Skip to main content
Log in

Mitochondrial dynamics and its impact on human health and diseases: inside the DRP1 blackbox

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Mitochondria are essential organelles that play a significant role in various cellular processes apart from providing energy in eukaryotic cells. An intricate link between mitochondrial structure and function is now unequivocally accepted. Several molecular players have been identified, which are important in maintaining the structure of the organelle. Dynamin-related protein 1 (DRP1) is one such conserved protein that is a vital regulator of mitochondrial dynamics. Multidisciplinary studies have helped elucidate the structure of the protein and its mechanism of action in great detail. Mutations in various domains of the protein have been identified that are associated with debilitating conditions in patients. The involvement of the protein in disease conditions such as neurodegeneration, cancer, and cardiovascular disorders is also gaining attention. The purpose of this review is to highlight recent findings on the role of DRP1 in human disease conditions and address its importance as a therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Friedman JR, Nunnari J (2014) Mitochondrial form and function. Nature 505:335–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sagan L (1967) On the origin of mitosing cells. J Theor Biol 14:225-IN226

  3. Martin WF, Garg S, Zimorski V (2015) Endosymbiotic theories for eukaryote origin. Philos Trans R Soc Lond, B, Biol Sci 370:20140330

    Article  Google Scholar 

  4. Palade GE (1953) An electron microscope study of the mitochondrial structure. J Histochem Cytochem 1:188–211

    Article  CAS  PubMed  Google Scholar 

  5. Bereiter-Hahn J, Vöth M (1994) Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microsc Res Tech 27:198–219

    Article  CAS  PubMed  Google Scholar 

  6. Brown GC, Murphy MP, Scott I, Youle RJ (2010) Mitochondrial fission and fusion. Essays Biochem 47:85–98

    Article  Google Scholar 

  7. Parone PA, Da Cruz S, Tondera D, Mattenberger Y, James DI, Maechler P, Barja F, Martinou J-C (2008) Preventing mitochondrial fission impairs mitochondrial function and leads to loss of mitochondrial DNA. PLoS One 3:e3257

  8. Twig G, Shirihai OS (2011) The interplay between mitochondrial dynamics and mitophagy. Antioxid Redox Signal 14:1939–1951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Westermann B (2010) Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11:872–884

    Article  CAS  PubMed  Google Scholar 

  10. Wilson TJ, Slupe AM, Strack S (2013) Cell signaling and mitochondrial dynamics: Implications for neuronal function and neurodegenerative disease. Neurobiol Dis 51:13–26

    Article  CAS  PubMed  Google Scholar 

  11. Reddy PH, Reddy TP, Manczak M, Calkins MJ, Shirendeb U, Mao P (2011) Dynamin-related protein 1 and mitochondrial fragmentation in neurodegenerative diseases. Brain Res Rev 67:103–118

    Article  CAS  PubMed  Google Scholar 

  12. Serasinghe MN, Chipuk JE (2016) Mitochondrial fission in human diseases. Pharmacol Mitochondria 159–188

  13. Oliver D, Reddy PH (2019) Dynamics of dynamin-related protein 1 in Alzheimer’s disease and other neurodegenerative diseases. Cells 8:961

    Article  CAS  PubMed Central  Google Scholar 

  14. Lima AR, Santos L, Correia M, Soares P, Sobrinho-Simões M, Melo M, Máximo V (2018) Dynamin-related protein 1 at the crossroads of cancer. Genes 9:115

    Article  PubMed Central  Google Scholar 

  15. Jin J-y, Wei X-x, Zhi X-l, Wang X-h, Meng D (2020) Drp1-dependent mitochondrial fission in cardiovascular disease. Acta Pharmacol Sin 1–10

  16. Waterham HR, Koster J, van Roermund CW, Mooyer PA, Wanders RJ, Leonard JV (2007) A lethal defect of mitochondrial and peroxisomal fission. NEJM 356:1736–1741

    Article  CAS  PubMed  Google Scholar 

  17. Verrigni D, Di Nottia M, Ardissone A, Baruffini E, Nasca A, Legati A, Bellacchio E, Fagiolari G, Martinelli D, Fusco L (2019) Clinical-genetic features and peculiar muscle histopathology in infantile DNM1L-related mitochondrial epileptic encephalopathy. Hum Mutat 40:601–618

    Article  CAS  PubMed  Google Scholar 

  18. Whitley BN, Lam C, Cui H, Haude K, Bai R, Escobar L, Hamilton A, Brady L, Tarnopolsky MA, Dengle L (2018) Aberrant Drp1-mediated mitochondrial division presents in humans with variable outcomes. Hum Mol Genet 27:3710–3719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Batzir NA, Bhagwat PK, Eble TN, Liu P, Eng CM, Elsea SH, Robak LA, Scaglia F, Goldman AM, Dhar SU (2019) De novo missense variant in the GTPase effector domain (GED) of DNM1L leads to static encephalopathy and seizures. Mol case Stud 5:a003673

  20. Otsuga D, Keegan BR, Brisch E, Thatcher JW, Hermann GJ, Bleazard W, Shaw JM (1998) The dynamin-related GTPase, Dnm1p, controls mitochondrial morphology in yeast. J Cell Biol 143:333–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bleazard W, McCaffery JM, King EJ, Bale S, Mozdy A, Tieu Q, Nunnari J, Shaw JM (1999) The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast. Nat Cell Biol 1:298–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Smirnova E, Griparic L, Shurland D-L, Van Der Bliek AM (2001) Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12:2245–2256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Michalska BM, Kwapiszewska K, Szczepanowska J, Kalwarczyk T, Patalas-Krawczyk P, Szczepański K, Hołyst R, Duszyński J, Szymański J (2018) Insight into the fission mechanism by quantitative characterization of Drp1 protein distribution in the living cell. Sci Rep 8:1–15

    Article  CAS  Google Scholar 

  24. Frank S, Gaume B, Bergmann-Leitner ES, Leitner WW, Robert EG, Catez F, Smith CL, Youle RJ (2001) The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 1:515–525

    Article  CAS  PubMed  Google Scholar 

  25. Pagliuso A, Cossart P, Stavru F (2018) The ever-growing complexity of the mitochondrial fission machinery. Cell Mol Life Sci 75:355–374

    Article  CAS  PubMed  Google Scholar 

  26. Ingerman E, Perkins EM, Marino M, Mears JA, McCaffery JM, Hinshaw JE, Nunnari J (2005) Dnm1 forms spirals that are structurally tailored to fit mitochondria. J Cell Biol 170:1021–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ji W-k, Hatch AL, Merrill RA, Strack S, Higgs HN (2015) Actin filaments target the oligomeric maturation of the dynamin GTPase Drp1 to mitochondrial fission sites. Elife 4:e11553

  28. Francy CA, Alvarez FJ, Zhou L, Ramachandran R, Mears JA (2015) The mechanoenzymatic core of dynamin-related protein 1 comprises the minimal machinery required for membrane constriction. J Biol Chem 290:11692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kamerkar SC, Kraus F, Sharpe AJ, Pucadyil TJ, Ryan MT (2018) Dynamin-related protein 1 has membrane constricting and severing abilities sufficient for mitochondrial and peroxisomal fission. Nat Commun 9:1–15

    Article  Google Scholar 

  30. Basu K, Lajoie D, Aumentado-Armstrong T, Chen J, Koning RI, Bossy B, Bostina M, Sik A, Bossy-Wetzel E, Rouiller I (2017) Molecular mechanism of DRP1 assembly studied in vitro by cryo-electron microscopy. PLoS One 12:e0179397

  31. Michalska B, Duszyński J, Szymański J (2016) Mechanism of mitochondrial fission-structure and function of Drp1 protein. Postepy Biochem 62:127–137

    PubMed  Google Scholar 

  32. Friedman JR, Lackner LL, West M, DiBenedetto JR, Nunnari J, Voeltz GK (2011) ER tubules mark sites of mitochondrial division. Science 334:358–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sesaki H, Adachi Y, Kageyama Y, Itoh K, Iijima M (2014) In vivo functions of Drp1: lessons learned from yeast genetics and mouse knockouts. Biochim Biophys Acta Mol Basis 1842:1179–1185

    Article  CAS  Google Scholar 

  34. Strack S, Cribbs JT (2012) Allosteric modulation of Drp1 mechanoenzyme assembly and mitochondrial fission by the variable domain. J Cell Biol 287:10990–11001

    CAS  Google Scholar 

  35. Otera H, Ishihara N, Mihara K (2013) New insights into the function and regulation of mitochondrial fission. Biochim Biophys Acta Mol Cell Res 1833:1256–1268

    Article  CAS  Google Scholar 

  36. Rosdah AA, Smiles WJ, Oakhill JS, Scott JW, Langendorf CG, Delbridge LM, Holien JK, Lim SY (2020) New perspectives on the role of Drp1 isoforms in regulating mitochondrial pathophysiology. Pharmacol Ther 107594

  37. Strack S, Wilson TJ, Cribbs JT (2013) Cyclin-dependent kinases regulate splice-specific targeting of dynamin-related protein 1 to microtubules. J Cell Biol 201:1037–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. James DI, Parone PA, Mattenberger Y, Martinou J-C (2003) hFis1, a novel component of the mammalian mitochondrial fission machinery. J Cell Biol 278:36373–36379

    CAS  Google Scholar 

  39. Otera H, Wang C, Cleland MM, Setoguchi K, Yokota S, Youle RJ, Mihara K (2010) Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J Cell Biol 191:1141–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Palmer CS, Osellame LD, Laine D, Koutsopoulos OS, Frazier AE, Ryan MT (2011) MiD49 and MiD51, new components of the mitochondrial fission machinery. EMBO Rep 12:565–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu R, Chan DC (2015) The mitochondrial fission receptor Mff selectively recruits oligomerized Drp1. Mol Biol Cell 26:4466–4477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yu R, Lendahl U, Nistér M, Zhao J (2020) Regulation of mammalian mitochondrial dynamics: Opportunities and challenges. Front Endocrinol 11:374

    Article  Google Scholar 

  43. Chang C-R, Manlandro CM, Arnoult D, Stadler J, Posey AE, Hill RB, Blackstone C (2010) A lethal de novo mutation in the middle domain of the dynamin-related GTPase Drp1 impairs higher order assembly and mitochondrial division. J Cell Biol 285:32494–32503

    CAS  Google Scholar 

  44. Kornfeld OS, Qvit N, Haileselassie B, Shamloo M, Bernardi P, Mochly-Rosen D (2018) Interaction of mitochondrial fission factor with dynamin related protein 1 governs physiological mitochondrial function in vivo. Sci Rep 8:1–9

    Article  CAS  Google Scholar 

  45. Zhang Y, Chan DC (2007) Structural basis for recruitment of mitochondrial fission complexes by Fis1. PNAS 104:18526–18530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee Y-j, Jeong S-Y, Karbowski M, Smith CL, Youle RJ (2004) Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol Biol Cell 15:5001–5011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhao J, Liu T, Jin S, Wang X, Qu M, Uhlén P, Tomilin N, Shupliakov O, Lendahl U, Nistér M (2011) Human MIEF1 recruits Drp1 to mitochondrial outer membranes and promotes mitochondrial fusion rather than fission. EMBO J 30:2762–2778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shen Q, Yamano K, Head BP, Kawajiri S, Cheung JT, Wang C, Cho J-H, Hattori N, Youle RJ, van der Bliek AM (2014) Mutations in Fis1 disrupt orderly disposal of defective mitochondria. Mol Biol Cell 25:145–159

    Article  PubMed  PubMed Central  Google Scholar 

  49. Joshi AU, Saw NL, Shamloo M, Mochly-Rosen D (2018) Drp1/Fis1 interaction mediates mitochondrial dysfunction, bioenergetic failure and cognitive decline in Alzheimer’s disease. Oncotarget 9:6128

    Article  PubMed  Google Scholar 

  50. Xian H, Yang Q, Xiao L, Shen H-M, Liou Y-C (2019) STX17 dynamically regulated by Fis1 induces mitophagy via hierarchical macroautophagic mechanism. Nat Commun 10:1–17

    Article  Google Scholar 

  51. Losón OC, Meng S, Ngo H, Liu R, Kaiser JT, Chan DC (2015) Crystal structure and functional analysis of MiD49, a receptor for the mitochondrial fission protein Drp1. Protein Sci 24:386–394

    Article  PubMed  PubMed Central  Google Scholar 

  52. Losón OC, Liu R, Rome ME, Meng S, Kaiser JT, Shan S-o, Chan DC (2014) The mitochondrial fission receptor MiD51 requires ADP as a cofactor. Structure 22:367–377

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kalia R, Wang RY-R, Yusuf A, Thomas PV, Agard DA, Shaw JM, Frost A (2018) Structural basis of mitochondrial receptor binding and constriction by DRP1. Nature 558:401–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cho HM, Ryu JR, Jo Y, Seo TW, Choi YN, Kim JH, Chung JM, Cho B, Kang HC, Yu S-W (2019) Drp1-Zip1 interaction regulates mitochondrial quality surveillance system. Mol Cell 73:364–376. e368

  55. Francy CA, Clinton RW, Fröhlich C, Murphy C, Mears JA (2017) Cryo-EM studies of Drp1 reveal cardiolipin interactions that activate the helical oligomer. Sci Rep 7:1–12

    Article  CAS  Google Scholar 

  56. Bustillo-Zabalbeitia I, Montessuit S, Raemy E, Basañez G, Terrones O, Martinou J-C (2014) Specific interaction with cardiolipin triggers functional activation of dynamin-related protein 1. PLoS One 9:e102738

  57. Prudent J, McBride HM (2016) Mitochondrial dynamics: ER actin tightens the Drp1 noose. Curr Biol 26:R207–R209

    Article  CAS  PubMed  Google Scholar 

  58. Hatch AL, Ji W-K, Merrill RA, Strack S, Higgs HN (2016) Actin filaments as dynamic reservoirs for Drp1 recruitment. Mol Biol Cell 27:3109–3121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rehklau K, Hoffmann L, Gurniak CB, Ott M, Witke W, Scorrano L, Culmsee C, Rust MB (2017) Cofilin1-dependent actin dynamics control DRP1-mediated mitochondrial fission. Cell Death Dis 8:e3063–e3063

    Article  PubMed  PubMed Central  Google Scholar 

  60. Chang C-R, Blackstone C (2007) Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. J Cell Biol 282:21583–21587

    CAS  Google Scholar 

  61. Taguchi N, Ishihara N, Jofuku A, Oka T, Mihara K (2007) Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J Cell Biol 282:11521–11529

    CAS  Google Scholar 

  62. Kashatus JA, Nascimento A, Myers LJ, Sher A, Byrne FL, Hoehn KL, Counter CM, Kashatus DF (2015) Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth. Mol Cell 57:537–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chou C-H, Lin C-C, Yang M-C, Wei C-C, Liao H-D, Lin R-C, Tu W-Y, Kao T-C, Hsu C-M, Cheng J-T (2012) GSK3beta-mediated Drp1 phosphorylation induced elongated mitochondrial morphology against oxidative stress. PLoS One 7:e49112

  64. Kar UP, Dey H, Rahaman A (2017) Regulation of dynamin family proteins by post-translational modifications. J Biosci 42:333–344

    Article  CAS  PubMed  Google Scholar 

  65. Lu B, Kennedy B, Clinton RW, Wang EJ, McHugh D, Stepanyants N, Macdonald PJ, Mears JA, Qi X, Ramachandran R (2018) Steric interference from intrinsically disordered regions controls dynamin-related protein 1 self-assembly during mitochondrial fission. Sci Rep 8:1–21

    Google Scholar 

  66. Macdonald PJ, Francy CA, Stepanyants N, Lehman L, Baglio A, Mears JA, Qi X, Ramachandran R (2016) Distinct splice variants of dynamin-related protein 1 differentially utilize mitochondrial fission factor as an effector of cooperative GTPase activity. J Biol Chem 291:493

    Article  CAS  PubMed  Google Scholar 

  67. Yoon G, Malam Z, Paton T, Marshall CR, Hyatt E, Ivakine Z, Scherer SW, Lee K-S, Hawkins C, Cohn RD (2016) Lethal disorder of mitochondrial fission caused by mutations in DNM1L. J Pediatr 171: 313–316. e312

  68. Nasca A, Legati A, Baruffini E, Nolli C, Moroni I, Ardissone A, Goffrini P, Ghezzi D (2016) Biallelic mutations in DNM1L are associated with a slowly progressive infantile encephalopathy. Hum Mutat 37:898–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wenger J, Klinglmayr E, Fröhlich C, Eibl C, Gimeno A, Hessenberger M, Puehringer S, Daumke O, Goettig P (2013) Functional mapping of human dynamin-1-like GTPase domain based on x-ray structure analyses. PLoS One 8:e71835

  70. Gerber S, Charif M, Chevrollier A, Chaumette T, Angebault C, Kane MS, Paris A, Alban J, Quiles M, Delettre C (2017) Mutations in DNM1L, as in OPA1, result in dominant optic atrophy despite opposite effects on mitochondrial fusion and fission. Brain 140:2586–2596

    Article  PubMed  Google Scholar 

  71. Song Z, Ghochani M, McCaffery JM, Frey TG, Chan DC (2009) Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion. Mol Biol Cell 20:3525–3532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hogarth KA, Costford SR, Yoon G, Sondheimer N, Maynes JT (2018) DNM1L variant alters baseline mitochondrial function and response to stress in a patient with severe neurological dysfunction. Biochem Genet 56:56–77

    Article  CAS  PubMed  Google Scholar 

  73. Jendrach M, Mai S, Pohl S, Vöth M, Bereiter-Hahn J (2008) Short-and long-term alterations of mitochondrial morphology, dynamics and mtDNA after transient oxidative stress. Mitochondrion 8:293–304

    Article  CAS  PubMed  Google Scholar 

  74. Longo F, Benedetti S, Zambon AA, Sora MGN, Di Resta C, De Ritis D, Quattrini A, Maltecca F, Ferrari M, Previtali SC (2020) Impaired turnover of hyperfused mitochondria in severe axonal neuropathy due to a novel DRP1 mutation. Hum Mol Genet 29:177–188

    Article  CAS  PubMed  Google Scholar 

  75. Banerjee R, Kumar A, Satpati P, Nagotu S (2021) Mimicking human Drp1 disease-causing mutations in yeast Dnm1 reveals altered mitochondrial dynamics. Mitochondrion

  76. Vanstone JR, Smith AM, McBride S, Naas T, Holcik M, Antoun G, Harper M-E, Michaud J, Sell E, Chakraborty P (2016) DNM1L-related mitochondrial fission defect presenting as refractory epilepsy. Eur J Hum Genet 24:1084–1088

    Article  CAS  PubMed  Google Scholar 

  77. Sheffer R, Douiev L, Edvardson S, Shaag A, Tamimi K, Soiferman D, Meiner V, Saada A (2016) Postnatal microcephaly and pain insensitivity due to a de novo heterozygous DNM1L mutation causing impaired mitochondrial fission and function. Am J Med Genet 170:1603–1607

    Article  CAS  PubMed  Google Scholar 

  78. Diez H, Cortès-Saladelafont E, Ormazabal A, Marmiese AF, Armstrong J, Matalonga L, Bravo M, Briones P, Emperador S, Montoya J (2017) Severe infantile parkinsonism because of a de novo mutation on DLP1 mitochondrial-peroxisomal protein. Mov Disord 32:1108–1110

    Article  CAS  PubMed  Google Scholar 

  79. Cho B, Choi SY, Cho HM, Kim HJ, Sun W (2013) Physiological and pathological significance of dynamin-related protein 1 (drp1)-dependent mitochondrial fission in the nervous system. Exp Neurobiol 22:149

    Article  PubMed  PubMed Central  Google Scholar 

  80. Fahrner JA, Liu R, Perry MS, Klein J, Chan DC (2016) A novel de novo dominant negative mutation in DNM1L impairs mitochondrial fission and presents as childhood epileptic encephalopathy. Am J Med Genet 170:2002–2011

    Article  CAS  PubMed  Google Scholar 

  81. Zaha K, Matsumoto H, Itoh M, Saitsu H, Kato K, Kato M, Ogata S, Murayama K, Kishita Y, Mizuno Y (2016) DNM1L-related encephalopathy in infancy with Leigh syndrome-like phenotype and suppression-burst. Clin Genet 90:472–474

    Article  CAS  PubMed  Google Scholar 

  82. Chao Y-H, Robak LA, Xia F, Koenig MK, Adesina A, Bacino CA, Scaglia F, Bellen HJ, Wangler MF (2016) Missense variants in the middle domain of DNM1L in cases of infantile encephalopathy alter peroxisomes and mitochondria when assayed in Drosophila. Hum Mol Genet 25:1846–1856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mew NA, Loewenstein JB, Kadom N, Lichter-Konecki U, Gropman AL, Martin JM, Vanderver A (2011) MRI features of 4 female patients with pyruvate dehydrogenase E1 alpha deficiency. Pediatr Neurol 45:57–59

    Article  PubMed Central  Google Scholar 

  84. Zhu P-P, Patterson A, Stadler J, Seeburg DP, Sheng M, Blackstone C (2004) Intra-and intermolecular domain interactions of the C-terminal GTPase effector domain of the multimeric dynamin-like GTPase Drp1. J Cell Biol 279:35967–35974

    CAS  Google Scholar 

  85. Khacho M, Slack RS (2018) Mitochondrial dynamics in the regulation of neurogenesis: from development to the adult brain. Dev Dyn 247:47–53

    Article  CAS  PubMed  Google Scholar 

  86. Grohm J, Kim S, Mamrak U, Tobaben S, Cassidy-Stone A, Nunnari J, Plesnila N, Culmsee C (2012) Inhibition of Drp1 provides neuroprotection in vitro and in vivo. Cell Death Differ 19:1446–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. DeTure MA, Dickson DW (2019) The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener 14:1–18

    Article  Google Scholar 

  88. Bossy B, Petrilli A, Klinglmayr E, Chen J, Lütz-Meindl U, Knott AB, Masliah E, Schwarzenbacher R, Bossy-Wetzel E (2010) S-Nitrosylation of DRP1 does not affect enzymatic activity and is not specific to Alzheimer’s disease. J Alzheimer’s Dis 20:S513–S526

    Article  Google Scholar 

  89. Baloyannis SJ (2006) Mitochondrial alterations in Alzheimer’s disease. J Alzheimer’s Dis 9:119–126

    Article  Google Scholar 

  90. Wang W, Zhao F, Ma X, Perry G, Zhu X (2020) Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: recent advances. Mol Neurodegener 15:1–22

    Article  Google Scholar 

  91. Zhu X, Perry G, Smith MA, Wang X (2013) Abnormal mitochondrial dynamics in the pathogenesis of Alzheimer’s disease. J Alzheimer’s Dis 33:S253–S262

    Article  Google Scholar 

  92. Wang X, Su B, Lee H-g, Li X, Perry G, Smith MA, Zhu X (2009) Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J Neurosci 29:9090–9103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Manczak M, Calkins MJ, Reddy PH (2011) Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer’s disease: implications for neuronal damage. Hum Mol Genet 20:2495–2509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cho D-H, Nakamura T, Fang J, Cieplak P, Godzik A, Gu Z, Lipton SA (2009) S-nitrosylation of Drp1 mediates β-amyloid-related mitochondrial fission and neuronal injury. Science 324:102–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Park SJ, Bae J-E, Jo DS, Kim JB, Park NY, Fang J, Jung Y-K, Jo DG, Cho D-H (2021) Increased O-GlcNAcylation of Drp1 by amyloid-beta promotes mitochondrial fission and dysfunction in neuronal cells. Mol Brain 14:1–3

    Article  Google Scholar 

  96. Gan X, Huang S, Wu L, Wang Y, Hu G, Li G, Zhang H, Yu H, Swerdlow RH, Chen JX (2014) Inhibition of ERK-DLP1 signaling and mitochondrial division alleviates mitochondrial dysfunction in Alzheimer’s disease cybrid cell. Biochim Biophys Acta Mol Basis 1842:220–231

    Article  CAS  Google Scholar 

  97. Zhang X, Wang R, Hu D, Sun X, Fujioka H, Lundberg K, Chan ER, Wang Q, Xu R, Flanagan ME (2020) Oligodendroglial glycolytic stress triggers inflammasome activation and neuropathology in Alzheimer’s disease. Sci Adv 6:eabb8680

  98. Karbowski M, Lee Y-J, Gaume B, Jeong S-Y, Frank S, Nechushtan A, Santel A, Fuller M, Smith CL, Youle RJ (2002) Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J Cell Biol 159:931–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kandimalla R, Reddy PH (2016) Multiple faces of dynamin-related protein 1 and its role in Alzheimer’s disease pathogenesis. Biochim Biophys Acta Mol Basis 1862:814–828

    Article  CAS  Google Scholar 

  100. DaRocha-Souto B, Coma M, Perez-Nievas B, Scotton T, Siao M, Sánchez-Ferrer P, Hashimoto T, Fan Z, Hudry E, Barroeta I (2012) Activation of glycogen synthase kinase-3 beta mediates β-amyloid induced neuritic damage in Alzheimer’s disease. Neurobiol Dis 45:425–437

    Article  CAS  PubMed  Google Scholar 

  101. Yan J, Liu X-H, Han M-Z, Wang Y-M, Sun X-L, Yu N, Li T, Su B, Chen Z-Y (2015) Blockage of GSK3β-mediated Drp1 phosphorylation provides neuroprotection in neuronal and mouse models of Alzheimer’s disease. Neurobiol Aging 36:211–227

    Article  CAS  PubMed  Google Scholar 

  102. Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79:368–376

    Article  CAS  PubMed  Google Scholar 

  103. Morais VA, Verstreken P, Roethig A, Smet J, Snellinx A, Vanbrabant M, Haddad D, Frezza C, Mandemakers W, Vogt-Weisenhorn D (2009) Parkinson’s disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function. EMBO Mol Med 1:99–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Dagda RK, Cherra SJ III, Kulich SM, Tandon A, Park D, Chu CT (2009) Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Cell Biol 284:13843–13855

    CAS  Google Scholar 

  105. Narendra D, Walker JE, Youle R (2012) Mitochondrial quality control mediated by PINK1 and Parkin: links to parkinsonism. Cold Spring Harb Perspect Biol 4:a011338

  106. Wang H, Song P, Du L, Tian W, Yue W, Liu M, Li D, Wang B, Zhu Y, Cao C (2011) Parkin ubiquitinates Drp1 for proteasome-dependent degradation: implication of dysregulated mitochondrial dynamics in Parkinson disease. J Cell Biol 286:11649–11658

    CAS  Google Scholar 

  107. Shiba-Fukushima K, Inoshita T, Hattori N, Imai Y (2014) PINK1-mediated phosphorylation of Parkin boosts Parkin activity in Drosophila. PLoS Genet 10:e1004391

  108. Zhuang N, Li L, Chen S, Wang T (2016) PINK1-dependent phosphorylation of PINK1 and Parkin is essential for mitochondrial quality control. Cell Death Dis 7:e2501–e2501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lutz AK, Exner N, Fett ME, Schlehe JS, Kloos K, Lämmermann K, Brunner B, Kurz-Drexler A, Vogel F, Reichert AS (2009) Loss of parkin or PINK1 function increases Drp1-dependent mitochondrial fragmentation. J Cell Biol 284:22938–22951

    CAS  Google Scholar 

  110. Yu W, Sun Y, Guo S, Lu B (2011) The PINK1/Parkin pathway regulates mitochondrial dynamics and function in mammalian hippocampal and dopaminergic neurons. Hum Mol Genet 20:3227–3240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Prudent J, Zunino R, Sugiura A, Mattie S, Shore GC, McBride HM (2015) MAPL SUMOylation of Drp1 stabilizes an ER/mitochondrial platform required for cell death. Mol Cell 59:941–955

    Article  CAS  PubMed  Google Scholar 

  112. Feng S-T, Wang Z-Z, Yuan Y-H, Wang X-L, Sun H-M, Chen N-H, Zhang Y (2020) Dynamin-related protein 1: a protein critical for mitochondrial fission, mitophagy, and neuronal death in Parkinson’s disease. Pharmacol Res 151:104553

  113. Cui M, Tang X, Christian WV, Yoon Y, Tieu K (2010) Perturbations in mitochondrial dynamics induced by human mutant PINK1 can be rescued by the mitochondrial division inhibitor mdivi-1. J Cell Biol 285:11740–11752

    CAS  Google Scholar 

  114. Qi X, Qvit N, Su Y-C, Mochly-Rosen D (2013) A novel Drp1 inhibitor diminishes aberrant mitochondrial fission and neurotoxicity. J Cell Sci 126:789–802

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Pryde KR, Smith HL, Chau K-Y, Schapira AH (2016) PINK1 disables the anti-fission machinery to segregate damaged mitochondria for mitophagy. J Cell Biol 213:163–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Han H, Tan J, Wang R, Wan H, He Y, Yan X, Guo J, Gao Q, Li J, Shang S (2020) PINK 1 phosphorylates Drp1S616 to regulate mitophagy‐independent mitochondrial dynamics. EMBO Rep 21:e48686

  117. Wang X, Yan MH, Fujioka H, Liu J, Wilson-Delfosse A, Chen SG, Perry G, Casadesus G, Zhu X (2012) LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1. Hum Mol Genet 21:1931–1944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Martinez JH, Alaimo A, Gorojod RM, Alcon SP, Fuentes F, Leskow FC, Kotler ML (2018) Drp-1 dependent mitochondrial fragmentation and protective autophagy in dopaminergic SH-SY5Y cells overexpressing alpha-synuclein. Mol Cell Neurosci 88:107–117

    Article  CAS  PubMed  Google Scholar 

  119. Ordonez DG, Lee MK, Feany MB (2018) α-synuclein induces mitochondrial dysfunction through spectrin and the actin cytoskeleton. Neuron 97:108–124. e106

  120. Portz P, Lee MK (2021) Changes in Drp1 Function and Mitochondrial Morphology Are Associated with the α-Synuclein Pathology in a Transgenic Mouse Model of Parkinson’s Disease. Cells 10:885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhang Q, Hu C, Huang J, Liu W, Lai W, Leng F, Tang Q, Liu Y, Wang Q, Zhou M (2019) ROCK1 induces dopaminergic nerve cell apoptosis via the activation of Drp1-mediated aberrant mitochondrial fission in Parkinson’s disease. Exp Mol Med 51:1–13

    PubMed  PubMed Central  Google Scholar 

  122. Vonsattel JPG, DiFiglia M (1998) Huntington disease. J Neuropathol Exp Neurol 57:369

    Article  CAS  PubMed  Google Scholar 

  123. Perutz MF, Windle A (2001) Cause of neural death in neurodegenerative diseases attributable to expansion of glutamine repeats. Nature 412:143–144

    Article  CAS  PubMed  Google Scholar 

  124. Wang H, Lim PJ, Karbowski M, Monteiro MJ (2009) Effects of overexpression of huntingtin proteins on mitochondrial integrity. Hum Mol Genet 18:737–752

    Article  CAS  PubMed  Google Scholar 

  125. Satyal SH, Schmidt E, Kitagawa K, Sondheimer N, Lindquist S, Kramer JM, Morimoto RI (2000) Polyglutamine aggregates alter protein folding homeostasis in Caenorhabditis elegans. PNAS 97:5750–5755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Shirendeb UP, Calkins MJ, Manczak M, Anekonda V, Dufour B, McBride JL, Mao P, Reddy PH (2012) Mutant huntingtin’s interaction with mitochondrial protein Drp1 impairs mitochondrial biogenesis and causes defective axonal transport and synaptic degeneration in Huntington’s disease. Hum Mol Genet 21:406–420

    Article  CAS  PubMed  Google Scholar 

  127. Song W, Chen J, Petrilli A, Liot G, Klinglmayr E, Zhou Y, Poquiz P, Tjong J, Pouladi MA, Hayden MR (2011) Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity. Nat Med 17:377–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Reddy PH (2014) Increased mitochondrial fission and neuronal dysfunction in Huntington’s disease: implications for molecular inhibitors of excessive mitochondrial fission. Drug Discov Today 19:951–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zheng J, Winderickx J, Franssens V, Liu B (2018) A mitochondria-associated oxidative stress perspective on Huntington’s disease. Front Mol Neurosci 11:329

    Article  PubMed  PubMed Central  Google Scholar 

  130. Haun F, Nakamura T, Shiu AD, Cho D-H, Tsunemi T, Holland EA, La Spada AR, Lipton SA (2013) S-nitrosylation of dynamin-related protein 1 mediates mutant huntingtin-induced mitochondrial fragmentation and neuronal injury in Huntington’s disease. Antioxid Redox Signal 19:1173–1184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Guo X, Disatnik M-H, Monbureau M, Shamloo M, Mochly-Rosen D, Qi X (2013) Inhibition of mitochondrial fragmentation diminishes Huntington’s disease–associated neurodegeneration. J Clin Investig 123:5371–5388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Cherubini M, Lopez-Molina L, Gines S (2020) Mitochondrial fission in Huntington's disease mouse striatum disrupts ER-mitochondria contacts leading to disturbances in Ca2+ efflux and Reactive Oxygen Species (ROS) homeostasis. Neurobiol Dis 136:104741

  133. Rehman J, Zhang HJ, Toth PT, Zhang Y, Marsboom G, Hong Z, Salgia R, Husain AN, Wietholt C, Archer SL (2012) Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer. FASEB J 26:2175–2186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhao J, Zhang J, Yu M, Xie Y, Huang Y, Wolff DW, Abel PW, Tu Y (2013) Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene 32:4814–4824

    Article  CAS  PubMed  Google Scholar 

  135. Lee YG, Nam Y, Shin KJ, Yoon S, Park WS, Joung JY, Seo JK, Jang J, Lee S, Nam D (2020) Androgen-induced expression of DRP1 regulates mitochondrial metabolic reprogramming in prostate cancer. Cancer Lett 471:72–87

    Article  CAS  PubMed  Google Scholar 

  136. Li J, Huang Q, Long X, Guo X, Sun X, Jin X, Li Z, Ren T, Yuan P, Huang X (2017) Mitochondrial elongation-mediated glucose metabolism reprogramming is essential for tumour cell survival during energy stress. Oncogene 36:4901–4912

    Article  CAS  PubMed  Google Scholar 

  137. Liu Z, Sun Y, Tan S, Liu L, Hu S, Huo H, Li M, Cui Q, Yu M (2016) Nutrient deprivation-related OXPHOS/glycolysis interconversion via HIF-1α/C-MYC pathway in U251 cells. Tumor Biol 37:6661–6671

    Article  CAS  Google Scholar 

  138. Antico Arciuch VG, Elguero ME, Poderoso JJ, Carreras MC (2012) Mitochondrial regulation of cell cycle and proliferation. Antioxid Redox Signal 16:1150–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Serasinghe MN, Wieder SY, Renault TT, Elkholi R, Asciolla JJ, Yao JL, Jabado O, Hoehn K, Kageyama Y, Sesaki H (2015) Mitochondrial division is requisite to RAS-induced transformation and targeted by oncogenic MAPK pathway inhibitors. Mol Cell 57:521–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Xie Q, Wu Q, Horbinski CM, Flavahan WA, Yang K, Zhou W, Dombrowski SM, Huang Z, Fang X, Shi Y (2015) Mitochondrial control by DRP1 in brain tumor initiating cells. Nature Neurosci 18:501

    Article  CAS  PubMed  Google Scholar 

  141. Gomes LC, Di Benedetto G, Scorrano L (2011) During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol 13:589–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Parker DJ, Iyer A, Shah S, Moran A, Hjelmeland AB, Basu MK, Liu R, Mitra K (2015) A new mitochondrial pool of cyclin E, regulated by Drp1, is linked to cell-density-dependent cell proliferation. J Cell Sci 128:4171–4182

    PubMed  PubMed Central  Google Scholar 

  143. Inoue-Yamauchi A, Oda H (2012) Depletion of mitochondrial fission factor DRP1 causes increased apoptosis in human colon cancer cells. Biochem Biophys Res Commun 421:81–85

    Article  CAS  PubMed  Google Scholar 

  144. Montessuit S, Somasekharan SP, Terrones O, Lucken-Ardjomande S, Herzig S, Schwarzenbacher R, Manstein DJ, Bossy-Wetzel E, Basañez G, Meda P (2010) Membrane remodeling induced by the dynamin-related protein Drp1 stimulates Bax oligomerization. Cell 142:889–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Bordt EA, Clerc P, Roelofs BA, Saladino AJ, Tretter L, Adam-Vizi V, Cherok E, Khalil A, Yadava N, Shealinna XG (2017) The putative Drp1 inhibitor mdivi-1 is a reversible mitochondrial complex I inhibitor that modulates reactive oxygen species. Dev Cell 40: 583–594. e586

  146. Breitzig MT, Alleyn MD, Lockey RF, Kolliputi N (2018) A mitochondrial delicacy: dynamin-related protein 1 and mitochondrial dynamics. Am J Physiol Cell Physiol 315:C80–C90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. DiMauro S, Hirano M (1998) Mitochondria and heart disease. Curr Opin Cardiol 13:190–197

    CAS  PubMed  Google Scholar 

  148. Poznyak AV, Ivanova EA, Sobenin IA, Yet S-F, Orekhov AN (2020) The role of mitochondria in cardiovascular diseases. Biology 9:137

    Article  CAS  PubMed Central  Google Scholar 

  149. Vásquez-Trincado C, García-Carvajal I, Pennanen C, Parra V, Hill JA, Rothermel BA, Lavandero S (2016) Mitochondrial dynamics, mitophagy and cardiovascular disease. J Physiol 594:509–525

    Article  PubMed  PubMed Central  Google Scholar 

  150. Piquereau J, Caffin F, Novotova M, Lemaire C, Veksler V, Garnier A, Ventura-Clapier R, Joubert F (2013) Mitochondrial dynamics in the adult cardiomyocytes: which roles for a highly specialized cell? Front Physiol 4:102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Jhun BS, Adaniya SM, Cypress MW, Yoon Y (2018) Adrenergic regulation of Drp1-driven mitochondrial fission in cardiac physio-pathology. Antioxidants 7:195

    Article  PubMed Central  Google Scholar 

  152. Morales PE, Arias-Durán C, Ávalos-Guajardo Y, Aedo G, Verdejo HE, Parra V, Lavandero S (2020) Emerging role of mitophagy in cardiovascular physiology and pathology. Mol Aspects Med 71:100822

  153. Kulek AR, Anzell A, Wider JM, Sanderson TH, Przyklenk K (2020) Mitochondrial quality control: role in cardiac models of lethal ischemia-reperfusion injury. Cells 9:214

    Article  CAS  PubMed Central  Google Scholar 

  154. Maneechote C, Palee S, Chattipakorn SC, Chattipakorn N (2017) Roles of mitochondrial dynamics modulators in cardiac ischaemia/reperfusion injury. J Cell Mol Med 21:2643–2653

    Article  PubMed  PubMed Central  Google Scholar 

  155. Ikeda Y, Shirakabe A, Maejima Y, Zhai P, Sciarretta S, Toli J, Nomura M, Mihara K, Egashira K, Ohishi M (2015) Endogenous Drp1 mediates mitochondrial autophagy and protects the heart against energy stress. Circ Res 116:264–278

    Article  CAS  PubMed  Google Scholar 

  156. Kageyama Y, Hoshijima M, Seo K, Bedja D, Sysa-Shah P, Andrabi SA, Chen W, Höke A, Dawson VL, Dawson TM (2014) Parkin-independent mitophagy requires D rp1 and maintains the integrity of mammalian heart and brain. EMBO J 33:2798–2813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Song M, Dorn GW II (2015) Mitoconfusion: noncanonical functioning of dynamism factors in static mitochondria of the heart. Cell Metab 21:195–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Shimizu Y, Lambert JP, Nicholson CK, Kim JJ, Wolfson DW, Cho HC, Husain A, Naqvi N, Chin L-S, Li L (2016) DJ-1 protects the heart against ischemia–reperfusion injury by regulating mitochondrial fission. J Mol Cell Cardiol 97:56–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Xu S, Wang P, Zhang H, Gong G, Cortes NG, Zhu W, Yoon Y, Tian R, Wang W (2016) CaMKII induces permeability transition through Drp1 phosphorylation during chronic β-AR stimulation. Nat Commun 7:1–13

    Article  Google Scholar 

  160. Haileselassie B, Mukherjee R, Joshi AU, Napier BA, Massis LM, Ostberg NP, Queliconi BB, Monack D, Bernstein D, Mochly-Rosen D (2019) Drp1/Fis1 interaction mediates mitochondrial dysfunction in septic cardiomyopathy. J Mol Cell Cardiol 130:160–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Hasan P, Saotome M, Ikoma T, Iguchi K, Kawasaki H, Iwashita T, Hayashi H, Maekawa Y (2018) Mitochondrial fission protein, dynamin-related protein 1, contributes to the promotion of hypertensive cardiac hypertrophy and fibrosis in Dahl-salt sensitive rats. J Mol Cell Cardiol 121:103–106

    Article  CAS  PubMed  Google Scholar 

  162. Bingol B, Sheng M (2016) Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond. Free Radic Biol Med 100:210–222

    Article  CAS  PubMed  Google Scholar 

  163. Losón OC, Song Z, Chen H, Chan DC (2013) Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol Biol Cell 24:659–667

    Article  PubMed  PubMed Central  Google Scholar 

  164. Solesio ME, Prime TA, Logan A, Murphy MP, del Mar A-J, Jordán J, Galindo MF (2013) The mitochondria-targeted anti-oxidant MitoQ reduces aspects of mitochondrial fission in the 6-OHDA cell model of Parkinson’s disease. Biochim Biophys Acta Mol Basis 1832:174–182

    Article  CAS  Google Scholar 

  165. Zhan L, Cao H, Wang G, Lyu Y, Sun X, An J, Wu Z, Huang Q, Liu B, Xing J (2016) Drp1-mediated mitochondrial fission promotes cell proliferation through crosstalk of p53 and NF-κB pathways in hepatocellular carcinoma. Oncotarget 7:65001

    Article  PubMed  PubMed Central  Google Scholar 

  166. Cereghetti G, Stangherlin A, De Brito OM, Chang C, Blackstone C, Bernardi P, Scorrano L (2008) Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. PNAS 105:15803–15808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Ko SH, Choi GE, Oh JY, Lee HJ, Kim JS, Chae CW, Choi D, Han HJ (2017) Succinate promotes stem cell migration through the GPR91-dependent regulation of DRP1-mediated mitochondrial fission. Sci Rep 7:1–14

    Article  Google Scholar 

  168. Figueroa-Romero C, Iñiguez-Lluhí JA, Stadler J, Chang C-R, Arnoult D, Keller PJ, Hong Y, Blackstone C, Feldman EL (2009) SUMOylation of the mitochondrial fission protein Drpl occurs at multiple nonconsensus sites within the B domain and is linked to its activity cycle. FASEB J 23:3917–3927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Karbowski M, Neutzner A, Youle RJ (2007) The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division. J Cell Biol 178:71–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all members of OBCAL for their inputs. Our sincere apologies to all our colleagues for any publication not being cited due to space limitation.

Funding

This work was supported by the Department of Biotechnology (DBT), Government of India (BT/PR25097/NER/95/1013/2017), and Top-up of start-up grant from IIT Guwahati.

Author information

Authors and Affiliations

Authors

Contributions

RB performed the literature search, wrote the manuscript, and prepared the figures. AM prepared the tables and wrote the manuscript. SN wrote edited and conceived the concept for the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shirisha Nagotu.

Ethics declarations

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, R., Mukherjee, A. & Nagotu, S. Mitochondrial dynamics and its impact on human health and diseases: inside the DRP1 blackbox. J Mol Med 100, 1–21 (2022). https://doi.org/10.1007/s00109-021-02150-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-021-02150-7

Keywords

Navigation