 
analysis. J Neurosci. 1990;10(2):420–35.

4.	 Lever C, Burton S, Jeewajee A, O’Keefe J, Burgess N: Boundary vec-
tor cells in the subiculum of the hippocampal formation. J Neurosci. 
2009;29(31):9771–77.

5.	 Yoder RM, Taube JS. Projections to the anterodorsal thalamus and lateral 
mammillary nuclei arise from different cell populations within the 
postsubiculum: implications for the control of head direction cells. Hip-
pocampus. 2011;21(10):1062–73.

6.	 Menendez de la Prida L, Suarez F, Pozo MA. Electrophysiological and mor-
phological diversity of neurons from the rat subicular complex in vitro. 
Hippocampus. 2003;13(6):728–44.

P117 
Dynamic gating of spike pattern propagation by Hebbian 
and anti‑Hebbian spike timing‑dependent plasticity in excitatory 
feedforward network model
Hyun Jae Jang1, Jeehyun Kwag1

Department of Brain and Cognitive Engineering, Korea University, Seoul, 
Korea
Correspondence: Jeehyun Kwag ‑ jkwag@korea.ac.kr   
BMC Neuroscience 2016, 17(Suppl 1):P117

Precise timings of spikes within in  vivo spike train are believed to 
carry information critical for neural computation [1]. For such neural 

information to be effective, temporal patterns of spike train should 
be able to propagate across multiple neuronal layers in the feedfor-
ward network (FFN) of the brain without dissipation [2]. To support 
such reliable propagation of spike patterns, preferential and selective 
strengthening of synaptic pathways through which the spike patterns 
are routed may be necessary. Asymmetric Hebbian and anti-Hebbian 
spike timing-dependent plasticity (STDP), where synaptic strengths 
are strengthened or weakened depending on the precise relative tim-
ing and the order between pre- and postsynaptic spikes [3, 4], may 
serve as a good candidate for dynamically routing the propagation of 
spike patterns.
Hence, we investigated the role of Hebbian and anti-Hebbian STDP in 
spike pattern propagation using a six-layered FFN model composed 
of 200 Hodgkin–Huxley excitatory neurons in each layer. Asymmet-
ric and symmetric/Hebbian and anti-Hebbian STDP were modeled at 
excitatory synapses using exponential functions [5]. In vivo spike train 
obtained from public database (crcns.org) was used as an input spike 
pattern (TIN) in layer 1, which was simulated in a small subset of excita-
tory neurons in layer 1 of FFN model, while the rest were made to 
spontaneously spike with spike frequencies showing log-normal dis-
tribution to mimic in vivo background noise. The propagation of tem-
poral spike pattern was quantified by analyzing the similarity ratio (SR) 
between TIN and output spike pattern in layer 6 (TOUT), which calcu-
lates how instantaneous inter-spike intervals of TIN and TOUT are similar.
In FFN model without STDP, the spike pattern of TIN in layer 1 became 
dissipated in noise as it propagated across layers, and consequently 
failed to preserve its spike pattern to layer 6 with low SR (0.49). When 
asymmetric anti-Hebbian STDP was included in FFN model, TIN also 
failed to propagate to layer 6 with low SR (0.17). However, in the pres-
ence of asymmetric Hebbian STDP, TIN successfully propagated to the 
final layer with high SR (0.87), indicating that asymmetric Hebbian 
STDP preferentially enhanced TIN propagation in FFN model. Further 
analysis revealed that asymmetric Hebbian STDP selectively strength-
ened the synaptic weights of the synaptic pathways routing TIN while 
it weakened the synaptic weights of that routing noise, effectively 
serving as an open-gate for propagating TIN. In contrast, asymmetric 
anti-Hebbian STDP curve selectively weakened the synaptic weights 
of the synaptic pathways routing TIN, serving as a close-gate for propa-
gating TIN. We also tested the effect of symmetric Hebbian STDP which 
induces only LTP or symmetric anti-Hebbian STDP which induces only 
LTD, and found that both types of symmetric STDP failed to propa-
gate TIN with low SR (symmetric Hebbian = 0.23, symmetric anti-Heb-
bian = 0.14). Our results demonstrate that only asymmetric Hebbian 
STDP facilitates the reliable propagation of in  vivo temporal pattern 
while asymmetric and symmetric anti-Hebbian STDP blocks tempo-
ral pattern propagation, suggesting that different types of STDP may 
dynamically gate the propagation of neural information.

Acknowledgements: This study was supported by Human Fron-
tier Science Program (RGY0073/2015) and the Basic Science 
Research Program through the National Research Foundation of 
Korea funded by the Ministry of Science, ICT and Future Planning 
(NRF-2013R1A1A2053280).

References
1.	 Mainen ZF, Sejnowski TJ. Reliability of spike timing in neocortical neurons. 

Science. 1995;268(5216):1503–6.
2.	 Kumar A, Rotter S, Aertsen A. Spiking activity propagation in neuronal 

networks: reconciling different perspectives on neural coding. Nat Rev 
Neurosci. 2010;11(9):615–27.

3.	 Bi GQ, Poo MM. Synaptic modifications in cultured hippocampal neurons: 
dependence on spike timing, synaptic strength, and postsynaptic cell 
type. J Neurosci. 1998;18(24):10464–72.

4.	 Feldman DE. The spike-timing dependence of plasticity. Neuron. 
2012;75(4):556–71.

5.	 Song S, Miller KD, Abbott LF. Competitive Hebbian learning 
through spike-timing-dependent synaptic plasticity. Nat Neurosci. 
2000;3(9):919–26.



Page 73 of 112BMC Neurosci 2016, 17(Suppl 1):54

P118 
Inferring characteristics of input correlations of cells exhibiting 
up‑down state transitions in the rat striatum
Marko Filipović1,2, Ramon Reig3, Ad Aertsen1,2, Gilad Silberberg4, Arvind 
Kumar1,5

1Bernstein Center Freiburg, Freiburg, Germany; 2Faculty of Biology, 
University of Freiburg, Freiburg, 79104, Germany; 3Instituto de 
Neurociencias de Alicante, University of Alicante, Alicante, Spain; 
4Department of Neuroscience, Karolinska Institute, Stockholm, 17177, 
Sweden; 5Department of Computational Science and Technology, 
School of Computer Science and Communication, KTH Royal Institute 
of Technology, Stockholm, 10040, Sweden
Correspondence: Marko Filipović ‑ marko.filipovic@bcf.uni‑freiburg   
BMC Neuroscience 2016, 17(Suppl 1):P118

Rat striatal projection neurons (SPNs) recorded under ketamine anes-
thesia exhibit slow oscillations, with transitions between depolar-
ized and hyperpolarized membrane potential also referred to as up 
and down states, respectively. It is presumed that the activity during 
hyperpolarized down-states is determined by intracellular processes, 
whereas the large membrane voltage fluctuations during up-states 
are a product of increased synaptic input. Because local striatal activity 
during an up-state is weak, the statistics of the up-state fluctuations 
mainly reflect cortical feedforward input to the SPNs.
To infer the statistics of the cortical input to SPNs we measured the 
statistics and spectrum of the membrane potential of SPNs in up and 
down states. The spectrum of the membrane potential reflects the 
filtering properties of the membrane and can be used to estimate 
the effective time constant (τeff) of the neuron. Our analysis showed 
that SPNs have significantly smaller τeff in the up-state than in the 
down-state, consistent with the assumption that the barrage of syn-
aptic input causes an increase in membrane conductance during the 
up state. However, this observation is inconsistent with the idea that 
depolarization of SPNs should increase the membrane time constant 
because of the closing of some of the voltage dependent ion channels 
(e.g. the Kir) channels [1].
The mean (μup) and variance (σup) of the membrane potential during 
up states varied in a correlated manner. At the same time, for a given 
SPN, μup and σup of individual up-state membrane potentials were 
highly variable across different up states, indicating a corresponding 
variability in the cortical inputs. Using a point neuron model of an SPN, 
we show that the correlation and variability of the up-state mean and 
variance could be explained if we assume that SPNs receive correlated 
inputs.
Across different SPNs, each recorded in a different animal, we observed 
a high variability in the correlation (ρ) between μup and σup. This vari-
ability could arise from the heterogeneity in the neuron morphology, 
intracellular properties, conductance state of the neurons, synaptic 
weights and the input rate and correlations. Using a point neuron 
model we tested the dependence of ρ on each of these properties. 
Our analysis showed that the variability of the correlation between μup 
and σup arises because of the diversity of synaptic weights and input 
correlations, and not because of intrinsic properties of SPNs. This sug-
gests that neuronal heterogeneity could be obscured by the statistics 
of the synaptic inputs and synaptic weights.
In summary, our analysis of up-down states allows us to make general 
inferences about characteristics of correlated synaptic input, such as 
strength of correlations and input firing rate, solely based on mem-
brane potential recordings of SPNs exhibiting up and down states.
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Diagnosing Alzheimer’s disease (AD), especially in the early stage, is 
costly and burdensome for the patients, since it comprises a battery 
of psychological tests and an extraction of disease specific biomarkers 
from the cerebrospinal fluid. A cheaper and more convenient proce-
dure would be a diagnosis based on images obtained through fMRI. 
Based on previous polymodal studies demonstrating disrupted inter- 
and intra-cortical connectivity in AD [1], we argue that the functional 
connectivity of the whole cortex might be a good predictor for the 
cause of the disease. In resting state fMRI, previous attempts to ana-
lyze graph properties of whole brain networks contradict each other 
[2]. In our opinion there are two general critical points in the meth-
odology of these studies that are likely to contribute to the variabil-
ity of the results. First, we criticize that the activities of the brain areas 
(graph nodes) that are used to calculate the functional connectivities 
(weights of the graph edges) are composed of functionally inhomoge-
neous signals, as individual brains are often mapped onto a standard 
atlas brain of known functional coherent areas [2, 3]. The second prob-
lem consists in converting the resulting weighted graphs into simple 
graphs, by setting weights above an arbitrary threshold wmin to 1, and 
those below it to 0 [2]. The drawback here is that there is no validation 
for an optimal threshold, and information that might be relevant in 
AD may be lost. In this work we address the first problem by applying 
an activity-driven, region-growing clustering algorithm derived from 
image processing [4]. In order to guarantee functionally homogene-
ous clusters, the threshold for inclusion of a voxel in a region is regu-
lated by a heterogeneity criterion [3]. Applying this algorithm, we end 
up with undirected weighted graphs with varying numbers of nodes 
for three sets of data: healthy elderly controls, mild cognitive impair-
ment and Alzheimer’s disease. Targeting the second problem, we 
analyze the dependence of graph theoretic measures (shortest path 
length, in- and out-degree distribution, clustering coefficient, modu-
larity and minimal spanning tree [5]) on wmin. Finally, we investigate 
the distribution of these measures for each data set to determine can-
didates for a predictive measure.
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In mouse olfaction, olfactory receptor responses are aggregated in 
spherical structures of the main olfactory bulb (MOB) called ‘glomeruli.’ 
These signals are then received by mitral cells (MC) and communicated 
to the cortex. MC responses are modified by local inhibitory interneu-
rons called granule cells GC, which vastly outnumbered MCs (50fold–
100fold). In our previous work [1], we proposed a model in which GCs 
inhibit MC to form a sparse, incomplete representation (SIR) of odors 
(Fig.  67). Here, we reason that since sparse representations are effi-
cient, sparseness may increase with learning. We extend the SIR model 
to allow network synaptic weights to be adjusted, increasing represen-
tational sparseness and increasing stimulus discriminability. We derive 
learning rules for dendrodendritic connectivity between GCs and MCs 
and also for centrifugal cortico-granule synapses. We computationally 
test these learning rules and make several predictions of GC and MC 
plasticity. Specifically, we predict that a minority of GCs outcompete 
the rest of the population to generate a negative image of a learned 
odor. Additionally, we predict that participation of the GC network will 
confer combination selectivity and the ability to discriminate overlap-
ping input patterns. Finally, we experimentally validate these predic-
tions for the dynamics of GCs during locus coeruleus-induced MOB 
plasticity.
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The basal ganglia (BG) are a set of nuclei that play an important role 
in motor and cognitive functions. Indeed many brain diseases such 
as Parkinson’s disease (PD) can be attributed to dysfunction of one 
or more BG nuclei. The classical model of basal ganglia has been 
regularly updated with discoveries of new sub-populations within a 
nucleus or new projections from existing nuclei in recent years. It is 
unclear how these new insights on the structure of the BG network 
foster our understanding of its function. The effective connectivities 
among these recently identified BG sub-populations are only partially 
known. In the framework of a simple firing-rate model subjected to a 
genetic algorithm, we identified effective BG connectivities which are 
consistent with experimentally established firing-rate and phase rela-
tionships in Subthalamic Nucleus (STN) and two GPe subpopulations 
(arkypallidal [GPe-TA] and prototypical [GPe -TI]) in both healthy and 
PD states [1]. This is in extension to an earlier model that identified 
effective connectivities for the STN-TA-TI-sub circuit [2].
As expected, we found that multiple parameter combinations can 
fit the data [1]. We re-classified these homologous networks that 
reproduced the healthy and PD state, on the basis of two dynami-
cal features: suppression of GPi activity and susceptibility of the BG 
network to oscillate in the presence of cortical input. These features 
were chosen because task execution requires GPi suppression while 
oscillations in the STN-GPe subnetwork are characteristic of PD. 
We found that most putative pathological networks showed insuf-
ficient suppression of GPi activity and high susceptibility to oscil-
lations whereas most putative healthy networks showed sufficient 
suppression of GPi activity and low susceptibility to oscillations. 
This is consistent with experimental data that shows that lack of GPi 
suppression [3] or oscillations [4, 5] is correlated with Parkinsonian 
symptoms such as stymied movement and tremor. A small fraction 
of networks, however, in both cases show deficiency in only one of 
the features. This could indicate the configurations of healthy net-
works that might be more pathology prone and in contrast configu-
rations of pathological networks that might be easier to push into a 
healthy state. Further analysis of estimated BG connectivity revealed 
that transitions between the putative PD and healthy networks were 
possible by modifying the strength of the relevant projections. Most 
of the transitions involved changes in corticostriatal, striatopallidal 
and pallidopallidal projections. Finally, the variance observed in the 
functional classification of putative pathological and healthy net-
works might hint at the variance observed in manifestation of Par-
kinson’s disease (PD).
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Fig. 67  Sparse incomplete representations (SIR). In our previously 
formulated model of the main olfactory bulb network [1], MCs 
receive inputs from receptor neurons in the glomeruli (black circles) 
and interact with GCs through dendrodendritic synapses. GCs build 
representations of MC glomerular inputs (red arrows). The represen-
tations are contained in the inhibitory inputs returned by the GCs 
to the MCs (blue arrows). Because GCs inhibit each other through 
second-order inhibitory interactions, only a few GCs respond to an 
odorant (full blue circles with a dendrite shown). The vast majority of 
GCs do not change their firing rate in response to an odorant (empty 
circles). Thus, the responses of GCs are sparse. Because some MCs 
manage to retain the responses to odorants, the representation by 
GCs is called incomplete. According to this model, MCs transmit to 
higher areas the errors in the GC representation
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Neural circuits can be formally described by modeling the collective 
behavior of relatively homogeneous neural populations, so-called 
neural masses [1]. Some neural mass models consider the mini-
mum set of one excitatory and one inhibitory subpopulation each. 
In contrast, three-population models make a distinction between 
excitatory pyramidal cells (PC), projecting to distant areas, and excit-
atory interneurons (EIN), providing local feedback. We investigate 
a three-population neural mass model, driven by input to the EIN, 
with respect to its input/output behavior. We find that such a circuit 
exhibits, for sufficiently salient inputs, a memory effect based on 
multi-stability. Furthermore, we test the hypothesis that this mecha-
nism essentially depends on the separation between input and out-
put neurons and is thus not captured in the simpler two-population 
model.
We use a neural mass model [2], where a pyramidal cell subpopulation 
receives negative feedback from an inhibitory interneuron subpopu-
lation and positive feedback either directly through self-connections 
or indirectly via a secondary excitatory subpopulation of interneu-
rons. The respective feedback topology of interest (including which 
subpopulation is targeted by external input) is controlled by a single 
parameter. We systematically applied transient sensory inputs, mod-
eled by pulses of various magnitude and duration, as external inputs 
to the EIN and monitored the behavior of the PC.
Depending on the duration and intensity of the applied stimuli (see 
Fig. 68A), the output either transiently follows the input (i) or it jumps 
to a more depolarized state, where it remains oscillating with a higher 
mean membrane potential even after the stimulus has ceased (ii) and 
where further input does not effect the output any more (iii). This state 
can be terminated by an impulse to the inhibitory interneurons (iv). 
The accessibility of this memory effect depends on the saliency of the 
stimulus in terms of duration and intensity (see Fig.  68B) and disap-
pears in case of direct feedback in a structurally similar two population 
model.
The identified short-term memory mechanism would be important 
for temporal integration in cortical processing, potentially appli-
cable in predictive coding schemes. The distinction between the 
input receiving excitatory subpopulation and the output sending 
excitatory subpopulation appears to be crucial for the described 
mechanism, which is further modulated by inhibitory feedback. 
The further examination of the ratio between excitation and inhibi-
tion, governing this mechanism, thus represents an important step 
to elucidate how the topology between excitatory and inhibitory 
neural populations affects emerging dynamics on a mesoscopic 
scale with potential effects on brain states and higher-order brain 
functionality.
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Background A spinal motoneuron contacts a bunch of muscle fibers 
forming a motor unit that underlies all mammalian movements. The 
essential role of the motor unit is the transduction of synaptic inputs 
from descending and reflex pathways into muscle force. Since the 
input–output properties of both motoneurons and muscle fibers are 
non-linear, it has been difficult to make predictions on how changes in 
synaptic inputs to motoneuron, cellular properties of the motoneuron 
and muscle fibers and muscle length may affect motor output [1].
Methods To tackle this fundamental issue in the field of motor neu-
roscience, we developed a physiologically plausible but computation-
ally efficient model of the motor unit and a software package that 
allows for virtual experiments on the input–output properties of the 
motor unit over a full range of physiological inputs and biophysical 
parameters.
Results The computational model of motor unit was first built in this 
study coupling the motoneuron model and the muscle unit model 
with a simplified axon model. The motoneuron model was developed 
using the recently reported two-compartment modeling approach 
[2]. The key feature of the new reduced motoneuron model is that all 
cable parameters of the reduced model are analytically determined 
based on the system properties such as input resistance, membrane 
time constant and electrical coupling properties between the soma 
and the dendrites, which are all empirically measurable from real 
motoneurons.
For the muscle unit, the recently developed muscle modeling 
approach was employed that consists of three sub-modules represent-
ing [3]: (1) the transformation of the spike signals from motoneurons 

Fig. 68  A Response of pyramidal cells to transient input to excitatory 
interneurons shows different modes. B Depending on intensity and 
duration of the stimulus
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into the dynamics of calcium concentration in the sarcoplasm, (2) the 
conversion of the calcium concentration to the muscle activation level, 
and (3) the transformation of the muscle activation level into the mus-
cle force using Hill-type muscle mechanics. The new muscle model 
was constructed in this study to reflect all experimentally identified 
dependencies of muscle activation dynamics on muscle length and 
movement over a full range of stimulation frequencies in cat soleus 
muscles.
Then, to enhance the usability and extendibility the software pack-
age for simulating and analyzing the developed motor unit model was 
designed and implemented based on the object-oriented program-
ing paradigm and open source Python language along with graphic 
user interfaces (GUI). The software package developed in this study 
provides a GUI-based simulation environment in which a single moto-
neuron, muscle unit, and motor unit can be individually simulated and 
analyzed in a wide range of experimental conditions reflecting bio-
logical realisms.
Conclusions Our model of the motor unit and user-friendly simulation 
software may provide not only a computational framework to gain 
systemic insights into motor control by the central nervous system in a 
cellular perspective but also a basis on which to build biologically real-
istic large-scale neuro-musculo-skeletal models.
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Recently, our research group has proposed a new way of providing a 
non-nociceptive tactile sensation with laser [1]. In this study, we aimed 
to investigate laser-induced somatosensory information represented 
in cortical activity using the human EEG. The EEG data were acquired 
using the V-Amp amplifier (Brain Products GmbH, Gilching, Germany) 
with 16 wet electrodes that were placed on the scalp following the 
international 10–20 system. Twenty one subjects participated in the 
study (7 female and mean age of 22.4 years). During the experiment, 
a mechanical stimulus, a laser stimulus and a heat stimulus were 
given in a random order to subjects sixty times per stimulus. Sub-
jects described the feeling of laser stimulation as non-painful sensa-
tion, painful sensation and no sensation. As described in the previous 
study, 56.3, 12.3 and 31.4 % of the subjects reported laser stimulation 
as non-painful, painful and no sensation, respectively [1]. To exam-
ine similarity of cortical activity in response to different stimuli, we 
employed a decoding analysis of the EEG data. In the decoding analy-
sis, we used the linear discriminant analysis (LDA) method to classify 
the beta (21–28 Hz) event-related desynchronization/synchronization 
(ERD/S) patterns of EEG into one of the two classes representing every 
pair of stimuli (a total of six pairs from four stimuli) [2]. Classification 
error indicated how similar beta ERD/S patterns were between two 
stimuli: a larger error reflected more difficulty in discriminating pat-
terns and consequently a greater similarity between patterns. The beta 
ERD/S patterns were estimated using the short time Fourier transform. 
Baseline correction was implemented using the 0.5  s period before 
stimulus onset. For each pair of stimuli, one-way ANOVA was used to 

select four channels that exhibited the most differences in beta ERD/S 
patterns between classes and classification accuracy was assessed by 
the leave-four-out cross validation [3] (see Fig. 69 for the classification 
error between every stimulus pair). The classification results showed 
that to the beta ERD/S pattern induced by mechanical stimulation, 
the pattern by non-painful laser stimulation was most similar. Also, the 
results indicated closeness of cortical activities between non-painful 
and painful laser stimulations as well as painful laser and thermal 
stimulations (see Fig. 69). These results suggest that laser might induce 
similar beta responses whether it evoked painful or non-painful feel-
ings but non-painful laser might share presumably non-nociceptive 
somatosensory information with mechanical stimulation whereas 
painful laser shared presumably nociceptive somatosensory infor-
mation with thermal stimulation. We expect that further information 
theoretical analyses may reveal more details about somatosensory 
information encoded in cortical rhythms induced by laser.
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There has been a growing interest in the EEG-based biometric sys-
tem as an alternative approach to personal authentication (PA). In 
this study, we focused on the potentialities of functional connectivity, 
especially phase synchronization in the alpha rhythm represented by 
the phase locking value (PLV) as a novel EEG signature for PA. We ana-
lyzed an EEG dataset of 39 trials from 7 subjects who participated in 
the 5–7 sessions repeatedly on different days. In the sessions, a total 
of 16 EEG signals were acquired by a portable EEG device, when the 
subjects were in a resting state with their eyes closed for 2  min. The 

Fig. 69  Each node represents stimulation type and each edge means 
classification error rate. Length of edge shows similarity between a 
pair of stimulation
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characteristics of alpha phase synchronization were estimated by 
the following procedures. (1) The alpha rhythm was extracted from 
the EEG signals using a band-pass filter of 8–13 Hz. (2) We randomly 
selected 20 2-s time segments of the alpha rhythm and calculated 
the mean phase coherence [1] between channels within each time 
segment. From all possible pairs of 16 EEG channels, a total of 120 
mean alpha phase coherence values were extracted. 3) From these 
mean alpha phase coherence values, we calculated a criteria index (CI) 
of each of them where the CI calculated the ratio of an inter-subject 
variability to an intra-subject variability, which was developed to dis-
criminate critical EEG features for PA in our previous study [2]. 4) Using 
the mean alpha phase coherence and its CI values, we constructed 
the association matrix of phase coherence and extracted the 12 top-
ranked CI connections (Fig. 70). The topographical result showed that 
there were apparently two functional connectivity networks of the 
alpha rhythm in the brain for PA. The first network was distributed over 
the anterior regions including the pre-frontal, frontal and left central 
regions. The second one was located in the posterior region covering 
the occipital region. It should be noted that two regions have been 
well known as main sources of the alpha rhythm from many studies on 
EEG alpha rhythms. Our results suggest an important role of the alpha 
rhythm in the EEG-based biometrics system.
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On a large scale, the brain appears as a network composed of white 
matter tracts connecting brain areas within and between cerebral 
hemispheres. The finite transmission speed delays the interaction of 

areas via these pathways. The delays are on the same scale as the brain 
oscillates, that is, 10–250  ms [1], and have been suggested to play a 
role in the functional organization. One potential key mechanism is 
synchronization [2], which could explain the phase-lags of brain sig-
nals. In humans, stereotactical EEG (sEEG) revealed frequency-specific 
inter-areal synchronization often associated with nearly zero phase-
lag, or with variable phase-lags between ±π.
With the advance of non-invasive imaging techniques, large-scale 
modeling of the entire brain has become feasible using realistic con-
nectivity and time delays [3], Fig.  71A. From structural and diffusion 
MRI, we obtained human connectomes composed of the strength and 
length of connections among 68 cortical areas. We approximated the 
bimodal tract length distribution (Fig. 71B) by Dirac deltas (Fig. 71C). 
Intra-hemispheric connections are in the 1st, and inter-hemispheric 
ones are in the 2nd mode. The delay of a connection was determined 
from its length divided by the speed of 5  m/s. The Kuramoto phase 
oscillator described the activity in each area. The phase difference of 
areas was analyzed and compared with the map of inter-areal phase 
lags obtained from resting state sEEG of epileptic patients.
The model of fixed oscillators (e.g., f =  20  Hz) switched from global 
incoherence to alternating in- and anti-phase coherence with increas-
ing coupling strength. Increasing the natural frequencies for constant 
coupling resulted in alternating switching from in- to anti-phase 
coherence, but also to incoherence. Intra-hemispheric links were in-
phase (phase-lags ~0), and inter-hemispheric links were either in- or 
anti-phase (±π), see clusters in Fig. 71E. Links among areas of low in-
strength (sum of all the weights for that node) showed flatly distrib-
uted phase-lags. For f = 20 Hz, we found the phase-lags in the sEEG 
in the regime of in- and anti-phase coherence in the model, Fig. 71E.
We demonstrated that it is not simply the connectivity strength that 
matters in oscillatory large-scale brain networks, but time delays are of 
equal importance. The spatial structure in the time delays is reflected 
in the clustering of phase-lags. The model captured the statistics of the 
phase-lags as observed in the experimental data. The phase-lag struc-
ture of links at f = 20 Hz is explained in the model by a spatial organi-
zation of in- and anti-phase coherence.
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Fig. 70  Overall characteristics of alpha phase synchronization for 
PA. A The upper triangle of association matrix indicates the PLV 
calculated by grand mean phase coherence. The lower triangle of 
association matrix indicates the its CI values in pairs. B Topographical 
connections with the 12 top-ranked CI from the lower triangle of a

Fig. 71  A Model with local (left) and long-range connections (right). 
B, C Averaged tract lengths and weights from 4 connectomes B Joint 
distribution, and C histogram of weighted lengths for intra- and inter-
hemispheric links. D Sketch of the spatial delay structure. E Phase-lag 
distributions (top) and phase-lags between areas (bottom rows)
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Seizures can arise under a variety of conditions. Despite this fact, there 
are invariant features resulting in a characteristic electrophysiological 
signature. Investigations of these universal properties lead to a classifi-
cation of a planar description of point-cycle fast-slow bursters [1] and 
a taxonomy of seizures [2]. The phenomenological model, the epilep-
tor [2], is able to reproduce the main features of the predominant class 
of human seizure (~80 % of all cases), according to data from epileptic 
patients. We aim at generalizing this model to include other bursting 
classes of the taxonomy.
We extended the work by [3] on bursters, living in the unfolding of 
high codimension singularities, and systematically investigated the 
unfolding of the codimension-3 degenerate Takens–Bogdanov bifur-
cation (focus, elliptic, saddle and cusp cases) [4]. The biological rele-
vance of this codimension-3 bifurcation has been highlighted by other 
authors, and several classes appearing in the context of neuronal 
spiking have been identified in its unfolding (e.g., [5]). However, a sys-
tematic search in this unfolding for all the planar point-cycle bursting 
classes predicted by [1] was still missing. The existence of 16 bursters 
of the type slow-wave (self-oscillating slow subsystem), and 16 of type 
hysteresis-loop (slow-subsystem oscillating thanks to feedback from 
the fast one) was predicted.
We could find all slow-wave bursters in the unfolding together with 
seven of the hysteresis-loop ones. With regard to these hysteresis-loop 
bursters, we propose a model able to reproduce each of them depend-
ing only on the initial and final points of the path in the unfolding’s 
parameter space. This model is based on the known normal form of the 
codimension-three bifurcation [4], therefore we can readily describe 
the role of all its variables and how the tuning of its parameters affects 
the models activity. We found that the codimension-three model incor-
porates not only the repertoire (80 % of seizure) of the model proposed 
by [2] but also the classes that account for the remaining 20 % of sei-
zures. Moreover, based on an ultra-slow modulation of the bursting 
path (see also [6]) in the model, possible transitions between bursting 
classes and, more importantly, transitions to regimes (in the parameter 
space) where bursting behavior is not possible at all could be predicted. 
These predictions could be tested using data from epileptic patients for 
whom different types of seizures coexist.
Overall, the main points of the present work are threefold: (i) a model 
description comprising the complete set of slow-wave bursters and 
seven (out of 16) hysteresis-loop bursters predicted by Izhikevich 
[1], (ii) a generalization of the model proposed by [2] to include the 
missing seizure types found in human data and to make prediction 
about their robustness, (iii) a framework to investigate the coexist-
ence of different seizure types in the same patient and the transi-
tions between them. The possibility of describing different seizure 
types with a unique model, thus with a unique set of variables and 
parameters, will facilitate the search for physiological correlates and 
treatments.
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In our daily life, we encounter thousands of complex problems, which 
are not ‘one dimensional’. However, multi-dimensional problems were 
known to suffer from “curse of dimensionality” [1]. Therefore, the 
researches of reward learning and goal-directed behavior were mostly 
focused on single dimensional environment for a decade [2]. Even a 
few researches on multi-dimensional tasks was emphasizing that 
human representation learning is done by reducing the dimensional-
ity, but not focusing on multiple compositional reasoning under multi-
dimensional environment [3].
Here, the multi-dimensional decision task was conducted (Fig.  72A, 
B) and the framework of Reinforcement Learning (RL) was used for 
analysis. We investigated that the reasoning under multi-dimensional 
environment is processed in incremental order, rather than one-shot 
learning. Also, the exploration of the best strategy occurs depends 
more on internal value, that is exploring under low value and exploit-
ing under high value (softmax decision rule) rather than random 
exploration (randomized ɛ-greedy algorithm). Functional MRI were 
taken on each subject, while conducting the behavioral task. Brain 
regions of the incremental learning and the value sensitive explorative 
behavior will be verified.
We demonstrated that incremental learning rule can explain the 
multidimensional reasoning process better than other models 
(Fig. 72C–E). This result indicate that people deal with the complicated 
multi-dimensional problem, we solve them by adding dimensional 
information one by one.
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Fig. 72  Multidimensional decision making task design and model 
comparison. A Multidimensional decision making task schematics. 
B Systemic structure of the task. C The result of model comparison, 
proposed model has significantly high accuracy on prediction. D, E 
The models’ prediction accuracy of proposed model (D) and naïve 
model (E)
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Eye movements are the most useful and clearest signal of our body to 
understand cognitive process and memory mechanism. Because it is 
convenient to measure the stream signal and quantify. Other sensory 
inputs, like auditory, gustatory, olfactory, and kinesthetic stimuli, are 
hard to estimate, but visual stimuli are easy by the eye-tracker [1]. And 
people are primarily visually oriented. Every day, people get over 80 
percent of information from their own eye.
Until now, eye movements data has been measured and analyzed by 
very expensive eye-trackers mostly. The major companies’ devices price, 
including SMI, Tobii and EyeLink, are at least 10,000$ with their analy-
sis tool SW. Of course, there have been many substitution trials in open 
SW and open HW area [2]. But their performance is certainly lower than 
major brands. Also, their data representation doesn’t have standard. 
Therefore, open SWs are difficult to apply for other utility services and 
scientific researchers have hesitated to use them to analyze result data 
to understand complex cognitive process. A few research results, which 
is investigating the relation between eye movement and cognitive 
model based on open eye-tracker platform, have reported by this time.
However, eye-tracker is not only for science, and other areas need the 
usability of eye movement, for instance, UI/UX, healthcare, driving, 
game, learning consulting, TV viewer rating, market research and so 
on [3]. If there is a more general and low-cost eye-tracker which is con-
firmed cognitive model, above areas would be effective and we could 
do better decision making. This research implements a low-cost eye-
tracker using a front camera (webcam) and a pin camera (Fig. 73, If the 
pc or laptop has laptop has a front camera, it doesn’t need more pin 
camera). The implementation includes the auto detection and classify-
ing of useful memory based on eye movement of visual information 
on the device’s display. To do this function, the camera measures the 
saccade variation spectrum, as the X–Y axis acceleration, and catego-
rize individual pattern while the user is taking train session. It is devel-
oped using OpenCV library and C#. XLabs Inc., already has made the 
gaze/head tracker using front camera without cognitive pattern analy-
sis [4]. In the future, we will try this function on the mobile devices, 
which are cellular phone, tablet pc, and game interface. These devices 
have more sensors, like GPS, illumination, and activity accelerator. 
Combination of sensors input would make more precise prediction for 
memory cognition.
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Background Human connectome which is the map of full connec-
tion of neuronal network in the human brain exhibits the character-
istics of complex network [1]. The human connectome is known to 
be wired in a way that neurons efficiently transmit and communicate 
information. Statistical measures of complex network describe the 
topological features of a certain network and this enables researchers 
to compare effectiveness of information processing within a network. 
Autism spectrum disorder (ASD) subjects exhibit repetitive behaviors, 
impaired social communication skills, and sensory problems. Those 
symptoms of neurodevelopmental disorder is doubted to be origi-
nated from genetic causes [2]. Also, recent investigations find that ASD 
is a ‘connection problem’. But still exact cause of ASD is unknown. The 
aim of the research to be conducted is to reveal the genetic cause of 
(ASD) by the statistical analysis of network measures of ASD patients 
and normal groups’ structural connectome data using diffusion tensor 
imaging (DTI).
Methods The method to be used in the research is to compare the 
network measure values of various subject groups’ connectome and 
relate the difference to the genetic mutations in common. DTI data 
describes the neuronal connection of the brain regions in the mes-
oscale level. Structural connectome that is constructed from DTI 
information.
Expected result is that there are genotypic changes of genes which 
affect development of neuronal connection in ASD subjects. This find-
ing will shade a new light on the investigation of ASD diagnosis and 
treatment.
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Gossip is a specific example of human conversation containing social 
factors and has been considered as malicious, useless idle-talk by gen-
eral population. Several researchers have suggested the role of gossip 
as social police that control the members of social groups to behave 
cooperative rather than selfish. However, there is not enough data to 
explain the actual cognitive motives that drive people to spread gos-
sip. Throughout this study, human gossiping behavior is defined as 
transmission of social information about an absent third-party (i.e. 
the target of the gossip). In order to define the types of gossip, vari-
ous scenarios containing social information are divided into 48 dif-
ferent categories by the third-party identity, valence and contents. 
Big five personality inventory, prosocial personality battery, cultural 
orientation scale and moral foundations questionnaire were used to 

Fig. 73  Low-cost eye movement tracker using front cameras on the 
each devices

https://xlabsgaze.com/about/
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measure personal traits that may influence the gossiping behavior of 
individuals. We found out that people, regardless to the scores of their 
personal traits, tend to spread gossip about in-group and celebrities 
more than out-group members. We also found out that positive gos-
sip about in-group members is spread with significantly higher rates 
than in-group negative gossip, whereas the spread pattern was the 
opposite when the gossip is about celebrities. With such findings, we 
conducted fMRI study using in-group and out-group gossip with posi-
tive and negative valence. Increased activity in various brain regions 
including medial frontal gyrus, dorsolateral prefrontal cortex and pre-
cuneus was found when participants made decisions whether or not 
to spread gossip. With the obtained data, we tried to construct a com-
putational model that may be used for classification of spread gossip.
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Social interaction is an important feature of the economic exchange. 
However, little is known about the varying neural mechanism during 
the economic decision-making depending on the different degrees 
of the social interaction. In this study, we used an iterated version of 
Prisoner’s dilemma game (PDG) with an EEG hyperscanning to investi-
gate how the presence of face-to-face interaction modulates the social 
interactions and in turn the aspects of an economic decision-making. 
Participants played the game either face-to-face (FF) or face-blocked 
(FB). On the behavioral level, face-to-face interaction led both par-
ticipants to choose cooperative strategies more often. On the neural 
level, FF groups showed significantly different alpha power during 
the first 0.5 s after seeing each outcome compared with FB groups in 
right temporo-parietal region. By computing the phase locking value 
(PLV), we measured the brain synchrony and found that the inter-brain 
phase synchronies across right temporo-parietal area were signifi-
cantly associated with both the group differences and strategical dif-
ferences of both players (Fig. 74). These results suggest that inter-brain 
alpha synchronies across right temporo-parietal area might serve 
as an implicit neural marker for both the social interaction level and 
intention to either cooperate or defect. Moreover, our results warrant 
the future hyperscanning studies on the social interactions of autism 
spectrum disorder (ASD) patients as all neural substrates revealed are 
known to be deeply associated with their social traits.
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Understanding and predicting purchase decision process is one of the 
fundamental issues in economics, marketing, decision sciences, yet 
an easily accessible means to monitoring purchase decisions has not 
been developed yet [1–3]. Using event-related functional fMRI, such 
purchase behavior with a shopping task was investigated [4] but it 
has limit on potential practical uses due to the cost and portability of 
the MRI. The electroencephalogram (EEG) has been suggested to have 
many advantages for applications in marketing due to its relatively low 
cost, portability, and high temporal resolution. The aim of the current 
study was to determine the possibility of the EEG as a tool for detect-
ing and predicting purchase decision in potential consumers. Twenty-
three participants were recruited to record their EEGs as they saw the 
pictures of products followed by the products’ prices and made the 
choice of whether to buy them or not. We estimated the power spec-
tra and approximate entropy (ApEn), an information-theoretic meas-
ure to quantify the complexity [5], of their EEGs and compared them 
for purchase and non-purchase trials. The support vector machine 
(SVM) method was to predict their purchase decisions. We found that 
the relative spectral powers and ApEn values of the EEG significantly 
differed between purchase and non-purchase trials, in particular 
frontal regions. SVM could distinguish and predict purchase and non-
purchase decisions based on the spectral powers and ApEn values of 
the EEGs in frontal regions prior to the decision moment with a high 
accuracy (>87  %). This finding suggests that relatively inexpensive, 

Fig. 74  A Brain synchrony analyses. Intra-brain and inter-brain phase 
synchronies in alpha band [0.5, 1] s. Links between electrodes means 
that the phase activities there are synchronized. All synchronies 
here were higher in FF groups than in FB groups (gray line). Blue line 
denotes the synchronies that were higher in CC epochs compared 
with DD epochs of FF groups (CC > DD) whereas red line denotes 
the synchronies that were higher in DD epochs compared with CC 
epochs of FF groups (CC < DD). Intra-brain synchronies are drawn 
in both brains and only one of each pair of inter-brain synchronies 
are drawn. Significant level was at p < 0.05, Bonferroni corrected. B 
Magnitudes of phase synchronies that showed significant strategical 
differences. These correspond to the links depicted as blue and red 
line in A. * p < 0.05; ** p < 0.01, Bonferroni corrected
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portable EEG recording technique has great potential as a neural pre-
dictor of purchase behavior in neuromarketing and neuroeconomics.

References
1.	 Lee N, Broderick AJ, Chamberlain L. What is “neuromarketing”? A 

discussion and agenda for future research. Int J Psychophysiol. 
2007;63:199–204.

2.	 Mirja Hubert PK. A current overview of consumer neuroscience. J Con-
sum Behav. 2008;7:272–92.

3.	 Ariely D, Berns GS. Neuromarketing: the hope and hype of neuroimaging 
in business. Nat Rev Neurosci. 2010;11:284–92.

4.	 Knutson B, Rick S, Wimmer GE, Prelec D, Loewenstein G. Neural predictors 
of purchases. Neuron. 2007;53:147–56.

5.	 Gu F, Meng XIN, Shen E, Cai Z. Can we measure consciousness with EEG 
complexities? Int J Bifurc Chaos. 2003;13:733–42.

P137 
Vulnerability‑based critical neurons, synapses, and pathways 
in the Caenorhabditis elegans connectome
Seongkyun Kim1, Hyoungkyu Kim1, Jerald D. Kralik1, Jaeseung Jeong1

Department of Bio and Brain Engineering, Program of Brain and Cognitive 
Engineering, College of Engineering, Korea Advanced Institute of Science 
and Technology (KAIST), Daejeon, 34141, South Korea
Correspondence: Jerald D. Kralik ‑ jerald.kralik@raphe.kaist.ac.kr, Jerald D. 
Kralik ‑ jsjeong@kaist.ac.kr   
BMC Neuroscience 2016, 17(Suppl 1):P137

Determining the fundamental architectural design of complex 
nervous systems will lead to significant medical and technological 
advances. Yet it remains unclear how nervous systems evolved highly 
efficient networks with near optimal sharing of pathways that yet 
produce multiple distinct behaviors to reach the organism’s goals. 
To determine this, we investigated the vulnerability of the nematode 

roundworm Caenorhabditis elegans connectome [1] by attacking each 
of 279 individual neurons and 6393 chemical synapses and 890 electri-
cal junctions in the connectome, and quantifying the lethality of the 
network in terms of global information processing using graph-theo-
retic measures: i.e., examining vulnerability with respect to clustering 
(C), efficiency (E), and betweenness (B).
The vulnerability analyses, VC, VE, VB, identified 12 critical neurons 
and 29 critical synapses that are the most important components for 
establishing fundamental network properties. These critical elements 
were found to be control elements—i.e., those with the most influence 
over multiple underlying pathways. In addition, we found that the crit-
ical synapses formed into circuit-level control units, suggesting fractal-
like control in the connectome. More specifically, three main critical 
pathways emerged from the results (Fig. 75A, B).
Conclusions The critical pathways that emerged from our computa-
tional analysis provide evidence for (a) the importance of backward 
locomotor control, avoidance behavior, and social feeding to the organ-
ism; (b) the potential roles of specific neurons whose functions have 
been unclear; and (c) both parallel and serial design elements in the 
connectome—i.e., specific evidence for a mixed architectural design. 
This design structure may be fundamental to nervous systems, provid-
ing necessary building blocks for the evolution of higher intelligence.
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Majority of animal species have bilaterally symmetrical nervous sys-
tem. Symmetric and asymmetric features among their morphological 
symmetric nervous system have been interesting issue for long time. 
The simplest bilaterally symmetrical organism is nematode called 
Caenorhabditis elegans. Previously, symmetry for C. elegans has only 
been thoroughly studied in morphological and functional manner [1]. 
According to previous observation, there are 92 bilaterally symmetri-
cal neuronal pairs and remaining 95 neurons are mostly located on 
the axis of symmetry. Functionally there are only 2 neuronal pairs that 
show asymmetrical gene expression among 92 pairs of symmetrical 
neurons. We examined the symmetry of C. elegans nervous network 
which has not been studied.
Total of 279 neurons and 2990 links in C. elegans were used. Neurons 
were classified into bilaterally symmetrical neurons, unlateral neurons, 
and unilateral neurons. According to the neuronal positions, we could 
define the symmetry of each individual link and expand that defini-
tion to define the symmetry of motif [2]. After defining symmetry of 
nervous network, we suggest a novel approach to classify asymmetric 
neurons of C. elegans nervous system by examining asymmetric net-
work topology for every node. We defined 5 explicit locally topologi-
cal parameters for a neuron; (1) the degree is defined as the number 
of asymmetric links attached to the neuron, (2) the motif is defined 
as distribution of the numbers of asymmetric motifs for a neuron, (3) 
the degree ratio is defined as ratio of asymmetric links over totally 
attached links to the neuron including both of symmetric links and 
asymmetric links, (4) the motif ratio is distribution of the rates for 
asymmetric motifs over total motifs including both of symmetric and 
asymmetric motifs, and (5) the relative distance is defined by the dif-
ference of asymmetric motif fingerprint of bilaterally symmetrical 
neurons. Thresholds were defined using mean and standard deviation 
(SD) values of asymmetries to find statistically asymmetric compo-
nents. Neurons with asymmetry value over the threshold were con-
sidered as asymmetric neurons (asymmetric neurons  >  SD from the 

Fig. 75  Three critical pathways emerged from the results. A For VB 
they were: (1) AVA-based; (2) PVP-based; and (3) RMD → OLL. B Two 
of these pathways were again implicated for VE: the AVA-based and 
the PVP-based pathways

http://www.wormatlas.org
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mean values). We checked our asymmetric neurons with ASE and AWC 
neurons that are only known to show bilaterally asymmetrical gene 
expression. As a result, our study suggested that (4) ratio of asymmet-
ric motif and (5) relative distance measures successfully classified ASE 
and AWC as asymmetric neurons. Except for ASE and AWC neurons, 
BDU, PLM, and PVW neurons are classified asymmetric in both meas-
ures. These results could be interpreted that BDU neurons, PLM neu-
rons, and ALN neurons might possess asymmetric features that have 
not been discovered.
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When we face the multiple options (such as different taste of choco-
lates in a box) and choose one by one sequentially, there is no reason 
to prefer particular order of choice than any other possible choice 
strategies since all the items will eventually be consumed by ourselves. 
Recent studies have, however, revealed that there are distinct pat-
terns of choice strategy in this preference-based serial decision tasks. 
Interestingly, there are two opposite choice patterns (favorite-first and 
favorite-last) in human subjects [1], while non-human animals (rhesus 
monkeys) only chose their favorite options at first [2]. Although several 
hypotheses for underlying neural mechanisms have been suggested 
to explain about how these distinct choice strategies appeared, they 
are not directly tested yet.
The goal of the current study was to examine whether temporal 
discounting and working memory affect choice strategy of serial 
decision-making and if so, to examine how they influence it. To meas-
ure the choice strategy, we used the modified version of ‘the sushi 
problem’ task [1], which use the pictures of opposite sex as a reward 
instead of the sushi [3]. We also measured the temporal discounting 
parameters and working memory performance by using the same set 
of opposite-sex pictures. The whole pictures were rated by each sub-
ject twice before the main experiment, the average rating score were 
subsequently used to divide the whole picture set into four groups 
based on the difference of subject specific preference. In ‘sushi’ task, 
subjects were asked to choose among four options (squares contain 
different number of stars; 1  ~  4), each of which represents following 
short presentation (1.5 s) of pictures right after their choice. Each trial 
ends when subject choose all of four options, so they couldn’t skip or 
miss any options. The temporal discounting parameter was measured 
by the subject choice between sooner-small reward and later-larger 
reward, in this case, the magnitude of reward was the number of stars 
which indicate the subject-specific attractiveness of each pictures, the 
delay of reward was relatively shorter (1–30  s) than typical temporal 
discounting task since our task offered actual outcome (see the pic-
ture) of each choices [4]. The picture version of n-back task was used to 
measure the working memory performance.
Consistent with previous studies, we observed distinct patterns of 
choice order in ‘sushi’ task, favorite-last strategy was most dominant 
(58 %) and favorite-first was second (31 %). We also found the relation-
ship of both temporal discounting and working memory with choice 
strategies. The favorite-last group showed significantly lower rate of 
temporal discounting and higher performance of working memory 

than favorite-first group. The effects of working memory and temporal 
discounting parameters on choice strategy were examined by logistic 
regression analysis, which revealed how the propensity to discount 
future events and the memory effect about recent events predicted 
the pattern of serial choice. We also constructed simple computa-
tional models using support vector machine and naïve Bayes classifier 
to predict their decision patterns based on working memory perfor-
mance and temporal discounting parameters. We showed that these 
computational models successfully predicted preference-based deci-
sion patterns.
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In many social species, behavioral mechanisms of how social hierar-
chies formed and maintained have been studied extensively [1]. How-
ever, the neural bases underlying behavioral decisions and dynamics 
of neural circuits that permit animals to adapt to changes in social rank 
are poorly understood. In this study we focused on two social stress 
induced behaviors in zebrafish [the Mauthner cell (M-cell) mediated 
startle escape response and swimming behavior] to investigate how 
social regulation affects intrinsic cellular and network properties that 
result in the behavioral differences between dominant (DOMs) and 
subordinate (SUBs) animals. We utilized a non-invasive technique that 
allowed us to monitor the activation pattern of the two neural circuits 
in freely behaving animals.
High behavioral responsiveness and a low stimulus threshold for 
the initiation of escape in M-cell were observed in SUBs while DOMs 
showed the quicker habituation to repeated auditory stimulation 
compared to SUBs. We also observed that on average SUBs gener-
ated significantly less number of swim bursts compared to DOMs. 
These results suggest that social status induced stress can modify 
the startle plasticity as well as the local swimming circuit. The change 
in M-cell’s excitability due to the change in the presynaptic inhibitory 
drive may be responsible for the lowered threshold. On the other 
hand, the local neural circuits and their intrinsic modulatory compo-
nents (motor neurons and interneurons) may be configured differ-
ently according to social status to produce status-dependent swim 
patterns [2].
To test these ideas, we developed a biologically-based mathematical 
model whose network architecture is based on recent experimental 
data [3]. The model is able to reproduce several hallmarks of social sta-
tus induced behavioral differences that were experimentally observed 
between DOMs and SUBs, as well as some inherent activity patterns. 
Changing some intrinsic synaptic and network parameters was suf-
ficient to obtain the transition between DOMs and SUBs activity pat-
terns while maintaining the network architecture.
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Recent experiments show that the startle plasticity in M-cell can 
be modulated by endocannabinoids, 2-AG [3]. We chose the avail-
ability of 2-AG in M-cell as one of main parameters for the simula-
tion, whose dynamics is governed by the intracellular calcium level in 
M-cell. Model simulation shows that high behavioral responsiveness 
in SUBs results from the increased excitability in M-cell, which can be 
interpreted as the reduced inhibitory input to M-cell. To reproduce 
less swimming activity in SUBs, the hallmark of social status induced 
behavioral difference observed in our experiments, we chose another 
intrinsic parameter, the availability of 2-AG in inhibitory interneurons 
to represent 2-AG modulated local network property. Model simu-
lation shows that less swimming activity in SUBs is produced by the 
increased inhibitory input to the swimming neural circuit via the 2-AG 
driven elevated interneuron activity.
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Identification of the connectivity between neurons is important not 
only for elucidating neural bases for various functions but also for 
reconstructing the dynamics emerged in the connectivity. This thesis 
considers efficient methods for estimating synaptic connections from 
neural activity data. There are two kinds of approaches to neural con-
nectivity inference: analytic one based on descriptive statistics and 
reproductive one based on statistical generative models. Analyses 
based on descriptive statistics, such as Pearson correlation, can iden-
tify neural connectivity based on activity data, with low computational 
cost. It, however, cannot reproduce the dynamic behaviors of the 
underlying connectivity, and hence, it is not suited for simulating the 
identified network.
Reproductive approach based on statistical generative models, such 
as generalized linear model, can naturally simulate the dynamic 
behaviors of the identified network, once we determine the network 
parameters from activity data. Contrary to this advantage, the compu-
tational cost of reproductive approach is often much heavier than ana-
lytic one. To utilize the preferable characters of the two approaches, in 
this study, we propose a hybrid approach of using a descriptive statis-
tic for prescreening of existing connections and then performing gen-
erative model inference for dynamic model construction. We applied 
the hybrid approach to artificially generated spike data of various net-
work sizes.
Results and conclusions Figure 76A shows the accuracy of functional 
connectivity analysis, in terms of ROC-AUC of binary classification, 
presence/absence of connectivity, where we see the hybrid approach 
performed slightly worse than the GFAM10. Note that the hybrid 
approach performed almost same with GFAM10 when the number 

of neurons was 2000. Figure 76B shows the computation time of the 
two methods, where we see that GFAM10 took five times as much time 
as the hybrid approach. Our hybrid approach successfully reduced 
computational time, into about one-fifth of that of the sole reproduc-
tive approach based on the GFAM, while maintaining the estimation 
accuracy of the response functions within the identified functional 
connectivity.
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A central dogma in perception postulates that a minimal number of 
higher-order neurons provide the coding basis required for decision 
making and survival [1]. However, sensory information must travel 
through several neural layers before converging onto a smaller num-
ber of neurons in a premotor decision layer [2]. This multi-layered 
processing and convergence induces a time lag between peripheral 
input and adaptive behavior, which is inconsistent with the need for 
reaction speed. We propose that the divergent–convergent organiza-
tion often occurring in multilayered neuropils enhances processing 
speed. Insect olfactory processing is a good model for investigating 
perceptual timing [3], where effective classification in the 4th layer 
‘anticipates’ classification in input layers by 50  ms (Fig.  77A, B) [4]. 
Here we show that this anticipation emerges from divergent-con-
vergent connectivity and the relative sizes of the layers, which rap-
idly amplifies subtle input signals and improves precision (Fig. 77C). 
We reproduced experimental results of peak classification in MBONs 
anticipating PNs by 50 ms on average (Fig. 77D). This becomes more 
pronounced as the KC layer grows, although increased noise is also 
observed. For an oversized KC layer, thus, this anticipation becomes 
lower and the signal is eventually destroyed by the emphasized 
noise. Interestingly, the key feature to this anticipation is indeed the 
ratio between KCs and PNs, showing that larger brains may balance 
these populations to achieve jointly higher pattern recognition capa-
bilities and fasts discrimination times. We have analyzed fast coding 

Fig. 76  A Comparison of the prescreening accuracy in terms of 
ROC-AUC value (higher is better accuracy). B Comparison of the com-
putation time. ‘GFAM10 [1]’, regarded as the original method, denotes 
generative functional additive model which is extended version of 
generalized linear model. ‘Correlation-GFAM10’ denotes a hybrid 
approach which performs the Pearson correlation for prescreening 
and then performs GFAM10
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properties of fan-out/fan-in structures that are ubiquitous in the 
brain. We developed a model to reproduce experimental data and 
analyze the optimal reaction times of the network model, finding a 
balance between fast information transmission and high accuracy in 
pattern recognition. Our contribution improves understanding of the 
role of divergent convergent feedforward networks on the stability of 
fast and accurate decision-making.
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Nature is a powerful illusionist who, unfortunately for life sciences, 
hates revealing her secrets. One of her most rewarding tricks involves 
interconnecting a bunch of non-oscillatory neurons in such a way that 
they collectively behave like an oscillator [1]. Contemporary neurosci-
ence strives to decipher this magic and does so not out of mere curi-
osity: the trick can go wrong, causing myriads of neurons to march 
to the deadly rhythm of epileptic seizure. It is of vital importance to 
determine which connectivity patterns promote and suppress epilep-
tiform activity if surgery is to be effective when nothing else is [2]. On 
a lighter note, oscillatory dynamics explains many aspects of musical 
experience [3–5]. A question comes up again and again in ethnomu-
sicological discourse as to whether these aspects are learned or not. 
In the context of oscillatory dynamics on networks, we might ask 
whether a single connectivity leads to the emergence of dynamics 
relevant to each musical culture or a different (learned) connectivity is 
at work each time. In conclusion, establishing a link between connec-
tivity and oscillatory dynamics on networks seems to be an important 
problem with repercussions in such diverse fields as epileptology and 
ethnomusicology.
The mainstream approach to the problem can be characterized as 
follows: first, choose a dynamical model of single unit—e.g. neuron, 
synapse, or population thereof. Next, connect units of the selected 
type(s) in a network. Finally, study the effect of connectivity param-
eters on the global dynamics analytically, computationally, or using 
a combination of both. The major drawback of any analysis per-
formed in this way is that the validity of its results is put in doubt 
whenever that of the single unit model is. Needless to say, none of 
the ever-growing variety of models has gained a wide acceptance 
yet. The mainstream approach could be dubbed the “object-oriented” 
one. The alternative approach, advocated by category theorists and 
adopted by us, could be called the “relational” one: instead of ana-
lysing a particular dynamical system, one investigates a whole class 
of dynamical systems on a particular manifold characterized only by 
its relations to classes of dynamical systems on different manifolds. 
This latter approach is epitomized by a recently introduced algebraic 
structure [6] which relates global network dynamics to its connectiv-
ity. We are currently trying to prove the existence of global periodic 
solutions in selected classes of simple networks with a given structure 
using this new theory.
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Fig. 77  Early discrimination of stimulus in the MBs. A Recordings 
of PNs and MBONs activities from untrained honey bees to odor 
stimulation. At t = 0 s (green bar), an odor stimulation is presented. B 
Connectionist blueprint of the MBs, emphasizing synapses and popu-
lation size. Note the divergence present between PN and KC layers, 
followed by convergence onto MBONs. C We reproduced in silico the 
early response (blue bar) of MBONs in the vertical lobe with respect 
to the PNs (orange bar) using spiking neuron networks. D Time differ-
ences in our simulations for each experiment repetition. Difference in 
response time between is on average 50 ms (one tail Mann–Whitney 
test, p < 0.025)
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Applications of oscillatory stimuli in optogenetical studies have been 
used to gather evidence that γ oscillations are generated by the 
interaction of inter-neurons (also termed the inter-neuron γ or ING 
mechanism) [1, 2]. We elaborate the pitfalls of inferring the origin of 
the oscillation from absolute (response spectra) as well as relative 
(power ratios) changes in spectra of neural activity induced by oscil-
latory input. We consider minimalistic models that isolate the difficul-
ties and limitations arising in the interpretation of response spectra. 
The described effects generalize to more realistic models. This is dem-
onstrated in simulations of a multi-laminar model of V1 composed of 
leaky-integrate-and-fire (LIF) model neurons [3], where the ground 
truth regarding the sub-circuits generating the oscillations is known 
[4]. In this structured model these effects combine and yield mislead-
ing results. By extending mean-field theoretical descriptions of popu-
lation dynamics [5] by oscillatory input, we can close the loop to the 
condensed models.
We identify three main complications: First, the input can modify the 
excitability of the population in a linear or non-linear fashion, yielding 
significantly different changes in the spectra. Second, depending on 
the properties of the system, the input to the populations is poten-
tially low pass filtered before it enters the system. Since this low pass 
filter is reflected in the response spectra, without revealing informa-
tion regarding the internal dynamics of the network, we propose a 
stimulation protocol counteracting this effect by emphasizing high 
frequencies. Third, in general, the stimulation of a single population 
excites a mixture of dynamical modes. One frequency is generated 
by one dynamical mode that can be mapped to its anatomical origin 
[4]. Since the observable response is composed of an inseparable mix-
ture of modes, the mode generating the oscillation cannot easily be 
isolated. Hence reconstructing the underlying connectivity as well as 
identifying the role of the stimulated population in the generation of 
the rhythm is not straightforward. Instead, the stimulus vector needs 
to reflect the structure of the circuit generating the oscillation in order 
to allow insights into the dynamically relevant components of the 
system.
These problems can be regarded as a sub-set of challenges that need 
to be faced when interpreting the results of circuits composed of more 
complex units. The proposed solutions may be used to construct new 
experimental stimulation protocols.
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Magnetoencephalography (MEG) offers the high spatiotemporal resolu-
tion necessary to capture dynamic mesoscale cortical activation features 
[1] for spatiotemporal mapping of brain networks. In order to adapt 
such data for effective pathological or cognitive state classifiers, novel 
techniques are required to extract complex connectivity dynamics that 
vary in duration and latency. We have developed an advanced deep-
learning system to explore such network dynamics through parcellated 
connectomes in individual subjects. The machine learning system pro-
duces transparent classifiers that can define spatiotemporal character-
istics of state-specific connectivity, model neurophysiological pathology 
and expand understanding of connectivity dynamics. Our implemen-
tation uses source localized activation patterns extracted from event 
related epochs to classify cognitive states corresponding to working 
memory tasks. Subject-wise MEG data is mapped to segmented mor-
phology from magnetic resonance imaging for source localization, 
then preprocessed to optimize neural network performance. The fol-
lowing steps minimize dimensionality and accommodate the deep-
learning system’s input requirements. First, spatiotemporal data are 
encoded using a wavelet transformation that extracts oscillatory data 
in the theta, alpha and beta/gamma bands per parcel (Fig. 78A). Next, 
synchronicity between parcels is calculated to populate 2D connectiv-
ity matrices respective to the frequency bands. These matrices are nor-
malized and combined into frame images where theta, alpha and beta/
gamma synchronicity is encoded as blue, green and red intensity values 
respectively. These pixel grids are smoothed and expanded using grid-
ded, cubic interpolation (Fig. 78B). The deep learning system consists of 
a recursive neural network utilizing a long-short term memory (LSTM) 
architecture [2] that preserves temporal input characteristics (Fig. 78C). 
LSTM presents dynamically changing oscillatory patterns to the deep 
learning system by integrating features of a specified range of contigu-
ous frames relative to each training frame. As this classification system 
allows for visualization of activation at each layer, we are able to identify 
specific patterns that mediate the classification process (Fig. 78D) [3].
Our classification methods have demonstrated significantly low error 
rate of 0.236 ±  0.425 (mean ±  SD) in binary working memory state 
classification after 3  min of GPU-accelerated training. Additionally, 
weight patterns at specific layers within the deep learning network 

Fig. 78  Visualisations of processing and deep learning stages. A 
Wavelet decomposition across bands of interest. B Progression of 
image-encoded oscillatory synchronization in BA10. C Deep learning 
network improvement across training epochs. D One trained network 
layer displaying parcel dynamics that mediate classification
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http://arxiv.org/abs/1510.00642


Page 86 of 112BMC Neurosci 2016, 17(Suppl 1):54

highlighted relevant parcel interactions with significant effect on func-
tional connectivity dynamics within classified cognitive states. This 
project represents an advancement in preserving critical spatiotempo-
ral information required to classify complex cognitive states that char-
acterize dynamically changing oscillatory and synchronous functional 
activity patterns across the connectome.
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Segmentation of human brain images into regions with homoge-
neous intensity or texture is very crucial for the diagnosis of various 
brain diseases. However, the presence of noises or artifacts remains 
as one of the biggest obstacles for the successful segmentation. Here 
we propose a novel method of segmentation based on the multiscale 
complexity analysis. The idea is to characterize the complexity in visual 
images by the multiscale profile representing the scale dependence 
of compositional complexity. Our claim is that the multiscale profile 
of human brain images combining scale dependent information on 
intensity and texture information could be effectively utilized for the 
segmentation of human brain images.
We have applied the multiscale complexity analysis for the segmen-
tation of two dimensional MRI images. Our method consists of three 
steps. (I) An MRI image is partitioned into homogeneous regions uti-
lizing the information bottleneck method. (II) Multiscale complexity 
profiles of individual pixels are computed from the partitioned image 
of the MRI. (III) Feature vectors combining both intensity and texture 
information are extracted for the segmentation. For the segmentation, 
the feature vectors of individual pixels are clustered using a simple 
K-mean clustering algorithm.
Using the simulated MRI images provided the BrainWeb database [1], 
the performance of the segmentation was tested. The performance 
shown in Fig.  79 indicates that the multiscale complexity analysis 
is very robust against noise. Details will be presented during the 
meeting.
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Emotional stimuli attract attention so the brain can focus its process-
ing resources on them. The questions that arise is how these stimuli 
acquire their emotional value and how they can influence attentional 
processes. Evidence suggests that this association might be learned 
through conditioning in the amygdala, more specifically the basal 
lateral amygdala (BLA). Furthermore, feedback connections from the 
BLA to the visual cortex seem to enhance the activation of neural rep-
resentations which is a possible top-down attention mechanism of 
the emergent attention hypothesis. While neuro-computational mod-
els of attention mechanisms attract increasing interest due to their 
importance for the focused processing of information in the brain, the 
possible emotional feedback from the amygdala is to date largely unex-
plored. Therefore, we propose a rate-coded, biological realistic neuro-
computational model constructed of 3 smaller functional models. First, 
we combined a model of the visual processing pathway for object rec-
ognition [1] that includes the retina, the lateral geniculate nucleus, the 
visual areas V1, V2 and V4 as well as the frontal eye field with an amyg-
dala model for the associative conditioning of a visual stimulus with a 
bodily reaction representing a particular emotional state. Second, in 
order to provide the model with realistic temporal learning properties, 
a reward-timing model [2] simulating the afferent system to the dopa-
minergic area VTA has been integrated to temporally adjust the learn-
ing process through dopamine-mediated modulation of plasticity. This 
timing model includes a number of brain areas, most prominently the 
ventral tegmental area, the nucleus accumbens, the lateral hypothala-
mus, the ventral medial prefrontal cortex and the amygdala. In order 
to enable emotional attention, 2 simulation phases were implemented: 
(1) a conditioning phase to learn the association between an impor-
tant stimulus and the body reaction, and (2) an attention phase where 
the representation of the visual stimulus activates the BLA which then 
sends back a feedback to enhanced this specific stimulus. Afterwards, 
the enhanced representation in V4 suppresses the competing ones 
and allows the frontal eye field to initiate a saccade in its direction. As 
a result of the biologically based connectivity and the realistic learning 
process, the model outcomes are coherent with several experimental 
findings and increase our understanding of the brain network’s inter-
action. In the future, the model could furthermore be used for facial 
analysis and the process of learning the importance of specific facial 
features for emotional expressions.
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The conventional deep brain stimulation (DBS), as a surgical procedure 
to alleviate debilitating and disrupting symptoms of Parkinson’s dis-
ease (PD), has several drawbacks. Multi-site delayed feedback stimula-
tion (MDFS) has been proposed as a feasible alternative to overcome 
the drawbacks of the conventional DBS [2, 3]. We first build two types 
of large scale biophysical networks to explore the effectiveness of 
MDFS. The persistent parkinsonian network has strongly synchronized 

Fig. 79  A An MRI image from the BrainWeb [1] and the result of seg-
mentation into five clusters. B An MRI image with 7 % noise added 
and the result of segmentation into five clusters
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bursting clusters with elevated firing rates present in subthalmic 
nucleus (STN), internal and external segments of globus pallidus (GPi 
and GPe) neurons. However, the brain of a PD patient may not be in 
a constant strong synchronized and clustered state, and short desyn-
chronized events may present when the brain is in between high syn-
chronization [1]. We build an intermittent parkinsonian network that 
can transit between synchronized and desynchronized dynamics. 
Using both parkinsonian networks, we compute the TC error index, the 
fraction of miss responses and excessive responses when a TC neuron 
relays multiple excitatory inputs, in five different stimulation settings: 
MDFS from STN to STN, from STN to GPe, from GPi to STN, from GPi to 
GPe and from GPi to GPi, shown by the dashed-arrows labeled 1–5 in 
Fig. 80A. Each “to” population is stimulated by the signal based on the 
LFP calculated at the “from” population. Our results of lower TC relay 
errors with the five different stimulations in Fig. 80B show that MDFS 
improves the fidelity of the TC relay neurons’ communication and 
responses to the input motor signal in both persistent and intermit-
tent parkinsonian networks. We also find that MDFS with STN or GPe 
as a stimulation target is more effective in reducing TC relay errors.
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Background Purkinje cells have two states of the resting membrane 
potential: a hyperpolarized quiescent state (down state) and a depo-
larized spiking state (up state) [1]. This bistability has been observed 
in in vitro and in vivo recordings, in anesthetized animals, and in slices. 
It has been proposed that bistability in Purkinje cells play a key role in 
the short-term processing and storage of sensory-motor information.
Methods To investigate bistability of the neuronal resting state, we 
use computer simulations in neuron. We simulate single compartment 
neurons and use the Hodgkin–Huxley-type formalism to study how 
initial conditions and a combination of ionic channels affect neuronal 
response. We systematically apply intracellular current pulse stimula-
tion to set the membrane potential to different levels and observe the 
neuronal dynamics after the stimulation is released.
Results We show that the neural response after release of the pulse stimu-
lation depends on the amplitude of the current pulses. For some stimula-
tion levels, the cells return to the level of the activity prior to stimulation, 
while for other levels, the neuronal dynamics are different to prior activity 
levels for a long time post stimulation. We show that different initial condi-
tions lead to different neuronal dynamics even when all other parameters 
in the Hodgkin–Huxley-type model are set the same (Fig. 81). We explore 
the region of attraction for two stable states and find that they differ for 
different parameters of the model, in particular that different ionic chan-
nel combinations do not change our qualitative results.
Conclusions This work demonstrates a potential method to explore 
the mechanisms underlying bistability in Purkinje cells. In particular, 
the proposed methodology allows the exploration of the circum-
stances under which Purkinje cells transit from the down state to the 
up state and return. This work implies that results obtained using the 
Hodgkin–Huxley formalism should be carefully considered since the 
choice of initial conditions may significantly affect the final outcome.
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Fig. 80  A The network model. Plus symbol indicates excitatory 
connection, and minus symbol indicates inhibitory connection. LFP 
is computed from GPi and STN populations separately. These two 
LFP signals are used as the source of the five MDFS stimulations 
(dashed-arrows): STN-to-STN, STN-to-GPi, GPi-to-STN, GPi-to-GPe and 
GPi-to-GPi, shown by arrow labeled 1–5. B Error index values for 80 
different model TC neurons in an intermittent network. Comparison 
of MDFS among different stimulation targets using either STN or GPi 
LFP signal. Whisker plots show mean (red line), 25–75 percentile range 
(blue box), 95 % confidence interval (black lines) and outliers (red plus 
signs)

Fig. 81  Response of a modeled neuron for different initial condi-
tions, V(0). Sodium, three types of potassium, calcium, and hyperpo-
larisation-activated currents are included in the model
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We examined how short-term synaptic depression due to vesicle 
depletion [1] interacts with the configuration of the synaptic pathways 
onto an output neuron. Using both simulations and mathematical 
analysis, we found significant frequency-dependent phase-shifts of 
the spiking response of a neuron driven by independent frequency-
modulated Poisson input signals. The synaptic inputs to the neuron 
are assumed to consist of a fixed number of release sites that are 
divided between active zones, with each active zone being the presyn-
aptic axonal target of a single input neuron (Fig.  82A). For the same 
number of release sites, at one extreme the output neuron receives 
input from a large number of neurons through independent active 
zones, each containing a single release site, similar to cortical cells. 
At the other extreme (similar to a Calyx of Held in the auditory brain-
stem), the neuron is driven by a single input neuron through a giant 
synapse containing a single active zone with a very large number of 
release sites.
Using standard stochastic models of short term depression due to 
vesicle depletion [2], and post-synaptic current dynamics, we found 
strong phase dependencies for input modulation rates up to 5  Hz. 
The phase shift also depends strongly on the configuration (Fig. 82B). 
However, the phase shift otherwise remains invariant for a wide range 
of post-synaptic conditions, such as for Hodgkin–Huxley or leaky inte-
grate-and-fire models, and whether or not the dynamics of post syn-
aptic currents included rise-times, or longer or shorter decay times.
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Defining how interactions take place, directionality is major feature 
of network connections. Brain networks are intrinsically directed 
because of the nature of chemical synapses, which comprise most of 
the neuronal connections. The specific fingerprint of the interactions 
between cortical regions and neurons thereof are crucial to the neu-
ronal dynamics. The neuronal ability to synchronize is extremely sensi-
tive to the presence of reciprocal connections in neuronal motifs and 
circuits [1]. The type of synchronization (or the phase relation between 
phase locked neurons and cortical regions) also depends on the rela-
tion between the synaptic strengths between these regions [2, 3]. 
Moreover, whole brain network dynamics is also shaped by reciprocal 
connections, which stabilizes the network dynamics and reduce tran-
sitions between metastable states [4]. However, due to limitations in 
current brain imaging techniques, the directionality of edges between 
structurally connected regions of the human brain cannot be con-
firmed. Additionally, despite the demonstrated importance of synaptic 
direction, its effect over main network features is not yet elucidated.
Comparing several directed brain networks from different species 
(macaque, cat, mouse, and C. elegans) and with variable node size 
(parcellation), we estimate the error that is made in characterizing 
and identifying brains as complex network when undirected networks 
are assumed. We use different approaches to turn directed networks 
undirected: (i) remove unidirectional links; (ii) add reciprocal links; (iii) 
add one reciprocal for each removed unidirectional link thus keeping 
the same network density. We find that directionality plays a major 
role in shaping the brain networks. All regions are affected, includ-
ing hub nodes, which have large degree and enhanced importance 
in information integration for cognitive functions [5]. We compute 
and rank graph theoretical measures and determine their resilience 
with respect to the loss of directionality of the network. Overall, our 
results suggest that the characterization of connectomes can be com-
promised in the absence of data regarding the directionality of brain 
networks.
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Randomly connected networks of rate-model neurons have a rich 
dynamics [1], a feature that has been exploited to model a variety of 
phenomena [2]. These model networks typically do not distinguish 
between excitatory and inhibitory neuron classes. Doing this requires 
constraining the network connectivity matrix to have columns with 
exclusively positive entries, representing input from excitatory neu-
rons, and with negative entries, representing input from inhibitory 
neurons. The eigenvalue spectra of random matrices satisfying this 
constraint have a number of interesting properties [3, 4].
Here we study the dynamics of rate-model networks that result 
from using such connectivity matrices. We find that neural activity is 

Fig. 82  The phase of post-synaptic firing in response to frequency-
modulated inhomogenous Poisson pre-synaptic spike trains depends 
on the configuration of input synapses. A The connectivity involves 
M independent pre-synaptic neurons each with NM synaptic release 
sites at a post-synaptic neuron. Vesicles are released probabilistically 
when activated by a pre-synaptic action-potential, if one is available 
at that site. The post-synaptic neuron depolarizes and produces 
action potentials after arrival of neurotransmitter according to stand-
ard models. B The phase lead of output spiking relative to periodic 
modulation at frequency f, for M active-zones is both frequency-
dependent and configuration-dependent. The figure is from simula-
tions but we also derived the same result mathematically
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correlated across all neurons, including both excitatory and inhibitory 
subpopulations. This correlation depends on the difference between 
the mean strengths of the excitation and inhibition connections and 
it increases as this difference is increased. For very large values of this 
difference, the network reaches a stable fixed point, otherwise it is 
chaotic. Chaos arises from the residual activity deviating from the cor-
related mean network activity and it acts to reduce these correlations. 
The magnitude of the residual chaotic activity is determined by the 
variances of the synaptic strengths within the excitatory and inhibitory 
populations.
In summary, unlike models with a single mixed excitatory/inhibitory 
population, in which the activity between pairs of neurons is uncor-
related for every value of synaptic gain, networks with distinct excita-
tory and inhibitory subpopulations exhibit strongly correlated activity 
across the entire network reminiscent of the up/down states seen in 
neural recordings [5].
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The visual perception of body motion can show interesting multi-sta-
bility. For example, a walking body silhouette (bottom inset Fig. 83A) 
is seen alternately as walking in two different directions [1]. For stimuli 
with minimal texture information, such as shading, this multi-stability 
disappears. Existing neural models for body motion perception [2–4] 
do not reproduce perceptual switching. Extending the model [2], we 
developed a neurodynamic model that accounts for this multi-stability 
(Fig. 83A). The core of the model is a two-dimensional neural field that 
consists of recurrently coupled neurons with selectivity for instantane-
ous body postures (‘snapshots’). The dimensions of the field encode 

the keyframe number θ and the view of the walker ф. The lateral con-
nectivity of the field stabilizes two competing traveling pulse solu-
tions that encode the perceived temporally changing action patterns 
(walking in the directions ±45°). The input activity of the field is gener-
ated by two visual pathways that recognize body postures from gray-
level input movies. One pathway (‘silhouette pathway’) was adapted 
from [2] and recognizes shapes, mainly based on the contrast edges 
between the moving figure and the background. The second pathway 
is specialized for the analysis of luminance gradients inside the mov-
ing figure. Both pathways are hierarchical (deep) architectures, built 
from detectors that reproduce known properties of cortical neurons. 
Higher levels of the hierarchies extract more complex features with 
higher degree of position/scale invariance. The field activity is read out 
by two Motion Pattern (MP) neurons, which encode the two possible 
perceived walking directions. Testing the model with an unshaded sil-
houette stimulus, it produces randomly switching percepts that alter-
nate between the walking directions (±45°) (Fig. 83B, C). Addition of 
shading cues disambiguates the percept and removes the bistability 
(Fig.  83D). The developed architecture accounts for the disambigua-
tion by shape-from shading.
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Action perception and the control of action execution are intrinsi-
cally linked in the human brain. Experiments show that the concur-
rent motor execution influences the visual perception of actions 
and biological motion (e.g. [1]). This interaction likely is mediated by 
action-selective neurons in the STS, premotor and parietal cortex. 
We have developed a model based on biophysically realistic spiking 
neurons that accounts for the observed interactions between action 
perception and motor planning. The model is based on two dynamic 
representation levels (Fig.  84A), one modeling a representation of 
perceived action patters (vision field), and one representing associ-
ated motor programs (motor field). Both levels are modeled by recur-
rent spiking networks that approximate neural fields, where each field 
consists of 30 coupled neural ensembles, each consisting of 80 excita-
tory and 20 inhibitory adaptive Exponential Integrate-and-Fire (aEIF) 
neurons [2]. Within each field asymmetric recurrent connections 
between the ensembles stabilize a traveling pulse solution, which is 
stimulus-driven in the visual field and autonomously propagating in 
the motor field after initiation by a go-signal. Both fields are coupled 
by interaction kernels that results in mutual excitation between the 
fields of the traveling pulse propagate synchronously and in mutual 
inhibition otherwise. We used the model to reproduce the result of a 
psychophysical experiment that tested the detection of point-light 

Fig. 83  A Model architecture with 2D neural field that receives input 
from two hierarchical path-ways. B Response traces of MP neurons 
for silhouette stimulus without shading during a 200 s simulation. 
C Corresponding average response times of the output neurons. D 
Response times for shaded stimulus
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stimuli in noise during concurrent motor execution [1]. The point-
light patterns showed arm movements of the observer, which were 
synchronized with varying time delays with the executed move-
ments. Compared to a baseline without concurrent motor execution, 
the detectability of the visual stimulus was higher for very small time 
delays between the visual stimulus and the executed arm move-
ment, and it was lower when the observed movement was strongly 
delayed (>300  ms) against the executed motor patterns (Fig.  84B). 
The same pattern arises from the detectability of the visual stimulus 
as predicted from our model, where we assumed that the level of 
neural activity (compared to a noise level) provides a measure for the 
detectability of the stimulus (Fig. 84C). The proposed model, which is 
derived by simplification from physiologically-inspired neural models 
for action execution and motor planning, reproduces correctly the 
modulation of visual detection by the synchrony of the stimulus with 
executed motor behavior. Present work extends the model by a full 
visual pathway and an effector model, allowing for the simulation of a 
broader spectrum of experimental results.
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Surprise is informative because it drives attention [1] and modifies 
learning [2]. Correlates of surprise have been observed at different 
stages of neural processing, and found to be relevant for learning 
and memory formation [3]. Although surprise is ubiquitous, there is 
neither a widely accepted theory that quantitatively links surprise to 
observed behavior, such as the startle response, nor an agreement on 
how surprise should influence learning speed or other parameters in 
iterative statistical learning algorithms. Building on and going beyond 
earlier surprise measures [4–6], we propose a novel information theo-
retic measure for calculating surprise in a Bayesian framework so as 
to capture uncertainty of the world as well as imperfections of the 
subjective model of the world, two important aspects of surprise. 
The principle of future surprise minimization leads to a learning rule 
that can be interpreted as a surprise modulated belief update suit-
able for learning within changing environments. Importantly, we do 
not need an assumption on how quickly the world changes. We apply 
our surprise-modulated learning rule to an exploration task in a maze-
like environment. Our results are consistent with the behavioral find-
ing that surprising events induce humans and animals to learn faster 
and to adapt more quickly to changing environments. Information 
content [5] captures the inherent unexpectedness of a piece of data 
for a given set of models (uncertainty of the world), whereas Bayesian 
surprise [4] measures the change in belief caused by a new data point 
(observer dependent). These are two complementary approaches for 
calculating surprise. In our approach both aspects are combined with 
a third aspect: if we are uncertain about what to expect, receiving a 
low-probability data sample is less surprising than in a situation when 
we are almost certain about the world. A surprise minimizing learning 
(SMiLe) rule is derived by solving a constrained optimization prob-
lem defined as follows: the objective is to maximally reduce surprise 
when facing the same data again in the not so far future, under the 
constraint that the posterior belief (after the update step) is not too 
different from the prior. The resulting SMiLe rule balances the influ-
ence of newly acquired data with prior knowledge where the balance 
depends on surprise. In case of a fundamental change in the world 
signaled by surprising samples, data acquired before the change is 
downgraded as less informative about the current state of the world. 
A simultaneous increase of the influence of newly acquired data on 
learning leads to a fast adaptation of the model to an environmental 
change. While in a stationary environment our algorithm approaches 
the known Bayesian update rule, it also allows the model to react to 
changes in the environment. In summary, surprising data increases the 
uncertainty we have about our current model of the world and gives 
a bigger influence of newly acquired data on belief update. The inter-
action between surprise and uncertainty is important for modeling 
the behavior of humans and animals in changing environments. The 
surprise signal could be broadly transmitted in the brain by a neuro-
modulator with widespread axonal ramifications (e.g., norepinephrine 
(NE) released from locus coeruleus (LC) neurons) and influence synap-
tic plasticity rules.
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Fig. 84  A Model architecture consisting of two coupled neural fields, 
implemented with biophysically realistic neurons. B Psychophysical 
results from [1] showing the dependence of the detectability of visual 
point-light stimuli in dependence of the delay between a visually 
observed and the concurrently executed action. C Simulated detect-
ability derived from the model for the same experimental conditions
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Cochlear implants (CI) rehabilitate hearing impairment through direct 
electrical stimulation of the auditory nerve. In many modern CIs sound 
is coded through the continuous interleaved sampling (CIS) strategy. 
Although many different sound-coding strategies have been intro-
duced in the last decade, no major advances have been made since 
the introduction of the CIS strategy [1]. New stimulation strategies are 
commonly investigated by means of psychophysical experiments and 
clinical trials, which is time-consuming for both patient and researcher. 
Alternatively, strategies can be evaluated using computational mod-
els. In this study a computationally efficient model that accurately pre-
dicts auditory nerve responses to CI pulse train input is developed.
The model includes the 3D volume conduction and active nerve model 
developed in the Leiden University Medical Center [2], and is extended 
with stochasticity, adaptation and accommodation. This complete 
model includes spatial as well as temporal characteristics of both the 
cochlea and the auditory nerve. The stochastic and adaptive auditory 
nerve model is used to investigate full-nerve responses to amplitude 
modulated long duration stimulation. Understanding responses to 
amplitude modulation is important because current speech coding 
strategies are based on the principle of speech information distribution 
through amplitude modulation of the input pulse trains. The model 
is validated by comparison to experimentally measured single fiber 
action potential (SFAP) responses to pulse trains published in literature 
[3–6]. The effects of different pulse-train parameters such as pulse rate, 
pulse amplitude and amplitude modulation are investigated.
The neural spike patterns produced in response to CI stimulation are 
very similar to spike patterns obtained with single fiber action poten-
tial measurements in animal experiments in response to CI stimula-
tion. Besides predicting single fiber responses to constant amplitude 
pulse trains, the model also very well predicts single fiber responses 
to amplitude modulated pulse trains. Response alterations seen over 
the duration of the stimulus are similar to those seen in animal experi-
ments. Modeled effects of stimulus amplitude, pulse rate and ampli-
tude modulation is similar to the effects seen in animal experiments. 
Adaptation is found to be an important factor in modeling nerve out-
comes to amplitude modulated pulse trains and their spatial effects.
The model is shown to accurately predict spike timings in response 
to long duration pulse trains as observed in animal experiments. The 
model can be used to predict full auditory nerve responses to electri-
cal pulse trains, and thus to different sound coding strategies. The next 
step will be to apply this model to evaluate complete auditory nerve 
responses to different sound coding strategies.
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Graph theoretical approaches to resting-state fMRI have been widely 
used to quantitatively characterize functional network organization 
in the resting brain, but mechanistic explanations for how resting-
state brain works are still lacking. Whole-brain computational models 
have shown promise in enriching our understanding of mechanisms 
contributing to the formation and dissolution of resting-state func-
tional patterns [1]. It is therefore important to determine the degree 
to which computational models reproduce the topological features 
of empirical functional brain networks. Here, we focused on the per-
formance of the Kuramoto model [2] as it is considered most repre-
sentative model of coupled phase oscillators and is widely used in 
the literature.
Empirical and simulated functional networks were defined based on 
66 brain anatomical regions (nodes). Simulated resting-state func-
tional connectivity (FC) was generated using the Kuramoto model 
constrained by empirical structural connectivity. The simulated FC 
matrix was tuned to best fit empirical FC matrix. In order to improve 
stability and reliability, we simulated 10 runs of fMRI BOLD time 
series (obtained from 320  s simulations, discarding 20  s initial tran-
sients) with varying random initial conditions, and generated the 
best-fit simulated FC matrix for each run. We applied graph theoreti-
cal approaches to optimally simulated FC and empirical FC data to 
characterize key topological features of brain networks [3]. Finally, 
we quantified and compared the difference, in terms of relative error, 
in graph theoretical measures between the simulated and empirical 
functional networks.
Figure 85 shows the quantitative difference in graph theoretical meas-
ures between the empirical FC and the simulated FC over the entire 
(1–100  %) and selected range of connection densities (37–50  %). 
The averaged relative differences were found to be 2–77  % over the 
entire range of connection densities as well as 0.1–22 % over a range 
of 37–50 % connection densities. We found that simulated functional 
data can be used with confidence to model graph measures of global 
and local efficiency, characteristic path length, eigenvector centrality, 
and resilience to targeted attack and random failure. Our results also 
highlight the critical dependence of the solutions obtained in simu-
lated data on the specified connection density.
This study demonstrates the value of computational models in assess-
ing whole-brain network connectivity, and provides a method for the 
quantitative evaluation and external validation of graph theory met-
rics derived from simulated data that can be used to inform future 
study designs.
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Analysis of fMRI data typically focuses on inter-regional functional con-
nectivity, measured as pairwise correlations, or through multivariate 
decompositions (e.g., ICA). Relatively little attention is given to the uni-
variate time-series properties of BOLD signals within a specific brain 
region, despite a broad scientific literature on time-series analysis 
(including power spectral techniques, information theoretic methods, 
model fitting, nonlinear time-series analysis, and fractal scaling). Here 
we undertake the largest systematic comparison of over 7000 such 
measures of temporal structure to identify the temporal features of 
individual BOLD signals, and their locations in the brain, that are most 
discriminative of people with schizophrenia.
MRI data were obtained from the open COBRE database [4] for 72 peo-
ple with schizophrenia (SCZ) and 74 healthy controls (CON). For each 
subject, we extracted 7779 temporal features from the BOLD time 
series recorded in each of 264 brain regions using the publicly avail-
able highly comparative time-series analysis framework, hctsa (http://
benfulcher.github.io/hctsa/) [1].
Spatial analysis ROIs that were most discriminative of SCZ versus CON 
were identified by training a separate linear support vector machine 
(SVM) classifier for each ROI, across all features, using tenfold cross val-
idation. We identified 23 ROIs with a classification accuracy exceeding 
chance levels (p < 0.05, FDR-corrected) with some individual ROI accu-
racies reaching 69.5 %. These discriminative brain regions were mostly 
located in the frontal and parietal cortices.
Temporal analysis The most discriminative temporal features were 
deduced using t-tests in each ROI, and then averaging across all ROIs. P 
values were computed using permutation tests with 1000 shuffles. We 

identified over 100 time-series features of the BOLD signal with statis-
tically significant separability between SCZ and CON (p < 0.05). These 
features were mostly measures of time series ‘predictability’, including 
autocorrelation, local prediction error (using exponential smoothing, 
Gaussian Processes, and AR models), the SD1 measure from the heart 
rate variability literature, and low frequency power. This emergent 
class of discriminative properties of BOLD dynamics is consistent with 
the use of the ALFF metric in existing work using fMRI data [3].
We present the first systematic comparison of thousands of interdis-
ciplinary time-series analysis measures to fMRI data and use machine 
learning to uncover characteristic BOLD signatures of schizophrenia, 
in both space and time. In a completely data-driven manner, we iden-
tify informative brain regions and time-series analysis techniques that 
best discriminate people with schizophrenia from healthy controls, 
using just the properties of BOLD signals in individual ROIs. The frame-
work presented here represents a general and powerful data-driven 
means of identifying discriminative time-series features from neurosci-
ence data.
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Recent experimental studies have demonstrated the emergence of 
narrowband local field potential oscillations during epileptic seizures 
in which the underlying neural activity appears to be completely asyn-
chronous [1]. We derive a mathematical model explaining how this 
counterintuitive phenomenon may occur, showing that a population 
of independent, completely asynchronous neurons may produce nar-
rowband oscillations if each neuron fires quasi-periodically. This quasi-
periodicity can occur through cells with similar frequency–current (f–I) 
curves receiving a similar, high amount of uncorrelated synaptic noise. 
Thus, this source of oscillatory behavior is distinct from the usual cases 
(pacemaker cells entraining a network, or oscillations being an inher-
ent property of the network structure), as it requires no oscillatory 
drive nor any specific network or cellular properties other than cells 
that repetitively fire with continual stimulus.
We deduce bounds on the degree of variability in neural spike-timing 
which will permit the emergence of such oscillations, both for action 
potential- and postsynaptic potential-dominated LFPs. (See Fig.  86 
for example voltage traces and energy spectra resulting from asyn-
chronous neural activity, demonstrating how our model naturally 
explains why PSPs tend to dominate the LFP at low frequency, while 
APs dominate at high frequency.) These results suggest that even an 
uncoupled network may generate collective rhythms, implying that 
the breakdown of inhibition and high synaptic input often observed 

Fig. 85  Relative error (RE) in percentage between graph theoretical 
measures of simulated FC versus empirical FC for the entire (1–100 %) 
and selected range of connection densities (37–50 %). Bars and error 
bars correspond respectively to the averages and standard deviations 
across the ten RE values. Eglob global efficiency, Eloc local efficiency, 
CC clustering coefficient, L characteristic path length, EC eigenvector 
centrality, PC participation coefficient, SW: small-worldness, Rct  and Rgt  
represent resilience to targeted attack in the size of largest connected 
component and global efficiency, respectively, Rcr  and Rgr  represent 
resilience to random failure in the size of largest connected compo-
nent and global efficiency, respectively

http://benfulcher.github.io/hctsa/
http://benfulcher.github.io/hctsa/
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during epileptic seizures may generate narrowband oscillations. We 
propose that this mechanism may explain why so many disparate epi-
leptic pathologies can produce similar high frequency oscillations [2].
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The neural computation of visual perception begins in the retina. The 
retinal neural circuits receive inputs from the photoreceptors, spread 
out along interneurons, and converge to retinal ganglion cells (RGCs). 
The axons of RGCs are the only output of the retina and carry all the 
visual information from the retina to the rest of the brain. Each type of 
RGCs is thought to be associated with one microcircuit and to process 
distinct visual information. Therefore, classifying the types is an impor-
tant step towards understanding the neural computation in the retina 
and retina’s role in vision [1, 2].
We anatomically classified roughly 400 RGCs based mainly on den-
dritic stratification profiles [3]. The RGC dendritic arbors were recon-
structed from serial electron microscope (EM) images of a (0.3  mm)2 
slice of the inner plexiform layer of the mouse retina [4]. The recon-
struction was carried out on EyeWire, a web-based EM reconstruction 
pipeline that combines artificial intelligence of deep learning and 
human intelligence of a community of ‘citizen neuroscientists’ [5]. This 
is the first time EM reconstruction was done on a large enough area to 
potentially sample and identify all RGC types.
For cross-validation of the anatomical classification, we compared it 
with the visual responses of the same cells recorded by calcium imag-
ing performed before EM preparation. The comparison confirmed that 
our classification recovered all well-known ganglion cell types includ-
ing on–off direction selective ganglion cells (DSGCs), sustained/tran-
sient On DSGCs, asymmetric Off DSGC types, sustained/transient and 
On/Off alpha cells, and local edge detectors. We also found orientation 
selective or direction selective responses in some cell types that were 
not previously well-characterized or were previously unknown. In all, 
our classification includes over 40 types of RGCs.
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Neurons in area MT of the primate visual system are strongly tuned 
to the direction and speed of moving stimuli, and they exhibit pro-
nounced transients in their firing rates after changes in visual stimu-
lation. These transients increase the sensitivity of neurons and they 
are closely correlated to behavioral performance. For example, arbi-
trary instantaneous speed changes are associated with transients of 
different sign and amplitude, which closely correlate with the sign 
and magnitude of the preceding stimulus change and with behav-
ioral performance [1, 2]. Interestingly, the transients’ size cannot be 
directly referred from the neuron’s underlying speed tuning, and is 
significantly more pronounced if the base speed before the change 
is far from the neuron’s preferred speed. Understanding the neural 
dynamics shaping these responses, and their effects on information 
transmission of arbitrary time-varying signals, is key to understanding 
how the visual system copes with dynamic scenes. We here present a 
dynamical model for MT neurons that reproduces detailed character-
istics of experimentally observed transients (Fig. 87). The model takes 
the single cell’s kinetics and its speed tuning into account. Based on 

Fig. 86  Normalized energy spectra and voltage traces resulting from 
asynchronous neural activity. A, B Results of superimposed, asynchro-
nous action potential waveforms for quasi-periodic frequencies of 
100 Hz (A) and 200 Hz (B). C, D Results of superimposed, asynchro-
nous postsynaptic potential waveforms for quasi-periodic frequen-
cies of 100 Hz (A) and 200 Hz (B). Gray dashed lines represent energy 
spectra that would result from Poisson process spike trains convolved 
with AP/PSP waveforms
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divisive inhibition of excitation, it is capable to reproduce and explain 
the specific transients of single neurons. Single direction column are 
made up of one excitatory and one inhibitory population, with the 
inhibitory population providing divisive inhibition onto the excitatory 
population. By combining multiple direction columns to one hyper-
column, the model consists of N  ×  2 populations, with the excita-
tory populations receiving different input depending on their tuning 
parameters and the stimulus, and the inhibitory populations receiving 
an input averaged over the neighboring columns’ input by a Gaussian 
kernel plus a fixed offset. Using an optimization procedure, the model 
reliably reproduces MT cell responses to arbitrary accelerations and 
decelerations of a moving stimulus, starting from both low and high 
base speeds, reproducing recently unexplained experimental data. If 
the inhibitory time constant is a multiple of the excitatory time con-
stant, the model is analytically tractable for a piecewise constant input 
current: The analytical solution allows quantifying the transients’ mag-
nitude as a function of general neuron parameters such as response 
gain and time constants, providing precise predictions for population 
responses to brief events of arbitrary contrast.
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Novel imaging methods such as intracellular Ca2+ imaging and volt-
age-sensitive dye measurements provide ever finer spatiotemporal 
data about single-neuron activity. The challenge for model fitting 
methods is to incorporate these data in order to describe the neuron 
behavior in a manner that faithfully preserves the signal propagation 
and membrane potential dynamics across the neuronal dendrites. 
A difficulty in this task is the evidently large number of different ion 
channels residing along the dendritic and perisomatic locations: 
Unless extra care is taken, the role of specific species of ion channel 
could be under- or overestimated at the expense of another type of 
ion channel.
In this work, we propose an automatic step-wise model fitting proce-
dure as a solution to this challenge. Our approach resembles that of 
[1], but our objective functions are designed to account for correct 
membrane potentials not only at soma but also along the dendrites. In 
addition, we replace the need for spatial occlusion of parts of dendrite 
(“pinching”) [2] in the experimental setup by a cumulative use of ion 
channel blockers.
We apply this procedure to construct a reduced-morphology version 
of the layer V pyramidal cell model of [3]. We simulated the cumula-
tive blocking of ion channels by setting the corresponding ion channel 
conductances to zero in the full model, and measured the membrane 
potential (and Ca2+ concentrations when needed) along the soma and 
dendrites at each step. We then fitted the maximal conductances in 
the model with reduced morphology in four steps, starting with pas-
sive parameters (1st step), continuing with Ih current conductances 
(2nd step), Ca2+ dynamics and related conductances (3rd step), and 
ending with ion channel conductances that are in charge of the spik-
ing behavior (4th step).
We show that our model with reduced morphology correctly repro-
duces important aspects of the membrane potential dynamics across 
the neuron, both in the control condition (see Fig. 88), and under the 
effect of the abovementioned ion channel blockers. In the final step 
of our study, we present and apply a method for reducing the num-
ber of synaptic contacts (from 1000s to a few 100s) yet maintaining 
the spatio-temporal activation pattern of the neuron. The obtained 
network model is cost-efficient in terms of both simulation time and 
memory requirements. Our model is publicly accessible in ModelDB, 
accession number 187474, as NEURON and NeuroML-2 descriptions 
(https://senselab.med.yale.edu/ModelDB/showModel.cshtml?mo
del=187474).

Fig. 87  A, B Fits to motion onset responses to estimate each 
neuron’s kinetics. C Experimentally estimated MT transients to posi-
tive and negative speed changes of various magnitude. D Transient 
response amplitudes as derived from the model. E, F Relation 
between transient and sustained MT responses as a function of speed 
change magnitude as estimated experimentally (E) and by the model 
(F)

https://senselab.med.yale.edu/ModelDB/showModel.cshtml?model=187474
https://senselab.med.yale.edu/ModelDB/showModel.cshtml?model=187474
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A recent genome-wide association study (GWAS) of schizophrenia 
(SCZ) has identified more than a hundred genetic loci exceeding 
genome-wide significance, confirming the polygenic nature of the 
disorder [1]. The loci implicate genes that encode numerous ion chan-
nel subtypes and calcium transporters, and are major contributors 
not only to the function of brain cells, but also to the functioning of 
organs outside the central nervous system, such as heart. Meta-stud-
ies have reported a 2.5-fold–threefold increase in mortality rates in 
schizophrenic patients, and majority of these excess deaths are natural 
and mostly due to cardiovascular disease [2]. In agreement with this 
observation, GWASs of cardiac phenotypes, such as electrocardio-
graphic (ECG) measures, highlight a set of genes that overlaps with the 
one discovered in GWASs of SCZ. Nevertheless, both the genetic and 
mechanistic connections between cardiac and neural phenotypes in 
SCZ patients remain poorly understood.
In this work, we use computational modeling to study the contribu-
tion of SCZ-associated genes to cardiac and neuronal excitability. We 
focus our analyses on two central, well-studied cell types, namely, 
layer V pyramidal cells (L5PCs) in the cortex and sinoatrial node cells 

(SANCs) in the myocardium. The apical tuft of an L5PC serves as an 
integration hub for non-local synaptic inputs, and is considered a bio-
logical substrate for cortical associations providing high-level “con-
text” for low-level (e.g., sensory) inputs that arrive to the perisomatic 
compartment. Therefore, the ability of L5PC to integrate the apical 
and perisomatic inputs has been proposed as one of the mechanisms 
that could be impaired in hallucinating patients. The SANCs, in turn, 
have a key role in controlling the heart rate as the primary pacemakers 
of the mammalian heart. Both of these cell types are well described 
in terms of biophysical modeling, and are therefore a suitable target 
for a detailed computational studies incorporating genetic effects. We 
apply two recent multicompartmental L5PC models and two recent 
SANC models to argue for the generality of our findings.
We show that small changes in the parameters governing the voltage-
dependence and time constants of activation and inactivation of dif-
ferent ion channels caused observable effects in both L5PC and SANC 
function. In the case of Ca2+ channel gene variants, these changes 
typically had opposite effects on cell excitability in L5PCs compared 
to SANCs (higher L5PC firing frequency  ↔  lower SANC pacemak-
ing frequency), while in the case of Na+ or HCN channel variants, the 
effects were mostly similar (higher L5PC firing frequency  ↔  higher 
SANC pacemaking frequency). Furthermore, many of the studied vari-
ants showed an impact on signal propagation in a chain of coupled 
SANCs. Our results may help explain some of the cardiac comorbidity 
in schizophrenia, and may facilitate generation of effective antipsy-
chotic medications with less arrythmia side-effects.
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The local field potential (LFP), the low-frequency part of extracel-
lular potentials in neural tissue, is routinely recorded as a measure of 
population activity. LFPs reflect correlated activity of both local and 
remote neurons and depend on the anatomy and electrophysiology 
of neurons near the recording location. While forward models have 
shed light on various aspects of LFPs, e.g., their spatial reach [1], such 
models often ignore network interactions. Large-scale network models 
commonly use point neurons for tractability (see, e.g., [2]). However, 
predicting the LFP signal from such models is not straightforward, as 
point neurons do not generate extracellular potentials. In [3] we pro-
vided methods to compute extracellular potentials from point-neuron 
networks incorporating the biophysical principles of LFP generation 

Fig. 88  Comparison of model with reduced (red) morphology to the 
model with full (blue) morphology. The y-axis shows the membrane 
potential at soma (solid) and apical dendrite (dashed) as a response to 
a somatic 200-ms DC pulse
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using multicompartment neurons. This hybrid scheme uses spike times 
of point neurons as spatially dependent synaptic input with layer speci-
ficity of connections from anatomical data. The methods were demon-
strated using a laterally homogeneous, layered point-neuron network 
representing 1  mm2 of early sensory cortex at full cell and synapse 
density [4]. Preserving biological cell and connection densities is criti-
cal: networks may not be strongly downscaled without affecting cor-
relations [5], and diluted LFP-generating populations fail to preserve 
the effect of correlations on the LFP [3]. Even small network correla-
tions dominate in the compound LFP spectrum due to the different 
scaling of average single-cell LFP spectra and average pairwise coher-
ence of single-cell LFP. Here, we extend this work to a network cover-
ing 4 × 4 mm2 (Fig. 89A) accounting for connection probabilities falling 
off with lateral distance. Even for low pairwise spike-train correlations 
(Fig. 89B), the model accounts for highly correlated LFPs across lateral 
distance (Fig.  89C) as observed experimentally. Further we show that 
such features strongly depend on network state.
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Neural networks in visual cortex are structured into areas, layers, and 
neuronal populations with specific connectivity at each level. Corti-
cal dynamics can similarly be characterized on different scales, from 
single-cell spiking statistics to the structured patterns of interactions 
between areas. A challenge of computational neuroscience is to inves-
tigate the relation of the structure of cortex to its dynamics. Network 
models are promising tools, but for technical and methodological rea-
sons, they have been restricted to detailed models of one or two areas 
or large-scale models that reduce the internal structure of areas to a 
small number of differential equations.
We here present a multi-scale spiking network model of all vision-
related areas of macaque cortex that represents each area by a full-
scale microcircuit with area-specific architecture based on a model 
of early sensory cortex [1]. The layer- and population-resolved net-
work connectivity integrates axonal tracing data from the CoCoMac 
database with recent quantitative tracing data, and is systemati-
cally refined using dynamical constraints [2]. Gaps in the data are 
bridged by exploiting regularities of cortical structure such as the 
exponential decay of connection densities with inter-areal distance 
and a fit of laminar patterns versus logarithmized ratios of neuron 
densities.
Simulations reveal a stable asynchronous irregular ground state with 
heterogeneous activity across areas, layers, and populations. In the 
presence of large-scale interactions, the model reproduces longer 
intrinsic time scales in higher compared to early visual areas, similar to 
experimental findings [3]. Activity propagates preferentially in the feed-
back direction, mimicking experimental results associated with visual 
imagery [4]. Cortico-cortical interaction patterns agree well with fMRI 
resting-state functional connectivity [5]. The model bridges the gap 
between local and large-scale accounts of cortex, and clarifies how the 
detailed connectivity of cortex shapes its dynamics on multiple scales.
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Fig. 89  A Instantaneous spiking and LFP in a 4-layer network 
model covering 4 × 4 mm2 at realistic cell and synapse density with 
distance-dependent connectivity. B Pairwise correlations between 
spike trains of exc. (E) and inh. (I) layer 5 neurons as function of 
distance (red: E–E, blue: I–I, black: E–I). C Distance-dependent LFP 
correlation computed for a 10 × 10 electrode grid in layer 5 (0.4 mm 
between contacts)
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It is known that polychronous neuronal groups (PNGs), i.e. neuron 
groups having reproducible time-locked but not synchronous firing 
patterns, can function as representative entities [1]. They have huge 
capacity by sharing neurons. They compete between each other to 
represent sensory inputs. Therefore, PNG is considered as one of the 
potential, yet elusively difficult to analyze, hypothetical mechanisms of 
memory in the brain.
In computational models, the difficulties of finding PNGs mainly come 
from (1) low percentage of spikes from PNGs (about 4  % [1]) when 
driven by random inputs; and (2) combination explosion to enumerate 
all possible PNGs for template-matching (possible PNGs triggered by 3 
neurons in a 1000-neuron network is 3C1000 = 1.66 × 108).
Here we aim at solving the second difficulty without template-match-
ing by connecting PNG readout neurons with joint weight-delay spike-
timing dependent plasticity (joint STDP) to the network. The joint 
STDP consists of (1) weight STDP with the conventional exponential 
learning window; and (2) (axonal) delay STDP with learning window of 
shape te−t/τ, scaled by weight-related gains. The joint STDP strength-
ens and pulls together spikes arriving before postsynaptic firing, on 
the other hand weakens and postpones spikes after postsynaptic fir-
ing. In this way, we can recover the PNG by looking at (1) the strength-
ened synapses, which tells which neurons belong to the PNG; and (2) 
the delays of the strengthened synapses, which are complementary to 
the spike timing inside the PNG, because the presynaptic spike arrival 
times for the readout neuron (=spike timing + delay) are pulled close 
to each other.
In the experiment, we repeatedly fed structured inputs to a sparsely 
connected network of 800 excitatory and 200 inhibitory neurons. 
There were 150 readout neurons connected to the network with lat-
eral inhibition between them. After 405 s of simulation, we used the 
incoming weights and delays of the readout neurons to find PNGs (see 
Fig. 90). It turned out that the readout neurons can learn the subsets 
of the persistently activated PNGs. The readout neurons do not rely on 
template-matching. Instead, they become differentiated members of 
the PNG to indicate the actual activation of its subsets.
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The subject of this study is the temporal dynamics of functional con-
nectivity (FC) in human resting state (RS) as measured with BOLD fMRI. 
In spite of rising interest in the topic [1], it remains unclear whether 
observed FC is stationary or if state switching is present, nor is it clear 
what constitutes these putative states. Modelling is an invaluable tool 
for answering these questions: here we combine a dynamic mean field 
model of the cortex with data analysis in order to determine whether 
and to what extent spatio-temporal FC patterns found in empirical data 
can be mimicked by a stationary model as described in [2]. To this end, 
we cast our data into tensor form by computing time-dependent FC 
inside of sliding windows (dynamic FC, dFC), comparing three methods 
to compute dFC (two correlation based, and mutual information). We 
employ canonical polyadic decomposition (also known as parallel fac-
tor analysis) with or without non-negativity constraint to decompose 
the tensors, which allows us to simultaneously consider the temporal 
and spatial dimensions [3]. First, we decompose such tensors obtained 
from empirical data of 24 subjects [4] and cluster resulting spatial fea-
tures (i.e., communities) in order to obtain a small number of templates. 
These templates are used in a second step to compare to simulated 
data that is processed in the same way. We find that even on a very 
low level of spatial resolution (66 cortical regions), and using only the 
2 % biggest dFC values in terms of region pairs and time windows, we 
succeed in extracting communities that generalize across subjects and 
can be found in the simulated data. Furthermore, we show that using 
model-based effective connectivity to inform the model [5] leads to 
more realistic and stable communities than diffusion weighted MRI-
based structural connectivity alone. The method shown here is widely 
applicable to compare patient groups, data obtained from different 
tasks as well as mental states, and opens the door to understanding the 
differences between the temporal dynamics of these conditions.
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Much of present neuroimaging studies have used fMRI to simply 
measure the activity in brain regions and computing the functional 
connectivity (FC) between regions and behaviour. This has provided 
important insights into the task-evoked activity compared to rest and 
thus the flow of information between functional regions (e.g., sen-
sory, multimodal integration, memory). Yet, this does not capture all 
of the complex spatiotemporal patterns of brain activity and in par-
ticular not been the underlying effective connectivity. The present 
study provides evidence for application of a novel method of deter-
mining the functional roadmap of effective connectivity (EC), which 
measures the strengths of dynamic cortical interactions. We use a 
whole-brain dynamical model that combines fMRI data with anatomi-
cal information obtained using diffusion-tensor imaging (DTI) [1]. Our 
recently developed method [2] provides estimates for the EC as well 
as the local excitability and stimulus load in a study of groove-based 
music. The brain is divided into 90 areas and the input noise is shaped 
by the EC to generate the FC. This model allows us to explore the 
role of the network parameters in shaping FC: after constraining the 
model to reproduce resting-state activity, we examine the effect of 
an arbitrary change in individual inputs and EC strengths on FC. Our 
method focuses on spatio-temporal FC, meaning covariances of BOLD 
signals with possible time shifts. The estimated EC and inputs are 
taken as fingerprints of the brain dynamics. We analyze fMRI data of 
participants listening to 15 rhythms with three levels of syncopation: 
Low, Medium and High (five drum-breaks in each level) [3]. In accord-
ance with other studies, we find behaviourally that the Medium 
level—with more “groove”—elicits the most pleasure and wanting to 
move. We tune the model to reproduce the FC recorded for each syn-
copation level, as well as rest. We analyze significant changes for each 
groove condition as compared to rest. FC for Medium syncopation 
exhibits a faster shuffling between successive brain patterns of activ-
ity, linked to more metastability and corresponding maybe to the 
subjective experience of higher pleasure. In addition, our model gives 
a detailed functional neuroanatomy of dynamical changes in the 
brain networks. Interestingly, Medium syncopation induces changes 
in excitability in the basal ganglia, such as the pallidum and the cau-
date nucleus, which may be related to the increased desire for mov-
ing. Interestingly, significant changes are also observed in regions of 
the orbitofrontal and anterior cingulate cortices, which have been 
strongly implicated in the pleasure network [4]. Overall, our new 
method has for the first time allowed us to uncover the network and 
the corresponding effective connectivity of a highly pleasurable state 
of groove; possibly even revealing the brain topography of eudaimo-
nia, the sense of well-being.
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STEPS is a stochastic reaction–diffusion simulator. Its emphasis is on 
accurately simulating signaling pathways in realistic morphologies [1].
It is becoming apparent that larger computational models are 
demanded to either capture more such morphologies or to simulate 
more complex systems. As an example, the dendrite calcium burst 
model presented by Anwar et  al. [2] requires approximately 285,000 
sub-volumes with 15 diffusing molecular species and 20 reactions 
per sub-volume. It required several weeks to compute a simulation of 
500 ms.
Thus it is desirable to reduce the computational burden. Accelerators 
such as graphics processing units (GPU) offer unprecedented com-
puting performance and are now common amongst the fastest super 
computers [3]. This project enables STEPS to benefit from the compu-
tational power of GPUs.
GPUs are massively parallel co-processors aggregating thousands 
of simplified processing cores onto a single chip. They share many 
characteristics with vector computers and a key challenge is that the 
processing cores are not independent. Similar to vector computers 
an operation is applied to a group of data elements rather than to the 
individual data element. Furthermore, the programmer has to miti-
gate the memory hierarchy of GPUs. While memory with a high access 
latency is, in general, abundant, fast memory space shared between 
threads is small which may limit the size of the reaction system one is 
able to simulate.
Previous research has shown that we can exploit the computational 
power of GPUs to accelerate spatially homogenous stochastic simu-
lations by two orders of magnitude while avoiding the limitation 
imposed to the size of the reaction system to be simulated by the 
small fast memory space [4].
STEPS implements a spatial version of Gillespie’s stochastic simulation 
algorithm (SSA) computing reaction–diffusion systems on a mesh of 
tetrahedral sub-volumes [1, 5]. Currently a parallelised multi-processor 
version of STEPS is under development. Operator splitting techniques 
allow to separate the reaction of molecules within a sub-volume from 
the diffusion of molecules between them. This prevents computation-
ally costly rollbacks in case of molecules diffusing between sub-vol-
umes handled by different processors.
We develop a layered hybrid software architecture using both, 
the classic central processing unit as well as GPUs, integrated into 
STEPS applying GPU acceleration at the sub-volume level and 



Page 99 of 112BMC Neurosci 2016, 17(Suppl 1):54

integrating them into a coherent spatial simulation using operator 
splitting.
Our architecture will be a plug-in solution to STEPS not requiring any 
changes to the interfaces towards the user or other software systems 
of STEPS itself.
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The studies of large neuronal pathway models with complex morphol-
ogies, such as our previous work on the stochastic effects of calcium 
dynamics in Purkinje cells [1], present a great challenge to currently 
available spatial stochastic reaction–diffusion simulators, for example, 
STEPS [2], as the model scales and complexities quickly surpass the 
capability any serial simulator can achieve.
One possible solution for this challenge is parallelization. At CNS2015 
we reported a parallel implementation of STEPS which demonstrated 
great speedup when simulating a reduced calcium burst model with a 
tetrahedral cylinder [3], but it is clear that to explore the full potential 
of our implementation, a larger scale simulation with more complex 
geometry is required.
Here we extend our work by simulating the reduced calcium burst 
model with a reconstructed Purkinje dendrite tree branch mesh. 
Comparing to previous simulations with regular cylinder meshes, the 
simulation with dendrite tree mesh requires several new support rou-
tines from the simulator. First of all, the simple axis based partition-
ing approach used in the cylinder simulations is no longer a good 
partitioning solution due to the complex tree structure of the mesh. 
A sophisticated mesh partitioning and validation solution is there-
fore necessary for the new simulation. Second, the new simulation 
demands good regional annotation and data collection support as 
calcium concentration, the main focus of the simulation, varies both 
spatially and temporally. The parallel environment further increases 
the difficulty of such support as the simulation is distributed over a 
massive number of processors, and each annotated region may not 
be completely simulated within a single processor. Furthermore, it is 
necessary to minimize the user interface difference between serial and 
parallel STEPS solvers and extend the STEPS visualization toolkit to 
facilitate comparison with results from previous work.
In this poster we demonstrate the general procedure of converting a 
serial STEPS simulation to its parallel counterpart, using the reduced 
calcium burst model with complex tree mesh as example, and show-
case new supporting toolkits developed for the procedure. We believe 
that the presented procedure and toolkits will be helpful to STEPS 
users in their future research.
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The dendrite of Purkinje cell (PC) has been shown to express differ-
ent types of voltage gated ion channels. After strong parallel fiber (PF) 
stimulus, calcium currents can cause dendritic spikes to occur in the 
spiny dendrite [1]. Different with climbing fiber caused calcium sig-
nals that propagate throughout the dendritic tree, PF caused dendritic 
spikes are local. The elevated calcium concentration due to the local 
dendritic spike may trigger local synaptic plasticity, possibly playing 
a significant role in information processing. However, until now, how 
these dendritic spikes originate and propagate is not well understood.
In this work, we built a new PC dendrite model, which can generate 
local dendritic calcium spikes. The generated spike by model shows 
similar properties to experimental observations [1], including spike 
threshold, amplitude and latency. We identify the role of P type Ca2+ 
current, A type K+ current, high threshold K+ current (Kv3), calcium 
activated K+ current and axial current on the depolarization and repo-
larization of the spike. In the model, the required threshold synaptic 
input to trigger local dendritic spikes decreases with distance from 
soma, which facilitates the occurrence of spikes in the spiny dendrite 
by PF synaptic input. This model can also successfully replicate the fail-
ure of propagation of PF caused dendritic spikes at the parent branch 
point. By analyzing the spatial spread of the dendritic spikes and EPSP 
signal to soma, we identify the relative contribution of active currents 
and impedance mismatch on the signal decay. Because dendritic 
spikes can robustly propagate over an entire branchlet in the direction 
away from the soma, dendritic branchlets may be the basic organiza-
tion unit for integrating synaptic input [2, 3].
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Studies have established that dendrites are not simple cables that 
deliver synaptic inputs to a spike initiation zone in a neuron but can 
also perform active transformation, which is termed “dendritic com-
putation” [1]. In particular, it has been claimed that individual den-
dritic branch should function as a local computational subunit [2] and 
therefore single neurons (especially pyramidal neurons) can act like 
two-layer neural networks [3]. Evidence supporting these hypoth-
eses is largely based on existence of active membrane mechanisms 
in dendrites that give rise to their rich computational capabilities (e.g. 
[4]) and independent operations [5]. However, dendritic morphology 
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is also known to play a significant role: For example, spike backpropa-
gation is effectively prevented in the cerebellar Purkinje cells mostly 
due to morphology, even when artificial active mechanisms support-
ing propagation are embedded in simulations [6]. Nevertheless, to our 
best knowledge, there has been only few studies that quantified how 
the real morphological structure can control the functional properties 
of dendrites by forming subunits.
Here we address this question by combining a data-driven statistical 
analysis and computational modeling approach: First, we simulated 
central neurons of diverse morphological types with the passive mem-
branes where localized inputs were injected. Response patterns in the 
dendritic membrane were collected as “features” corresponding to 
the input sites. Then, our dimensionality reduction/clustering proce-
dure grouped them into clusters, which we call “subunits”. We found 
that those subunits usually consist of a few nearby branches in many 
neuron types, containing 2.12 ± 0.13 dendritic terminals per subunit 
(mean ± SEM), whereas they consist of one or more branchlets in the 
cerebellar Purkinje cells (12.9 ± 0.82 terminals). We also found that the 
subunits are comparable with other functional properties such as sub-
linear summation of multiple synaptic inputs and spreading of a den-
dritic spike.
Conclusions The morphological branching pattern of a neuronal den-
dritic tree determines how dendrites are organized into functional 
subunits. This implies that principles governing synaptic integration 
and active events, such as dendritic spiking, can widely vary depend-
ing on the morphological type of the neuron.
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Cerebellar long-term depression (LTD) is a form of synaptic plasticity 
involved in motor learning. It is characterized as a robust and persis-
tent decrease in the synaptic transmission between parallel fibers 
(PF) and Purkinje cells (PC), which is expressed as a reduction in the 
number of synaptic AMPA receptors (AMPAR). LTD signaling network 
includes a PKC-ERK-cPLA2 positive feedback loop and mechanism of 
AMPAR trafficking. Previous studies suggest that Ca2+/calmodulin-
dependent protein kinase II (CaMKII) is required for the LTD induction 
[1]. However, the molecular mechanism of how CaMKII contributes to 
LTD is not fully understood. Noise in the signaling networks plays an 
important role in cellular processes. LTD models including the CaM-
KII pathway have been developed [2], but they have not included the 
intrinsic stochasticity of molecular interactions.
Our lab recently developed a stochastic model of the LTD signaling net-
work including a PKC-ERK-cPLA2 feedback loop and AMPAR trafficking 
[3]. In this work, we have extended the model by adding the molecular 
network regulating CaMKII activity, which is known to influence LTD. 
This new model was solved stochastically by STEPS (STochastic Engine 
for Pathway Simulation) to simulate the influence of noise in the LTD 

signaling network [4]. Some of the most important new components 
of this network include phosphatase 2A (PP2A), phosphodiesterase 1 
(PDE1), cGMP/protein kinase G (PKG) and nitric oxide (NO) pathway.
Through stochastic modeling we showed that the requirement of 
CaMKII activity for LTD induction is controlled by its indirect inhibi-
tion of PP2A activity, with PP2A markedly suppressing the activation 
of LTD when CaMKII activity is decreased. The impairment of LTD could 
be rescued by the additional PDE1 reduction when CaMKII is reduced. 
In addition, the cGMP/PKG pathway supports LTD through its activa-
tion by NO. These results are congruent with previous studies of CaM-
KII activity [2] and make our stochastic model a potential tool to study 
the effects of CaMKII, phosphatases and phosphodiesterases in LTD 
molecular network.
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Many insects exhibit robust and efficient visual-based navigation in 
complex environments [1]. Specifically, behavioral studies on ants and 
bees showed that they are guided by orientation vectors based on a 
process called path integration. This process allows them to estimate 
their current location by integrating cues from odometry and a sun-
based compass. While it is mainly applied to return back to the nest, it 
also guides learning of so-called vector memories for subsequent for-
aging [2, 3]. Vector memories can be anchored globally to the nest or 
locally to landmarks. Recent neurophysiological studies revealed that 
the central complex, an insect neuropil, contains neural representa-
tions of compass [4] and odometric cues [5]. However, it is still unclear, 
how these representations are involved in path integration and vec-
tor memories, and how they produce goal-directed navigation. Com-
putational modeling has been powerful in testing hypotheses about 
the underlying neural substrates and their generated behavior, and to 
predict further experimental data. Previous models [6, 7] sufficiently 
produced insect-like vector navigation, but they neglected biologi-
cally plausible explanations about underlying neural mechanisms that 
could generate this behavior.
We present here a novel computational model of neural mechanisms 
in closed-loop control for vector navigation in embodied agents. It 
consists of a path integration mechanism, reward-modulated learning 
of global and local vectors, random search, and action selection. The 
path integration mechanism computes a vectorial representation of the 
agent’s current location. The vector is encoded in the activity pattern of 
circular arrays, where the angle is population-coded and the distance is 
rate-coded. We apply a reward-modulated learning rule for global and 
local vector memories, which associates the local food reward with the 
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path integration state. A motor output is computed based on the com-
bination of vector memories and random exploration. We show that the 
modeled neural mechanisms enable robust homing and localization in 
a simulated agent, even in the presence of external sensory noise. The 
proposed learning rules produce goal-directed navigation and route 
formation under realistic conditions. This provides an explanation for, 
how view-based navigational strategies are guided by path integration. 
As such, the model is the first to link behavioral observations to their 
possible underlying neural substrates in insect vector navigation.
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Here we present a model-based estimation framework for electrocor-
ticography (ECoG) data that provides insight into mechanisms of sei-
zures; and can be used as a clinical tool to monitor and design new 
treatment strategies on a patient-specific basis.
Seizures are brief periods of abnormal, hypersynchronous neural fir-
ing that spreads across multiple cortical regions. People with epi-
lepsy experience recurrent seizures, which are often untreatable and 
of unknown cause. The data-driven estimation framework, shown in 
Fig. 91, describes dynamic neural connectivity patterns during patient 
seizures. Data were obtained from a clinical trial for an implantable 
seizure warning device [1], which captured thousands of seizures. We 
estimated mean membrane potentials and connectivity strengths 
between excitatory, inhibitory and pyramidal populations using a non-
linear, assumed density filter for the neural mass equations [2].
Estimated parameters provide insights into the mechanisms of the sei-
zure, which are not apparent from ECoG alone. For instance, Panel E 
shows the seizure is preceded by a focal decrease in inhibition compared 
to the surrounding channels, with widespread disinhibition during the 
seizure. Joint state and parameter estimation was repeated for every sei-
zure, and the results showed consistent, stereotypical effective connec-
tivity patterns that differed between short (<20 s) and long seizures. This 
is an important finding, as understanding the regulatory factors impli-
cated in stopping seizures can guide new pharmaceutical treatments 
and electrical counter-stimulation strategies. The successful application 
of the neural mass model to study epileptic seizures supports the use of 
data-driven estimation for the clinical management of epilepsy.
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This work describes a novel algorithm for inferring neural activity and 
effective cortical connectivity from neuroimaging data. The ability to infer 
cortical network structure from data is an important step towards under-
standing and treating neurological disorders, such as epilepsy. However, 
statistical measures for correlation in neuroimaging data are ambiguous 
and bear little or no relation to physiology. On the other hand, estimat-
ing physiologically realistic connectivity is highly challenging due to the 
complex, non-linear dynamics of the brain. The algorithm we present 
overcomes this challenge by providing an exact solution to non-linear 
inversion for a class of biologically inspired neural network models.
The presented algorithm performs joint state and parameter esti-
mation for a class of neural model that represents interacting corti-
cal regions as coupled nodes (shown in Fig.  92). The states of the 
model represent mean cortical activity [population membrane 
potentials, v(t)], and the parameters are the effective connectivity 
(synaptic gain kernels, αi,e). The output voltage, vn(t), represents the 
electrophysiology recording, which is inverted using a novel formula-
tion of the Kalman filter equations for neural models [1]. The novelty of 
this method is the derivation of an exact solution to the integral over 
the distribution of hidden model states conditioned on previous data.
We provide results showing that the new algorithm demonstrates 
higher estimation accuracy and greater computational tractabil-
ity than existing inference methods for neural models. We also show 
example estimation results from an electrical recording of a human 
seizure (shown in Fig. 92). This new method for data-driven inference 
represents an important contribution to online diagnostic applica-
tions, in particular for the treatment of epilepsy [2].

Fig. 91  Example estimation of a seizure recording. A Sixteen channel 
electrocortiography (ECoG) of seizure (red lines indicate start and end 
points). B The ECoG channels are modelled as cortical regions, each 
with three coupled populations. C–G Estimation results of coupling 
strength (proportional to color) between neural populations for 
16 cortical regions (vertical axis), over the time span of the seizure 
(horizontal axis)
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The purpose of auditory system is to transform acoustic stimuli from 
the external environment to sound perception. To achieve this goal, 
the auditory system needs to analyze a mixture of stimuli that origi-
nate from independent sources and distinguish individual sound 
sources in the auditory scene. It is believed that the auditory system 
groups and segregates auditory stimuli based on their regularities, 
but the neural basis of how regularities relate to sound perception 
is not well known. The ventral pathway in the brain is involved in 
auditory perception whereas the dorsal pathway is involved in spa-
tial processing and audiometer processing. We are interested in how 
the spatial information is represented in the ventral pathway during 
perceptual auditory streaming tasks that use spatial information.
We first developed a novel task based on [1] in which human listen-
ers can segregate streams using spectral or spatial information and 
detect the deviant tone. An array of 13 free field speakers with differ-
ent spatial distributions were used to play the stimuli. The frequency 
difference between streams and the spatial separation were varied to 
explore how the spectral and spatial information interplay in the audi-
tory streaming task. We also manipulated other acoustic features of 
the stimuli to understand how different acoustic cues can affect the 
auditory streaming performance. We found that the ability to segre-
gate the streams is vastly improved when there is spatial information 
available in addition to spectral information. Also, we further analyzed 
the behavioral data to get psychophysical kernels and fit the data to 
variants of sequential sampling models related to the drift diffusion 
model(DDM) [2] to quantify the effects of sequence coherence on the 
decision making process.
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The activity of the human brain in a state of rest exhibits a defined pat-
tern of functional connectivity, and a small set of functional networks, 
which comprise regions that are highly correlated and are mostly dis-
tinctive from one another [1]. However, despite recent efforts [2, 3], the 
effects of local perturbations into endogenous whole brain dynam-
ics are not yet clearly understood [4]. To gain insights into the global 
effects of a focal perturbation, we simulate the human brain dynamics 
using a weighted high-resolution connectome of 513 cortical regions 
[5]. The cortical dynamics is modelled by a canonical oscillatory model, 
introducing heterogeneous dynamics between cortical regions as a 
function of the anatomical nodal strength (sum of weights). Such het-
erogeneity leads to a hierarchy of time scales of cortical regions reca-
pitulating the known anatomical hierarchy, with peripheral regions 
having fast time scales and core regions with slow time scales [6]. 
Results showed that nodal diversity is not just a crucial element to 
improve the model’s performance [7, 8], but also to reproduce the 
experimental data of variations in functional connectivity following 
local inhibitory transcranial magnetic stimulation (TMS). We find a 
large variation in the overall effect of functional connectivity follow-
ing local stimulation. Specifically, the inhibition of hub nodes causes 
increased anti-correlated activity, whereas inhibition of peripheral 
nodes caused increased correlated activity with the rest of the brain. 
The intensities of the variations in functional connectivity with respect 
to baseline were also highly variable and stronger for intermediary 
nodes that were not hubs or peripheral regions. Moreover, depending 
on the weights of the cortical regions, changes in functional connec-
tivity form a tuning curve (Fig. 93). Overall, our findings suggest a key 
role of local temporal dynamics to explain the widespread effects of 
focal perturbations in neural activity.
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Fig. 92  Data-driven model estimation. A The basic unit of a neural 
model is described by the mean membrane potential, vn(t), of a 
neural ensemble and synaptic inputs. B, C Pre-synaptic firing rates are 
convolved with the excitatory/inhibitory kernel to generate mem-
brane potential fluctuations. D The resulting membrane potential is 
converted to an output firing rate via a sigmoidal transform. E Electri-
cal recording of a seizure. F Estimated gain parameters during seizure

Fig. 93  Changes in functional connectivity with respect to baseline 
after inhibitory stimulation as a function of cortical weight of the 
structural connectivity matrix. Red line: mean uniform bins curve 
smoothed; dashed line: mean weight
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Visual deprivation paradigms provide crucial insight into the homeo-
static response in visual cortex. We explore how neurons within func-
tional ensembles may exhibit correlated homeostatic responses to 
visual deprivation, and how the source of common inputs to these 
ensembles determine the extent of their homeostatic recovery. We 
hypothesise that common inputs from non-visual stimuli are responsi-
ble for driving recovery from visual deprivation.
We simulate development during spontaneous and evoked activity 
in a recurrent network model of visual cortex in which Hebbian and 
homeostatic synaptic plasticity is implemented. This leads to the emer-
gence of highly interconnected ensembles of neurons driven by either 
common visual or common non-visual inputs. When we then deprive 
the developed network of visual input, the homeostatic response is a 
strengthening of activity within ensembles which share common non-
visual inputs. A broad reduction in inhibition across the network is also 
observed. Interestingly, the magnitude of the homeostatic response 
depends on the size of these ensembles, with larger ensembles more 
likely to fully recover from visual deprivation. Our results demonstrate 
the importance of investigating functional plasticity of ensembles trig-
gered by sensory deprivation paradigms.
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Connectome, comprehensive structural description of the network of 
elements and connections forming the brain [1], is fundamental for 
understanding the brain functions. Recent advances in optical imag-
ing techniques allow us to be feasible to structural connectivity. But 
differently from structural connectivity, the functional connectivity is 

altered by condition such as brain states, input types and pathologi-
cal conditions. To construct functional connectome, the techniques 
to map individual functional circuit and control specific neuronal 
activity have been needed. However, the current functional brain 
mapping techniques have limitations to obtain the map of the func-
tionally correlated brain activity in freely moving mouse model. Here, 
we introduce novel functional brain mapping technique for mouse 
model by high density electroencephalography [2] under optogenetic 
stimulus, which we referred as opto-EEG. Opto-EEG tool enables us to 
investigate the functionally connected neuronal circuit with high spa-
tial and temporal resolution. We stimulated ventral posterioromedial 
thalamic nucleus (VPM) with various frequencies for verifying differ-
ent frequency dependency of functional connectome. Stimulation 
of VPM induced sequential activations of ipsilateral somatosensory 
cortex (S1) followed by ipsilateral motor cortex (M1), contralateral M1 
and contralateral S1. The power based analysis result showed informa-
tion flow between S1 and M1 was maximized under beta frequency 
stimulus. On the other hand, latency-based result showed minimized 
interhemispheric transfer latency under gamma band (Fig.  94). This 
example indicates that opto-EEG makes it possible to be used to char-
acterize the functional connectivity under temporally precise control 
of specific neuronal circuits, provide new insights into brain explora-
tion capabilities of functional connectome, and be applied to discover 
neuromodulation method for treatment of disease or pathologies.
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Prefrontal cortex has been known to be less activated [1] and decou-
pled from the other cortical area in REM sleep [2]. In our previous study 
of chronic sleep deprivation (SD) in mice model, we observed that the 
5 successive days of SD (SD 1–5, 18  h sleep deprivation in each day) 

Fig. 94  Propagation patterns of optical stimulation at each fre-
quency in thalamocotical circuit. Beta frequency stimulus propagated 
S1–M1 strongly, but gamma frequency case, contralateral propaga-
tion is dominant. Blue bars indicate optical stimulus in left VPM
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induced a monotonic increase of the prefrontal gamma oscillation (30–
40 Hz) in REM sleep as the sleep pressure increased. However, the func-
tional role of this increased gamma oscillation was not answered. Here, 
we investigated the functionality of the increased prefrontal gamma 
in sleep deprived nights by calculating the connectivity between the 
prefrontal cortex and the other cortical regions [3]. Phase synchrony 
index (PSI) was employed to minimize the volume conduction in high 
density EEG microarray. In the first day of the sleep deprivation (SD 1), 
we observed statistically significant increases in gamma connectiv-
ity within the bilateral prefrontal regions and between prefrontal and 
ipsilateral somatosensory cortex. However, as the sleep deprivation 
continued, an opposite response of prefrontal-somatosensory gamma 
connectivity was observed in a way that the PSI between these 
two areas become insignificant in SD 3 and statistically significantly 
decreased in the SD 5, which remained even after the 3rd day of recov-
ery after the sleep deprivation (R 3). The area of decreased gamma 
connectivity became broader as well. On the other hand, the intra-
cortical connectivity within prefrontal connectivity remained elevated 
throughout the sleep deprivation and recovery days. This result implies 
that the increased prefrontal gamma oscillation due to the homeostatic 
response of REM sleep does not participate in the information transfer 
from prefrontal to the other cortical area (Fig. 95).
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Cortical gamma rhythm, particularly in the frequency range of 
30–50 Hz, has received intensive attention as neural correlates of cog-
nitive process [1]. On the other hand, diminished cognitive flexibility, 
one of the typical symptoms in psychiatric disorders, is closely asso-
ciated with disturbances in neural oscillations, specifically gamma 
band [2]. To quantify gamma-band oscillation, auditory steady-state 

response (ASSR) evoked by repetitive auditory stimulus given at a rate 
of 40 Hz has been used as a prominent approach which reflects neural 
efficiency for maintaining gamma oscillation [3]. Despite its diagnostic 
advantages, there is less discussion whether ASSRs are modulated by 
endogenous top-down effect. The present research attempts to inves-
tigate top-down influences on ASSR by analyzing in vivo mouse data.
Experimental data in this study were obtained from 38-channel 
mouse epidural electroencephalogram during auditory steady-state 
stimulus. Interestingly, there were two distinctive topographic maps 
of EEG spectral power and the notable difference between topogra-
phies was the presence or absence of frontal responses. By compar-
ing topographic results, we hypothesized that frontal ASSRs reflect 
top-down functioning. The analytic approaches taken in this work 
are based on brain-state alteration and regional connectivity. The 
first research question in the data analysis is that frontal ASSRs switch 
states of arousal via top-down control. Video-based behavior analysis 
was adapted to classify arousal states into wakefulness and drowsi-
ness and the proportion of arousal behavior in two topographies 
were determined. In addition, comparison of delta spectral power 
for topographic patterns could explain frontal engaged sleep state 
modulation. The second study question is about early stages of audi-
tory ascending pathway in each topographic pattern. Magnitude and 
latency of auditory evoked potentials and gamma spectral power 
were analyzed in inferior colliculus and primary auditory cortex. The 
third question in data analysis is functional connectivity among corti-
cal regions and, in detail, phase-locking value and directed phase lag 
index were calculated in frontotemporal and inter-frontal coupling.
Overall, the current results show that frontal lobe contributes sub-
stantially to ASSR and imply that it is important to consider the fron-
tal involvement in auditory steady-state signal processing. Together, 
these methodologies could provide important insights to clinical 
research by demonstrating top-down modulation. Investigating 
gamma oscillatory activity across cortical regions potentially provides 
deeper understanding for dysfunction in neurological disorders and 
furthermore gives clues to determine neural circuit disruption.
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Voltage imaging experiments in primary visual cortex [1] have shown 
that local, oriented visual stimuli elicit stable orientation-selective 
activation within the stimulus retinotopic footprint. The cortical acti-
vation dynamically extends far beyond the retinotopic footprint, but 
the peripheral spread stays non-selective—a surprising finding given 
a number of studies showing the orientation specificity of long-
range connections, e.g. [2]. We study the dynamics of these input-
driven localized states in a planar neural field model building on an 
earlier theoretical study using radially symmetric inputs [3]. Here we 
use a new anatomically-motivated connectivity profile and extend 
the model to multiple sub-populations encoding orientation. For 
canonical choices of connectivity profile (such as a radial difference of 

Fig. 95  The pairs with statistically significantly increased (red) or 
decreased (blue) PSI of gamma oscillations (Student t test, p < 0.05). 
Only the pairs from the prefrontal cortex were depicted here. SD and 
R stand for sleep deprivation and recovery days, respectively
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Gaussians), localized orientation selectivity arises. However, unlike the 
experimental observations, the selective activation is unstable dur-
ing transient dynamics. In the new connectivity profile defined in our 
study, the range of excitatory and inhibitory connections and the ori-
entation selectivity of those connections are controlled with separate 
parameters. We demonstrate how peaks in the number of excitatory 
connections at each hyper-column distance [4] are crucial in stabiliz-
ing the transient, local orientation selective activation. If these peaks 
in excitation are non-realistically exaggerated, we demonstrate that 
spurious selectivity (not matching preference map) could arise in the 
peripheral spread. Furthermore, although orientation selectivity of 
connections increases accuracy of the selective activation within the 
retinotopic footprint, it can also lead to orientation selective activation 
in the periphery. Our parameter exploration shows that with a balance 
in the sharpness of peaks in long-range excitatory connections and 
the selectivity of these connections, we can capture the correct local-
ized selective activation, the non-selective peripheral spread and the 
stable transient dynamics.
Conclusions Typical choices of connectivity profile in planar models 
of cortex fail to produce important aspects of the observed cortical 
spread of activation. We developed a more realistic connectivity profile 
inspired by anatomical data that, used in conjunction with our planar 
multiple sub-population model, captures all key spatial and tempo-
ral aspects of the cortical spread of activation. For the first time, our 
study shows that the unexpected experimental findings of [1] can be 
accounted for with a realistic balance between the sharpness of peaks 
in long-range excitation and orientation selectivity of connections.

References
1.	 Chavane F, Sharon D, Jancke D, Marre O, Frégnac Y, Grinvald A. Lateral 

spread of orientation selectivity in V1 is controlled by intracortical coop-
erativity. Front Syst Neurosci. 2011;5:4

2.	 Bosking WH, Zhang Y, Schofield B, Fitzpatrick D. Orientation selectivity 
and the arrangement of horizontal connections in tree shrew striate 
cortex. J Neurosci. 1997;17:2112–27.

3.	 Rankin J, Avitabile D, Baladron J, Faye G, Lloyd DJ. Continuation of local-
ized coherent structures in nonlocal neural field equations. SIAM J Sci 
Comput. 2014;36:B70–93.

4.	 Buzás P, Eysel U, Adorján P, Kisvárday Z. Axonal topography of cortical 
basket cells in relation to orientation, direction, and ocular dominance 
maps. J Comp Neurol. 2001;437:259–85.

P187 
An oscillatory network model of Head direction and Grid cells 
using locomotor inputs
Karthik Soman1, Vignesh Muralidharan 1, V. Srinivasa Chakravarthy1

1Department of Biotechnology, Indian Institute of Technology Madras, 
Chennai, Tamil Nadu, India
Correspondence: V. Srinivasa Chakravarthy ‑ schakra@iitm.ac.in   
BMC Neuroscience 2016, 17(Suppl 1):P187

The model (Fig.  96A) takes proprioceptive inputs coming from the 
joint angles of the two limbs. Locomotor rhythms are modeled as two 
sinusoidal oscillators whose amplitudes are modulated by the curva-
ture and the speed of simulated animal. These inputs are gated using a 
leaky integrate and fire (LIF) neuron that spikes at a fixed frequency so 
that the curvature and speed information from respective limb oscil-
lations are extracted out and given to two oscillatory neural networks 
separately. The oscillatory neural networks are modeled as Kuramoto 
networks in which the phase is modulated by the curvature of the 
path traversed by the simulated animal. Synchrony between the two 
clusters of oscillators is quantified in terms of phase coherence and 
phase difference. The synchrony parameters are further used to train 
a one dimensional self organizing map (SOM), whose neurons display 
head direction-tuned responses. Each HD response is transformed to 
a cosine response which is further given to path integration (PI) layer. 
PI layer is again a network of Kuramoto oscillators whose phase is inte-
grated as a function of HD responses. PCA is done on the PI values. The 
top few principal components (PC) corresponding to the largest Eigen 
values are rearranged in increasing order and taken as the weight 

connections from the PI layer to an outer 1-D layer of neurons. While 
remapping the neural response of the third and fourth PCs, square 
grid fields were observed while the fifth and sixth PCs gave
We present a model of head direction (HD) and grid cells formed 
purely from idiothetic (locomotor) inputs. Grid cells are a class of spa-
tial cells located in the medial Entorhinal Cortex which is assumed to 
perform path integration and characterized by its unique hexagonal 
firing fields [1]. Empirically it is proven that HD cells, another class of 
spatial cells which encode the heading direction of an animal, form 
the major input to the grid cell. Existing computational models of grid 
cells make artificial assumptions like existence of HD cells with a phase 
differences that are integral multiples of 60° [2]. The aim of the study 
is to model grid cell firing without imposing these special constraints. 
Hexagonal grid fields (Fig. 96B). Further analysis showed that PCs were 
sinusoidal vectors. Investigation of the correlation values between the 
adjacent rows of the covariance matrix of PI pointed out its similar-
ity to circulant matrices. This was in corroboration with the circulant 
matrix theorem which states that a circulant matrix of any size gives 
rise to sinusoidal Eigen vectors. Hence this is a generalized model 
which provides a theoretical basis for the formation of both hexagonal 
and non hexagonal grid fields and possibly other spatial cells which 
are actually projections of the PI values onto sinusoidal orthonormal 
basis vectors.
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Fig. 96  A The model architecture. B Hexagonal firing field of a single 
neuron in the outer layer of the model while remaping its response 
on the visual space
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We present a networkmodel of hippocampus (HC) inspired by the 
functional architecture of the basal ganglia (BG). The model describes 
the role of hippocampus in spatial navigation and is cast in reinforce-
ment learning (RL) framework (Fig.  97A). There is a corpus of litera-
ture which states that hippocampus is a key player in spatial learning 
because of the enriched sensory information that arrives at the por-
tals of HC, the entorhinal cortex (EC), from the sensory cortical areas 
[1]. The model simulates the Morris water maze task wherein a virtual 
agent navigates inside a circular pool to find an invisible platform 
using the spatial context from the environment.
In order to model the ability of HC to learn spatial context, we simu-
late a circular pool surrounded by six distinguishable poles of equal 
heights. As the agent/animal navigates, the size of retinal image 
of each pole varies with distance between the agent and the pole. 
Reward is given to the agent when it reaches the platform. The 
abstract form of the visual input is given to EC which has afferent and 
efferent projections from ventral tegmental area (VTA), one of the 
dopamine centers in the mid brain. Temporal difference (TD) error 
generated from VTA is used to update the synaptic weights for value 
computation of the sensory input in EC. Additionally an action vector 
defining the direction of the agent’s next step also forms a feedback 
input to the EC. We describe the functional anatomy of HC in terms 
of two pathways: a direct pathway between EC and CA1 and an indi-
rect pathway between EC and CA1 via dentate gyrus (DG), and CA3. 
A quantity known as Value difference, that represents afferent dopa-
mine signals in EC, is thought to control switching between these 
pathways. Desynchronized activity generated by the DG–CA3 loop in 
the indirect pathway aids the agent to explore the space. Direct path-
way facilitates the agent’s navigation. The difference in the responses 
from these two pathways is computed in CA1 and is relayed to sub-
iculum (Sbc) which computes the direction of the next step. Output 

of Sbc is communicated to higher motor areas (MC), modeled as a 1-D 
Continuous attractor neural network, via deeper layers of EC. MC also 
receives direct inputs from sensory areas so that the output of MC is 
the weighted sum of responses from the sensory cortical areas and HC 
respectively. MC response is used to update the next step. Cortico-cor-
tical pathway (CCP) connections are updated using the TD error as well 
as the velocity generated from HC as a target. As the value function 
matures (Fig.  97B), contribution from HC declines; the CCP connec-
tions gain the upper hand and the agent reaches the platform faster 
(Fig.  97C). Thus, after training, the CCP can drive navigation without 
the involvement of HC. Analysis of CA3 activity shows desynchroniza-
tion during active exploration and synchronizationupon reaching the 
platform (Fig. 97D). This resonates with experimental results suggest-
ing that low-amplitude theta waves correspond to desynchronized 
activity during exploration, whereas the sharp waves during non-
exploratory states correspond to synchronized activity [2].
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We propose a computational model of the functional architecture of 
the striatum. Anatomical and physiological evidence suggests that 
the microstructure of the striatum maps the sensory-motor informa-
tion from the cortex in complex patterns. The dorsal striatum can be 
differentiated into centre surround regions called striosomes and 
matrisomes [1]. In the proposed striatum model, striosomes map the 
state space and the matrisomes map the action space. The model con-
sists of a hierarchical two-level self organizing map (SOM), wherein 
the higher level SOM is trained on the state values and a sub-SOM 
layer containing multiple smaller SOMs are trained on action values. 
Neurons of ‘action SOMs’ are activated by neurons of ‘state SOMs’ The 
scheme of mapping of state space and action space onto the pro-
posed architecture is given in Fig. 98A where the red area represents 
the striosomes and green area represents the matrisomes. We have 
also shown previously that such feature representation in a SOM 
layer can be used to develop value functions for sensory state spaces 
[2]. Thus to compute the state and action values, the activities of the 
respective SOMs were mapped to individual neurons by state and 
action weight vectors respectively. These weights were trained by the 

Fig. 97  The model architecture (A) used to simulate the water maze 
task indicating the notion of a direct and an indirect pathway. The 
value function (B) developed after training the agent for 10 trials, the 
value peaks near to the platform. The escape latency (C) through trials 
shows that the agent has learnt the task with increased hippocampal 
dependence in the earlier stages and cortical dependence in the later 
stages of learning. The spectrogram (D) of the activity of CA3 as the 
function of time shows desynchronization while active exploration 
of the maze (0–45 s) and synchronized activity upon reaching the 
platform (45–65 s)

Fig. 98  A Centre surround mapping in striosomes and matrisomes. 
The striosomes highlighted by red, map the states and the matri-
somes highlighted by green, map the actions. B Value function 
map in the multiple context setting where the reward is present at 
the top left corner and the bottom right corner. C Switching of the 
modules based on the environmental contexts. The reward changes 
every 1000 episodes and the corresponding change in module with 
episode is shown
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temporal difference error which represents the dopamine signals from 
the Substantia Nigra pars compacta (SNc) based on the reward from 
the environment. Action selection was performed by using the action 
values with exploration.
The model was further extended to reflect striatal modularity, which 
could also be exploited to solve modular RL tasks with varying con-
texts [3]. This is done by using multi-SOMs, where multiple SOMs 
compete with each other to represent the input space. Biologically, 
this competition between different local striatal maps can be thought 
to be carried out by striatal interneurons. Using the above described 
striatal model as a single module, multiple modules were created. The 
higher level SOMs in these modules generate a responsibility signal, 
which represent the ability of the module to best represent that con-
text. This was used to select the modules, a selection process which is 
probably carried out by the tonically active neurons (TANs). To validate 
this overall architecture, we tested this on the gridworld problem with 
a 10 ×  10 grid and 4 actions. The reward is present at the corner of 
the grid in the first case and in subsequent case of modular RL frame-
work, the reward is placed at one of two opposite corners. The value 
function map is built between the two modules and their switching at 
regular intervals is given in Fig. 98B, C respectively.
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We present a scalable network model of the basal ganglia (BG) to high-
light its role in performing simple reaching movements. The model 
consists of the following components: a 2-joint arm model (AM), a 
layer of motor-neurons in the spinal cord (MN), the proprioceptive cor-
tex (PC), the motor cortex (MC), the prefrontal cortex (PFC) and the BG 
(Fig. 99A). The arm model has two joints each consisting of an agonist 
and an antagonist muscle pair innervated by a pair of motor neurons; 
the muscles in turn control the position of the arm in 2D space. The PC 
receives information about the muscle length and tension, thought to 
be originating from muscle spindles and Golgi tendon organs of the 
muscle. The MC then uses the sensory map information from the PC to 
develop a motor map of the arm. The MC activity is also modulated by 
the BG which uses reward information to make the arm learn to reach 
the target. The MC then sends these signals to respective muscles of 
the arm via the motor neurons (MN) to perform the movement. Since 
the existence of maps has been well established in the cortex, the sen-
sory map of the PC, and the map from PC to MC were modelled using 
the self-organizing map (SOM) algorithm [1]. The motor command is 
thought to arise from the PFC, which specifies the goal to be reached. 
The MC therefore combines inputs from three sources: the PC, the pre-
frontal cortex (PFC), and the BG (from GPi via the thalamus). To enable 
this summation dynamically, MC was modelled as a continuous attrac-
tor neural network (CANN), wherein stable activity in CANN space cor-
responds to an equilibrium position of the arm in the workspace.
Training of the model proceeds as follows. A target is chosen by acti-
vating corresponding neurons in the PFC. The arm makes exploratory 
movements driven by the Indirect Pathway of BG and gets rewarded 
when it reaches the target. Now BG uses this reward information and 

the corresponding arm position to transform it into a value profile over 
the arm’s workspace such that the trained value peaks at the target 
positions. As the training of model proceeds, the arm reaches the goal 
position faster and faster as BG stochastically climbs over the trained 
value function [2]. Furthermore, the connections from PFC and MC 
are also trained on successful reach, so that the motor command can 
directly activate the motor cortex thereby producing rapid movement 
avoiding the slow search conducted by the BG. The model exhibits 
all stages of motor learning i.e., slow movements dominated by the 
BG during early stages and cortically driven fast movements at later 
stages. The simulation results show PD symptoms like tremor which 
could be attributed to synchronized oscillations in STN-GPe (Fig. 99B).
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The ability to learn and recall are primary functions of the brain. Syn-
aptic plasticity is one of the key mechanisms by which we learn and 
adapt to our environment, and describes the process by which neu-
ronal connection strengths are modified in response to environmen-
tal inputs [1]. There has been significant research effort invested into 
identifying the general principles of plasticity in neural networks, 
in order to garner insight into the learning process. The ability for 
animals to see and hear prior to birth is evidence of learning before 
exposure to ongoing external sensory signals. Consequently, cortical 
structure can be created, to some extent, in the absence of structured 
input. In a three-paper series, Linsker outlined a process by which cor-
tical learning may occur prior to birth [2–4]. Linsker’s model identified 
particular spatial distributions of synaptic connectivity that are suffi-
cient to induce the development of circularly symmetric cells in a sys-
tem driven only by noisy input [2]. Furthermore, Linsker [3] revealed 
that orientation selective cells may develop by the sixth layer of pro-
cessing. However, the resulting preferred orientation was a random 
function of stochastic weight initialisations [5].
Radial selectivity describes a tendency for cells to have the preferred 
orientation biased towards a central point, and has been observed 
in several cortical structures, including the visual cortex [6] and the 
auditory cortex [7]. In this study we reveal the mechanism by which 
radial orientation selectivity can emerge from synaptic plasticity in 
the absence of structured input. Linsker’s model assumed that cells 

Fig. 99  The model architecture (A) with the different modules 
aiding in reaching movements. The comparison of controls and PD’s 
approach to a target (B) and the appearance of PD symtoms includ-
ing tremor and rigidity as a function of distance to the target
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within a laminar had an identical distribution of synaptic connection 
densities. This assumption is modified in this study to allow synaptic 
connection densities to change as a function of a cell’s radial distance 
to the centre of the laminar. The proposed network provides for spa-
tially larger receptive fields as cells become progressively distal in the 
laminar, which is in keeping with electrophysiological and anatomi-
cal results. We show, both analytically and computationally, that this 
slightly modified network prompts the evolution of orientation selec-
tive cells with a predictable radial preference, in the third layer of neu-
ral processing. Importantly, this proposal maintains Linsker’s intent for 
a minimal set of model assumptions, ensuring that the resulting struc-
ture is robust to details and parameter values of the model used, and 
that general principles of plasticity are established. Consequently, our 
results are applicable to cortical learning generally. The mechanisms 
developed in this study could play a central role in the development of 
radial orientation selectivity in the visual cortex.
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A major challenge in neuroscience is understanding how “hidden 
units”—neurons or other influences not observed in an experiment—
influence the behavior of the observed neurons. Much work has 
been done on the inferring network interactions from data [1, 2], but 
it remains unknown how hidden neurons shape the network inter-
actions inferred. Using techniques from non-equilibrium statistical 
physics, we have developed a theoretical framework to predict how 
effective connections in subsampled networks depend on the true 
connections in the full network. Beyond calculating effective connec-
tions, this approach can be systematically expanded to study how hid-
den units generate effective noise in subsampled networks.
As an example, we apply this framework to a network of three spik-
ing neurons described by a generalized linear model (GLM) with rates 
driven by a neuron’s own filtered spiking activity and those from which 
it receives input. By approximating the subsampled network as a GLM 
with effective spike-filters corrupted by Gaussian noise, we can ana-
lytically calculate how hidden units transform the filters (Fig. 100) and 
give rise to correlations in the effective noise (not shown). Based on 
our 3-neuron results, we conjecture that for general networks within 
this framework the filter between neurons i and j is modified by 

corrections from every path that neuron i can send a signal to neuron j 
through hidden units.
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We study analytically the dynamics of neural activity in the presence 
of synaptic inputs modulated by astrocyte-released neurotransmit-
ters (i.e. the so-called “gliotransmitters”). We start with the simple 
scenario of gliotransmitter-mediated modulation of synaptic release 
probability at N excitatory synapses impinging on a single postsynap-
tic neuron as well as on the same astrocyte domain. In this scenario, 
release from pre-synaptic terminals leads to activation of the astro-
cyte, that in turn modulates synaptic release through gliotransmitter 
release. In the limit of N → ∞ synapses, we derive equations relating 
gliotransmitter release to the instantaneous presynaptic rate, identify 
conditions for co-existence of multiple states of synaptic release, and 
study their stability. In the bistable regime, long-lasting potentiation 
of synaptic release by gliotransmission accounts for the emergence of 
persistent postsynaptic firing. Analysis of the coefficient of variation 
(CV) of the ensuing interspike interval distribution reveals increased 

Fig. 100  A Self-history filters (diagonal) and directed coupling filters 
between neurons (off-diagonal) in the full 3-neuron network. Neuron 
1 is excitatory and its couplings to the other neurons are strictly 
positive. Neurons 2 and 3 are inhibitory and make strictly negative 
couplings to other neurons. There is no coupling from neuron 2–3. B 
Effective self-history filters (diagonals) and coupling filters (off-diago-
nals) when neuron 3 is hidden. The bottom row is unaltered because 
neuron 2 makes no coupling to neuron 3. The filters in the top row 
are changed due to the influence of signals neuron 1 sends to itself 
through neuron 3 and to neuron 2 through neuron 3. Although neu-
ron 1’s true self-history filter and coupling from neuron 2 are negative 
the effective filters change sign. C The effective self-history filter of 
neuron 1 when both neurons 2 and 3 are hidden. Times and filter 
amplitudes are given in arbitrary units (a.u.)



Page 109 of 112BMC Neurosci 2016, 17(Suppl 1):54

firing variability following stimulation and in the presence of gliotrans-
mission, in close analogy with increased CV values experimentally 
observed during the delay period in working-memory related tasks. 
We then extend our analysis to the scenario of a balanced neural net-
work coupled with a network of astrocytes, and demonstrate the exist-
ence of an analogous mechanism for persistent neural firing by mean 
field theory. Taken together, our analysis suggests a novel astrocyte-
based mechanism for persistent activity, and provides experimentally 
testable hypotheses on the possible involvement of astrocytes in cog-
nitive tasks related to working memory.
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Advances in mapping the human connectome have yielded increas-
ingly-detailed descriptions of large-scale brain networks, prompting 
growing interest in the dynamics that emerge from this structural 
connectivity. Moreover, there is a desire to move beyond simple 
static functional connectivity measures to better describe and under-
stand the more complex repertoire of brain dynamics, which unfolds 
on multiple time scales. Here, we analyze the dynamics that emerge 
from a neural mass model [1, 2] with network connectivity derived 
from densely-seeded probabilistic tractography on human diffu-
sion imaging data [3]. We find a rich array of three-dimensional wave 
patterns, including traveling waves, spiral waves, sources, and sinks 
(Fig.  101). These patterns are metastable, with the dynamics cycling 
between several relatively long-lived states. Varying the overall cou-
pling strength and coupling delay reveals a complex parameter space, 
with other emergent patterns such as cycling between strongly-corre-
lated clusters and multistability between different regimes (as distinct 
from metastability within a single regime). These dynamics accord 
with empirical data from multiple imaging modalities, including 

observations of electrical waves in cortical tissue [4] and the presence 
of sequential spatiotemporal patterns in resting state MEG data [5]. 
By characterizing the dynamic states and time scales in our simulated 
data, we demonstrate the richness of dynamics that emerge from the 
human connectome. This work lays a platform for detailed analyses 
of large-scale functional neuroimaging data and their mechanistic 
underpinnings.
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The responses of sensory neurons carry information about the pres-
ence and the identity of relevant external events [1]. The pattern of 
activity in populations of such neurons must be decoded by post 
synaptic networks for the information to contribute to the elabora-
tion of behavioral responses. For two stimuli to be discriminated, or a 
stimulus discriminated from background (i.e. detected), the patterns 
of activity it elicits in the encoding neural population must be differ-
ent enough that target decoders are activated differentially [2]. In this 
research we used recording from electrosensory neurons in Gymnotid 
fish [3] and recordings from the antennal lobe of moth [4] to compare 
three methods that can be used to quantify how accurately the neu-
ral responses can support detection and discrimination tasks. The first 
two methods, namely Euclidian distances [5] and spike metrics dis-
tances [3], have traditionally been used by neurophysiologist to char-
acterize the information carried by spike trains and to compare the 
responses to different stimuli. The third method we explored relies on 
the clustering neural network provided in Matlab toolboxes that uses 
unsupervised learning. Neural networks of this type are widely used 
by engineers to perform practical tasks but are rarely used by neuro-
scientist to study actual neural systems. The clustering tool relies on 
a quantification similar in many ways to Euclidian distances or spike 
distance metrics. However, since it learns to weight the inputs to 
allow optimal clustering, the weight patterns of networks that clus-
ter accurately can reveal features that actual neural networks ought 
to have (including synaptic facilitation and depression or amount of 
convergence of inputs). We show that, both for the olfactory system 
of moth and the electrosensory system of fish, the neural network 
decoder outperforms the other two decoding analyses by weighting 
more heavily information rich inputs and more weakly noisy ones. We 
argue that this tool can be advantageously used to quantify neural 
coding, can make testable prediction regarding the characteristics 
of the decoding network, and, most importantly, can be easily used 
and implemented by researchers who have little training in neural 
modeling.

Fig. 101  Large-scale wave patterns for strong coupling, showing 
four time snapshots for a traveling wave (top), a spiral wave (middle), 
and a sink pattern (bottom). Warmer colors denote higher amplitudes
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Presynaptic terminals release neurotransmitters either in response 
to action potentials or spontaneously independent of presynaptic 
activity. In the case of glutamate, released neurotransmitters activate 
N-methyl-D-asparate (NMDA) receptors within a single postsynap-
tic site and give rise to miniature postsynaptic currents. In this study, 
we used a mathematical model to simulate spontaneous and evoked 
neurotransmission processes resulting from glutamate release within 
a synapse and evaluate the quantitative constraints that determine 
their degree of overlap independent signaling mediated by sponta-
neous and evoked release events. First we simulated isotropic diffu-
sion of 4000 glutamates molecules release from a point source. We 
then simulated release of the glutamate molecules through a vesicle 
by addition of two compartments that one modeled the vesicle and 
the other represented the fusion pore. After we obtains the glutamate 
concentration from the standard heat equation then determine the 
opening probability of individual receptor using a state model (3C2O). 
Those two problems in MATLAB are solved.
If we assume a fivefold–tenfold ratio as a good indicator for inde-
pendent currents, then we cannot assure independency with the 
structure for medium and small synapses in our current hypothesis. 
Figure  102 shows that small synapse (200  nm ×  200  nm) might not 
have independent signaling when glutamate release instantaneously 
because evoked and spontaneous receptors are not far away from 
each other and thus not far from the release site in either evoked or 
spontaneous releases, the ratio of open probability is close to 1. The 
open probability is consistent up to 90 nm far from the release site as 
in Fig. 102. However for small synapses, as glutamate release through 
10 and 2 nm vesicle fusion pore, the open probability ratio decreases 
more drastically and become close to zero, and in 2 nm pore, the ratio 
achieves 10-fold reduction at 90  nm distance, giving plausibility for 
independent signaling.
Conclusion From the results we conclude that peak open value is 
most sensitive to the distance from the receptor to the release site. 
Glutamate release speed or fusion pore size is relevant but to a lesser 
degree. The calculation was first performed for a large synapse of 
0.36 µm2 (with R6 near the center for evoked neurotransmission, and 
R16 for spontaneous neurotransmission) which established in theory 
that two non-overlapping domains that give rise to independent sign-
aling in large synapses [1]. Then calculations in medium size 0.16 µm2 

and small size 0.04 µm2 push the biophysical envelope for independ-
ent currents, as the degree of independence decreases when the size 
of synapse gets smaller, or the distances from evoked and spontane-
ous receptors to the release site are closer together.
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Coherent oscillation of neuronal spiking in the brain is known related 
to cognitive functions, including perception, attention, and memory. 
It is therefore important to determine the properties of neurons and 
network architectures in emerging the coherent activities that influ-
ence the network collective behaviors. It is known that, in local cortical 
circuits, the probability for any pair of pyramidal cells to be connected 
is low and about 0.1–0.2 [1]. Wang and Buzsaki [2] numerically dem-
onstrate that, in a heterogeneous and inhibitory network with sparse 
and random connection, the minimal connection required per neuron 
to observe coherence oscillation is approximately 60 with Hodgkin–
Huxley (H–H) type interneurons in certain parameter regime. More 
importantly, this minimal number is relatively independent to the net-
work size. In contrast, Golomb and Hanel [3] theoretically show that, 

Fig. 102  In small synapses (200 nm × 200 nm), Ratios of maximum 
NMDA receptor opening probabilities as functions of receptor 
distance for different release speed (slow, 2 nm fusion pore—triangle, 
regular, 10 nm fusion pore—asterisk, and instantaneous—circle) of 
glutamate vesicle release. The open probabilities were calculated by 
the kinetics equation, when glutamates are released above the center 
location
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identical inhibitory neurons in a sparse and random network, the mini-
mal connection required per neuron to exhibit coherence oscillation 
is about 360 with integrate-and-fire (IF) neurons. The minimal con-
nection required in either study depends on the intrinsic and synaptic 
properties of the neurons.
It is shown that hippocampal CA1 neurons make an average of about 
60 contacts to other neurons within a spatial span of approximately 
500  μm [4]. Hence, to study rhythmic oscillation in hippocampal 
networks, H–H type neurons, instead of IF neurons, could produce 
Gamma rhythm through sparsely connected network in a population 
of interneurons. These findings are believed to address the importance 
of detailed physiological properties of single neurons in determining 
collective network behaviors.
We adopt an increasingly popular two-dimensional adaptive expo-
nential integrate-and-fire (aEIF) model [5] which is equipped with a 
subthreshold adaptation coupling the voltage and a slow current, and 
a spike-triggered adaptation regulated through each spike. To demon-
strate that aEIF neurons can provide adequate networks in inducing 
Gamma frequency as in hippocampus effectively, we establish the 
minimal synaptic contacts required in sparse and random networks of 
aEIF neurons to exhibit coherent oscillations, and the impacts of neu-
ronal and synaptic properties have on the minimal value. The aEIF neu-
ron provides more physiological neuronal details than IF neuron, but 
much less than the H–H neurons. Intuitively, it may be anticipated that 
the minimal synaptic contacts of aEIF required in such networks lies 
somewhere between that of the IF and H–H neurons.
We demonstrate that the minimal synaptic contacts required in such 
networks of aEIF neurons to exhibit Gamma rhythm is also surprisingly 
low with an approximation of 60 in certain parameter regime. More 
specifically, the minimal connection required per neuron for the onset 
of network synchrony is not a faction of the total number of network 
neurons. It either remains constant or only depends weakly on the 
total network neurons. This study indicates that the inclusion of sub-
threshold and spike-triggered adaptations provides aEIF neuron with 
features to compensate for the lack of physiological details, as sup-
posed to its H–H neuron counterpart, in studying Gamma rhythm in 
the brain. Our result is very encouraging in building neural network 
studies through a simple two-dimensional model.
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In our daily life, we can easily discriminate and recognize familiar 
faces. Much evidence suggests that the fusiform face area (FFA) and 
the occipital face area (OFA) are involved in face processing [1–3]. 

However, it remains unclear how individual face information is repre-
sented in the visual cortex during retrieval compared to perception. To 
address this question, we performed an event-related functional mag-
netic resonance imaging (fMRI) experiment, comprising separate per-
ception, learning and retrieval sessions. During the perception session, 
which took place inside the scanner, participants were presented with 
fixed pairings of six auditory cues (pseudowords) with six face images, 
and six auditory cues with six shoe images. During the learning ses-
sion, which took place on a separate day outside the scanner, partici-
pants were trained to memorize the pseudoword-image associations 
for about 1 h. Finally, 1 day after the learning session, participants were 
scanned again and instructed to retrieve each image in response to 
auditory presentation of the paired pseudoword cue. To test the verac-
ity of the retrieved visual information, participants were asked to per-
form forced-choice tests after the retrieval scan session, in which they 
heard one of the pseudoword cues and chose the paired category 
or image. Every participant showed near perfect performance in the 
forced-choice test. We focused on the patterns of response in face-
selective cortical areas. Using multivoxel pattern analyses, we found 
that FFA showed more discriminable patterns of response to individ-
ual faces during retrieval compared to those elicited during percep-
tion. In contrast object-selective areas, which respond well to images 
of shoes, did not show any significant difference between perception 
and retrieval for individual shoe images. To determine whether the 
increased discrimination reflected a difference between perceived and 
retrieved face information and not an effect of learning, we conducted 
a similar fMRI experiment in which the second session was also per-
ception and not retrieval. Importantly, there was no difference in face 
discrimination between the first and second perception sessions in 
FFA. Taken together, these results suggest that retrieval of face infor-
mation generates more discriminative neural responses for individual 
faces than that evoked by perception of the very same faces.
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Recent experiments show that short activity packets are triggered 
by external stimuli or internal spontaneous events during which the 
temporal order of spikes is only partially stereotypical [1]. Moreover, it 
has been suggested that the timing of neurons during these packets 
depends on top-down modulatory inputs that “gate” the sensory infor-
mation and represents either the replay of previously stored patterns 
or information about ongoing external stimuli [1]. Finally, it has been 
observed that spontaneous activity consists in the superposition of 
multiple overlapping packets [1]. We propose a simple model of corti-
cal neural networks that reproduces these experimental observations 
[1] and an analytical description of the top-down modulation of pack-
ets using avalanche dynamics [2]. The proposed theory allows predict-
ing the average size of packets using the synaptic weight matrix and 
vice versa.
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The model describes the neural activity within a cortical area that 
receives top-down modulatory and bottom-up sensory inputs from 
higher-order areas and thalamic projections, respectively. The activ-
ity of excitatory neurons is simulated using the leaky integrate-and-
fire model. Excitatory synaptic connections are modified on shorter 
and longer time-scales by short-term depression and spike-timing 
dependent plasticity, respectively. Sequential patterns are stored 
within the recurrent connections of the middle area by repeated pres-
entation of the external stimuli.
Figure  103A1–C1, A2–C2 show that only the first and second stored 
sequences are replayed when the first and second top-down input is 
active, respectively, although the bottom-up inputs trigger the start-
ing neurons of both sequential patterns. When there is no top-down 
input, the spontaneous activity is composed of the time-compressed 
superposition of both sequential patterns (see Fig. 103A4–C4).
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24th Annual Computational Neuroscience Meeting: CNS-2015.

Cerebral vascular dynamics are generally thought to be controlled 
by neural activity in a unidirectional fashion. However, both compu-
tational modeling and experimental evidence points to the feedback 
effects of vascular activity on neural dynamics [1, 2]. Vascular feedback 
in the form of glucose and oxygen controls neuronal ATP, which in turn 
can control the threshold of neural firing. We present a computational 
model of a neuro-vascular system in which a network of ‘vascular units’ 
supply ‘energy’ to a neural network (NN), which reduces neural firing 
threshold. The vascular network (VN) is modeled by a network of oscil-
lators as in [3]. Neuronal pools fed by the complex dynamics of VN are 
turned ON and OFF randomly. We show that such a feedback mecha-
nism results in sparse weight matrix, thereby enhancing the perfor-
mance of an auto-encoder NN.
In the proposed NN model, the hidden layer is coupled to a vascular 
network in a one-to-one fashion (Fig. 104A) and is trained using back-
propagation. The cross-entropy (ce) error measure is used to update 
the energy demand parameter (Md) which is fed back to the VN. Md in 
turn governs the state of the vascular units, which determines if the 
neuron should be turned ON/OFF. This paradigm of randomly turn-
ing neural units ON/OFF is adapted from [4]. High Md results in an 
increase in ce as the neuronal dropout level is too low; similarly low 
Md results in an increase in ce due to high dropout. The time scale of 
vascular dynamics (Md) is much longer than that of neural dynamics 
(ce), reflecting physiology. The network was trained on two datasets: 
overlapping bar patterns and MNIST data. The settled weight matri-
ces corresponding to both the synchronized (Fig.  104B) and desyn-
chronized vascular dynamics (Fig. 104C) are shown in the Fig. 104B1, 
B2, C1, C2, respectively. Our earlier modeling study highlighted the 
link between desynchronized vascular dynamics and efficient energy 
delivery in skeletal muscle [3]. We now show that desynchronized vas-
cular dynamics leads to efficient training in an auto-encoder NN.
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Fig. 103  A1–A4 Network structure. Neurons of the first and second 
stored pattern are represented by colors ranging from blue to green 
and yellow to red, respectively. Effective synaptic connections can be 
calculated and are shown by colored segments. B1–B4 Cross-corre-
lograms (CCG) of single neuron activity with the summed activity of 
other neurons (see [1]). C1–C4 Center of mass of CCGs, noted μCC

Fig. 104  A Auto-encoder NN coupled to the VN. B, C Depict desyn-
chronized (ɛ = 1) and synchronized (ɛ = 0) states of VN respectively. 
The corresponding output weight patterns learnt by the auto-
encoder, driven by the VN, trained on bar pattern data (B1, C1) and 
MNIST data (B2, C2)
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