Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Functional link between ataxia-telangiectasia and Nijmegen breakage syndrome gene products

Abstract

Ataxia-telangiectasia (A-T) and Nijmegen breakage syndrome (NBS) are recessive genetic disorders with susceptibility to cancer and similar cellular phenotypes1. The protein product of the gene responsible for A-T, designated ATM, is a member of a family of kinases characterized by a carboxy-terminal phosphatidylinositol 3-kinase-like domain2,3. The NBS1 protein is specifically mutated in patients with Nijmegen breakage syndrome and forms a complex with the DNA repair proteins Rad50 and Mre114,5,6,7. Here we show that phosphorylation of NBS1, induced by ionizing radiation, requires catalytically active ATM. Complexes containing ATM and NBS1 exist in vivo in both untreated cells and cells treated with ionizing radiation. We have identified two residues of NBS1, Ser 278 and Ser 343 that are phosphorylated in vitro by ATM and whose modification in vivo is essential for the cellular response to DNA damage. This response includes S-phase checkpoint activation, formation of the NBS1/Mre11/Rad50 nuclear foci and rescue of hypersensitivity to ionizing radiation. Together, these results demonstrate a biochemical link between cell-cycle checkpoints activated by DNA damage and DNA repair in two genetic diseases with overlapping phenotypes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ATM is required for DNA damage-induced phosphorylation of NBS1.
Figure 2: Interaction between ATM and NBS1, in vivo and in vitro phosphorylation of NBS1 by ATM.
Figure 3: Expression of the full-length wild-type and NBS1 mutant proteins lacking phosphorylation site(s) in NBS1-LBI cells.
Figure 4: Radioresistant DNA synthesis (RDS) and sensitivity to ionizing radiation by expression of wild-type and NBS1 mutants lacking serine phosphorylation site(s).

Similar content being viewed by others

References

  1. Shiloh, Y. Ataxia-telangiectasia and the Nijmegen breakage syndrome: related disorders but genes apart. Annu. Rev. Genet. 31, 635 –662 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Gatti, R. A. et al. Localization of an ataxia-telangiectasia gene to chromosome 11q22–23. Nature 336, 577– 580 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Savitsky, K. et al. The complete sequence of the coding region of the ATM gene reveals similarity to cell cycle regulators in different species. Hum. Mol. Genet. 4, 2025–2032 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Carney, J. P. et al. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93, 477–486 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Varon, R. et al. Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 93, 467–476 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Trujillo, K. M., Yuan, S. S., Lee, E. Y. & Sung, P. Nuclease activities in a complex of human recombination and DNA repair factors Rad50, Mre11, and p95. J. Biol. Chem. 273, 21447– 21450 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Paull, T. T. & Gellert, M. Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex. Genes Dev. 13, 1276–1288 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Elledge, S. J. Cell cycle checkpoints: preventing an identity crisis. Science 274, 1664–1672 ( 1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Weinert, T. DNA damage and checkpoint pathways: molecular anatomy and interactions with repair. Cell 94, 555–558 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Caspari, T. & Carr, A. M. DNA structure checkpoint pathways in Schizosaccharomyces pombe. Biochimie 81, 173–181 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Dasika, G. K. et al. DNA damage-induced cell cycle checkpoints and DNA strand break repair in development and tumorigenesis. Oncogene 18 , 7883–7899 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Banin, S. et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281, 1674–1677 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Canman, C. E. et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281, 1677– 1679 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Cortez, D., Wang, Y., Qin, J. & Elledge, S. J. Requirement of ATM-dependent phosphorylation of brac1 in the DNA damage response to double-strand breaks. Science 286, 1162– 1166 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Matsuoka, S., Huang, M. & Elledge, S. J. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 282, 1893– 1897 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Yuan, Z. M. et al. Regulation of Rad51 function by c-Abl in response to DNA damage. J. Biol. Chem. 273, 3799– 3802 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Chen, G. et al. Radiation-induced assembly of Rad51 and Rad52 recombination complex requires ATM and c-Abl. J. Biol. Chem. 274, 12748–12752 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Haber, J. E. The many interfaces of Mre11. Cell 95, 583 –586 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Ziv, Y. et al. Recombinant ATM protein complements the cellular A-T phenotype. Oncogene 15, 159–167 (1998).

    Article  Google Scholar 

  20. Canman, C. E., Wolff, A. C., Chen, C. Y., Fornace, A. J. Jr & Kastan, M. B. The p53-dependent G1 cell cycle checkpoint pathway and ataxia-telangiectasia. Cancer Res. 54, 5054–5058 ( 1994).

    CAS  PubMed  Google Scholar 

  21. Tibbetts, R. S. et al. A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev. 13, 152– 157 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Baskaran, R. et al. Ataxia telangiectasia mutant protein activates c-Abl tyrosine kinase in response to ionizing radiation. Nature 387 , 516–519 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Kraakman-van der Zwet, M. et al. Immortalization and characterization of Nijmegen Breakage syndrome fibroblasts. Mutat. Res. 434, 17 –27 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Young, B. R. & Painter, R. B. Radioresistant DNA synthesis and human genetic diseases. Hum. Genet. 82, 113–117 (1989).

    Article  CAS  PubMed  Google Scholar 

  25. Maser, R. S., Monsen, K. J., Nelms, B. E. & Petrini, J. H. hMre11 and hRad50 nuclear foci are induced during the normal cellular response to DNA double-strand breaks. Mol. Cell. Biol. 17, 6087–6096 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhong, Q. et al. Association of BRCA1 with the hRad50–hMre11-p95 complex and the DNA damage response. Science 285, 747–750 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Nelms, B. E., Maser, R. S., MacKay, J. F., Lagally, M. G. & Petrini, J. H. In situ visualization of DNA double-strand break repair in human fibroblasts. Science 280, 590–592 ( 1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Ziv, Y., Banin, S., Lim, D.-S., Kastan, M. B. & Shiloh, Y. in Expression and Assay of Recombinant ATM Kinase (ed. Keyse, S.) (Humana, New Jersey, 1999).

    Google Scholar 

  29. Chen, P. L., Scully, P., Shew, J. Y., Wang, J. Y. & Lee, W. H. Phosphorylation of the retinoblastoma gene product is modulated during the cell cycle and cellular differentiation. Cell 58, 1193–1198 ( 1989).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank W.-H. Lee, A. Tomkinson and members of their laboratories for discussion; A. Tomkinson, T. Boyer and P. Sung for critical reading; S.-Y. Lee for assistance on the manuscript; M. Chen for site-specific mutagenesis of ATM; Q. Du for the initial studies of ATM kinase; L. Zheng for technical advice; and S. Deb for the full-length human p53 cDNA. E.L. is supported by grants from NIH NINDS, Texas Advanced Research/Advanced Technology Program and NCI P01. S.Z. is supported by a DOD training grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Y.-H. P. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, S., Weng, YC., Yuan, SS. et al. Functional link between ataxia-telangiectasia and Nijmegen breakage syndrome gene products. Nature 405, 473–477 (2000). https://doi.org/10.1038/35013083

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35013083

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing