Skip to main content

MicroRNomics of Diabetic Cardiomyopathy

  • Chapter
  • First Online:
Diabetic Cardiomyopathy

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 9))

Abstract

MicroRNAs (miRNAs) are a novel class of noncoding, conserved, tiny (19–24 nt) RNAs that regulate gene expression either by RNA interference (RNAi), where they target 3′-UTR and degrade mRNA or repress translation, or by RNA activation (RNAa), where they target promoter elements at 5′-UTR and induce gene transcription. They have emerged as a therapeutic target for diabetes and cardiovascular diseases because each miRNA has several targets that allows it to make a layer of regulatory network. Diabetes is recognized as a multifactorial metabolic disease that increases the chances of heart failure and exacerbates mortality. MiRNAs regulates insulin production, beta-cell differentiation, cardiac hypertrophy, fibrosis, and rhythm, and thereby plays a crucial role in cardiac remodeling in diabetes. Differential expression of circulatory miRNAs has potential as a biomarker for heart failure in diabetes. It is documented that miRNAs regulate inflammation, epigenetic modifications, and autophagy and are altered by matrix metalloproteinase 9, homocysteine, and exercise, which are associated with diabetic cardiomyopathy. This chapter embodies the differentially expressed miRNAs in diabetic hearts, their plausible causes of deregulation, and the therapeutic potential of miRNAs in ameliorating diabetic cardiomyopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Tyagi AC, Sen U, Mishra PK (2011) Synergy of microRNA and stem cell: a novel therapeutic approach for diabetes mellitus and cardiovascular diseases. Curr Diabetes Rev 7:367–376

    Article  CAS  PubMed  Google Scholar 

  3. Huang V, Li LC (2012) miRNA goes nuclear. RNA Biol 9:269–273

    Article  CAS  PubMed  Google Scholar 

  4. Liao JY, Ma LM, Guo YH, Zhang YC et al (2010) Deep sequencing of human nuclear and cytoplasmic small RNAs reveals an unexpectedly complex subcellular distribution of miRNAs and tRNA 3′ trailers. PLoS One 5:e10563

    Article  PubMed Central  PubMed  Google Scholar 

  5. Huang V, Place RF, Portnoy V, Wang J et al (2012) Upregulation of cyclin B1 by miRNA and its implications in cancer. Nucleic Acids Res 40:1695–1707

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Place RF, Li LC, Pookot D, Noonan EJ et al (2008) MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci USA 105:1608–1613

    Article  CAS  PubMed  Google Scholar 

  7. Younger ST, Corey DR (2011) Transcriptional gene silencing in mammalian cells by miRNA mimics that target gene promoters. Nucleic Acids Res 39:5682–5691

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Lytle JR, Yario TA, Steitz JA (2007) Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc Natl Acad Sci USA 104:9667–9672

    Article  CAS  PubMed  Google Scholar 

  9. Younger ST, Corey DR (2011) Transcriptional regulation by miRNA mimics that target sequences downstream of gene termini. Mol Biosyst 7:2383–2388

    Article  CAS  PubMed  Google Scholar 

  10. Berezikov E, Chung WJ, Willis J, Cuppen E et al (2007) Mammalian mirtron genes. Mol Cell 28:328–336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  CAS  PubMed  Google Scholar 

  12. Asrih M, Steffens S (2013) Emerging role of epigenetics and miRNA in diabetic cardiomyopathy. Cardiovasc Pathol 22:117–125

    Article  CAS  PubMed  Google Scholar 

  13. Chavali V, Tyagi SC, Mishra PK (2013) Predictors and prevention of diabetic cardiomyopathy. Diabetes Metab Syndr Obes 6:151–160

    PubMed Central  PubMed  Google Scholar 

  14. Tijsen AJ, Pinto YM, Creemers EE (2012) Circulating microRNAs as diagnostic biomarkers for cardiovascular diseases. Am J Physiol Heart Circ Physiol 303:H1085–H1095

    Article  CAS  PubMed  Google Scholar 

  15. Latronico MV, Condorelli G (2011) MicroRNAs in hypertrophy and heart failure. Exp Biol Med (Maywood) 236:125–131

    Article  CAS  Google Scholar 

  16. Port JD, Sucharov C (2010) Role of microRNAs in cardiovascular disease: therapeutic challenges and potentials. J Cardiovasc Pharmacol 56:444–453

    Article  CAS  PubMed  Google Scholar 

  17. Topkara VK, Mann DL (2011) Role of microRNAs in cardiac remodeling and heart failure. Cardiovasc Drugs Ther 25:171–182

    Article  CAS  PubMed  Google Scholar 

  18. Mishra PK, Tyagi N, Kumar M, Tyagi SC (2009) MicroRNAs as a therapeutic target for cardiovascular diseases. J Cell Mol Med 13:778–789

    Article  CAS  PubMed  Google Scholar 

  19. Montgomery RL, Hullinger TG, Semus HM, Dickinson BA et al (2011) Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure. Circulation 124:1537–1547

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Sun LL, Jiang BG, Li WT, Zou JJ et al (2011) MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression. Diabetes Res Clin Pract 91:94–100

    Article  CAS  PubMed  Google Scholar 

  21. Tang X, Muniappan L, Tang G, Ozcan S (2009) Identification of glucose-regulated miRNAs from pancreatic beta cells reveals a role for miR-30d in insulin transcription. RNA 15:287–293

    Article  CAS  PubMed  Google Scholar 

  22. Chavali V, Tyagi SC, Mishra PK (2013) Differential expression of dicer, miRNAs, and inflammatory markers in diabetic Ins2+/- Akita hearts. Cell Biochem Biophys. June 15, Epub ahead of print

    Google Scholar 

  23. He A, Zhu L, Gupta N, Chang Y et al (2007) Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes. Mol Endocrinol 21:2785–2794

    Article  CAS  PubMed  Google Scholar 

  24. Caporali A, Meloni M, Vollenkle C, Bonci D et al (2011) Deregulation of microRNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia. Circulation 123:282–291

    Article  CAS  PubMed  Google Scholar 

  25. Li Y, Song YH, Li F, Yang T et al (2009) MicroRNA-221 regulates high glucose-induced endothelial dysfunction. Biochem Biophys Res Commun 381:81–83

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Lu H, Buchan RJ, Cook SA (2010) MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism. Cardiovasc Res 86:410–420

    Article  CAS  PubMed  Google Scholar 

  27. Shan ZX, Lin QX, Deng CY, Zhu JN et al (2010) miR-1/miR-206 regulate Hsp60 expression contributing to glucose-mediated apoptosis in cardiomyocytes. FEBS Lett 584:3592–3600

    Article  CAS  PubMed  Google Scholar 

  28. Wang XH, Qian RZ, Zhang W, Chen SF (2009) MicroRNA-320 expression in myocardial microvascular endothelial cells and its relationship with insulin-like growth factor-1 in type 2 diabetic rats. Clin Exp Pharmacol Physiol 36:181–188

    Article  PubMed  Google Scholar 

  29. Chavali V, Tyagi SC, Mishra PK (2012) MicroRNA-133a regulates DNA methylation in diabetic cardiomyocytes. Biochem Biophys Res Commun 425:668–672

    Article  CAS  PubMed  Google Scholar 

  30. Glass C, Singla DK (2011) MicroRNA-1 transfected embryonic stem cells enhance cardiac myocyte differentiation and inhibit apoptosis by modulating the PTEN/Akt pathway in the infarcted heart. Am J Physiol Heart Circ Physiol 301:H2038–H2049

    Article  CAS  PubMed  Google Scholar 

  31. Liu C, Teng ZQ, McQuate AL, Jobe EM et al (2013) An epigenetic feedback regulatory loop involving microRNA-195 and MBD1 governs neural stem cell differentiation. PLoS One 8:e51436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Vinas JL, Ventayol M, Brune B, Jung M et al (2013) miRNA let-7e modulates the Wnt pathway and early nephrogenic markers in mouse embryonic stem cell differentiation. PLoS One 8:e60937

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Wang Y, Du L, Li X, Zhang S et al (2011) Functional homogeneity in microRNA target heterogeneity: a new sight into human microRNomics. OMICS 15:25–35

    Article  CAS  PubMed  Google Scholar 

  34. Zhang C (2008) MicroRNomics: a newly emerging approach for disease biology. Physiol Genomics 33:139–147

    Article  PubMed  Google Scholar 

  35. van Rooij E, Olson EN (2007) MicroRNAs: powerful new regulators of heart disease and provocative therapeutic targets. J Clin Invest 117:2369–2376

    Article  PubMed Central  PubMed  Google Scholar 

  36. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610

    CAS  PubMed  Google Scholar 

  37. Macfarlane LA, Murphy PR (2010) MicroRNA: biogenesis, function and role in cancer. Curr Genomics 11:537–561

    Article  CAS  PubMed  Google Scholar 

  38. Denli AM, Tops BB, Plasterk RH, Ketting RF et al (2004) Processing of primary microRNAs by the microprocessor complex. Nature 432:231–235

    Article  CAS  PubMed  Google Scholar 

  39. Gregory RI, Yan KP, Amuthan G, Chendrimada T et al (2004) The microprocessor complex mediates the genesis of microRNAs. Nature 432:235–240

    Article  CAS  PubMed  Google Scholar 

  40. Han J, Lee Y, Yeom KH, Kim YK et al (2004) The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18:3016–3027

    Article  CAS  PubMed  Google Scholar 

  41. Han J, Lee Y, Yeom KH, Nam JW et al (2006) Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125:887–901

    Article  CAS  PubMed  Google Scholar 

  42. Lee Y, Jeon K, Lee JT, Kim S et al (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21:4663–4670

    Article  CAS  PubMed  Google Scholar 

  43. Lee Y, Ahn C, Han J, Choi H et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419

    Article  CAS  PubMed  Google Scholar 

  44. Bohnsack MT, Czaplinski K, Gorlich D (2004) Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10:185–191

    Article  CAS  PubMed  Google Scholar 

  45. Lund E, Dahlberg JE (2006) Substrate selectivity of exportin 5 and Dicer in the biogenesis of microRNAs. Cold Spring Harb Symp Quant Biol 71:59–66

    Article  CAS  PubMed  Google Scholar 

  46. Okada C, Yamashita E, Lee SJ, Shibata S (2009) A high-resolution structure of the pre-microRNA nuclear export machinery. Science 326:1275–1279

    Article  CAS  PubMed  Google Scholar 

  47. Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17:3011–3016

    Article  CAS  PubMed  Google Scholar 

  48. Zeng Y, Cullen BR (2004) Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Res 32:4776–4785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Okamura K, Hagen JW, Duan H, Tyler DM (2007) The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130:89–100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Du T, Zamore PD (2005) microPrimer: the biogenesis and function of microRNA. Development 132:4645–4652

    Article  CAS  PubMed  Google Scholar 

  51. King H, Aubert RE, Herman WH (1998) Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care 21:1414–1431

    Article  CAS  PubMed  Google Scholar 

  52. Tabak AG, Herder C, Rathmann W, Brunner EJ et al (2012) Prediabetes: a high-risk state for diabetes development. Lancet 379:2279–2290

    Article  PubMed  Google Scholar 

  53. Wild S, Roglic G, Green A, Sicree R et al (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27:1047–1053

    Article  PubMed  Google Scholar 

  54. Mathew V, Gersh BJ, Williams BA, Laskey WK et al (2004) Outcomes in patients with diabetes mellitus undergoing percutaneous coronary intervention in the current era: a report from the Prevention of REStenosis with Tranilast and its Outcomes (PRESTO) trial. Circulation 109:476–480

    Article  PubMed  Google Scholar 

  55. Pignone M, Alberts MJ, Colwell JA, Cushman M et al (2010) Aspirin for primary prevention of cardiovascular events in people with diabetes: a position statement of the American Diabetes Association, a scientific statement of the American Heart Association, and an expert consensus document of the American College of Cardiology Foundation. Diabetes Care 33:1395–1402

    Article  PubMed  Google Scholar 

  56. Rubler S, Dlugash J, Yuceoglu YZ, Kumral T et al (1972) New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 30:595–602

    Article  CAS  PubMed  Google Scholar 

  57. Aneja A, Tang WH, Bansilal S, Garcia MJ, Farkouh ME (2008) Diabetic cardiomyopathy: insights into pathogenesis, diagnostic challenges, and therapeutic options. Am J Med 121:748–757

    Article  PubMed  Google Scholar 

  58. Maisch B, Alter P, Pankuweit S (2011) Diabetic cardiomyopathy—fact or fiction? Herz 36:102–115

    Article  CAS  PubMed  Google Scholar 

  59. Miki T, Yuda S, Kouzu H, Miura T (2013) Diabetic cardiomyopathy: pathophysiology and clinical features. Heart Fail Rev 18:149–166

    Article  PubMed Central  PubMed  Google Scholar 

  60. Sharma V, McNeill JH (2006) Diabetic cardiomyopathy: where are we 40 years later? Can J Cardiol 22:305–308

    Article  CAS  PubMed  Google Scholar 

  61. Depre C, Shipley GL, Chen W, Han Q (1998) Unloaded heart in vivo replicates fetal gene expression of cardiac hypertrophy. Nat Med 4:1269–1275

    Article  CAS  PubMed  Google Scholar 

  62. Goodwin GW, Taylor CS, Taegtmeyer H (1998) Regulation of energy metabolism of the heart during acute increase in heart work. J Biol Chem 273:29530–29539

    Article  CAS  PubMed  Google Scholar 

  63. Rodrigues B, Cam MC, McNeill JH (1998) Metabolic disturbances in diabetic cardiomyopathy. Mol Cell Biochem 180:53–57

    Article  CAS  PubMed  Google Scholar 

  64. Poornima IG, Parikh P, Shannon RP (2006) Diabetic cardiomyopathy: the search for a unifying hypothesis. Circ Res 98:596–605

    Article  CAS  PubMed  Google Scholar 

  65. Boudina S, Abel ED (2006) Mitochondrial uncoupling: a key contributor to reduced cardiac efficiency in diabetes. Physiology (Bethesda) 21:250–258

    Article  CAS  Google Scholar 

  66. Du X, Matsumura T, Edelstein D, Rossetti L et al (2003) Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest 112:1049–1057

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Nishikawa T, Edelstein D, Brownlee M (2000) The missing link: a single unifying mechanism for diabetic complications. Kidney Int Suppl 77:S26–S30

    Article  CAS  PubMed  Google Scholar 

  68. Nishikawa T, Edelstein D, Du XL, Yamagishi S et al (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404:787–790

    Article  CAS  PubMed  Google Scholar 

  69. Mishra PK, Tyagi N, Sen U, Joshua IG et al (2010) Synergism in hyperhomocysteinemia and diabetes: role of PPAR-gamma and tempol. Cardiovasc Diabetol 9:49

    Article  PubMed Central  PubMed  Google Scholar 

  70. Mishra PK, Chavali V, Metreveli N, Tyagi SC (2012) Ablation of MMP9 induces survival and differentiation of cardiac stem cells into cardiomyocytes in the heart of diabetics: a role of extracellular matrix. Can J Physiol Pharmacol 90:353–360

    Article  CAS  PubMed  Google Scholar 

  71. Mishra PK, Metreveli N, Tyagi SC (2010) MMP-9 gene ablation and TIMP-4 mitigate PAR-1-mediated cardiomyocyte dysfunction: a plausible role of dicer and miRNA. Cell Biochem Biophys 57:67–76

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Wakasaki H, Koya D, Schoen FJ, Jirousek MR et al (1997) Targeted overexpression of protein kinase C beta2 isoform in myocardium causes cardiomyopathy. Proc Natl Acad Sci USA 94:9320–9325

    Article  CAS  PubMed  Google Scholar 

  73. Mishra PK, Givvimani S, Metreveli N, Tyagi SC (2010) Attenuation of beta2-adrenergic receptors and homocysteine metabolic enzymes cause diabetic cardiomyopathy. Biochem Biophys Res Commun 401:175–181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Mishra PK, Awe O, Metreveli N, Qipshidze N et al (2011) Exercise mitigates homocysteine—beta2-adrenergic receptor interactions to ameliorate contractile dysfunction in diabetes. Int J Physiol Pathophysiol Pharmacol 3:97–106

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Wang G, Zhu X, Xie W, Han P et al (2010) Rad as a novel regulator of excitation-contraction coupling and beta-adrenergic signaling in heart. Circ Res 106:317–327

    Article  CAS  PubMed  Google Scholar 

  76. Tarquini R, Lazzeri C, Pala L, Rotella CM, Gensini GF (2011) The diabetic cardiomyopathy. Acta Diabetol 48:173–181

    Article  PubMed  Google Scholar 

  77. Guay C, Roggli E, Nesca V, Jacovetti C et al (2011) Diabetes mellitus, a microRNA-related disease? Transl Res 157:253–264

    Article  CAS  PubMed  Google Scholar 

  78. Hennessy E, O’Driscoll L (2008) Molecular medicine of microRNAs: structure, function and implications for diabetes. Expert Rev Mol Med 10:e24

    Article  PubMed  Google Scholar 

  79. Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S et al (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432:226–230

    Article  CAS  PubMed  Google Scholar 

  80. Zampetaki A, Kiechl S, Drozdov I, Willeit P et al (2010) Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 107:810–817

    Article  CAS  PubMed  Google Scholar 

  81. Feng B, Chen S, George B, Feng Q et al (2010) miR133a regulates cardiomyocyte hypertrophy in diabetes. Diabetes Metab Res Rev 26:40–49

    Article  CAS  PubMed  Google Scholar 

  82. Care A, Catalucci D, Felicetti F, Bonci D et al (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13:613–618

    Article  CAS  PubMed  Google Scholar 

  83. Matkovich SJ, Wang W, Tu Y, Eschenbacher WH et al (2010) MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. Circ Res 106:166–175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Duisters RF, Tijsen AJ, Schroen B, Leenders JJ et al (2009) miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ Res 104:170–178, 6p

    Article  CAS  PubMed  Google Scholar 

  85. Shan H, Zhang Y, Lu Y, Zhang Y et al (2009) Downregulation of miR-133 and miR-590 contributes to nicotine-induced atrial remodelling in canines. Cardiovasc Res 83:465–472

    Article  CAS  PubMed  Google Scholar 

  86. Chen JF, Murchison EP, Tang R, Callis TE et al (2008) Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc Natl Acad Sci USA 105:2111–2116

    Article  CAS  PubMed  Google Scholar 

  87. Latronico MV, Elia L, Condorelli G, Catalucci D (2008) Heart failure: targeting transcriptional and post-transcriptional control mechanisms of hypertrophy for treatment. Int J Biochem Cell Biol 40:1643–1648

    Article  CAS  PubMed  Google Scholar 

  88. van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM et al (2008) Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci USA 105:13027–13032

    Article  PubMed  Google Scholar 

  89. Thum T, Gross C, Fiedler J, Fischer T et al (2008) MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456:980–984

    Article  CAS  PubMed  Google Scholar 

  90. Brase JC, Wuttig D, Kuner R, Sultmann H (2010) Serum microRNAs as non-invasive biomarkers for cancer. Mol Cancer 9:306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Brase JC, Johannes M, Schlomm T, Falth M et al (2011) Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer 128:608–616

    Article  CAS  PubMed  Google Scholar 

  92. Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G et al (2011) MicroRNAs in body fluids—the mix of hormones and biomarkers. Nat Rev Clin Oncol 8:467–477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Kosaka N, Iguchi H, Ochiya T (2010) Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci 101:2087–2092

    Article  CAS  PubMed  Google Scholar 

  94. Tie Y, Liu B, Fu H, Zheng X (2009) Circulating miRNA and cancer diagnosis. Sci China C Life Sci 52:1117–1122

    Article  CAS  PubMed  Google Scholar 

  95. Ajit SK (2012) Circulating microRNAs as biomarkers, therapeutic targets, and signaling molecules. Sensors (Basel) 12:3359–3369

    Article  CAS  Google Scholar 

  96. Dimmeler S, Zeiher AM (2010) Circulating microRNAs: novel biomarkers for cardiovascular diseases? Eur Heart J 31:2705–2707

    Article  PubMed  Google Scholar 

  97. Fichtlscherer S, Zeiher AM, Dimmeler S (2011) Circulating microRNAs: biomarkers or mediators of cardiovascular diseases? Arterioscler Thromb Vasc Biol 31:2383–2390

    Article  CAS  PubMed  Google Scholar 

  98. Li C, Pei F, Zhu X, Duan DD et al (2012) Circulating microRNAs as novel and sensitive biomarkers of acute myocardial infarction. Clin Biochem 45:727–732

    Article  CAS  PubMed  Google Scholar 

  99. Scholer N, Langer C, Kuchenbauer F (2011) Circulating microRNAs as biomarkers—True Blood? Genome Med 3:72

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported in part with by National Institute of Heart HL-113281 and HL-116205 to Paras K. Mishra and HL-108621 and HL-74185 to Suresh C Tyagi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paras K. Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mishra, P.K., Tyagi, S.C. (2014). MicroRNomics of Diabetic Cardiomyopathy. In: Turan, B., Dhalla, N. (eds) Diabetic Cardiomyopathy. Advances in Biochemistry in Health and Disease, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9317-4_10

Download citation

Publish with us

Policies and ethics