Skip to main content

Contributions of Small Grains Grown in Zimbabwe’s Dryland Regions in Boosting Immunity and Combating COVID-19

  • Chapter
  • First Online:
COVID-19 in Zimbabwe

Abstract

The COVID-19 has had a significant impact on people’s lives and livelihoods in Zimbabwe, particularly the elderly and those suffering from underlying conditions. Generally, COVID-19 has increased the use of immune-boosting foods and nutritional supplements as preventative and therapeutic interventions. Small grains, such as sorghum and millets, have long been mainstays of the Zimbabwean diets, both in rural and urban settings. There is, however, scarcity of data linking the nutritional content and phytochemistry of small grains grown in Zimbabwe’s drylands to COVID-19 prevention and treatment. The current study investigates, critically synthesises, and identifies gaps in the role of sorghum and millets in boosting human immune systems, with a focus on COVID-19 prevention and treatment. The systematic literature review approach was adopted to gather information on how small grains can contribute to COVID-19 management. In Zimbabwe, sorghum and millets meal are used to prepare different foods, including porridges and most traditionally fermented foods, such as nonalcoholic beverages. Although there is no conclusive evidence that sorghum and millets boost immunity, presence of significant quantities of minerals, vitamins, and phytochemicals in sorghum and millets derived foods indicates their importance in improving immune system performance. Additionally, the high concentration of resistant starch in sorghum and millets has been linked to a delayed release of glucose into the circulation, resulting in reduced chances of underlying conditions, such as diabetes and hypertension. Furthermore, millets and sorghum are important sources of antioxidants, such as quercetin, curcumin, and ellagic and polyphenols, particularly flavonoids that have been identified as possible inhibitors of SARS-CoV-2 infection. With inconclusive evidence to support contributions of millets and sorghum in COVID-19 prevention and treatment, more randomised and controlled clinical trials are required to confirm their significance. The outcomes of such studies would significantly affect the possibilities of expanding nutritional interventions in the fight against COVID-19.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed, S. M. S., Zhang, Q., Chen, J., & Shen, Q. (2013). Millet grains: Nutritional quality, processing, and potential health benefits. Comprehensive Reviews in Food Science and Food Safety, 12.

    Google Scholar 

  • Ahnan-Winarno, A. D., Cordeiro, L., Winarno, F. G., Gibbons, J., & Xiao, H. (2021). Tempeh: A semicentennial review on its health benefits, fermentation, safety, processing, sustainability, and affordability. Comprehensive Reviews in Food Science and Food Safety, 20(2), 1717–1767.

    Article  CAS  Google Scholar 

  • Alam, S., Bhuiyan, F. R., Emon, T. H., & Hasan, M. (2021). Prospects of nutritional interventions in the care of COVID-19 patients. Heliyon, 7(2), e06285.

    Article  CAS  Google Scholar 

  • Aman, F., & Masood, S. (2020). How Nutrition can help to fight against COVID-19 pandemic. Pakistan Journal of Medical Science, 36(COVID19-S4):COVID19-S121-S123.

    Google Scholar 

  • Arshad, M.S., Khan, U., Sadiq, A., Khalid, W., Hussain, M., Yasmeen, A., Asghar, Z., & Rehana, H. (2020). Coronavirus disease (COVID-19) and immunity booster green foods: A mini review. Food Science and Nutrition, 8, 3971–3976. https://doi.org/10.1002/fsn3.1719.

    Google Scholar 

  • Arvinte, C., Singh, M., & Marik, P. E. (2020). Serum levels of vitamin C and vitamin D in a cohort of critically ill COVID-19 patients of a North American community hospital intensive care unit in May 2020: A pilot study. Medicine in Drug Discovery, 8, 100064.

    Article  CAS  Google Scholar 

  • Asharan, V. T., Jayadeep, A., & Malleshi, N. G. (2010). Natural antioxidants in edible flours of selected small millets. International Journal of Food Properties, 13(1), 41–50. https://doi.org/10.1080/10942910802163105

    Article  CAS  Google Scholar 

  • Aslam, F., Muhammad, S. M., Aslam, S., & Irfan, J. A. (2017). Vitamins: Key role players in boosting up immune response – A mini review. Vitamins & Minerals, 6(01).

    Google Scholar 

  • Ayseli, Y. I., Aytekin, N., Buyukkayhan, D., Aslan, I., & Ayseli, M. T. (2020). Food policy, nutrition and nutraceuticals in the prevention and management of COVID-19: Advice for healthcare professionals. Trends in Food Science & Technology, 105, 186–199.

    Article  CAS  Google Scholar 

  • Ayuba, G. I., Jensen, G. S., Benson, K. F., et al. (2014). Clinical efficacy of a West African Sorghum bicolor-based traditional herbal preparation Jobelyn shows increased hemoglobin and CD4þ T-lymphocyte counts in HIV-positive patients. Journal of Alternative and Complementary Medicine, 20, 53–56.

    Article  Google Scholar 

  • Bourke, C. D., Berkley, J. A., & Prendergast, A. J. (2016). Immune dysfunction as a cause and consequence of malnutrition. Trends in Immunology, 37, 386–398.

    Article  CAS  Google Scholar 

  • Butler, M. J., & Barrientos, R. M. (2020). The impact of nutrition on COVID-19 susceptibility and long-term consequences. Brain, Behavior, and Immunity, 87, 53–54.

    Article  CAS  Google Scholar 

  • Calder, P. C. (2020). Nutrition, immunity and COVID-19. BMJ Nutrition, Prevention & Health, 3(1), 74. https://doi.org/10.1136/bmjnph-2020-000085

    Article  Google Scholar 

  • Calder, P. C., Ahluwalia, N., Albers, R., Bosco, N., Bourdet-Sicard, R., Haller, D., et al. (2013). A consideration of biomarkers to be used for evaluation of inflammation in human nutritional studies. British Journal of Nutrition, 109(S1), S1–S34.

    Article  Google Scholar 

  • Calder, P. C., Carr, A. C., Gombart, A. F., & Eggersdorfer, M. (2020). Optimal nutritional status for a well-functioning immune system is an important factor to protect against viral infections. Nutrients, 12(4), 1181.

    Article  CAS  Google Scholar 

  • Carr, A. C., & Maggini, S. (2017). Vitamin C and immune function. Nutrients, 9(11), 1211.

    Article  Google Scholar 

  • CDC. (2020). How coronavirus spreads. Available online: https://www.cdc.gov/coronavirus /2019- ncov/prevent-getting-sick/how-covid-spreads.html? (accessed on 13 April 2020).

    Google Scholar 

  • Chaari, A., Bendriss, G., Zakaria, D., & McVeigh, C. (2020). Importance of dietary changes during the coronavirus pandemic: How to upgrade your immune response. Frontiers in Public Health, 8, 476. https://doi.org/10.3389/fpubh.2020.00476

    Article  Google Scholar 

  • Chandel, G., Kumar, M., Dubey, M., & Kumar, M. (2014). Nutritional properties of minor millets: Neglected cereals with potentials to combat malnutrition. Current Science, 107(7), 1109–1111.

    Google Scholar 

  • Chandrasekara, A., & Shahidi, F. (2010). Content of insoluble bound phenolics in millets and their contribution to antioxidant capacity. Journal of Agricultural and Food Chemistry, 58(11), 6706–6714.

    Article  CAS  Google Scholar 

  • Chauhan, M., Sonawane, S. K., & Arya, S. S. (2018). Nutritional and nutraceutical properties of millets: A review. Clinical Journal of Nutrition and Dietetics, 1(1), 1–10.

    Google Scholar 

  • Childs, C. E., Calder, P. C., & Miles, E. A. (2019). Diet and immune function. Nutrients, 11(8), 1933.

    Article  CAS  Google Scholar 

  • Clarke, S. R. M. (2000). The critical role of CD40/CD40L in the CD4-dependent generation of CD8+ T cell immunity. Journal of Leukocyte Biology, 67(5), 607–614.

    Article  CAS  Google Scholar 

  • Colunga Biancatelli, R. M. L., Berrill, M., Catravas, J. D., & Marik, P. E. (2020). Quercetin and vitamin C: An experimental, synergistic therapy for the prevention and treatment of SARS-CoV-2 related disease (COVID-19). Frontiers in Immunology, 11, 1451.

    Article  Google Scholar 

  • Dayakar, R. B., Bhaskarachary, K., Arlene, C. G. D., Sudha, D. G., & Tonapi, A. (2017). Nutritional and health benefits of millets (p. 112). ICAR_Indian Institute of Millets Research (IIMR).

    Google Scholar 

  • Derouiche, S. (2020). Oxidative stress associated with SARS-Cov-2 (COVID-19) increases the severity of the lung disease – A systematic review. Journal of Infectious Diseases and Epidemiology, 6, 121. https://doi.org/10.23937/2474-3658/1510121

    Article  Google Scholar 

  • Erkelens, M. N., & Mebius, R. E. (2017). Retinoic acid and immune homeostasis: A balancing act. Trends in Immunology, 38(3), 168–180.

    Article  CAS  Google Scholar 

  • FAO. (2018). Food and Agricultural Organisation of the United Nations. FAO statistics data base 11/02/2019. http;//www.fao.org/faostat/en/#data/QCProduction of selected cereal crops. Accessed on 4/3/2019.

    Google Scholar 

  • FAO and ICRISAT. (2008). Special report on crop and food supply assessment mission to Zimbabwe 18 June 2008. Available: www.fao.org/docrep/010/ai469e/ai469e00.htm

  • Ferguson, N. M., Laydon, D., Nedjati-Gilani, G., Imai, N., Ainslie, K., Baguelin, M., & Ghani, A. C. (2020). Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand.

    Google Scholar 

  • Fernández-Quintela, A., Milton-Laskibar, I., Trepiana, J., Gómez-Zorita, S., Kajarabille, N., Léniz, A., et al. (2020). Key aspects in nutritional management of COVID-19 patients. Journal of Clinical Medicine, 9(8), 2589.

    Article  Google Scholar 

  • Galanakis, C. M. (2020). The food systems in the era of the coronavirus (COVID-19) pandemic crisis. Foods, 9(4), 523. https://doi.org/10.3390/foods9040523

    Article  CAS  Google Scholar 

  • Galmés, S., Serra, F., & Palou, A. (2020). Current state of evidence: Influence of nutritional and nutrigenetic factors on immunity in the COVID-19 pandemic framework. Nutrients, 12(9), 2738.

    Article  Google Scholar 

  • Gasmi, A., Noor, S., Tippairote, T., Dadar, M., Menzel, A., & Bjørklund, G. (2020). Individual risk management strategy and potential therapeutic options for the COVID-19 pandemic. Clinical Immunology, 215, 108409.

    Article  CAS  Google Scholar 

  • Gay, R., & Meydani, S. N. (2001). The effects of vitamin E, vitamin B6, and vitamin B12 on immune function. Nutrition in Clinical Care, 4(4), 188–198.

    Article  Google Scholar 

  • Gombart, A. F., Pierre, A., & Maggini, S. (2020). A review of micronutrients and the immune system–working in harmony to reduce the risk of infection. Nutrients, 12(1), 236.

    Article  CAS  Google Scholar 

  • Gukurume, S. (2010). Farming and the food security-insecurity matrix in Zimbabwe: A case of ward 21 Chivi rural. Journal of Sustainable Development in Africa, 12, 40–52.

    Google Scholar 

  • Hasan, R., Rink, L., & Haase, H. (2013). Zinc signals in neutrophil granulocytes are required for the formation of neutrophil extracellular traps. Innate Immunity, 19(3), 253–264.

    Article  Google Scholar 

  • Hassan, T. H., Badr, M. A., Karam, N. A., Zkaria, M., El Saadany, H. F., Rahman, D. M. A., et al. (2016). Impact of iron deficiency anemia on the function of the immune system in children. Medicine, 95(47), e5395.

    Article  CAS  Google Scholar 

  • Hassan, Z. M., Sebola, N. A., & Mabelebele, M. (2021). The nutritional use of millet grain for food and feed: A review. Agriculture & Food Security, 10(1), 1–14.

    Article  Google Scholar 

  • Hemilä, H. (2017). Vitamin C and infections. Nutrients, 9(4), 339.

    Article  Google Scholar 

  • Im, J. H., Je, Y. S., Baek, J., Chung, M. H., Kwon, H. Y., & Lee, J. S. (2020). Nutritional status of patients with COVID-19. International Journal of Infectious Diseases: IJID: Official Publication of the International Society for Infectious Diseases, 100, 390–393. https://doi.org/10.1016/j.ijid.2020.08.018

    Article  CAS  Google Scholar 

  • IPCC. (2013). Summary for policymakers. In T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press.

    Google Scholar 

  • Jiri, O., Mafongoya, P. L., & Chivenge, P. (2017). Climate smart crops for food and nutritional security for semi-arid zones of Zimbabwe. African Journal of Food, Agriculture, Nutrition and Development, 17(3), 12280–12294.

    Article  CAS  Google Scholar 

  • Kahmann, L., Uciechowski, P., Warmuth, S., Plümäkers, B., Gressner, A. M., Malavolta, M., et al. (2008). Zinc supplementation in the elderly reduces spontaneous inflammatory cytokine release and restores T cell functions. Rejuvenation Research, 11(1), 227–237.

    Article  CAS  Google Scholar 

  • Kaushik, N., Subramani, C., Anang, S., Muthumohan, R., Shalimar, Nayak, B., et al. (2017). Zinc salts block hepatitis E virus replication by inhibiting the activity of viral RNA-dependent RNA polymerase. Journal of Virology, 91(21), e00754–e00717.

    Article  CAS  Google Scholar 

  • Klimpel, G. R. (1996). Immune defenses. In S. Baron (Ed.), Medical microbiology (4th ed.). University of Texas Medical Branch at Galveston.

    Google Scholar 

  • Kluge, S., Janssens, U., Spinner, C. D., Pfeifer, M., Marx, G., & Karagiannidis, C. (2021). Recommendations on inpatient treatment of patients with COVID-19. Deutsches Ärzteblatt International, 118(1–2), 1.

    Google Scholar 

  • Kumar, A., Tomer, V., Kaur, A., Vikas Kumar, V., & Gupta, K. (2018). Millets: A solution to agrarian and nutritional challenges. Agriculture & Food Security, 7, 31.

    Article  Google Scholar 

  • Larange, A., & Cheroutre, H. (2016). Retinoic acid and retinoic acid receptors as pleiotropic modulators of the immune system. Annual Review of Immunology, 34, 369–394.

    Article  CAS  Google Scholar 

  • Laviano, A., Koverech, A., & Zanetti, M. (2020). Nutrition support in the time of SARSCoV-2 (COVID-19). Nutrition, 74.

    Google Scholar 

  • Lee, A. H., & Dixit, V. D. (2020). Dietary regulation of immunity. Immunity, 53(3), 510–523.

    Article  CAS  Google Scholar 

  • Li, J., Yin, L., Wang, L., Li, J., Huang, P., Yang, H., & Yin, Y. (2019). Effects of vitamin B6 on growth, diarrhea rate, intestinal morphology, function, and inflammatory factors expression in a high-protein diet fed to weaned piglets. Journal of Animal Science, 97(12), 4865–4874.

    Article  Google Scholar 

  • Li, R., Wu, K., Li, Y., Liang, X., Lai, K. P., & Chen, J. (2021). Integrative pharmacological mechanism of vitamin C combined with glycyrrhizic acid against COVID-19: Findings of bioinformatics analyses. Briefings in Bioinformatics, 22(2), 1161–1174.

    Article  CAS  Google Scholar 

  • Liang, S., & Liang, K. (2019). Millet grain as a candidate antioxidant food resource: A review. International Journal of Food Properties, 22(1), 1652–1661. https://doi.org/10.1080/10942912.2019.1668406

    Article  CAS  Google Scholar 

  • Lobell, D. B., Burke, M. B., Tebaldi, C., Mastrandrea, M. D., Falcon, W. P., & Naylor, R. L. (2008). Prioritizing climate change adaptation needs for food security in 2030. Science, 319, 607–610.

    Article  CAS  Google Scholar 

  • Lordan, R., & Grant, W. B. (2022). Preventing the adverse effects of SARS-CoV-2 infection and COVID-19 through diet, supplements, and lifestyle. Nutrients, 14(1), 115.

    Article  CAS  Google Scholar 

  • Maggini, S., Wintergerst, E. S., Beveridge, S., & Hornig, D. H. (2007). Selected vitamins and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses. British Journal of Nutrition, 98(S1), S29–S35.

    Article  CAS  Google Scholar 

  • Makadho, J. M. (1996). Potential effects of climate change on corn production in Zimbabwe. Climate Research, 6, 147–151.

    Article  Google Scholar 

  • Marongwe, F. D., Masamha, B., Nyakudya, E., Mandumbu, R., Kamota, A., Zengeza, T., Mapfeka, R. F., & Nyamadzawo, G. (2021). Exploring food fortification potential of neglected legume and oil seed crops for improving food and nutrition security among smallholder farming communities: A systematic review. Journal of Agriculture and Food Research, 3. https://doi.org/10.1016/j.jafr.2021.100117

  • Mathanghi, S. K., & Sudha, K. (2012). Functional and phytochemical properties of finger millet (Eleusine coracana L.) for health. International Journal of Pharmaceutical, Chemical and Biological Science, 2(4), 431–438.

    CAS  Google Scholar 

  • Mattioli, A. V., Sciomer, S., Cocchi, C., Maffei, S., & Gallina, S. (2020). Quarantine during COVID-19 outbreak: Changes in diet and physical activity increase the risk of cardiovascular disease. Nutrition, Metabolism and Cardiovascular Diseases, 30(9), 1409–1417.

    Article  CAS  Google Scholar 

  • McAuliffe, S., Ray, S., Fallon, E., Bradfield, J., Eden, T., & Kohlmeier, M. (2020). Dietary micronutrients in the wake of COVID-19: An appraisal of evidence with a focus on high-risk groups and preventative healthcare. BMJ Mutrition, Prevention & Health, 3(1), 93.

    Article  Google Scholar 

  • Medeiros de Morais, C. (2021). Nutritional therapy in COVID-19 management. Kompass Nutrition & Dietetics, 1, 10–12.

    Google Scholar 

  • Mentella, M. C., Scaldaferri, F., Gasbarrini, A., & Miggiano, G. A. D. (2021). The role of nutrition in the COVID-19 pandemic. Nutrients, 13(4), 1093.

    Article  CAS  Google Scholar 

  • Meydani, S. N., Ribaya-Mercado, J. D., Russell, R. M., Sahyoun, N., Morrow, F. D., & Gershoff, S. N. (1991). Vitamin B− 6 deficiency impairs interleukin 2 production and lymphocyte proliferation in elderly adults. The American Journal of Clinical Nutrition, 53(5), 1275–1280.

    Article  CAS  Google Scholar 

  • Meydani, S. N., Han, S. N., & Wu, D. (2005). Vitamin E and immune response in the aged: Molecular mechanisms and clinical implications. Immunological Reviews, 205(1), 269–284.

    Article  CAS  Google Scholar 

  • Minuet, G., Niola, M., & Napoli, C. (2020). Can COVID 2019 induce a specific cardiovascular damage or it exacerbates pre-existing cardiovascular diseases? Pathology-Research and Practice, 216(9), 153086.

    Article  Google Scholar 

  • Misra, S., Mohanty, D., & Mohapatra, S. (2022). Food-based probiotics: Functional dietary ingredients. In A. Brandelli (Ed.), Probiotics: Advanced Food and Health Applications (pp. 257–275). Academic Press.

    Chapter  Google Scholar 

  • Mokmeli, S., & Vetrici, M. (2020). Low level laser therapy as a modality to attenuate cytokine storm at multiple levels, enhance recovery, and reduce the use of ventilators in COVID-19. Canadian Journal of Respiratory Therapy: CJRT: Revue canadienne de la therapie respiratoire: RCTR, 56, 25.

    Article  Google Scholar 

  • Mugiya, D., & Hofisi, C. (2017). Climate change adaptation challenges confronting small-scale farmers. Environmental Economics, 8, 57–65.

    Article  Google Scholar 

  • Muthamilarasan, M., & Prasad, M. (2021). Small millets for enduring food security amidst pandemics. Trends in Plant Science, 26(1), 33.

    Article  CAS  Google Scholar 

  • Owusu-Ansah, F. E., & Mji, G. (2013). African indigenous knowledge and research. African Journal of Disability, 2(1), 1–5.

    Article  Google Scholar 

  • Patterson, T., Isales, C. M., & Fulzele, S. (2021). Low level of vitamin C and dysregulation of vitamin C transporter might be involved in the severity of COVID-19 infection. Aging and Disease, 12(1), 14.

    Article  Google Scholar 

  • Phiri, K., Dube, T., Moyo, P., Ncube, C., Ndlovu, S., & Buchenrieder, G. (2019). Small grains “resistance”? Making sense of Zimbabwean smallholder farmers’ cropping choices and patterns within a climate change context. Cogent Social Sciences, 5, 1622485. https://doi.org/10.1080/23311886.2019.1622485

    Article  Google Scholar 

  • Prasad, M. P. R., Benhur, D., Kommi, K., et al. (2016). Impact of sorghum supplementation on growth and micronutrient status of school going children in southern India – A randomized trial. Indian Journal of Pediatrics, 83, 9–14.

    Article  Google Scholar 

  • Ramashia, S. E., Anyasi, T. A., Gwata, E. T., Medddws-tayldr, S., & Jidean, A. O. D. (2019). Processing, nutritional composition and health benefits of finger millet in sub-saharan Africa. Journal of Food Science and Technology, 39(2), 253–266.

    Article  Google Scholar 

  • Rao, D., Bhaskarachary, K., Arlene Christina, G. D., Sudha Devi, G., & Vilas, A. T. (2017). Nutritional and health benefits of millets (p. 112). ICAR_Indian Institute of Millets Research (IIMR).

    Google Scholar 

  • Rathmell, J. C., & Thompson, C. B. (1999). The central effectors of cell death in the immune system. Annual Review of Immunology, 17(1), 781–828.

    Article  CAS  Google Scholar 

  • Read, S. A., Obeid, S., Ahlenstiel, C., & Ahlenstiel, G. (2019). The role of zinc in antiviral immunity. Advances in Nutrition, 10(4), 696–710.

    Article  Google Scholar 

  • Rurinda, J. P., Mapfumo, M. T., van Wijk, F., Mtambanengwe, M. C., Rufino, R., Chikowo, R., & Giller, K. E. (2014). Sources of vulnerability to a variable and changing climate among smallholder households in Zimbabwe: A participatory analysis. Climate Risk Management, 3(C), 65–78. https://doi.org/10.1016/j.crm.2014.05.004

    Article  Google Scholar 

  • Rundle, A.G., Park, Y., Herbstman, J.B, et al. (2020). COVID-19-related school closings and risk of weight gain among children. Obesity, 28, 1008–1009.

    Google Scholar 

  • Rushton, D. H., & Barth, J. H. (2010). What is the evidence for gender differences in ferritin and haemoglobin? Critical Reviews in Oncology/Hematology, 73(1), 1–9.

    Article  Google Scholar 

  • Sakadzo, N., & Kugedera, A. T. (2020). The use of small grains for food security and climate compliant in dry regions of Zimbabwe: A review. Sumerianz Journal of Agriculture and Veterinary, 3(10), 143–149.

    Google Scholar 

  • Sakadzo N, Makuvara Z, Kugedera A, Chipunza N, Nhara, RB, & Marumure J. (2021). Reconnoitering the contributions of small grains cultivated in dryland regions of Zimbabwe on immune system and fight against COVID-19. In Oral presentation, international conference on COVID-19, 21–23 March 2021.

    Google Scholar 

  • Saleh, A. S. M., Zhang, Q., Chen, J., & Shen, Q. (2013). Millet grains: Nutritional quality, processing, and potential health benefits. Comprehensive Reviews in Food Science and Food Safety, 12, 281–295.

    Article  CAS  Google Scholar 

  • Sandström, B., Cederblad, Å., Lindblad, B. S., & Lönnerdal, B. (1994). Acrodermatitis enteropathica, zinc metabolism, copper status, and immune function. Archives of Pediatrics & Adolescent Medicine, 148(9), 980–985.

    Article  Google Scholar 

  • Sarita, E. S., & Singh, E. (2016). Potential of millets: Nutrients composition and health benefits. Journal of Scientific and Innovative Research, 5(2), 46–50.

    Article  Google Scholar 

  • Semba, R. D. (1999). Vitamin A as “anti-infective” therapy, 1920–1940. The Journal of Nutrition, 129(4), 783–791.

    Article  CAS  Google Scholar 

  • Shetty, P. S. (2010). Nutrition, immunity and infection. CABI.

    Book  Google Scholar 

  • Simnadis, T. G., Tapsell, L. C., & Beck, E. J. (2016). Effect of sorghum consumption on health outcomes: A systematic review. Nutrition Reviews V R, 74(11), 690–707. https://doi.org/10.1093/nutrit/nuw036

    Article  Google Scholar 

  • Stefoska-Needham, A., Beck, E. J., Tapsell, L. C., et al. (2015). Sorghum: An underutilized cereal whole grain with the potential to assist in the prevention of chronic disease. Food Review International, 31, 401–437.

    Article  CAS  Google Scholar 

  • Subramanian Vignesh, K., & Deepe, G. S., Jr. (2017). Metallothioneins: Emerging modulators in immunity and infection. International Journal of Molecular Sciences, 18(10), 2197.

    Article  Google Scholar 

  • Tamura, J., Kubota, K., Murakami, H., Sawamura, M., Matsushima, T., Tamura, T., et al. (1999). Immunomodulation by vitamin B12: Augmentation of CD8+ T lymphocytes and natural killer (NK) cell activity in vitamin B12-deficient patients by methyl-B12 treatment. Clinical & Experimental Immunology, 116(1), 28–32.

    Article  CAS  Google Scholar 

  • Taylor, J. K. N. (2003). Overview: Importance of Sorghum in Africa. In P. S. Belton & J. R. N. Taylor (Eds.), Afripro: Workshop on the proteins of sorghum and millets: Enhancing nutritional and function properties for Africa. Pretoria. Available: www.africipro.org.uk

    Google Scholar 

  • Te Velthuis, A. J., van den Worm, S. H., Sims, A. C., Baric, R. S., Snijder, E. J., & van Hemert, M. J. (2010). Zn2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathogens, 6(11), e1001176.

    Article  Google Scholar 

  • Thomas, S., Patel, D., Bittel, B., Wolski, K., Wang, Q., Kumar, A., et al. (2021). Effect of high-dose zinc and ascorbic acid supplementation vs usual care on symptom length and reduction among ambulatory patients with SARS-CoV-2 infection: The COVID A to Z randomized clinical trial. JAMA Network Open, 4(2), e210369–e210369.

    Article  Google Scholar 

  • Wang, L., Wang, Y., Ye, D., & Liu, Q. (2020). A review of the 2019 Novel Coronavirus (COVID-19) based on current evidence. International Journal of Antimicrobial Agents, 105948.

    Google Scholar 

  • Zhou, Z., Ren, L., Zhang, L. I., Zhong, J., Xiao, Y., Jia, Z., et al. (2020). Overly exuberant innate immune response to SARS-CoV-2 infection. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3551623

  • Zhou, J., Ma, Y., Liu, Y., Xiang, Y., Tao, C., Yu, H., & Huang, J. (2021). A correlation analysis between the nutritional status and prognosis of COVID-19 patients. The Journal of Nutrition, Health & Aging, 25(1), 84–93.

    Article  CAS  Google Scholar 

  • Zhu, J., Yamane, H., & Paul, W. E. (2010). Differentiation of effector CD4 T cell populations. Annual Review of Immunology, 28, 445–489. https://doi.org/10.1146/annurev-immunol-030409-101212

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sakadzo Nyasha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nyasha, S., Kugedera, T.A., Makuvara, Z., Chipunza, N., Nhara, R.B., Marumure, J. (2023). Contributions of Small Grains Grown in Zimbabwe’s Dryland Regions in Boosting Immunity and Combating COVID-19. In: Chapungu, L., Chikodzi, D., Dube, K. (eds) COVID-19 in Zimbabwe. Springer, Cham. https://doi.org/10.1007/978-3-031-21472-1_5

Download citation

Publish with us

Policies and ethics