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Abstract

Purpose of Review Parkinson’s disease (PD) is a complex neurodegenerative disorder, the aetiology of which is still largely
unknown. Overwhelming evidence indicates that mitochondrial dysfunction is a central factor in PD pathophysiology. Here we
review recent developments around mitochondrial dysfunction in familial and sporadic PD, with a brief overview of emerging
therapies targeting mitochondrial dysfunction.

Recent Findings Increasing evidence supports the critical role for mitochondrial dysfunction in the development of sporadic PD,
while the involvement of familial PD-related genes in the regulation of mitochondrial biology has been expanded by the
discovery of new mitochondria-associated disease loci and the identification of their novel functions.

Summary Recent research has expanded knowledge on the mechanistic details underlying mitochondrial dysfunction in PD,
with the discovery of new therapeutic targets providing invaluable insights into the essential role of mitochondria in PD
pathogenesis and unique opportunities for drug development.

Keywords Parkinson’s disease - Neurodegeneration - Mitochondria - Bioenergetics - Mitophagy - Mitochondrial biogenesis -
Therapy

Introduction

The key manifestations associated with a clinical diagnosis of
Parkinson’s disease (PD) are motor deficits resultant of focal
dopaminergic nigral neurodegeneration. However, these man-
ifestations appear late in the disease course, with mounting
evidence indicating seminal pathogenic events occur a decade
or more prior [1]. Prevailing theory holds that PD progression
is largely mediated by pathological protein aggregation that is
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either the cause or corollary of dysfunction in multiple inter-
related cellular pathways [2].

PD is now widely accepted as a complex, multifactorial
disease that can have diverse genetic, biological and environ-
mental influences [3]. Although sporadic PD patients, who
lack evidential family history and a definitive genetic basis,
account for >90% of disease cases, the familial forms of PD
have inferred cellular pathways central to PD pathophysiology
[4]. With the majority of genetic PD loci directly associated
with mitochondria, mitochondrial dysfunction has been impli-
cated as an integral disease component [5]. This review focus-
es on recent advances in understanding of the role that mito-
chondrial dysfunction plays in the pathogenesis of both spo-
radic and familial PD.

Mitochondrial Dysfunction in Familial
Parkinson’s Disease

To date, a handful of genes have been identified as monogenic
causes of familial PD, with many of the pathogenic mutations
in these genes directly linked to mitochondrial dysfunction
(i.e. autosomal dominant SNCA and LRRK?2 mutations and

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11910-018-0829-3&domain=pdf
mailto:carolyn.sue@sydney.edu.au

21 Page2of 11

Curr Neurol Neurosci Rep (2018) 18: 21

autosomal recessive Parkin, PINK1 and ATP13A2 mutations)
[6]. More recently, new roles in the regulation of mitochon-
drial biology have been determined for these genes, and new
PD genes associated with mitochondrial (dys)function, such
as VPS35 and CHCHD?2, have been identified, further under-
pinning the essential role of mitochondrial function to the
aetiology of PD (Fig. 1).

Autosomal Dominant PD
SNCA

a-Synuclein (x-Syn) is a small 140 amino acid polypeptide,
encoded by SNCA. Although its function is still largely un-
known, it has been reported to mediate neurotransmitter re-
lease at presynaptic terminals and interact with membranes of
various organelles, including mitochondria. Indeed, «-Syn
has a non-canonical mitochondrial targeting sequence, and
has been localised to mitochondrial membranes and shown
to influence mitochondrial structure and function [7].

a-Syn was initially linked to PD as the main component of
Lewy bodies, with SNCA later identified as the first genetic
familial PD gene [8¢]. Increased levels of wild-type (WT) o-
Syn and, to a greater extent, x-Syn with PD-linked mutations,
such as A53T, E46K and H50Q, induce mitochondrial frag-
mentation and reactive oxygen species (ROS) production
in vitro and in vivo [9]. Furthermore, o-Syn was recently
localised to mitochondria-associated membranes (MAM), a
specialised structure forming an interface between the endo-
plasmic reticulum (ER) and mitochondria that is important for
regulating Ca”* signalling and apoptosis. Pathogenic muta-
tions in «-Syn were found to reduce binding to MAM and
increased mitochondrial fragmentation, suggesting a role for
«-Syn in regulating mitochondrial morphology [10]. For ex-
ample, overexpressed WT or mutant «x-Syn was found to
cause dissociation of ER and mitochondria at MAM, thereby
impairing Ca** exchange and reducing mitochondrial energy
production [11].

In addition to direct effects on mitochondrial morphology,
arecent study showed that o-Syn can influence mitochondrial
biogenesis via regulation of peroxisome proliferator-activated
receptor gamma coactivator 1-o« (PGC1 ). In this study, treat-
ment of human DA neurons carrying A53T with mitochondri-
al toxins induced S-nitrosylation of the transcription factor
myocyte-specific enhancer factor 2C (MEF2C), leading to a
reduction in mitochondrial biogenesis via downregulation of
PGCl« [12].

LRRK?2
Mutations in Leucine Rich Repeat Kinase 2 (LRRK?2) cause a

variably penetrant autosomal dominant form of PD and have
been identified as the most common cause of familial PD [6].
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LRRK?2 is a multifunctional protein kinase and LRRK2 mu-
tants are known to exert their pathogenic action via increased
kinase activity. Various models overexpressing WT or PD-
associated mutant LRRK?2 have shown increased vulnerability
to mitochondrial toxins, along with defects in mitochondrial
dynamics and increased ROS production (reviewed in [9]).
Consistently, physiological levels of the common LRRK2
G2019S mutant were found in association with mitochondrial
abnormalities in patient-derived dopaminergic neurons [13],
as well as knock-in mice [14].

Several proteins are known to interact with LRRK?2 and
mediate pathological effects on mitochondria. For instance,
the mitochondrial fission protein, dynamin-related protein 1
(DRP1), has been shown to function as an effector of mito-
chondrial fragmentation through LRRK?2-mediated phosphor-
ylation at S616 [15] (Fig. 2). Moreover, LRRK2 appears to
interact with other fission/fusion proteins, such as mitofusin
(MFN) 1/2 and optic atrophy 1 (OPA1) [16]. LRRK2-
mediated increased proton leak and loss of mitochondrial
membrane potential (AWm) are likely caused by upregulation
of mitochondrial uncoupling protein (UCP) 2 and UCP4 [17].
In addition, mutant LRRK2 contributes to defective
mitophagy by interfering with mitochondrial trafficking, as
G2019S has been shown to impair proteasomal degradation
of Miro, an outer mitochondrial membrane (OMM) protein
that tethers mitochondria to microtubule motor proteins, and
thereby mitophagy by disrupting the interaction between
LRRK2 and Miro [18].

VPS35

The association between vacuolar protein sorting-associated
protein 35 (VPS35) and PD was first observed in European
PD cohorts with a family history suggestive of an autosomal
dominant inheritance [19, 20]. VPS35 is a core component of
the retromer complex that mediates retrograde delivery of car-
go from endosomes to Golgi, as well as recycling cargo from
endosomes to the cell surface [21]. Early studies reported that
PD-associated mutations in VPS35 conferred vulnerability to
the mitochondrial toxin 1-methyl-4-phenylpyridinium
(MPP*) in vitro [22].

The main function of VPS35 in mitochondria seems to be
in regulating mitochondrial dynamics through interaction with
mitochondrial fission/fusion proteins. Recent studies have
shown that mutant VPS35 can trigger mitochondrial fragmen-
tation, which leads to neurodegeneration. This occurs through
either a decrease in the degradation of mitochondrial E3 ubig-
uitin ligase 1 (MULL1), which in turn increases MFN degrada-
tion [23] (Fig. 2), or by enhancing the turnover of DRP1
complexes via mitochondrial-derived vesicle-dependent traf-
ficking to lysosomes [24]. Also, increased mitochondrial frag-
mentation caused by the VPS35 mutation D620N was shown
to impair mitochondrial complex I assembly and activity [25].
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Fig. 1 Representative pathways of mitochondrial dysfunction involved in
Parkinson’s disease pathophysiology. Mitochondrial dysfunction
associated with PD pathogenesis can result from impairment of
mitochondrial biogenesis, increased reactive oxygen species production,
defective mitophagy, compromised trafficking, electron transport chain
dysfunction, variations to mitochondrial dynamics, calcium imbalance or

CHCHD?2

Recently, mutations in coiled-coil-helix-coiled-coil-helix do-
main containing 2 (CHCHD?2) have been identified as a cause
of autosomal dominant, late-onset PD in three Japanese fami-
lies [26°]. CHCHD?2 is a mitochondrial intermembrane space
protein with a dual function in the mitochondria and nucleus.
Under normal conditions, CHCHD2 mainly exists in mito-
chondria bound to mitochondrial complex IV and reduced ex-
pression of CHCHD?2 has consistently been shown to decrease
mitochondrial complex IV activity, with resulting increases in
ROS production and mitochondrial fragmentation [27].
Intriguingly, CHCHD?2 was found to translocate into the nu-
cleus and function as a transcription factor under stress condi-
tions, regulating the expression of mitochondrial complex IV
subunit 4 isoform (COX412) [27] (Fig. 2). Furthermore,
Drosophila deficient of CHCHD2 [28] or expressing PD-
associated mutants [29] also displayed structural and biochem-
ical mitochondrial abnormalities leading to dopaminergic
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combinations thereof. The potential complex interplay of the various
functions leads to a vicious cycle of progressive cellular dysfunction
that ultimately results in neurodegeneration that underlies PD
pathogenesis and progression. Proteins mentioned in this review that
contribute pathologically to the different pathways are listed

neurodegeneration and motor dysfunction. These findings
strongly suggest that mutations in CHCHD2 lead to
nigrostriatal neurodegeneration and PD by impairing mito-
chondrial function.

Autosomal Recessive PD
Parkin

Mutations in Parkin are the most frequent cause of autosomal
recessive PD [30¢], with over 120 pathogenic mutations iden-
tified so far [6]. Parkin is a cytosolic E3 ubiquitin ligase that
ubiquitinates target proteins for signalling or proteasomal deg-
radation. Parkin primarily functions in association with mito-
chondria, as Parkin-deficient models show profound defects
in mitochondrial morphology and function [31]. Consistently,
ubiquitylome analysis has revealed that the majority of Parkin
targets are localised to mitochondria [32].
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Fig. 2 Mitochondrial function of Parkinson’s disease-related proteins. A.
VPS35 mediates degradation of mitochondrial E3 ubiquitin ligase 1
(MULT1), which ubiquitinates mitofusins (MFNSs), acting as a pro-fusion
factor. Conversely, PINK1 inhibits protein kinase A (PKA) mediated
release of dynamin-related protein 1 (DRP1) from mitochondria,
promoting mitochondrial fission. Additionally, LRRK2 acts on several
fission and fusion effectors, such as MFNs, optic atrophy 1 (OPA1) and
DRP1, to variably alter the balance of mitochondrial dynamics. B. Parkin
interacting substrate (PARIS) inhibits mitochondrial biogenesis by
suppressing expression of the master regulator peroxisome proliferator-
activated receptor gamma coactivator 1-oc (PGCleo). Under steady-state
conditions, PINK1 and Parkin mediate the degradation of PARIS by
phosphorylation and ubiquitination respectively, followed by
proteasomal degradation, which maintains PGCla levels and

Parkin has diverse functions in maintaining healthy mito-
chondria by regulating their biogenesis and degradation via
mitophagy (reviewed in [33]). In the early stages of mitochon-
drial degradation, Parkin is recruited to damaged or dysfunction-
al mitochondria and activated by PTEN-induced putative kinase
1 (PINK1), another PD-related protein (see below), leading to
ubiquitination of OMM proteins and subsequent proteasomal
degradation (Fig. 2). The process of mitophagy removes dys-
functional mitochondria from the healthy mitochondrial pool
and facilitates their degradation via the autophagy-lysosomal
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mitochondrial biogenesis. Under mitochondrial stress, CHCHD2
translocates to the nucleus and upregulates expression of mitochondrial
complex IV subunit 4 isoform (COX412). C. Miro facilitates
mitochondrial transportation with another adaptor protein Milton and
the motor protein Kinesin-1. PINK1 and Parkin promote mitophagy of
dysfunctional mitochondria by inducing proteasomal degradation of Miro
and thereby halting mitochondrial transport. Similarly, LRRK?2 has been
shown to facilitate removal of Miro. D. Parkin, activated by PINKI,
ubiquitinates outer mitochondrial membrane proteins, such as MFNs, to
which the autophagosomal protein microtubule-associated protein light
chain 3 (LC3) binds with p62, a polyubiquitin-binding protein, leading to
engulfment of dysfunctional mitochondria by autophagosomes.
Degradation of mitochondria occurs upon fusion with lysosomes.
ATP13A2 ensures mitophagy by maintaining functional lysosomes

pathway. Despite recent literature broadening the detailed mech-
anism by which Parkin mediates mitophagy in vitro, relevance
to disease pathogenesis has been controversial given the lack of
evidence that Parkin mediates mitophagy in vivo. However,
recent studies have demonstrated endogenous Parkin-mediated
mitophagy in the distal axons of rodent neurons [34] and in age-
related dopaminergic neurodegeneration accompanying PD-
linked motor symptoms in Parkin knockout mice with defective
mitochondrial DNA replication [35¢]. These findings further
highlight the pathophysiological significance of Parkin-
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mediated mitophagy in PD over the insights obtained from
in vitro models. In addition, newly developed transgenic mouse
models expressing mitophagy reporters such as mt-Keima [36¢]
and mito-QC [37¢] have finally made it possible to monitor
mitophagy in mammalian brain, promising to unravel the
long-standing mystery surrounding mitophagy in vivo.

Besides function in mitophagy, Parkin is known to main-
tain the functional mitochondrial pool by regulating mito-
chondrial biogenesis [31]. Under homeostatic conditions,
Parkin mediates the degradation of parkin interacting substrate
(PARIS), a repressor of PGClx activity, leading to nuclear
translocation of PGCl and transcriptional activation of
mitochondria-associated genes [38] (Fig. 2). Consequently,
loss of Parkin function allows PARIS to accumulate and re-
press mitochondrial biogenesis, resulting in reduced mito-
chondrial mass and functional defects [39]. These findings
highlight the pivotal role Parkin plays in modulating the bal-
ance of mitochondrial production and destruction.

PINK1

Mutations in PINK/ are the second most common cause of
autosomal recessive early-onset PD [6, 40¢]. PINK1 is a mi-
tochondrial serine/threonine kinase that plays a crucial role in
maintaining mitochondrial homeostasis. Loss of PINK1 im-
pairs various aspects of mitochondrial biology, including deg-
radation, morphology and trafficking. The most widely stud-
ied of these is the function of PINK1 in mitophagy; facilitating
removal of damaged mitochondria by recruiting and activat-
ing Parkin [33, 41]. PINKI activates Parkin by a twofold
mechanism: (1) direct phosphorylation of Parkin at S65 [42]
and (2) trans-activation by phosphorylation of ubiquitin at S65
and subsequent binding to Parkin [43e, 44e, 45¢]. In addition,
PINK can mediate mitophagy in a Parkin-independent man-
ner by recruiting nuclear dot protein 52 kDa (NDP52) and
optineurin (OPTN) [46]. Furthermore, in a similar manner to
LRRK2, PINK1 has been shown to promote mitophagy by
terminating mitochondrial trafficking through phosphoryla-
tion and Parkin-mediated proteasomal degradation of Miro
[47] (Fig. 2).

Loss of PINK1 has been shown to induce a wide range of
mitochondrial dysfunction in cell models, Drosophila and
mice. This is largely a result of the loss of PINK1/Parkin-
mediated mitophagy, but PINK1 also regulates mitochondrial
homeostasis in a number of other ways [31]. For instance,
PINK1 deficiency has been found to result in mitochondrial
Ca** overload [48], and the specific reduction of mitochon-
drial complexes I and III [49]. On the other hand, PINK1 has
been shown to enhance mitochondrial fission by increasing
protein kinase A (PKA)-mediated DRP1 activation [50] and
to modulate mitochondrial biogenesis via regulating Parkin-
mediated degradation of PARIS [51] (Fig. 2).

ATPI3A2

Mutations in ATP13A2 cause Kufor-Rakeb syndrome (KRS), a
rare form of autosomal recessive juvenile-onset PD [52].
ATPI13A2 encodes a type PSB ATPase, which mainly localises
to the endo/lysosomal compartment. Although ATP13A2 is
believed to transport cations across organellar membranes, its
transporting activity is yet to be fully defined. Nonetheless, loss
of ATP13A2 in patient-derived cells shows increased suscepti-
bility to several cations including Zn** and Mn*", indicating a
role for ATP13A2 in regulating these metals [52]. The associ-
ation of ATP13A2 with mitochondrial function was first impli-
cated by observation of mitochondrial dysfunction in KRS
patient-derived skin fibroblasts [53]. Consistently, several stud-
ies employing ATP13A2-deficient cell models have compre-
hensively shown underlying mitochondrial dysfunction, includ-
ing reduced ATP production, increased mitochondrial fragmen-
tation and increased ROS production [54, 55]. In addition, loss
of ATP13A2 was also found to impair glycolysis, which aggra-
vated mitochondrial dysfunction, suggesting a broader impact
of ATP13A2 deficiency on cellular bioenergetics [56].
Existence of ATP13A2 outside mitochondria led to specu-
lation that ATP13A2 may indirectly regulate mitochondrial
function. Indeed, loss of ATP13A2 has been shown to cause
Zn** dyshomeostasis by impairing vesicular sequestration,
leading to mitochondrial dysfunction [55]. Also, dysregulated
Zn** metabolism causes lysosomal dysfunction [57], which
may contribute to defective mitophagy (Fig. 2), highlighting
the complex interplay between closely associated cellular
pathways known to be involved in the pathogenesis of PD.

Mitochondrial Dysfunction in Sporadic
Parkinson’s Disease

Sporadic PD occurs as a seemingly random occurrence due to
undetermined genetic or environmental bases in the absence
of an obvious family history. It is well established that PD is a
multifactorial disorder caused by impaired cellular functions
that impact upon interrelated pathways and create complex
feedback cycles leading to neurodegeneration [2]. Broadly,
affected cellular pathways include proteostasis, oxidative
stress and the multiple pathways relating to mitochondrial
function (Fig. 1) [58], all of which are evident in sporadic PD.

Genetic and Environmental Influences on Sporadic PD

It is increasingly apparent that environmental and genetic as-
pects contribute to PD, with combinatorial insults being more
pathological than either individually [3]. Phenotypes consistent
with sporadic PD can be induced by a number of endogenous
and exogenous inhibitors of mitochondrial function, including
rotenone, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
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(MPTP), paraquat, nitric oxide, the dopamine metabolite
aminochrome and others [3, 9]. Consistently, an increased risk
for developing idiopathic PD has been demonstrated in rural
populations exposed to agricultural pesticides and herbicides
[59] and a significantly younger onset of sporadic PD has been
linked to chronic occupational exposure to pesticides and heavy
metals [60]. From a genetic perspective, Genome-Wide
Association Studies (GWAS) have provided evidence that poly-
morphisms in familial PD genes are risk factors for developing
sporadic PD, linking the pathogenesis of familial and sporadic
PD [61]. Sporadic PD risk has been attributed to a number of
loci including regions of as yet unknown influence [62¢, 63], as
well as familial PD genes associated with mitochondrial dys-
function, e.g. Parkin, PINKI, ATP13A2, CHCHDZ2, SNCA,
LRRK?2 and GBA [64].

a-Synuclein in Sporadic PD

o-Syn has been found to bind to OMM proteins, such as voltage-
dependent anion-selective channel 1 (VDAC!), translocase of
outer membrane (TOM) 40 and TOM20, and mediate mitochon-
drial dysfunction [65]. Furthermore, VDACI levels were found
to be reduced in sporadic PD patient nigral neurons in association
with «-Syn aggregations and is therefore implicated as a com-
ponent of overall mitochondrial dysfunction in sporadic PD [66].
This may be mediated via the x-Syn-induced activation of the
mitochondrial permeability transition pore, which depolarises the
mitochondrial membrane potential leading to mitochondrial frag-
mentation and degradation. In the setting of dysfunctional
mitophagy and trafficking (as discussed above), this would be
expected to enhance cellular dysfunction and death [66].
Furthermore, «-Syn pathogenicity is related to aggregation rather
than a loss of intrinsic function, with the formation of Lewy
bodies, chiefly comprised of «-Syn, a hallmark of neuronal de-
generation in sporadic PD [67]. Aggregated «-Syn affects
proteostasis by impairing the function and trafficking between
ER, Golgi and the autophagy-lysosomal system, as well as
impacting on mitochondrial functions including energy produc-
tion, calcium and iron buffering and ROS production.

Iron Accumulation and Oxidative Stress

Oxidative stress is intimately linked to mitochondrial (dys)func-
tion, with mitochondria producing ~90% of cellular ROS [68].
It is apparent that synucleinopathy, oxidative stress and mito-
chondrial dysfunction are locked in a vicious interdependent
feedback cycle in sporadic PD [58], with mitochondrial accu-
mulation of «-Syn inhibiting complex I activity and driving
ROS production via the consequent respiratory chain dysfunc-
tion [7]. In particular, iron accumulation observed in the
substantia nigra of sporadic PD patient brain causes increased
ROS production, transcriptional upregulation of SNCA and in-
creased «-Syn aggregation [69, 70]. Mitochondria have active
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iron exchange with the cytoplasm, required for the synthesis of
iron sulphur clusters, which are integral components of com-
plex I and II and sensitive to oxidative stress. Consequently,
inhibition of complex I by rotenone, MPTP and paraquat poi-
soning have been shown to result in iron accumulation in asso-
ciation with PD [71]. Inhibition of the ubiquitin proteasome
system also causes cellular iron dyshomeostasis, further adding
to the positive feedback on ROS generation and «-Syn aggre-
gation [72]. In addition, neuronal iron accumulation impacts on
mitochondrial reticular connectivity, as shown for calcineurin-
dependent effects on DRP1 [73] and calcium release via
Ryanodine receptors [74].

Mitochondrial Quality Control

The mitochondrial quality control mechanisms of dynamic
complementation in concert with balanced mitophagy and
biogenesis work to maintain a healthy cellular mitochondrial
pool and bioenergetic function under steady-state conditions
[33], reasoning why disruption of these pathways cause mito-
chondrial dysfunction that underlies PD pathogenesis.

An emerging area of interest is the influence that lipids and
lipid pathways have on PD. For instance, the master regulator
of lipogenesis, sterol regulatory element binding transcription
factor 1 (SREBFI), was identified by GWAS as a risk locus for
sporadic PD [75] and was subsequently validated by genome-
wide RNAI screening as a regulator of Parkin-mediated
mitophagy [76]. This was further endorsed by administration
of genistein, an inhibitor of sterol regulatory element binding
protein (SREBP) activation, which blocked Parkin recruit-
ment to mitochondria and was partially rescued by exogenous
lipid supplementation, thereby providing a mechanistic link
between lipid synthesis and mitophagy and filling an evidence
gap for the association of mitophagy with sporadic PD [77].

The importance of mitophagy in PD pathogenesis is evi-
dent from the prevalence of familial cases associated with
PINK1 and Parkin mutations. However, cytoplasmic hybrid
cells generated from sporadic PD patient platelets were also
found to have fragmented mitochondrial networks [15]. This
was the result of fusion impairment due to proteolysis of
OPA1 and fission enhancement by phosphorylation of DRP1
S616. In a more recent study using neurotoxin models of
sporadic PD, it was shown that increased nitric oxide levels
caused the nitrosylation of Parkin, impairing its ubiquitin li-
gase activity and resulting in an upregulation of phosphory-
lated S616 DRP1 recruitment to mitochondria and consequen-
tial mitochondrial hyper-fragmentation [78]. This study
contextualised the role of DRP1 in mitochondrial fragmenta-
tion and dysfunction that leads to neuronal cell death in spo-
radic PD and identified nitrosylated Parkin as a possible ther-
apeutic angle.

Cargo trafficking along axonal microtubules is important
for shuttling cellular components to and from the synaptic
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terminals. Of particular interest for the pathogenesis of sporad-
ic PD is the axonal trafficking of «-Syn and mitochondria [79].
Dysfunctional trafficking has been linked to sporadic PD by a
number of mechanisms, including a reduction in motor protein
expression with consequent accumulation of o-Syn in the
axons and soma [80¢], as well as decreased degradation of
the mitochondrial-molecular motor tether Miro and consequent
impairment of mitochondrial motility (also a feature in familial
PD; see above) [18]. Additionally, LRRK2 and Parkin recruit-
ment to mitochondria was impaired upon CCCP treatment in
sporadic PD patient-derived fibroblasts, highlighting that the
LRRK2/DRP1 and PINK1/Parkin pathways act in parallel,
converge on Miro and are impaired in sporadic PD [18].

It has been identified that expression of PGCl« is reduced in
sporadic PD brain [81¢] and can be reduced by direct binding of
accumulated «-Syn to the PPARGCIA promoter in the setting
of oxidative stress [82] or by methylation of the PPARGCIA
promoter [83]. On the converse, PGCla expression has been
shown to mitigate o-Syn oligomerisation [81¢] and protect DA
neurons [84]. These findings indicate that PGC1a-mediated
mitochondrial biogenesis imparts neuroprotection that becomes
compromised in the setting of sporadic PD.

Dysfunctional Electron Transport Chain
and Alterations to the Mitochondrial Genome

Since the original observation of MPTP causing mitochondri-
al dysfunction in PD, mitochondrial complex I has been con-
sidered central to the pathogenesis of PD. However, one ques-
tion that arises when considering complex I in PD is, why do
mitochondrial disease patients with complex I deficiency rare-
ly develop PD. To date, no mitochondrial DNA (mtDNA)
mutations have been found to cause PD, despite genes integral
to complex I being encoded by mtDNA. Instead,
Parkinsonism associated with mitochondrial diseases is large-
ly restricted to mutations affecting the mtDNA maintenance
genes POLG and TWINKLE (encoding the mtDNA polymer-
ase and helicase, respectively), but is inconsistently observed
[85, 86]. Some insight was provided by the exonuclease dys-
functional POLG mutator mouse, which alone did not recapit-
ulate a PD phenotype due to compensatory mitochondrial bio-
genesis, but when crossed with a Parkin knockout mouse con-
vincingly displayed a PD phenotype [35]. This suggests accu-
mulation of somatic mtDNA mutations is insufficient to cause
PD and other insults are required to elicit disease.
Nevertheless, supporting the notion of increased mtDNA mu-
tation in PD, rotenone treatment of rats was found to increase
the rate of somatic mtDNA mutation, particularly in the
substantia nigra [87].

Respiratory chain enzymology in single neurons from idi-
opathic PD patients showed complex I and II were typically
affected [88]. In addition, mtDNA from these cells showed
multiple deletions on the background of a common deletion.

Consistently, neuronal mtDNA copy number was found to
increase with age in controls, but not in PD patients [88]. In
fact, the accumulation of deleted mtDNA in PD patients
meant there was wild-type mtDNA depletion, which effective-
ly raised the relative levels of somatic mutations, likely con-
tributing to an underlying mitochondrial bioenergetic defect in
sporadic PD neurons [89]. Supporting this, sporadic PD pa-
tients show an accumulation of mtDNA mutations in the set-
ting of reduced mtDNA copy number, predominantly in the
substantia nigra [90, 91]. On this basis, as age is the greatest
risk factor for developing PD and ageing is associated with a
decline in mitochondrial function (which results from accu-
mulation of mtDNA mutations, reduction in respiratory chain
activity and an increase in oxidative stress that ultimately
causes reduced cellular bioenergetics and favours «-Syn ag-
gregation), it appears that mtDNA and respiratory chain based
mitochondrial dysfunction contributes to PD pathogenesis by
lowering the threshold for susceptibility to other genetic and
environmental insults.

Emerging Therapeutic Strategies

The common involvement of mitochondrial dysfunction in PD
represents an attractive target for drug development.
Accordingly, various strategies have been devised to improve
mitochondrial function in both familial and sporadic PD.
Enhancing mitophagy presents as an effective approach due
to growing evidence for its general impairment in PD.
Increasing Parkin activity by inhibiting c-Abl-mediated phos-
phorylation using nilotinib has been shown to be neuroprotec-
tive [92], while the ATP analog kinetin triphosphate increased
mutant PINK1 activity, leading to enhanced Parkin recruitment
[93]. Inhibition of deubiquitinating enzymes also increases
Parkin-mediated mitophagy as ubiquitin specific peptidase
(USP) 8, 15 and 30 antagonize the action of Parkin, whereas
inhibition of these USPs increased mitochondrial degradation
[94]. Additionally, activation of non-canonical mitophagy may
provide an alternative avenue to restore mitochondrial function
in PD as several proteins such as Funl4 domain-containing
protein 1 (FUNDC1) and autophagy and beclin 1 regulator 1
(Ambral) displayed an ability to modulate mitophagy in a
PINK 1/Parkin-independent manner [95]. In particular, Nip3-
like protein X-mediated mitophagy [96] was recently found to
restore mitochondrial function and prevent neurodegeneration
in the setting of Parkin or PINK1 deficiency, highlighting this
pathway as a potential target for therapeutic intervention.
Increasing mitochondrial biogenesis is another strategy to
replenish neurons with healthy mitochondria. Dimethyl fuma-
rate or BG-12 has been effective in phase III trials of relapsing
multiple sclerosis [97] and approved for treating patients,
highlighting a potential application in PD. A recent study
showed that BG-12 exerts beneficial effect by increasing
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mitochondrial biogenesis in mice and humans via the transcrip-
tion factor nuclear factor (erythroid-derived 2)-like 2 (NRF2)
[98]. Another activator of the NRF2 pathway, synthetic
triterpenoids, showed a protection of dopaminergic neurons
against MPTP [99]. Likewise, PGC1« has been a popular target
due to its potent role in inducing mitochondrial biogenesis.
Bezafibrate [100] and quercetin [101] showed beneficial effects
by increasing mitochondria in rodent models for neurodegen-
eration, proposing an opportunity for new drug development.

Mitochondrial-targeted antioxidants and flavonoids have
shown promising results in animal models, and attempts to
mitigate mitochondrial dysfunction using antioxidants have
produced positive outcomes in preclinical settings [102].
However, recent clinical trials for creatine and coenzyme
Q10 have not demonstrated disease-modifying benefit in pa-
tients with PD [103, 104], indicating that more targeted anti-
oxidant approaches may be required or that oxidative stress is
a downstream effect of mitochondrial dysfunction rather than
a direct cause of PD-related neurodegeneration.

Summary

PD is a multifactorial disease caused by combinations of ge-
netic and environmental factors in which the balance may vary
from individual to individual. Among these factors, mitochon-
drial dysfunction plays an integral role in the pathogenesis of
PD, with accumulated evidence supporting centrality in both
sporadic and familial PD. Furthermore, the discovery of new
mitochondria-associated genes as causes of PD continues to
expand our understanding of the molecular mechanisms un-
derlying mitochondrial dysfunction and consequential impact
on neurodegeneration. Rapid advances in such knowledge
have created an unprecedented opportunity for the develop-
ment of effective PD therapies by targeting mitochondrial
dysfunction. Although several drug candidates have failed in
recent clinical trials, cohorts have not been stratified according
to these risk factors potentially offering an explanation for
their lack of success. Preclinical results of other drugs
targeting newly identified molecules are promising, leaving
hope for future effective PD therapies. Much work remains
to define the mechanisms underlying mitochondrial dysfunc-
tion and its pathogenic influence in the development of both
sporadic and familial PD.
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