ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Identification of Novel Functional Differences in Monocyte Subsets Using Proteomic and Transcriptomic Methods

View Author Information
Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), 8A Biomedical Grove, Biopolis, Singapore 138648, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Bioinformatic Institutes (BII), ASTAR, 30 Biopolis Street, Biopolis, Singapore 138671, and Blood Services Group, Health Sciences Authority, 11 Outram Road, Singapore, 169078
* Corresponding author: Dr. Siew-Cheng Wong, Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), 8A, Biomedical Grove, #04-04, Immunos, Biopolis, Singapore 138648. Tel: +65 64070030. Fax: +65 64642057. E-mail: [email protected]
†Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR).
#These authors contributed equally.
‡Nanyang Technological University.
§Bioinformatic Institutes (BII), ASTAR.
∥Blood Services Group, Health Sciences Authority.
Cite this: J. Proteome Res. 2009, 8, 8, 4028–4038
Publication Date (Web):June 10, 2009
https://doi.org/10.1021/pr900364p
Copyright © 2009 American Chemical Society

    Article Views

    1926

    Altmetric

    -

    Citations

    75
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (5)»

    Abstract

    Abstract Image

    Human blood monocytes can be broadly divided into two distinct subsets: CD14+CD16− and CD14+/lowCD16+ subsets. Perturbation in their proportions in the blood has been observed in several disease conditions. Although numerous phenotypic and functional differences between the two subsets have already been described, the roles contributed by each subset during homeostasis or disease conditions are still largely unclear. To uncover novel differences to aid in elucidating their functions, we perform a global analysis of the two subsets utilizing both proteomics and transcriptomics approaches. From the proteomics and transcriptomics data, the expression of 613 genes by the two subsets is detected at both the protein and mRNA levels. These 613 genes are assessed for up-regulation in each subset at the protein and mRNA levels using a cutoff fold change of ≥|1.5| between subsets. Proteins and mRNAs up-regulated in each subset are then mapped in silico into biological functions. This mapping reveals copious functional differences between the subsets, many of which are seen at both protein and mRNA levels. For instance, expression of genes involved in FCY receptor-mediated phagocytosis are up-regulated in the CD14+/lowCD16+ subset, while those involved in antimicrobial function are up-regulated in the CD14+CD16− subset. We uncover novel functional differences between the monocyte subsets from differences in gene expression at the protein and mRNA levels. These functional differences would provide new insights into the different roles of the two monocyte subsets in regulating innate and adaptive immune responses.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Table S1: the primer sequences utilized in this study. Table S2: the 235 differentially expressed proteins between the CD16+ and CD16− monocyte subsets. Table S3: the 521 differentially expressed genes between the CD16+ and CD16− monocyte subsets. Table S4: correlation of identified membrane molecules with publications. Table S5: the 613 proteins and genes identified from both proteomics and transcriptomics. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 75 publications.

    1. Nataliya K. Tarasova, A. Jimmy Ytterberg, Karin Lundberg, Xing-Mei Zhang, Robert A. Harris, and Roman A. Zubarev . Proteomics Reveals a Role for Attachment in Monocyte Differentiation into Efficient Proinflammatory Macrophages. Journal of Proteome Research 2015, 14 (9) , 3940-3947. https://doi.org/10.1021/acs.jproteome.5b00659
    2. Theresa Kaempfer, Elena Duerst, Peter Gehrig, Bernd Roschitzki, Dorothea Rutishauser, Jonas Grossmann, Gabriele Schoedon, Florence Vallelian, and Dominik J. Schaer . Extracellular Hemoglobin Polarizes the Macrophage Proteome toward Hb-Clearance, Enhanced Antioxidant Capacity and Suppressed HLA Class 2 Expression. Journal of Proteome Research 2011, 10 (5) , 2397-2408. https://doi.org/10.1021/pr101230y
    3. Huoming Zhang, Yue Him Wong, Hao Wang, Zhangfan Chen, Shawn M. Arellano, Timothy Ravasi, and Pei-Yuan Qian . Quantitative Proteomics Identify Molecular Targets That Are Crucial in Larval Settlement and Metamorphosis of Bugula neritina. Journal of Proteome Research 2011, 10 (1) , 349-360. https://doi.org/10.1021/pr100817v
    4. Raghunanthan Jagannathan, Thodur Madapusi Balaji, Suresh Ranga Rao, Meshal Saleh Alosaimi, Shankargouda Patil, Yuliia Siurkel, Marco Cicciù, Giuseppe Minervini. Effect of non-surgical periodontal therapy on CD14 + CD16+ monocyte counts in peripheral blood samples: a clinical interventional study. BMC Oral Health 2024, 24 (1) https://doi.org/10.1186/s12903-023-03793-3
    5. Joanna Watral, Dorota Formanowicz, Bartłomiej Perek, Katarzyna Kostka-Jeziorny, Alina Podkowińska, Andrzej Tykarski, Magdalena Luczak. Comprehensive proteomics of monocytes indicates oxidative imbalance functionally related to inflammatory response in chronic kidney disease-related atherosclerosis. Frontiers in Molecular Biosciences 2024, 11 https://doi.org/10.3389/fmolb.2024.1229648
    6. Nicola Tamassia, Francisco Bianchetto-Aguilera, Sara Gasperini, Alessio Grimaldi, Claudia Montaldo, Federica Calzetti, Elisa Gardiman, Ilaria Signoretto, Monica Castellucci, Vincenzo Barnaba, Marco Tripodi, Marco Antonio Cassatella. The slan antigen identifies the prototypical non-classical CD16+-monocytes in human blood. Frontiers in Immunology 2023, 14 https://doi.org/10.3389/fimmu.2023.1287656
    7. Kathryn M. Musgrave, Jonathan Scott, Wezi Sendama, Aaron I. Gardner, Fiona Dewar, Cameron J. Lake, Henri M.H. Spronk, Rene van Oerle, Mayken Visser, Hugo ten Cate, Patrick Kesteven, Andrew Fuller, David McDonald, Carly Knill, Gillian Hulme, Andrew Filby, Stephen E. Wright, Alistair I. Roy, Marie-Hélène Ruchaud-Sparagano, A. John Simpson, Anthony J. Rostron. Tissue factor expression in monocyte subsets during human immunothrombosis, endotoxemia and sepsis. Thrombosis Research 2023, 228 , 10-20. https://doi.org/10.1016/j.thromres.2023.05.018
    8. Sophie L. Preuß, Stephanie Oehrl, Hao Zhang, Thomas Döbel, Ulrike Engel, Jennifer L. Young, Joachim P. Spatz, Knut Schäkel. Immune complex-induced haptokinesis in human non-classical monocytes. Frontiers in Immunology 2023, 14 https://doi.org/10.3389/fimmu.2023.1078241
    9. Natalia Rybtsova, Tatiana N. Berezina, Stanislav Rybtsov. Molecular Markers of Blood Cell Populations Can Help Estimate Aging of the Immune System. International Journal of Molecular Sciences 2023, 24 (6) , 5708. https://doi.org/10.3390/ijms24065708
    10. Arne Linhorst, Torben Lübke. The Human Ntn-Hydrolase Superfamily: Structure, Functions and Perspectives. Cells 2022, 11 (10) , 1592. https://doi.org/10.3390/cells11101592
    11. Małgorzata Stec, Michał Seweryn, Mariusz Korkosz, Zofia Guła, Rafał Szatanek, Kazimierz Węglarczyk, Magdalena Rutkowska-Zapała, Marzena Lenart, Marcin Czepiel, Jarosław Czyż, Jarosław Baran, Anna Gruca, Kamila Wojnar-Lasoń, Paweł Wołkow, Maciej Siedlar. Expression of VEGFA-mRNA in classical and MSX2-mRNA in non-classical monocytes in patients with spondyloarthritis is associated with peripheral arthritis. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-89037-2
    12. Huoming Zhang, Dalila Bensaddek. Narrow Precursor Mass Range for DIA–MS Enhances Protein Identification and Quantification in Arabidopsis. Life 2021, 11 (9) , 982. https://doi.org/10.3390/life11090982
    13. Ilenia Savinetti, Angela Papagna, Maria Foti. Human Monocytes Plasticity in Neurodegeneration. Biomedicines 2021, 9 (7) , 717. https://doi.org/10.3390/biomedicines9070717
    14. Benjamin J. Ravenhill, Lior Soday, Jack Houghton, Robin Antrobus, Michael P. Weekes. Comprehensive cell surface proteomics defines markers of classical, intermediate and non-classical monocytes. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-61356-w
    15. Jian Zhang, Meihua Zhang, Huijie Zhao, Xun Xu. Identification of proliferative diabetic retinopathy-associated genes on the protein–protein interaction network by using heat diffusion algorithm. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2020, 1866 (10) , 165794. https://doi.org/10.1016/j.bbadis.2020.165794
    16. Sarah Cormican, Matthew D. Griffin. Human Monocyte Subset Distinctions and Function: Insights From Gene Expression Analysis. Frontiers in Immunology 2020, 11 https://doi.org/10.3389/fimmu.2020.01070
    17. Phillip D. Fromm, Pablo A. Silveira, Jennifer L. Hsu, Michael S. Papadimitrious, Tsun-Ho Lo, Xinsheng Ju, Fiona Kupresanin, Adelina Romano, Wei-Hsun Hsu, Christian E. Bryant, Benjamin Kong, Edward Abadir, Ahmed Mekkawy, Helen M. McGuire, Barbara Fazekas de St. Groth, Ilona Cunningham, Elizabeth Newman, John Gibson, P. Mark Hogarth, Derek N. J. Hart, Georgina J. Clark. Distinguishing human peripheral blood CD16+ myeloid cells based on phenotypic characteristics. Journal of Leukocyte Biology 2020, 107 (2) , 323-339. https://doi.org/10.1002/JLB.5A1119-362RRR
    18. Herrero-Fernandez, Gomez-Bris, Somovilla-Crespo, Gonzalez-Granado. Immunobiology of Atherosclerosis: A Complex Net of Interactions. International Journal of Molecular Sciences 2019, 20 (21) , 5293. https://doi.org/10.3390/ijms20215293
    19. Birgit Fendl, René Weiss, Tanja Eichhorn, Andreas Spittler, Michael B. Fischer, Viktoria Weber. Storage of human whole blood, but not isolated monocytes, preserves the distribution of monocyte subsets. Biochemical and Biophysical Research Communications 2019, 517 (4) , 709-714. https://doi.org/10.1016/j.bbrc.2019.07.120
    20. Mariana Aguiar de Matos, Bruna Caroline Chaves Garcia, Dênia Vargas Vieira, Marcos Felipe Andrade de Oliveira, Karine Beatriz Costa, Paula Fernandes Aguiar, Flávio de Castro Magalhães, Gustavo Alvim Brito-Melo, Fabiano Trigueiro Amorim, Etel Rocha-Vieira. High-intensity interval training reduces monocyte activation in obese adults. Brain, Behavior, and Immunity 2019, 80 , 818-824. https://doi.org/10.1016/j.bbi.2019.05.030
    21. Siew-Min Ong, Karen Teng, Evan Newell, Hao Chen, Jinmiao Chen, Thomas Loy, Tsin-Wen Yeo, Katja Fink, Siew-Cheng Wong. A Novel, Five-Marker Alternative to CD16–CD14 Gating to Identify the Three Human Monocyte Subsets. Frontiers in Immunology 2019, 10 https://doi.org/10.3389/fimmu.2019.01761
    22. Lucie M. Turcotte, Qing Cao, Sarah A. Cooley, Julie Curtsinger, Shernan G. Holtan, Xianghua Luo, Ashely Yingst, Daniel J. Weisdorf, Bruce R. Blazar, Jeffrey S. Miller, John E. Wagner, Michael R. Verneris. Monocyte Subpopulation Recovery as Predictors of Hematopoietic Cell Transplantation Outcomes. Biology of Blood and Marrow Transplantation 2019, 25 (5) , 883-890. https://doi.org/10.1016/j.bbmt.2019.01.003
    23. Rashi Singhal, Deepak K. Rathore, Teena Bhakuni, Tulika Seth, Prasenjit Guchhait. Absence of Nonclassical Monocytes in Hemolytic Patients: Free Hb and NO-Mediated Mechanism. Journal of Immunology Research 2019, 2019 , 1-11. https://doi.org/10.1155/2019/1409383
    24. Pavithra Sampath, Kadar Moideen, Uma Devi Ranganathan, Ramalingam Bethunaickan. Monocyte Subsets: Phenotypes and Function in Tuberculosis Infection. Frontiers in Immunology 2018, 9 https://doi.org/10.3389/fimmu.2018.01726
    25. Stephanie A. Amici, Nicholas A. Young, Janiret Narvaez-Miranda, Kyle A. Jablonski, Jesus Arcos, Lucia Rosas, Tracey L. Papenfuss, Jordi B. Torrelles, Wael N. Jarjour, Mireia Guerau-de-Arellano. CD38 Is Robustly Induced in Human Macrophages and Monocytes in Inflammatory Conditions. Frontiers in Immunology 2018, 9 https://doi.org/10.3389/fimmu.2018.01593
    26. Jianxin Yang, Jacqueline Anholts, Ulrike Kolbe, Janine Stegehuis-Kamp, Frans Claas, Michael Eikmans. Calcium-Binding Proteins S100A8 and S100A9: Investigation of Their Immune Regulatory Effect in Myeloid Cells. International Journal of Molecular Sciences 2018, 19 (7) , 1833. https://doi.org/10.3390/ijms19071833
    27. Siew-Min Ong, Eva Hadadi, Truong-Minh Dang, Wei-Hseun Yeap, Crystal Tze-Ying Tan, Tze-Pin Ng, Anis Larbi, Siew-Cheng Wong. The pro-inflammatory phenotype of the human non-classical monocyte subset is attributed to senescence. Cell Death & Disease 2018, 9 (3) https://doi.org/10.1038/s41419-018-0327-1
    28. Víctor Segura, M. Valero, Laura Cantero, Javier Muñoz, Eduardo Zarzuela, Fernando García, Kerman Aloria, Javier Beaskoetxea, Jesús Arizmendi, Rosana Navajas, Alberto Paradela, Paula Díez, Rosa Dégano, Manuel Fuentes, Alberto Orfao, Andrés García Montero, Alba Garin-Muga, Fernando Corrales, Manuel Sánchez del Pino. In-Depth Proteomic Characterization of Classical and Non-Classical Monocyte Subsets. Proteomes 2018, 6 (1) , 8. https://doi.org/10.3390/proteomes6010008
    29. Farhan Shahid, Gregory Y.H. Lip, Eduard Shantsila. Role of Monocytes in Heart Failure and Atrial Fibrillation. Journal of the American Heart Association 2018, 7 (3) https://doi.org/10.1161/JAHA.117.007849
    30. Mohammed Shamim Rahman, Andrew J. Murphy, Kevin J. Woollard. Effects of dyslipidaemia on monocyte production and function in cardiovascular disease. Nature Reviews Cardiology 2017, 14 (7) , 387-400. https://doi.org/10.1038/nrcardio.2017.34
    31. Katherine J Brempelis, Ian N Crispe. Infiltrating monocytes in liver injury and repair. Clinical & Translational Immunology 2016, 5 (11) https://doi.org/10.1038/cti.2016.62
    32. Gaëlle Picarda, Coraline Chéneau, Jean-Marc Humbert, Gaëlle Bériou, Paul Pilet, Jérôme Martin, Franck Duteille, Pierre Perrot, Frédérique Bellier-Waast, Michèle Heslan, Fabienne Haspot, Fabien Guillon, Regis Josien, Franck Albert Halary. Functional Langerinhigh-Expressing Langerhans-like Cells Can Arise from CD14highCD16− Human Blood Monocytes in Serum-Free Condition. The Journal of Immunology 2016, 196 (9) , 3716-3728. https://doi.org/10.4049/jimmunol.1501304
    33. Ratnadeep Mukherjee, Pijus Kanti Barman, Pravat Kumar Thatoi, Rina Tripathy, Bidyut Kumar Das, Balachandran Ravindran. Non-Classical monocytes display inflammatory features: Validation in Sepsis and Systemic Lupus Erythematous. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep13886
    34. Truong‐Minh Dang, Wing‐Cheong Wong, Siew‐Min Ong, Peng Li, Josephine Lum, Jinmiao Chen, Michael Poidinger, Francesca Zolezzi, Siew‐Cheng Wong. Micro RNA expression profiling of human blood monocyte subsets highlights functional differences. Immunology 2015, 145 (3) , 404-416. https://doi.org/10.1111/imm.12456
    35. Estelle F. Devêvre, Mariana Renovato-Martins, Karine Clément, Catherine Sautès-Fridman, Isabelle Cremer, Christine Poitou. Profiling of the Three Circulating Monocyte Subpopulations in Human Obesity. The Journal of Immunology 2015, 194 (8) , 3917-3923. https://doi.org/10.4049/jimmunol.1402655
    36. Leon Grayfer, Eva-Stina Edholm, Francisco De Jesús Andino, V. Gregory Chinchar, Jacques Robert. Ranavirus Host Immunity and Immune Evasion. 2015, 141-170. https://doi.org/10.1007/978-3-319-13755-1_6
    37. Roshanak Tolouei Semnani, Vanessa Moore, Sasisekhar Bennuru, Renee McDonald-Fleming, Sundar Ganesan, Rachel Cotton, Rajamanickam Anuradha, Subash Babu, Thomas B. Nutman, . Human Monocyte Subsets at Homeostasis and Their Perturbation in Numbers and Function in Filarial Infection. Infection and Immunity 2014, 82 (11) , 4438-4446. https://doi.org/10.1128/IAI.01973-14
    38. Paola Italiani, Diana Boraschi. From Monocytes to M1/M2 Macrophages: Phenotypical vs. Functional Differentiation. Frontiers in Immunology 2014, 5 https://doi.org/10.3389/fimmu.2014.00514
    39. Loems Ziegler-Heitbrock. Blood Monocytes and Their Subsets in Health and Disease. 2014, 3-36. https://doi.org/10.1007/978-1-4939-1311-4_1
    40. Tatyana Veremeyko, Shafiuddin Siddiqui, Ilya Sotnikov, Amanda Yung, Eugene D. Ponomarev, . IL-4/IL-13-Dependent and Independent Expression of miR-124 and Its Contribution to M2 Phenotype of Monocytic Cells in Normal Conditions and during Allergic Inflammation. PLoS ONE 2013, 8 (12) , e81774. https://doi.org/10.1371/journal.pone.0081774
    41. Laurence Josset, Jennifer Tisoncik-Go, Michael G. Katze. Moving H5N1 studies into the era of systems biology. Virus Research 2013, 178 (1) , 151-167. https://doi.org/10.1016/j.virusres.2013.02.011
    42. Lynsey Fairbairn, Ronan Kapetanovic, Dario Beraldi, David P. Sester, Chris K. Tuggle, Alan L. Archibald, David A. Hume. Comparative Analysis of Monocyte Subsets in the Pig. The Journal of Immunology 2013, 190 (12) , 6389-6396. https://doi.org/10.4049/jimmunol.1300365
    43. Laura J. Appleby, Norman Nausch, Nicholas Midzi, Takafira Mduluza, Judith E. Allen, Francisca Mutapi. Sources of heterogeneity in human monocyte subsets. Immunology Letters 2013, 152 (1) , 32-41. https://doi.org/10.1016/j.imlet.2013.03.004
    44. Larissa Milke, Kathrin Schulz, Andreas Weigert, Weixiao Sha, Tobias Schmid, Bernhard Brüne. Depletion of tristetraprolin in breast cancer cells increases interleukin-16 expression and promotes tumor infiltration with monocytes/macrophages. Carcinogenesis 2013, 34 (4) , 850-857. https://doi.org/10.1093/carcin/bgs387
    45. Yang Wang, Chong Liu, Ying Fang, Xiaoli Liu, Wentao Li, Shuqing Liu, Yingyu Liu, Yuxi Liu, Catherine Charreyre, Jean-Christophe Audonnet, Pin Chen, Qigai He. Transcription analysis on response of porcine alveolar macrophages to Haemophilus parasuis. BMC Genomics 2012, 13 (1) https://doi.org/10.1186/1471-2164-13-68
    46. Yoshimi Enose-Akahata, Eiji Matsuura, Yuetsu Tanaka, Unsong Oh, Steven Jacobson. Minocycline modulates antigen-specific CTL activity through inactivation of mononuclear phagocytes in patients with HTLV-I associated neurologic disease. Retrovirology 2012, 9 (1) https://doi.org/10.1186/1742-4690-9-16
    47. Kok Loon Wong, Wei Hseun Yeap, June Jing Yi Tai, Siew Min Ong, Truong Minh Dang, Siew Cheng Wong. The three human monocyte subsets: implications for health and disease. Immunologic Research 2012, 53 (1-3) , 41-57. https://doi.org/10.1007/s12026-012-8297-3
    48. Sophie Perrin, Jonathan Cremer, Patrice Roll, Olivia Faucher, Amélie Ménard, Jacques Reynes, Pierre Dellamonica, Alissa Naqvi, Joëlle Micallef, Elisabeth Jouve, Catherine Tamalet, Caroline Solas, Christel Pissier, Isabelle Arnoux, Corine Nicolino-Brunet, Léon Espinosa, Nicolas Lévy, Elise Kaspi, Andrée Robaglia-Schlupp, Isabelle Poizot-Martin, Pierre Cau, . HIV-1 Infection and First Line ART Induced Differential Responses in Mitochondria from Blood Lymphocytes and Monocytes: The ANRS EP45 “Aging” Study. PLoS ONE 2012, 7 (7) , e41129. https://doi.org/10.1371/journal.pone.0041129
    49. Leon Grayfer, Francisco De Jesús Andino, Guangchun Chen, Gregory V. Chinchar, Jacques Robert. Immune Evasion Strategies of Ranaviruses and Innate Immune Responses to These Emerging Pathogens. Viruses 2012, 4 (7) , 1075-1092. https://doi.org/10.3390/v4071075
    50. Rocío Ramos-Medina, Angel L. Corbí, Silvia Sánchez-Ramón. Inmunoglobulinas intravenosas: llave inmunomoduladora del sistema inmunológico. Medicina Clínica 2012, 139 (3) , 112-117. https://doi.org/10.1016/j.medcli.2011.11.022
    51. Irina N. Shalova, Tasneem Kajiji, Jyue Yuan Lim, Vanesa Gómez-Piña, Irene Fernández-Ruíz, Francisco Arnalich, Philip Tsau Choong Iau, Eduardo López-Collazo, Siew-Cheng Wong, Subhra K. Biswas. CD16 Regulates TRIF-Dependent TLR4 Response in Human Monocytes and Their Subsets. The Journal of Immunology 2012, 188 (8) , 3584-3593. https://doi.org/10.4049/jimmunol.1100244
    52. Marion Frankenberger, Thomas P.J. Hofer, Ayman Marei, Farshid Dayyani, Stefan Schewe, Christine Strasser, Asaad Aldraihim, Franz Stanzel, Roland Lang, Reinhard Hoffmann, Olivia Prazeres da Costa, Thorsten Buch, Loems Ziegler‐Heitbrock. Transcript profiling of CD 16‐positive monocytes reveals a unique molecular fingerprint. European Journal of Immunology 2012, 42 (4) , 957-974. https://doi.org/10.1002/eji.201141907
    53. Annalisa Castagna, Rita Polati, Alessandra Maria Bossi, Domenico Girelli. Monocyte/macrophage proteomics: recent findings and biomedical applications. Expert Review of Proteomics 2012, 9 (2) , 201-215. https://doi.org/10.1586/epr.12.11
    54. Claudia Macaubas, Khoa D. Nguyen, Ariana Peck, Julia Buckingham, Chetan Deshpande, Elizabeth Wong, Heather C. Alexander, Sheng-Yung Chang, Ann Begovich, Yue Sun, Jane L. Park, Kuang-Hung Pan, Richard Lin, Chih-Jian Lih, Erin M. Augustine, Carolyn Phillips, Andreas V. Hadjinicolaou, Tzielan Lee, Elizabeth D. Mellins. Alternative activation in systemic juvenile idiopathic arthritis monocytes. Clinical Immunology 2012, 142 (3) , 362-372. https://doi.org/10.1016/j.clim.2011.12.008
    55. Florence Allantaz, Donavan T. Cheng, Tobias Bergauer, Palanikumar Ravindran, Michel F. Rossier, Martin Ebeling, Laura Badi, Bernhard Reis, Hans Bitter, Matilde D'Asaro, Alberto Chiappe, Sriram Sridhar, Gonzalo Duran Pacheco, Michael E. Burczynski, Denis Hochstrasser, Jacky Vonderscher, Thomas Matthes, . Expression Profiling of Human Immune Cell Subsets Identifies miRNA-mRNA Regulatory Relationships Correlated with Cell Type Specific Expression. PLoS ONE 2012, 7 (1) , e29979. https://doi.org/10.1371/journal.pone.0029979
    56. Evangelia Pardali, Johannes Waltenberger. Monocyte function and trafficking in cardiovascular disease. Thrombosis and Haemostasis 2012, 108 (11) , 804-811. https://doi.org/10.1160/TH12-04-0276
    57. Adam M. Zawada, Kyrill S. Rogacev, Björn Rotter, Peter Winter, Rolf-R. Marell, Danilo Fliser, Gunnar H. Heine. SuperSAGE evidence for CD14++CD16+ monocytes as a third monocyte subset. Blood 2011, 118 (12) , e50-e61. https://doi.org/10.1182/blood-2011-01-326827
    58. Diana Castaño, Luis F. García, Mauricio Rojas. Increased frequency and cell death of CD16+ monocytes with Mycobacterium tuberculosis infection. Tuberculosis 2011, 91 (5) , 348-360. https://doi.org/10.1016/j.tube.2011.04.002
    59. Kok Loon Wong, June Jing-Yi Tai, Wing-Cheong Wong, Hao Han, Xiaohui Sem, Wei-Hseun Yeap, Philippe Kourilsky, Siew-Cheng Wong. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood 2011, 118 (5) , e16-e31. https://doi.org/10.1182/blood-2010-12-326355
    60. Maciej Siedlar, Magdalena Strach, Karolina Bukowska-Strakova, Marzena Lenart, Anna Szaflarska, Kazimierz Węglarczyk, Magdalena Rutkowska, Monika Baj-Krzyworzeka, Anna Pituch-Noworolska, Danuta Kowalczyk, Tomasz Grodzicki, Loems Ziegler-Heitbrock, Marek Zembala. Preparations of intravenous immunoglobulins diminish the number and proinflammatory response of CD14+CD16++ monocytes in common variable immunodeficiency (CVID) patients. Clinical Immunology 2011, 139 (2) , 122-132. https://doi.org/10.1016/j.clim.2011.01.002
    61. Ebba Sohlberg, Shanie Saghafian‐Hedengren, Katarina Bremme, Eva Sverremark‐Ekström. Cord blood monocyte subsets are similar to adult and show potent peptidoglycan‐stimulated cytokine responses. Immunology 2011, 133 (1) , 41-50. https://doi.org/10.1111/j.1365-2567.2011.03407.x
    62. Frauke S. Czepluch, Servé Olieslagers, Ruud van Hulten, Stefan A. Vöö, Johannes Waltenberger. VEGF-A-induced chemotaxis of CD16+ monocytes is decreased secondary to lower VEGFR-1 expression. Atherosclerosis 2011, 215 (2) , 331-338. https://doi.org/10.1016/j.atherosclerosis.2011.01.004
    63. Eleonora Piruzian, Sergey Bruskin, Alex Ishkin, Rustam Abdeev, Sergey Moshkovskii, Stanislav Melnik, Yuri Nikolsky, Tatiana Nikolskaya. Integrated network analysis of transcriptomic and proteomic data in psoriasis. BMC Systems Biology 2010, 4 (1) https://doi.org/10.1186/1752-0509-4-41
    64. C Zhao, Y-C Tan, W-C Wong, X Sem, H Zhang, H Han, S-M Ong, K-L Wong, W-H Yeap, S-K Sze, P Kourilsky, S-C Wong. The CD14+/lowCD16+ monocyte subset is more susceptible to spontaneous and oxidant-induced apoptosis than the CD14+CD16− subset. Cell Death & Disease 2010, 1 (11) , e95-e95. https://doi.org/10.1038/cddis.2010.69
    65. Richard Ouedraogo, Christophe Flaudrops, Amira Ben Amara, Christian Capo, Didier Raoult, Jean-Louis Mege, . Global Analysis of Circulating Immune Cells by Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry. PLoS ONE 2010, 5 (10) , e13691. https://doi.org/10.1371/journal.pone.0013691
    66. Jérôme Cros, Nicolas Cagnard, Kevin Woollard, Natacha Patey, Shen-Ying Zhang, Brigitte Senechal, Anne Puel, Subhra K. Biswas, Despina Moshous, Capucine Picard, Jean-Philippe Jais, David D'Cruz, Jean-Laurent Casanova, Céline Trouillet, Fréderic Geissmann. Human CD14dim Monocytes Patrol and Sense Nucleic Acids and Viruses via TLR7 and TLR8 Receptors. Immunity 2010, 33 (3) , 375-386. https://doi.org/10.1016/j.immuni.2010.08.012
    67. Hao Wang, Huoming Zhang, Yue Him Wong, Christian Voolstra, Timothy Ravasi, Vladimir B. Bajic, Pei‐Yuan Qian. Rapid transcriptome and proteome profiling of a non‐model marine invertebrate, Bugula neritina. PROTEOMICS 2010, 10 (16) , 2972-2981. https://doi.org/10.1002/pmic.201000056
    68. Huoming Zhang, Changqing Zhao, Xin Li, Yi Zhu, Chee Sian Gan, Yong Wang, Timothy Ravasi, Pei‐Yuan Qian, Siew Cheng Wong, Siu Kwan Sze. Study of monocyte membrane proteome perturbation during lipopolysaccharide‐induced tolerance using iTRAQ‐based quantitative proteomic approach. PROTEOMICS 2010, 10 (15) , 2780-2789. https://doi.org/10.1002/pmic.201000066
    69. Kyrill S. Rogacev, Gunnar H. Heine. Human monocyte heterogeneity–a nephrological perspective. Néphrologie & Thérapeutique 2010, 6 (4) , 219-225. https://doi.org/10.1016/j.nephro.2010.01.008
    70. Oliver Soehnlein, Lennart Lindbom. Phagocyte partnership during the onset and resolution of inflammation. Nature Reviews Immunology 2010, 10 (6) , 427-439. https://doi.org/10.1038/nri2779
    71. Diana Castaño, Mauricio Rojas. Alteraciones en fagocitos mononucleares: un viraje al significado de la muerte de monocitos y macrófagos en la inmunopatogénesis de la tuberculosis. Biomédica 2010, 30 (0) , 45. https://doi.org/10.7705/biomedica.v30i0.823
    72. Suzanne M Crowe, Loems Ziegler-Heitbrock. Editorial: Monocyte subpopulations and lentiviral infection. Journal of Leukocyte Biology 2010, 87 (4) , 541-543. https://doi.org/10.1189/jlb.0909637
    73. Molly A. Ingersoll, Rainer Spanbroek, Claudio Lottaz, Emmanuel L. Gautier, Marion Frankenberger, Reinhard Hoffmann, Roland Lang, Muzlifah Haniffa, Matthew Collin, Frank Tacke, Andreas J. R. Habenicht, Loems Ziegler-Heitbrock, Gwendalyn J. Randolph. Comparison of gene expression profiles between human and mouse monocyte subsets. Blood 2010, 115 (3) , e10-e19. https://doi.org/10.1182/blood-2009-07-235028
    74. Alessandra Mortellaro, Siew Cheng Wong, Jan Fric, Paola Ricciardi-Castagnoli. The need to identify myeloid dendritic cell progenitors in human blood. Trends in Immunology 2010, 31 (1) , 18-23. https://doi.org/10.1016/j.it.2009.09.010
    75. Emmanuel L. Gautier, Claudia Jakubzick, Gwendalyn J. Randolph. Regulation of the Migration and Survival of Monocyte Subsets by Chemokine Receptors and Its Relevance to Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology 2009, 29 (10) , 1412-1418. https://doi.org/10.1161/ATVBAHA.108.180505

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect