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 ABSTRACT  

The Ubiquitin Proteasome System is widely postulated to be a new and important 

field of drug discovery for the future, with the Ubiquitin Specific Proteases (USP) 

representing one of the more attractive target classes within the area. Many USPs 

have been linked to critical axes for therapeutic intervention, and the finding that 

USP28 is required for c-Myc stability suggests that USP28 inhibition may represent a 

novel approach to target this so far undruggable oncogene. Here we describe the 

discovery of the first reported inhibitors of USP28, which we demonstrate are able to 

bind to and inhibit USP28, and whilst displaying a dual activity against the closest 

homologue USP25, these inhibitors show a high degree of selectivity over other 

deubiquitinases (DUBs). The utility of these compounds as valuable probes to 

investigate and further explore cellular DUB biology is highlighted by the 

demonstration of target engagement against both USP25 and USP28 in cells. 

Furthermore, we demonstrate that these inhibitors are able to elicit modulation of both 

the total levels and the half-life of the c-Myc oncoprotein in cells, and also induce 

apoptosis and loss of cell viability in a range of cancer cell lines. We however 

observed a narrow therapeutic index compared to a panel of tissue-matched normal. 

Thus, it is hoped that these probes and data presented herein will further advance our 

understanding of the biology and tractability of DUBs as potential future therapeutic 

targets. 
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INTRODUCTION 

 

Whilst considerable progress has been made in enabling the efficient discovery and 

development of therapeutic agents for a wide range of disease areas, many challenges 

still remain, including the high attrition rates of molecules in development and a 

reliance on historically tractable target classes, such as kinases1. For these reasons, 

significant effort has been devoted towards identifying and generating hit molecules 

directed against new target classes that may represent novel axes for therapeutic 

intervention. The growing disease linkage and essentiality to many cellular processes, 

make the Ubiquitin Proteasome System (UPS) an attractive target class for the 

discovery of new therapeutic entities2, 3.  

 

The UPS represents the major eukaryotic pathway for selective proteolysis of 

intracellular proteins, through the concerted action of E1, E2 & E3 ubiquitin ligases 

which elicit protein regulation by the addition of the 76 amino-acid Ubiquitin (Ub) 

molecule in chains of varying length and linkage complexity 4. Notably, the ability to 

generate and attach a wide variety of different Ub chains to proteins through 

attachment at specific amino acid residues via different linkages, equips the cell with 

a highly sophisticated means of directing proteins towards a variety of cellular 

outcomes. One such example is the attachment of four or more Lysine 48-linked 

Ubiquitin moieties to a protein which generally targets it for proteasomal degradation. 

The ubiquitination process is reversible and an additional layer of regulation is 

afforded to the cell through the action of deubiquitinating enzymes (DUBs), which 

cleave Ub from the target and are thereby able to reverse the process, precluding for 

instance proteasomal destruction.   

 

DUBs comprise a large family of mostly cysteine proteases, split into sub-families of 

which the Ubiquitin Specific Protease family (USPs) is the largest5. Through cleavage 

of the isopeptide bond between the C-terminal Gly76 of Ub and the ε-amino group of 

the lysine residue of the target protein, the enzymes modulate a wide range of cellular 

axes, with growing linkages to cancer-associated pathways6-8. It is therefore 

anticipated that, building on the success of the proteasome inhibitor Bortezimib 

(Velcade) in multiple myeloma9, both the DUBs in general2 and USPs in particular 

may represent a rich source of novel therapeutic agents. 



Wrigley, Gavory et al, ACS Chemical Biology 

Page 5 of 36 

 

Despite a growing number of linkages between DUBs and key disease loci, drug 

discovery in this area remains in its infancy, and to date has been focussed on a small 

number of enzymes10-12. Furthermore, whilst the recent identification of several 

inhibitors of USP113, USP714, 15, USP816, USP9x17 and USP1418 yields promise, the 

general challenges in identifying leads with a clear mechanism of action, phenotypic 

effect and profile suitable for progression towards a clinical candidate remain to be 

overcome19, 20. Thus, a crucial step in the development of this potential target class is 

the identification and characterisation of hit molecules against novel DUBs, to further 

increase our knowledge of both chemical tractability and biological potential for 

modulation of key cellular pathways. 

 

One such potential opportunity arose following the discovery by Popov and 

colleagues in 2007 that USP28 is able to bind to and preclude proteasomal 

degradation of c-Myc through an interaction with the Fbw7 ubiquitin E3 ligase21. 

Although the c-Myc proto-oncogene was discovered over 30 years ago, from a drug 

discovery perspective it remains a challenging, yet attractive target22, 23. Further 

relevance of USP28 as a potential therapeutic target comes from the growing 

association between expression of USP28 and Fbw7 and a range of tumour types24-27. 

However, c-Myc regulation is highly complex28, and furthermore additional reports 

have suggested that the USP28 / c-Myc relationship is not straight forward, with an 

apparent dual regulation, resulting in either elevation or downregulation of Fbw7 

substrates depending on the degree of USP28 loss29. Whilst further characterisation of 

c-Myc regulation is thus needed, the prospect of indirectly targeting and modulating 

c-Myc levels by targeting USP28 prompted us to initiate a screening campaign for the 

de novo identification of hits against this target of potentially high clinical relevance.   

 

Here we describe the use of a high throughput screening (HTS) approach to 

successfully identify the first reported USP28 inhibitors, which have been 

characterised in a range of biochemical and cellular assays. We demonstrate not only 

that these compounds inhibit USP28 in vitro, but also confirm by two independent 

methods, that they directly and productively bind to USP28.  We also show that whilst 

these inhibitors possess a high degree of in vitro selectivity over most DUB family 
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members they possess equipotent activity against the closest related homologue, 

USP25. Initial cellular characterisation supported the in vitro data demonstrating that 

the compounds engage both USP28 and USP25. These inhibitors were then used as 

chemical probes to start investigating the biology of USP28.  These studies 

demonstrated direct modulation of USP28 substrates in cells, including total c-Myc 

levels in cells. This effect was achieved through modulation of the half-life of c-Myc 

via a proteasome-dependent mechanism. Further cellular characterisation shows that 

these inhibitors cause induction of apoptosis and affect cell viability across a range of 

cancer cell lines but with a minimal window compared to a panel of normal cell lines. 

Together these data highlight the utility of these probe molecules in the further 

characterisation of both this cellular pathway and wider DUB biology, which will be 

required for the generation of novel therapeutics against this target class. 
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RESULTS & DISCUSSION 

 

As outlined above, the identification of USP28 inhibitors would add considerable 

value to the growing Ubiquitin drug discovery field, through both enabling better 

characterisation of the cellular DUB activity and also providing start points for the 

development of therapeutic molecules. In order to achieve this, we employed a high 

throughput screening strategy using purified recombinant USP28 enzyme and a 

fluorogenic substrate consisting of Ubiquitin derivatised at the C-terminus with 

Rhodamine-110 (Ub-Rh110)30 . A comprehensive assay development was performed, 

as described in the supporting information, including analysis and optimisation of the 

assay time course, Km determination, effect of reducing agents, Z´ analysis31 and 

validation with a broad-spectrum inhibitor (Supporting information,  Figure S1a-d). 

Following completion of the assay development and validation phases, a high 

throughput screening (HTS) campaign was run using a directed library of 

approximately 40,000 compounds. Around half of these compounds were selected as 

a representative set of the AstraZeneca full compound collection, favouring scaffolds 

with a range of near-neighbours for follow-up testing. The other half consisted of 

compounds which have shown activity against one or more protease assays within 

AstraZeneca. 

 

The HTS campaign yielded a primary hit rate of approximately 5.3%, and primary 

hits were subsequently analysed in a “ratio-test” assay32 format to assess specificity 

(Figure S1e-f). A “ratio test” was performed to assess specificity of the hits, by 

screening the compounds on two occasions. The first occasion utilised the assay 

conditions determined for primary screening whilst the second employed 10-fold 

higher levels of enzyme, but tested over a 10-fold shorter timescale. For compounds 

that specifically inhibit the enzyme (i.e. non-spurious, non-promiscuous), the 

inhibition profile and IC50 value should be identical under both conditions. However, 

compounds that inhibit via a non-specific mechanism (e.g. aggregator or reactive 

compounds), are expected to display a shift in the IC50 values between the two 

conditions. The data clearly showed both a population of likely “specific” inhibitors 

(whose profiles do not alter, n= 15), and a second population of 10-fold shifted (and 

therefore likely non-specific, false positive) hits (n=27) (supplementary information 

Figure S1f).  
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By combining data from the “ratio-test” assay with chemo-informatic analysis 

(solubility, redox activity) of the USP28 primary screening data we selected a subset 

of 42 compounds for further profiling.  

 

As part of the validation phase by titration, a series of benzylaminoethanols 

represented by AZ1, AZ2 and AZ4, were identified which exhibited IC50 values of 

0.7, 1.1 and 2.0 µM respectively (Table 1). Interestingly, our studies also revealed a 

structurally related but significantly less active inhibitor namely AZ3 with an IC50 

value of 59.6 µM (Table 1).  Since identification of these compounds, more 

physiologically relevant substrates have been brought into use, such as Di-Ubiquitin33, 

the isopeptide linked Ubiquitin-tetramethyrhodamine (Ub-TMR) substrate and the 

tetra-ubiquitin chain Tetra-Ub. For comparative purposes, additional studies were 

subsequently performed with the latter two of these substrates and the compounds 

exhibited similar IC50 values with these more physiologically relevant substrates 

(Table 1). Further characterisation of this class of compounds was then performed, 

commencing with binding validation using orthogonal biophysical techniques. 

 

For these binding studies, two independent biophysical techniques were utilised, the 

first of which was Isothermal Titration Calorimetry (ITC). This label free 

methodology directly measures the heat of binding for the interaction that occurs 

when a ligand binds to a target protein, and can be used to confirm ligand binding, 

calculate the equilibrium dissociation constant (Kd), and stoichiometry of the 

interaction. These parameters are additionally useful to characterize the binding 

interaction and to demonstrate the functional integrity of the enzyme.   Under the 

conditions of our experiments, Kd values of 0.2, 0.9 & 2.7 µM were derived for AZ1, 

AZ2 & AZ4 respectively (Figure 1a-c; Table 1), whilst the less active close analogue 

AZ3 failed to produce a measurable Kd value. These values are consistent with the 

biochemical activity data described previously. In addition, corresponding 

stoichiometry values of 0.6, 0.7 & 0.8 were derived for AZ1, AZ2 & AZ4 

respectively (Fig. 1a-c) in line with a non-spurious and specific mode of binding, 

hence supporting our initial observations from the “ratio test” experiments. For 

comparison, two compounds determined by the “ratio test” as potentially acting via 

alternative mechanisms were also tested and produced noisy and difficult to interpret 

data (data not shown). The second approach taken to confirm binding of the 
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compounds to USP28 utilised the NanoTemper Microscale Thermophoresis (MST) 

methodology, which produced comparable data. In this instance, Kd values of 3.7, and 

10.3 µM were determined for AZ1 and AZ2 respectively (Supporting information 

Figure S2a-b and Table 1). In agreement with the ITC data AZ3 failed to produce a 

determinable result. The binding constants for the compounds were determined using 

the protein’s intrinsic fluorescence. We believe this resulted in a less sensitive 

detection system than the fluorescently labeled version of the approach. This may in 

part account for the apparent discrepancy in Kd estimates between MST and ITC. In 

contrast AZ4 generated a Kd using the labeled protein which was in much closer 

agreement with the ITC result (3.6 vs 2.7 µM; Table 1). Despite Kd values being 

higher than the IC50 values obtained in the in vitro enzyme assay and the Kd values 

from our ITC experiments further confirm target-ligand engagement. Taken together 

these data derived from two independent methodologies demonstrate AZ1, AZ2 and 

AZ4 interact with and bind to USP28 in a non-spurious and specific manner.  

 

Building upon these studies and performing a high-dilution assay format, we also 

demonstrated that these inhibitors bind reversibly to the USP28 target. Briefly, in this 

assay USP28 was pre-incubated with 10 times the IC50 concentration of the inhibitor 

(where full inhibition is expected), followed by 100-fold dilution. USP28 activity is 

then re-assessed and full restoration of the activity is expected upon re-equilibration in 

the case of a reversible binder as observed with the inhibitors AZ1-AZ4 

(Supplementary information; Figure S5). This data is also consistent with the lack of 

any reactive functionality on these molecules. Iodoacetamide was used in these 

experiments as a non-specific alkylator and irreversible inhibitor of DUBs.  

 

Following the reversibility studies, kinetic experiments were subsequently performed 

to characterise the mode of inhibition of USP28 using the most potent compound AZ1 

as a representative example. In these studies, we assayed USP28 across a range of 

Tetra-Ub substrate concentrations in the presence of increasing concentrations of 

inhibitor. Lineweaver-Burk analysis revealed that AZ1 acts as a non-competitive 

inhibitor (Supporting information Figure S6). The apparent Km value for Tetra-Ub 

was calculated as 8.6 µM and the inhibitory constant for AZ1 derived from this 

analysis (Ki = 1.5 µM) was in excellent agreement with the IC50 value obtained 

previously (IC50 = 0.7–1.0 µM; Table 1).  
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With clear and robust inhibitory activity demonstrated against USP28, we next 

assessed the selectivity profiles of AZ1–AZ4 against representative USPs and DUBs. 

To this end, and as part of our internal validation process, AZ1–4 were routinely 

counter-screened against the USP2a protein.  All compounds were found to be 

inactive against this particular DUB with IC50 values >100 µM (Table 1).  AZ1–3 

were subsequently profiled against an extended and commercially available panel of 

DUBs (Ubiquigent), which included 14 USPs (USPs1, 2, 4, 5, 7, 11, 15, 19, 20, 25, 

28, 36, 45 & CYLD), and 8 further DUBs comprising 4 UCHs (UCHL1, UCHL3, 

UCHL5 & BAP1), 3 OTUs (OTUB2, OTUD6B, Cezanne) and 1 JAMM (AMSH-

LP). The data obtained in these Ub-Rho110-based assays (performed at 10 µM fixed 

inhibitor concentration) demonstrated strong inhibition of both USP28 & USP25 

(>90%), whilst no significant effect was observed against any of the other family 

members tested (<10% inhibition; Fig. 2a). Our most potent inhibitor AZ1 was 

subsequently taken as a representative example and tested at a fixed concentration of 

30 µM (i.e. >40-fold IC50 USP28) against representative caspases and cathepsins. 

Under the conditions of these experiments, no off-target effects were observed against 

any of these cysteine proteases (<25% inhibition; Supporting information, Figure S7). 

Thus, under the conditions of these experiments, the compounds appear to be potent 

inhibitors of USP28 & USP25 and highly selective over all other 20 DUBs included 

in this panel and over a selection of other non-related proteases. To the best of our 

knowledge these compounds represent the first validated inhibitors of either USP28 or 

USP25.  

 

Based on these data, we further characterised the ability of the compounds to inhibit 

USP25 in vitro with follow-up titration studies for IC50 determination. Parallel dose-

response testing of AZ1, 2, & 3 in purified enzyme assays demonstrated that all three 

compounds appear approximately equipotent against USP28 and USP25 (Fig 2b-e). In 

concordance with our previous studies, AZ3 was found to be only weakly active 

against USP25 with 30% inhibition at 10 µM and an IC50 value of 26.4 µM. This dual 

activity can be explained by the high degree of homology (>50% nucleotide and 

amino acid identity & highly conserved exon-intron boundaries) between USP28 and 

its structurally closest analogue, USP2534, and is indicative that, whilst identification 

of compounds with broad selectivity across the DUB family is achievable, obtaining 
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selectivity between the closest homologues may represent, in some circumstances, a 

significant challenge. 

  

Following the extensive in vitro profiling described above, we next wanted to 

determine whether these inhibitors were able to directly engage USP28 in a cellular 

environment. To this aim, activity-based profiling studies were carried out using the 

Ubiquitin-vinyl sulfone substrate (Ub-VS) as molecular probe.  Ub-VS is a potent and 

reactive inhibitor of DUBs and its covalent interaction with the enzyme can be 

detected by mobility shift in western blotting analysis. As shown in Figure 3a, 

increasing concentration of the inhibitors AZ1, AZ2 and AZ4 initially reduced and 

ultimately ablated, in a concentration dependant manner, the covalent labelling 

of USP28 by Ub-VS. Densitometry analyses were subsequently performed and EC50 

values of 5.3, 18.2 and 11.3 µM were derived from these experiments for AZ1, AZ2 

and AZ4 respectively.  In contrast, AZ3 had no significant effect at either 60 or 100 

μM (Fig. 3a).  These data corroborate our previous biochemical and biophysical 

studies and unambiguously demonstrate direct evidence for target occupancy in cells.  

 

In response to the observation of activity against USP25 in an in vitro enzyme assay, 

we next performed additional cellular target engagement assays to determine whether 

the inhibitors interacted with USP25 in a cellular context. These data clearly 

demonstrate that in parallel to interacting with USP28, AZ1, AZ2 & AZ4 are also able 

to engage with USP25 with EC50 values of 3.3, 11.5 and 19.6 µM respectively (Fig 

3b.). In contrast, target engagement of less-closely related DUB family members such 

as USP7 and USP4 was not observed up to 60 µM, in line with the DUB screening 

panel data (Fig 3c.). The potency and selectivity profiles of AZ1, AZ2 and AZ4 

combined with good physicochemical properties (Molecular Weight <500, LogD7.4 in 

the 2.7-3.5 range and good solubility (Table 1)), made them suitable molecular and 

functional probes for further cellular investigations.  

 

Since the primary goal of our screening campaign was the identification of USP28 

inhibitors, we next prioritised proof-of-concept cellular studies using these validated 

inhibitors, to probe the regulation of endogenous c-Myc protein levels by USP28 in 

the HCT116 colon carcinoma cell line.  HCT116 was used as a model cell line for our 

initial mechanistic studies based on both the high USP28 expression and also 
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precedence from the Popov et al. studies21 demonstrating regulation of c-Myc protein 

levels by USP28 using siRNA. Cells were treated with increasing concentrations of 

compounds and samples were collected after 3 hrs for analysis.  As shown in Figure 

4a, western blotting analyses indicate a rapid and concentration-dependant decrease in 

c-Myc total protein levels following treatment with AZ1 and AZ2. Complete 

reduction in c-Myc levels was observed in both cases at the highest concentrations 

tested. Importantly, the decrease in c-Myc levels could not be attributed to total 

protein degradation following compound treatment as evidenced by the steady state 

levels in the loading control β-actin or USP28.  Similar studies performed with the 

less active structurally related compound AZ3 only showed an effect on c-Myc levels 

at the highest concentration of 100 μM (and to a much lesser extent at 80 μM).  No 

significant effect was detectable at 60 μM or below (Fig. 4a).  Together, the relative 

activity of the three compounds correlates well with their activity in the biochemical 

and target engagement assays described previously.  

  

Furthermore, AZ1 and AZ2 were observed to induce apoptosis in a rapid and 

concentration-dependant manner as evidenced by the cleavage of full-length PARP 

into a smaller (85 kDa) adduct (Fig. 4a). Interestingly, the concentration-dependent 

reduction in c-Myc levels was mirrored by a concomitant increase in PARP cleavage. 

Apoptosis induction was most pronounced following complete down-regulation of c-

Myc. Under the conditions of these experiments, no PARP cleavage or apoptosis was 

detected following treatment with AZ3 up to 100 µM (Fig. 4a).  Subsequently, we 

decided to extend our investigations beyond HCT116 cells and demonstrated that 

similar trends and effects were observed in multiple other cell lines including the 

colorectal adenocarcinoma SW480 and HT29 lines (Fig. S3a-b). 

 

Next, a series of experiments were performed in an attempt to elucidate the 

mechanism responsible for the rapid decrease in c-Myc total protein levels following 

compound treatment.  To determine whether the decrease in total c-Myc protein levels 

was mediated through the proteasome, HCT116 cells were pre-treated with both 

cycloheximide (CHX) and the proteasome inhibitor MG-132, followed by treatment 

with compound AZ1 or vehicle as a control.  Samples were subsequently collected at 

various timepoints for western blot analysis probing for c-Myc levels.  As shown in 

Fig. 4b, MG132 efficiently blocked the reduction in total c-Myc abundance resulting 
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in steady state levels of the protein for up to 180 min (the longest timepoint 

investigated).  Under the conditions of these experiments and following densitometry 

analysis, the half-life of c-Myc was determined to be 72 min in untreated cells whilst 

treatment with AZ1 significantly reduced this value by almost 50% to 40 min. 

Together, these studies demonstrate that the observed reduction in total c-Myc protein 

levels is mediated by proteasomal degradation. 

 

Flow cytometry analysis was then performed to assess the effect of the compounds 

over a longer time-period. The study demonstrated cell death induction in a dose-

dependent manner, as evidenced by the accumulation of a sub-G1 population 

(Supporting information; Figure S4). Based on these data, the anti-proliferative effect 

of these compounds was subsequently investigated. Briefly, cells were treated with 

increasing concentrations of the compounds (up to 100 µM) and cell viability was 

assessed after 72 hrs.  In good agreement with the observed sub-G1 population 

accumulation, our data demonstrate a dose-dependent loss of cell viability with EC50 

values of 18.0-20.0 µM range for AZ1 and AZ2 (Fig. 5a).  Under the same conditions, 

AZ3 was approximately 3-fold less active exhibiting an EC50 value of 93.2 µM.  

Similar effects on viability were observed in the HT29 and SW480 cell lines (Fig. 5a; 

EC50 values compiled in Supplementary Table 1). Altogether, these studies 

demonstrated that AZ1 and AZ2 inhibitors are able to induce both dose and time 

dependent cell cycle perturbations and cell death resulting in an anti-proliferative 

response. 

 

In order to further characterise the potential therapeutic opportunity afforded by these 

compounds, their effect on cell viability was monitored across a broader range of 

tumour cell lines from different tissue of origins and also tissue-matched normal cells. 

In total, a representative panel of 29 cell lines was used in this study including 22 

cancer cell lines and 7 tissue-matched normal cell lines.  Proliferation assays were 

performed as described previously and the compiled dataset is shown in Fig. 5b & 

compiled in Supplementary Table 1.  Our data demonstrated that AZ1 and AZ2 were 

able to reduce cell viability across a range of cancer cell lines with EC50 values 

typically clustered around 20 µM. Further analysis however indicated that no 

significant differentiation in response was observed between tumour and normal cell 

types (Fig. 5b). A minimal window of 3-5-fold was still typically observed between 
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the active compounds AZ1 and AZ2, and the less active analogue AZ3, in both the 

normal and cancer sets. We attempted to further optimise and develop these initial 

studies to improve this narrow therapeutic index. To this end, longer term viability 

assay (up to 7 days) and clonogenic assays (up to 12 days) were carried out but with 

little effect on the cancer to normal cell lines window. Similarly, changing the 

treatment modality in these assay formats to repeated or pulse treatments brought no 

further improvement (data not shown). We believe that this lack of selective killing 

results from the complexity of the pathways involved and potential redundancy 

between family members, such that the oncogenic effects of any specific gene 

amplifications, for example, are minimised. This hypothesis of a more complex 

scenario could be further investigated through the generation of a panel of genome-

edited cell lines (e.g. CRISPR/Cas9-based), to characterise both the compounds and 

pathways in knockout models. Furthermore, it is hoped that further optimisation of 

these compounds may improve both potency and selectivity, which is likely to 

improve the therapeutic index. 

 
The studies described herein report the identification and early characterisation of the 

first reported inhibitors of USP28 and USP25, which are able to bind to and inhibit 

both recombinant and endogenous enzymes. These inhibitors exhibit good 

biochemical potency and binding affinity as well as excellent selectivity profiles 

against a broader panel of DUBs. In cells, these compounds engage both targets and 

induce a dose-dependent reduction in the endogenous levels of a reported USP28 

substrate c-Myc, which we showed is mediated by the proteasome. Further cellular 

profiling demonstrated that these compounds induce apoptosis and in turn exert an 

anti-proliferative effect in both cancer and normal cell lines, albeit with no significant 

window in response. Whilst the observed c-Myc modulation is consistent with 

previous reports of the action of USP2821, we cannot exclude the possibility that the 

apoptotic and cell viability phenotypic effects are arising as a result of parallel 

inhibition of both USP25 and USP28. For example, it is plausible that whilst c-Myc-

driven effects may result from USP28 inhibition, other phenotypic observations, such 

as the induction of PARP cleavage could result from an alternative action on USP25. 

Therefore, the potential for redundancy to occur within the DUB family, coupled with 

the challenge of obtaining selectivity between closely related family members (e.g. as 
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previously reported between USP7 and USP4735), represent key challenges to be 

considered in the generation of therapeutic inhibitors of USPs. 

 

Given the limited number of quality, reversible inhibitors published to date, it is 

anticipated that these detailed studies and orthogonally validated probes will be of 

significant utility to the broad research community.  Firstly, since these molecules 

represent the first reported inhibitors of both enzymes, they should enable further 

investigation of the cellular biology related to USP25 and USP28, as well as probing 

the selectivity and redundancy between these closely related DUBs. For example, 

proteomic analysis following treatment of cells with these inhibitors may help 

characterisation of both their action and in turn reveal the complexity and interplay of 

DUB activities.  

Further development and optimisation of these scaffolds to improve both potency, and 

selectivity between USP25 and USP28, may not only aid such investigations, but may 

potentially improve the therapeutic index between activity in normal and cancer cells. 

Additionally, these probe compounds could act as seeds and provide templates for the 

development of inhibitors of USP28, USP25 and other members of this challenging 

target class. Indeed, our demonstration of the ability to identify broadly selective 

small molecules able to both bind to and inhibit USP targets in vitro and in cells, and 

the fact that the issues of selectivity and redundancy are likely to be target specific, 

provides encouragement that therapeutically relevant USP inhibitors can be developed 

in the future.  
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MATERIALS & METHODS 

Chemistry: 

Compounds AZ1-4 were prepared as described in the Supporting Information. 
 

Binding Assays – Isothermal Titration Calorimetry 

The USP28 protein and test compounds were dialysed in 40 mM HEPES (pH 7.5), 150 

mM NaCl, in order to minimise heat effects due to buffer mismatch or ionisation.   ITC 

experiments were carried out with 20 µM USP28 protein, contained in the cell of a 

Microcal iTC200 instrument, titrated with 200 µM test compound, contained in the 

instrument injection syringe.  The interaction of USP28 with test compound was 

quantified using a Microcal ITC 200 (GE healthcare). The titration data were recorded at 

25 °C in 40 mM HEPES pH 7.5, 150 mM NaCl, 2% DMSO. Aliquots of 200 µM ligand 

stocks were added to 20 µM USP28 in multiple 2 µL intervals.  Data was analysed using 

non-linear least squares regression using Microcal Origin software (GE healthcare). 

 

USP Selectivity Assessment 

The selectivity of compounds across the DUB family was analysed through testing in 

the DUBProfiler panel at Ubiquigent (www.ubiquigent.com). This involved inclusion 

of test compounds at a concentration of 10 µM in a range of Ub-Rho110 in vitro 

enzyme assays. Enzyme assays were generated and run for the following DUB-family 

members: 14 USPs (USPs1, 2, 4, 5, 7, 11, 15, 19, 20, 25, 28, 36, 45 & CYLD), 4 

UCHs (UCHL1, UCHL3, UCHL5 & BAP1), 3 OTUs (OTUB2, OTUD6B, Cezanne) 

and 1 JAMM (AMSH-LP). Data generated is displayed as a percentage inhibition of 

total enzyme activity for each enzyme. Dose response testing against USP28 and 

USP25 was performed in the same way, testing compounds in the range of 100-

0.03µM. Selectivity of AZ1 against cysteine proteases including caspases 1/2/4/5/8 

and cathepsins H/L/S was tested at a fixed screening concentration of 30 µM and data 

reported as % of enzyme activity relative to DMSO control (Reaction Biology).  

 

Cell Assays 

In order to assess cellular activity of the compounds, HCT116 cells were treated with 

USP28 inhibitor compounds for a period of 3 hrs. Following this incubation, cells 

were harvested, lysed and subjected to Western Blot analysis. Samples were probed 

for c-Myc protein levels and also probed for -actin levels, as a loading control. In 
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order to determine the half-life of c-Myc in cells, HCT116 cells were treated for 3 hr 

with USP28 inhibitors in the presence of cycloheximide (100 µg/ml) to block nascent 

protein synthesis. Thus any alteration in c-Myc levels would be indicative of changes 

in degradation as opposed to protein synthesis. Following compound treatment, cells 

were harvested and lysed prior to Western blot analysis 

 

Cells lines and culture conditions 

 All cell lines were obtained from the American Type Culture Collection (ATCC),  

and were both authenticated by STR profiling (Promega) and shown to be 

mycoplasma-free through external (Cell Check 9 Plus; IDEXX BioResearch) or 

internal testing with the MycoAlert mycoplasma detection (Lonza; LT07-318). For 

growth, cells were maintained at 37°C in a humidified atmosphere with 5% CO2. 

HCT116 and HT29 were cultured in McCoys 5A supplemented with 10% (v/v) FBS, 

1% (v/v) Penicillin/streptoMycin, 1% (v/v) L-Glutamine. DU145, LNCAP, PC3, 

PNT2, A549 and OVCAR8 were cultured in RPMI supplemented with 10% (v/v) 

FBS, 1% (v/v) Penicillin/streptoMycin, 1% (v/v) L-Glutamine. InMyo Fib were 

cultured in Smooth Muscle Cell Basal Medium (Lonza). NL20 were cultured in F-12, 

Ham Nutrient Mixture supplemented with 4% (v/v) FBS, 1% (v/v) 

Penicillin/streptoMycin, 1% (v/v) L-Glutamine, 1% (v/v) NEAA, 5µg/ml of Insulin 

(Sigma Aldrich), 0.05 µg/ml of transferrin, 0.5 µg/ml of hydrocortisone (Sigma 

Aldrich) and 0.05 µg/ml of EGF (Sigma Aldrich). U87MG, U251 and A431 were 

cultured in DMEM supplemented with 10% (v/v) FBS, 1% (v/v) Penicillin/ 

streptoMycin, 1% (v/v) L-Glutamine. HMEC-1 were cultured in MCDB-131 

supplemented with 10% (v/v) FBS, 1% (v/v) Penicillin/streptoMycin, 1% (v/v) L-

Glutamine, EGF 1 ng/ml. Medium and supplements were purchased from Life 

Technologies except were indicated.  

 

Reagents for cellular characterisation 

The USP28 inhibitors (AZ1, AZ2, AZ3 and AZ4) were prepared as 100 mM DMSO 

stocks for cell culture experiments. Cycloheximide was purchased from Calbiochem 

and used at a final concentration of 100 μg/mL. MG132 and Propidium Iodide (PI) 

were both obtained from Sigma-Aldrich and used at a final concentration of 20 μM 

and 10 µg/mL respectively. RNaseA was purchased from Qiagen and used at a final 

concentration of 250 µg/mL. CellTitre-Glo (cell viability assay) was purchased from 
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Promega. Ubiquitin-Vinyl Sulfone (Ub-VS) was purchased from Boston Biochem and 

used at a final concentration of 32 µg/ml. 

 

Western blotting and antibody sources 

Cells were lysed in radioimmuno-precipitation (RIPA) buffer containing 50 mM Tris 

HCl (pH 7.6), 150 mM NaCl, 1 mM EDTA, 1% NP40, 0.25% Na-deoxycholate and 

supplemented with a phosphatase (PhosSTOP, Roche) and protease inhibitor cocktail 

tablet (cOmplete Mini, Roche). Antibodies were obtained from AbCam; anti-USP28 

(Ab110744; 1:1000 dilution), anti-USP25 (ab187156; 1:1000), BD Bioscience;; anti-

USP28 (A300-898A; 1:1000), Cell Signaling; anti-c-Myc (5605; 1:1000) and anti-

PARP (9542; 1:1000), anti-USP28 (4217, 1:1000), Santa Cruz; anti-β-actin (A5316; 

1:5000), HRP conjugated anti-rabbit (A0545 1:5000) and HRP conjugated anti-mouse 

(A9917; 1:5000).  

 

Target engagement assay  

HCT116 cells were treated with USP28 inhibitors for 2 hr. Following incubation, cells 

were harvested in TE lysis buffer containing 50 mM Tris (pH7.4), 150 mM NaCl, 5 

mM MgCl2, 0.5 mM EDTA, 0.5% NP40, 10% Glycerol, 2 mM DTT and clarified cell 

lysates (40 µg) incubated with Ubiquitin-vinyl Sulfone in assay buffer containing 50 

mM Tris (pH7.6), 5 mM MgCl2, 250 mM Sucrose, 0.5 mM EDTA, 2 mM DTT for 1 

hr on ice. The reaction was terminated by the addition of LDS sample buffer (Life 

Technologies) and heated to 70oC. Samples were then analysed by western blotting. 

 
Proliferation Assays 
 
Cells were typically seeded in 96 well plate format (typically 4000-6000 cells/well) 

and treated after 24 hrs with increasing concentration of compound from 0 to 100 µM 

in ½ log unit increments.  Cell viability was assessed after 72 hrs by CellTiter-Glo® as 

recommended by the manufacturer’s instructions (Promega). Analysis and EC50 

values were derived using GraphPadPrism. 
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Figures: 
 

Compound Number  
 

AZ1 
 

AZ2 AZ3  AZ4 

Structure 

 

 

 

USP28 IC
50

 (µM) –  

Ub-Rh110 assay 
0.7 

(n = 4) 
1.1  

(n = 4) 
59.6 

(n = 3) 
2.0 

(n = 24) 

USP28 IC
50

 (µM) –  

Ub-TMR assay 
1.0 

(n = 3) 
0.9 

(n = 3) 
68.4 

(n = 3) 
2.1 

(n = 3) 

USP28 IC
50

 (µM) – 

tetra-Ub assay 
0.8 

(n = 4) 
1.3 

(n =4) 
98.0 

(n = 4) 
1.5 

(n = 4) 

USP28 ITC K
d
 (µM)  0.2  0.9  >100 2.7 

USP28 MST Kd (µM) 
3.7 

(n=2) 
10.3 
(n=2) 

>100 
(n=2) 

3.6 
(n=2) 

USP25 IC
50

 (µM) –  

Ub-Rh110 assay 
0.62 0.88 52.53 Nd 

USP2a IC
50

 (µM) –  

Ub-Rh110 assay 
>100  

(n = 6) 
>100  

(n = 5) 
>100 >100 

Molecular Weight  422  420  336 390 
LogD  3.3  3.5  2.2 2.7 

LLE USP28 enzyme 
pIC

50
-LogD  2.8  2.5  2 3 

Solubility at pH
7.4

 (µM)  80  166  855 652 

pK
a
  8.9  8.9  Nd Nd 

Human plasma %free  3.7  4.1  Nd Nd 

 

Table 1 Overall profiles of USP28/USP25 inhibitors.  

The HTS hit finding approach found benzylic aminoethanols of the structural class 

represented by compounds AZ1-4. The in vitro profiles of AZ1, AZ2 and AZ4 show 

them to be active against the USP28 enzyme and to bind to USP28 by iso-thermal 

calorimetry (ITC) & Microscale Thermophoresis (MST). They were also shown to be 

selective over USP2a. A fourth analogue (AZ3) was shown to be significantly less 

potent at inhibiting USP28 but retained selectivity over USP2a. The data shown in the 

table were generated from one experimental replicate, unless stated otherwise. 
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Figure 1: Orthogonal hit validation and characterisation 
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(a) Isothermal Calorimetry: AZ1  
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(b) Isothermal Calorimetry: AZ2 
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(c) Isothermal Calorimetry: AZ4 

  

Figure 1 a-c: Iso-thermal titration calorimetry (ITC) data demonstrating 

AZ1, AZ2 & AZ4 inhibitor binding to USP28. ITC ligand binding 

measurement confirmed inhibitor binding to USP28 and determined the 

affinity of the interaction. Data are shown for (a) AZ1, (b) AZ2 and (c) AZ4 

binding to USP28. The less potent analogue, AZ3, failed to produce a 

measurable Kd value.  The data shown are representative data from a single 

experiment.  The USP28 protein and test compound binding partners were 

dialysed in 40 mM HEPES (pH 7.5), 150 mM NaCl, in order to minimise heat 

effects due to buffer mismatch or ionisation.  Data was analysed using non-

linear least squares regression using Microcal Origin software (GE 

Healthcare). 
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Figure 2: Inhibitor Selectivity Profiling  

 

 

 

 

(a) Selectivity profiling of USP28 inhibitors across DUB family members. 

Compound activity was analysed against a range of DUB family members, in 

the DUBProfiler panel (Ubiquigent) of purified enzyme assays using 

Ubiquitin-Rhodamine110 as substrate (28). Data is shown as a percentage of 

inhibition of the total enzyme activity for each enzyme in the panel, in the 

presence of 10 µM test compound. Error bars represent the standard deviation 

of 3 replicates. 
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(b)  

(c)  

(d)   

 USP25 IC50 (µM) USP28 IC50 (µM) 

AZ1 0.7 0.6 

AZ2 0.9 0.9 

AZ3 26.4 52.5 

(e) 
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Figure 2(b-e): Dose response profiling of inhibitors against USP25 & 

USP28. 

Compound activity was analysed against USP25 & USP28, in the 

DUBProfiler (Ubiquigent) purified enzyme assays using Ubiquitin-

Rhodamine110 as substrate. Data is shown as a mean percentage activity at 

each concentration tested, thereby generating dose-response curves for (b) 

AZ1, (c) AZ2, and (d) AZ3. Error bars represent the standard deviation of 4 

replicates. IC50 values calculated from the dose response curves are shown in 

the associated table (e). 
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Figure 3: Cellular target engagement profiling of inhibitors 

 

 
 

 
 

 

 

Compound AZ1 AZ2 AZ3 AZ4 

EC50 (µM) 5.3 +/- 2.1 18.2 +/- 5.2 >100 11.3 +/-3.1 

 

(a) Target engagement of USP28 in a cellular environment by USP28 

inhibitors.  HCT116 cells were treated with USP28 inhibitors at the indicated 

concentrations for 2 hrs.  Cells were washed thrice, lysed and the Ub-VS 

probe added to the extract. Samples were analysed by immunoblotting probing 

for USP28. Upper band (USP28-Ub covalent adduct).  Data presented as mean 

of 3 independent experiments. Quantitation by densitometry analysis was 



Wrigley, Gavory et al, ACS Chemical Biology 

Page 30 of 36 

performed on both the upper (enzyme + Ub) and lower bands (enzyme only). 

The data were fitted to a sigmoidal curve using GraphPad Prism (GraphPad 

Software, Inc, La Jolla, CA). 
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Compound AZ1 AZ2 AZ3 AZ4 

EC50 (µM) 3.3 +/-1.2 11.5 +/- 4.5 >100 19.6+/-3.2 

 

 

(b) USP28 inhibitors engage with USP25 in a cellular context 

HCT116 cells were treated with USP28 inhibitors at the indicated 

concentrations for 2 hrs.  Cells were washed thrice, lysed and the Ub-VS 

probe added to the extract. Samples were analysed by immunoblotting probing 

for USP25. The higher bands show USP-Ub covalent adducts, demonstrating 

target engagement with USP25. Data presented as mean of 3 independent 

experiments. 
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(c) USP28 inhibitors do not engage with USP7 or USP4 in a cellular 

context 

HCT116 cells were treated with USP28 inhibitors at the indicated 

concentrations for 2 hrs.  Cells were washed thrice, lysed and the Ub-VS 

probe added to the extract. Samples were analysed by immunoblotting probing 

for USP7 & USP4. The higher bands show USP-Ub covalent adducts, with no 

demonstrable target engagement with either USP7 or USP4. Data presented as 

mean of 3 independent experiments. 
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Figure 4: Phenotypic profiling of inhibitors 

 

 

 

(a) Modulation of endogenous total c-Myc levels by USP28 inhibitors. 

HCT116 cells were treated with compounds (as indicated) and samples collected 

after 3 hrs for Western blot analysis probing for USP28, c-Myc and PARP.  β-

actin was included as loading control. Full-length PARP (116 kDa), cleaved 

PARP (cl. PARP, 85 kDa). These data are representative data from at least 3 

independent experiments. Similar observations were also made in additional cell 

lines including SW480 and HT29 (see Fig. S3a-b)  
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(b) USP28 inhibitor-induced c-Myc degradation is mediated by the 

proteasome. Representative data shown with AZ1. HCT116 cells were pre-

treated with cycloheximide (100 μg/mL) and the proteasome inhibitor MG132 

(20 μM) and subsequently exposed to AZ1 (60 μM) or vehicle control 

(DMSO).  Cells were lysed at the indicated timepoints (from 0 to 180 min) 

and samples analysed by Western blotting probing for c-Myc.  The half-life 

values of c-Myc were determined by densitometry analysis based on these 

blots. β-actin was included as loading control. These data are representative 

data from at least 3 independent experiments. 
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Figure 5: Representative cell cycle and viability assays in HCT116 and 
viability data across a panel of cell lines including normals. 

 
 

 

(a) Cell viability assays - Cells were typically seeded in 96 well plate 

format (typically 4000-6000 cells/well) and treated after 24 hrs 

with increasing concentration of compound from 0 to 100 µM in ½ 

log unit increments.  Cell viability was assessed after 72 hrs by 

CellTiter-Glo® as recommended by the manufacturer’s instructions 

(Promega).  Analysis and EC50 values were derived using 

GraphPadPrism (GraphPad Software, Inc, La Jolla, CA; four-

parameter logistic function). Data presented as mean of at least 

three independent experiments. EC50 values compiled in 

Supplementary Table 1. 
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(b) Representative viability assays in a panel of cancer and tissue-

matched normal cell lines.  

Compiled EC50 values in normal and cancer cell lines. Proliferation assays were 

run as described previously using a panel of cancer (n=21) and normal cell lines 

(n=7) from different tissues of origin. EC50 values were derived using GraphPad 

Prism (GraphPad Software, Inc, La Jolla, CA) from at least two independent 

experiments. Cell line panel composition and EC50 values are available in 

Supporting information. The box plot representation was performed using 

R+GG plot2 package.  The tick band indicates the median, the box indicates the 

upper and lower quantiles, the vertical line indicates the variability and the 

individual dots represent the various cell lines. Details on the panel composition 

and EC50 values are shown in Supplementary Table 1. 
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Supplementary Methods: 
 
Expression and purification of USP28  

 

The extended catalytic domain of the USP28 (E147-L652) LE-6his was expressed in 

the BL21*(DE3) E.coli transformed with pET29b vector grown in Terrific broth. 21 

hours post induction the grow was harvested by centrifugation. The cell pellets were 

resuspended 1g per 10 ml in lysis buffer of 20 mM Hepes pH8.0, 0.15 M NaCl, 5 mM 

2-mercaptoethanol, 10 mM Imidazole containing Complete–EDTA free protease 

inhibitors (Roche) and 50 µg/ml lysozyme. Lysis was performed by sonication on ice 

and clarified by centrifugation. The supernatant was applied to a Nickel-NTA 

superflow (Qiagen) column equilibrated into 20 mM Hepes (pH8.0), 0.15 M NaCl, 5 

mM 2-mercaptoethanol, 10 mM Imidazole. After loading the column was washed to 

remove unbound with the same running buffer. The tagged protein was eluted using 

this buffer containing 250 mM imidazole. The elution fractions were pooled and 

concentrated using a cleaned Amicon Ultra-15 centrifugal filter with a 10,000 MWCO 

membrane (Millipore). The pool was loaded onto a Hiload Superdex 200 16/60 prep 

grade (GE Healthcare) equilibrated into 25 mM Bis-Tris (pH7.0), 0.1 M NaCl, 4 mM 

TCEP storage buffer. The pure USP28 pool was concentrated further, aliquoted and 

snap frozen for storage. 

 

In vitro deubiquitination assays using Ubiquitin-Rhodamine 110  

Assay Reagents 

Ubiquitin-Rhodamine 110 was from Boston Biochem. All other chemicals were 

supplied from Sigma-Aldrich.  

 

Assay buffer 

All reactions were performed at room temperature in freshly prepared assay buffer 

containing 50 mM Hepes (pH 7.4), 0.5 mM EDTA, 1 mM tris-(2-Carboxyethyl) 

phosphine (TCEP) and 1 mg/ml bovine serum albumin. 

 

Compound Preparation 



Wrigley, Gavory et al, ACS Chemical Biology 

Page 3 of 26 

Compounds were acoustically dispensed into black 1536-well non-binding 

microplates (Greiner Bio-One, UK) using an Echo 555 (Labcyte Inc., Sunnyvale, 

CA). For primary screening, 10 nL of 10 mM compounds solubilized in DMSO were 

dispensed acoustically into the wells. This gave a final concentration of 0.3% (v/v) 

DMSO and a final in-well compound concentration of 33.3 μM after addition of all 

reagents. For concentration-response screening, varying amounts of compound were 

dispensed acoustically to give a doubling dilution range. Wells were backfilled with 

the required volume of DMSO to ensure a final concentration of 1% (v/v) after 

addition of all reagents. 

 

Assay Optimization 

Cleavage of the rhodamine Ubiquitin-Rhodamine 110 was confirmed by incubating 

80 nM Ubiquitin-Rhodamine 110 in assay buffer with 0.25 nM USP28 in a final 

volume of 6 μL. The fluorescence signal was read every 5 minutes for 35 min. The 

effect of different reductants on enzyme activity was determined by incubating 80 nM 

Ubiquitin-Rhodamine 110 with 0.25 nM USP28 in assay buffer containing either 1 

mM dithiothreitol (DTT), glutathione or TCEP. Kinetic parameters for the USP28-

catalyzed cleavage of nM Ubiquitin-Rhodamine 110 were determined by incubating 

varying concentrations of Ubiquitin-Rhodamine 110 with 0.25 nM USP28. The 

fluorescence signal was read on a Pherastar microplate reader (BMG Labtech, 

Ortenberg, Germany) using excitation 485 nm, emission 520 nm, every minute for 30 

min. Initial rate data were fitted to the Michaelis-Menten equation using GraphPad 

Prism V.5 (GraphPad Software Inc.). 

 

Inhibition of USP28 by Ubiquitin aldehyde 

0.25 nM USP28 in assay buffer was incubated with varying concentrations of 

Ubiquitin aldehyde. These were incubated at room temperature for 20 minutes, prior 

to the addition of 80 nM Ubiquitin-Rhodamine 110. The plates were covered and left 

to incubate for a further 30 mins at room temperature. 100 mM citric acid was added 

before measuring fluorescence as before. The IC50 data were fitted using GraphPad 

Prism (GraphPad Software, La Jolla, CA). 
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High throughput screen for USP28 inhibitors  

Test compounds from the AstraZeneca compound collection were dissolved in DMSO 

to form stock solutions (10 mM). A final concentration of 0.3% v/v of DMSO and 10 

μM test compound was achieved after reagent additions. An Innovadyne Nanodrop 

(PAA, Colorado) was used to dispense 1.5 μL of 0.5 nM USP28 in assay buffer (50 

mM Hepes (pH 7.5), 0.5 mM EDTA, 0.1 mg/ml BSA, 1 mM TCEP) to assay plates 

containing compound, before briefly centrifuging the plates at 150 g for 10 seconds in 

a Vspin (Agilent, Santa Clara, CA). After 20 minutes incubation at room temperature, 

1.5 μL of 160 nM Ubiquitin-Rhodamine 110 in assay buffer was added using a 

Nanodrop and the plates centrifuged as before. The reaction was incubated at room 

temperature for 30 minutes, before the addition of 1.5 μl of 100 mM citric acid using 

a Latitude (Deerac Fluidics, Sunnyvale, CA) to stop the reaction. Fluorescence signal 

was measured as before. 

 

Concentration Response Follow-up Screening 

8-point, doubling dilution concentration-response curves, with a top concentration of 

100 μM were constructed. The assay was performed using the process described for 

the high-throughput compound library screening. Assay using the tetra-ubiquitin 

Rh110 substrate (tetra‐Ub Rh110 K63‐linked; # UC355; Boston Biochem) was 

performed as described above for the Ub-Rh110 substrate using commercially 

available USP28 (Boston biochem, # E-570). The fluorescence polarisation (FP) assay 

was performed as described above using instead the isopeptide ubiquitin-Lys-

tetramethylrhodamine substrate (Ub-TMR; U-558, Boston Biochem). FP was 

measured every 15 min over a period of 90 min (within the linear range of the assay) 

using a Synergy 4 plate reader (BioTek) exciting at 530 nm and measuring the amount 

of parallel and perpendicular light at 575 nm. The FP signal was subsequently 

normalised to the no compound control (i.e. DMSO). Analysis and IC50 values were 

derived using GraphPadPrism (GraphPad Software, Inc, La Jolla, CA; four-parameter 

logistic function). All data presented as mean  s.d. (n >=3). 

 

Mode of inhibition study 

AZ1 at final assay concentrations ranging from 200 nM to 5 µM was pre-incubated 

for 30 min with 1.5 nM of full-length USP28 (0.5 nM final assay concentration). Five 
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microliters of tetra-ubiquitin substrate (Tetra-Ub K63-linked; 100 nM to 40 µM to a 

final assay volume of 15 µl in low volume black 384-well plates (Greiner # 784076). 

Fluorescence intensity (ex = 487-14 nm, em = 535-30 nm) was measured over 90 min 

using a CLARIOstar plate reader (BMG LABTECH) and initial linear rates were 

calculated. Global fit analysis for competitive models were performed using GraFit 

(Leatherbarrow, R.J. (2001) GraFit Version 5, Erithacus Software Ltd., Horley, 

U.K.;Global fit Michaelis-Menten enzyme inhibition).  

 

Data analysis 

HTS data were analyzed using proprietary AstraZeneca software. 

 

Reversibility studies 

For the high-dilution assay, USP28 was pre-incubated for 30 min with 10x the 

inhibitor IC50 value followed by 100x dilution. USP28 activity was assessed 15 min 

post-dilution as described above. Iodoacetamide (Sigma-Aldrich; #A3221) was used 

as a positive control for this experiment at a final pre-dilution concentration of 1.0 

mM. Data analysis was performed as described previously. 

 

“Ratio test” assay 

8-point, doubling dilution concentration-response curves, with a top concentration of 

100 μM were constructed. The assay was performed using the process described for 

the high-throughput compound library screening. A further assay was performed on 

the same set of compounds using a concentration of 5 nM USP28 and an incubation 

time of 3 minutes. 

 

Binding Assays – Nanotemper  

20 µM USP28 was labeled with a red fluorescent dye (NT-647) using Monolith NT 

™ Protein Labelling Kit RED (NanoTemper Technologies GmbH, Munich, 

Germany). Phosphate buffered saline (PBS) containing 0.4 mM TCEP and 0.3 % 

(v/v) Tween-20 was used as the assay buffer for compound and protein dilutions. 

Compounds were serially diluted in doubling dilutions to generate 16-point 

concentration ranges with final assay concentrations between 100 µM and 0.003 µM. 

Labelled USP28 was diluted to a final assay concentration of 50 nM. 20 μl of diluted 

compound was mixed with 20 μl of diluted fluorescently labelled protein and 



Wrigley, Gavory et al, ACS Chemical Biology 

Page 6 of 26 

incubated under ambient conditions for 30 minutes. Each compound / protein mixture 

was spun for 5 minutes at 13,000 rpm prior to aspiration into a glass capillary to 

minimise uptake of aggregated particulate. 16 samples could be analysed within one 

MST experiment. The utilisation of hydrophilic glass capillaries was necessary due 

the propensity of USP28 to bind to untreated glass surfaces. Analysis was performed 

on a Monolith NT using the following settings: Infra-red laser power at 25 %, laser on 

time (heating) = 30 seconds, laser off time (cooling) = 5 seconds. The data were 

normalised against the baseline obtained in the absence of any inhibitor, and the 

maximal response obtained at the highest concentration of inhibitor. The (dissociation 

constant) (Kd) was calculated by plotting delta Fnorm (shift in normalised 

fluorescence) against the logarithm of the compound dilution series concentrations. 

The resulting sigmoidal binding curve could be directly fitted with a non-linear 

solution of the law of mass action. All experiments were performed with a minimum 

of 3 replicates and the delta Fnorm curves analysed using Origin software (OriginLab 

Corporation, Northampton, MA, USA). 

 
Flow cytometry 

Cells were plated in 6 cm dish (2.5x105 cells/well) and treated with compounds as 

indicated. Cells (including floating cells) were collected after 24 or 48 hrs, rinsed with 

PBS/FCS (1%, v/v) and fixed with 70% EtOH and kept at 4°C until needed.  Cells 

were subsequently stained with Propidium Iodide solution (100 µg/mL PI in 1x PBS) 

and incubated at RT for 30 min.  Cell cycle analysis was performed using flow 

cytometry (FACScalibur) and the CellQuest Software. 

 

Chemistry: 

Compounds AZ1-4 were prepared as described below. 
 
2-(5-Bromo-2-(4-fluoro-3-(trifluoromethyl)benzyloxy)benzylamino)ethanol, AZ1  
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Potassium carbonate (2.75 g, 19.90 mmol) was added to 4-(bromomethyl)-1-fluoro-2-

(trifluoromethyl)benzene (2.81 g, 10.94 mmol) and 5-bromo-2-hydroxybenzaldehyde 

(2 g, 9.95 mmol) in DMF (50 mL) at 20 °C under nitrogen. The resulting yellow 

suspension was stirred at 20 °C for 16 hrs. The reaction mixture was then poured into 

ice water, the resulting white precipitate filtered, washed with copious water and dried 

under vacuum to give 5-bromo-2-(4-fluoro-3-

(trifluoromethyl)benzyloxy)benzaldehyde (3.61 g, 96 %) as a white solid. 2-

aminoethanol (0.922 mL, 15.27 mmol) was added to 5-bromo-2-(4-fluoro-3-

(trifluoromethyl)benzyloxy)benzaldehyde (1.44 g, 3.82 mmol) in THF (35 mL) with 

acetic acid (2 drops) added under nitrogen. The solution was then stirred for 10 mins. 

Sodium triacetoxyhydroborate (2.428 g, 11.45 mmol) was then added portionwise 

over 30 minutes and the resulting suspension was stirred at 20 °C for 16 hrs. The 

reaction mixture was then poured onto 10% NaHCO3 solution (200 mL) and the 

aqueous phase was extracted with ethyl acetate (2 x 200 mL). The combined organic 

phases were dried over Na2SO4, filtered and evaporated to give a yellow gum. The 

crude product was purified by flash silica chromatography, elution gradient 0 to 10% 

MeOH in DCM. Pure fractions were combined and evaporated to dryness to afford 2-

(5-bromo-2-(4-fluoro-3-(trifluoromethyl)benzyloxy)benzylamino)ethanol (1.23 g, 

76%) as a white solid.  1H NMR (400 MHz, D6-DMSO, 22 °C) 2.17 (1H, s), 2.55 (2H, 

t), 3.44 (2H, dt), 3.70 (2H, s), 4.48 (1H, t), 5.20 (2H, s), 7.01 (1H, d), 7.38 (1H, dd), 

7.46 - 7.65 (2H, m), 7.75 - 8 (2H, m) ppm; 13C-NMR (176 MHz, D6-DMSO, 22 °C) 

46.90, 51.11, 60.36, 67.98, 112.39, 114.14, 116.47 (dq, J=32.17, 12.91), 117.31 (d, 

J=20.38), 122.51 (q, J=271.87), 125.97 – 126.11 (m), 129.94, 131.18, 132.02, 134.08, 

134.13, 154.86, 158.31 (d, J=254.92); HRMS +ESI m/z calc. for [M+H]+ 

C17H17O2NBrF4 422.03733, found 422.03738. 

 
 
2-(5-bromo-2-(3-(trifluoromethoxy)benzyloxy)benzylamino)ethanol, AZ2  
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Potassium carbonate (2.75 g, 19.90 mmol) was added to 1-(bromomethyl)-3-

(trifluoromethoxy)benzene (2.79 g, 10.94 mmol) and 5-bromo-2-

hydroxybenzaldehyde (2.000 g, 9.95 mmol) in DMF (50 mL) at 20°C under nitrogen. 

The resulting yellow suspension was stirred at 20 °C for 16 hrs.  The reaction mixture 

was poured into ice water, the resulting white precipitate filtered off, washed with 

water and dried under vacuum at 50° C. At this temperature, the product melted. The 

liquid was then dissolved in DCM, passed through phase separating cartridge and 

filtrate concentrated under reduced pressure to give 5-bromo-2-(3-

(trifluoromethoxy)benzyloxy)benzaldehyde (1.682 g, 45.1 %)  as a pale yellow liquid 

that crystalised on standing to an off-white solid. 2-Aminoethanol (1.081 mL, 17.91 

mmol) was added to 5-bromo-2-(3-(trifluoromethoxy)benzyloxy)benzaldehyde (1.680 

g, 4.48 mmol) in THF (50 mL) with acetic acid (few drops) added under nitrogen. The 

solution was stirred for 10 mins. sodium triacetoxyhydroborate (2.85 g, 13.44 mmol) 

was then added portionwise over 30 minutes and the resulting suspension was stirred 

at 20 °C for 2 hrs. Reaction did not look to be progressing by TLC so heated to 50°C 

for 16 hrs. The reaction mixture was poured onto 10% NaHCO3 solution (200 mL) 

and extracted with ethyl acetate (2 x 200 mL). The organics were dried over Na2SO4, 

filtered and evaporated to give a yellow gum. The crude product was purified by flash 

silica chromatography, elution gradient 0 to 10% MeOH in DCM. Pure fractions were 

evaporated to dryness to afford 2-(5-bromo-2-(3-

(trifluoromethoxy)benzyloxy)benzylamino)ethanol (1.521 g, 81 %) as a white solid. 
1H NMR (400 MHz, DMSO, 22°C) 2.57 (2H, t), 3.43 (2H, d), 3.72 (2H, s), 4.50 (1H, 

s), 5.19 (2H, s), 7.00 (1H, d), 7.26 - 7.41 (2H, m), 7.51 (4H, m) ppm; 13C-NMR (176 

MHz, D6-DMSO, 22 °C) 46.89, 51.14, 60.40, 68.45, 112.31, 114.09, 119.42, 120.0 

(q, J=256.36) 120.11, 126.10, 129.86, 130.42, 131.08, 132.08, 139.77, 148.41, 

154.89; HRMS +ESI m/z calc. for [M+H]+ C17H18O3NBrF3 420.04167, found 

420.04221. 

 

AZ3 and AZ4 were made in analogous manner to the preparations of AZ1 and AZ2 

above.  AZ3 and AZ4 exhibited the following analytical data: 

 

2-{[2-(benzyloxy)-5-bromobenzyl]amino}ethanol, AZ3  
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1H NMR (400 MHz, DMSO, 22°C) 2.14 (1H, s), 2.55 (2H, dd), 3.46 (2H, q), 3.71 

(2H, s), 4.49 (1H, t), 5.13 (2H, s), 7.01 (1H, d), 7.29 - 7.48 (6H, m), 7.50 (1H, d);  
13C-NMR (176 MHz, DMSO) 44.03, 48.84, 56.23, 69.88, 111.78, 114.70, 122.65, 

127.52, 127.89, 128.40, 132.86, 133.73, 136.37, 155.81; HRMS ESI+ m/z calc. for 

C16H18BrNO2, 336.05937, found 336.05978. 

 

2-({5-Bromo-2-[(2,4,5-trifluorobenzyl)oxy]benzyl}amino)ethanol, AZ4  

 
1H NMR (400 MHz, DMSO, 21 °C) 2.02 (1H, s), 2.53 (2H, t), 3.44 (2H, q), 3.67 (2H, 

s), 4.47 (1H, t), 5.13 (2H, s), 7.07 (1H, d), 7.39 (1H, dd), 7.51 (1H, d), 7.59 7.76 (2H, 

m) 
 13C-NMR (176 MHz, D6-DMSO, 22 oC) 46.79, 51.06, 60.39, 63.11, 106.14 (dd, J = 

21.4, 28.2), 112.62, 114.24, 118.08 (dd, J = 5.3, 19.9), 120.89 (dt, J = 16.4), 129.93, 

131.15, 132.21, 145.98 (ddd, J=242.71, 12.72, 3.09), 149.05 (dt, J= 250.02, 13.66), 

154.77, 155.50 (dd, J=245.17, 9.48); HRMS +ESI m/z calc. for C16H15BrF3NO2 

[M+H]+ 390.03110,  found 390.03311. 
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Supplementary Results/Discussion: 
 
 
USP28 screening and hit identification. 

The Ub-Rh110 assay was chosen based on its superior optical properties to 

alternatives such as Ubiquitin-AMC, whose emission/excitation wavelengths 

(~360/~460nm) correspond to a spectrum range over which small molecule 

compounds typically absorb or emit, potentially resulting in assay artefacts. This 

strategy was also favoured based on the feasibility and simplicity of such an approach, 

compared to the complexities of utilising a cell-based assay for analysis of c-Myc 

levels, which would require significant deconvolution of hits, due to the range of 

additional factors that could impact on cellular c-Myc levels.  

 

As part of our assay set-up and validation activities, initial studies were performed to 

determine the optimal enzyme and substrate concentrations and a suitable time course 

for the reaction (data not shown). The selected conditions of 80 nM Ub-Rho110 and 

0.25 nM USP28 yielded linear time-dependant cleavage, and an approximately 3-fold  

signal : noise window at the chosen 30 minutes assay timepoint (Fig.S1a). The 

Michaelis-Menten parameters were determined by monitoring the rate of reaction at 

several different concentrations of substrate. A Km value of 1918 ± 100 nM for Ub-

Rh110 versus USP28 was determined (Fig. S1b). For comparison, this value is similar 

to the Km value of 1137 ± 93 nM derived in a previous screen for USP2a. A substrate 

concentration of 80 nM was chosen for screening (~25-fold below the Km value) in 

order to identify competitive inhibitors.  

 

Based on previous observations with an in vitro Ub-AMC assay for USP7, the choice 

of reducing agent included in the assay may have a significant impact on both assay 

performance and the nature of the hits identified (12). For this reason, we performed 

studies to analyse the effect of several reducing agents on the assay window 

(Fig.S1c). This demonstrated that although a signal was obtained under all conditions, 

the assay window was the highest using 1 mM TCEP, which was therefore chosen for 

subsequent use. Another crucial step in assay validation was to demonstrate that a 

known inhibitor showed activity in this assay format. To this aim, Ubiquitin aldehyde 

(Ub-Al) was tested at a range of concentrations to generate a dose response curve, 

which yielded an IC50 value of 6.4 nM (Fig. 1Sd). Assay robustness and 
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reproducibility were also determined and monitored by multiple testing using Ub-Al 

as positive control. Assay statistical analyses demonstrated good reproducibility both 

within and between assays and also yielded Z´ values of around 0.8, demonstrating in 

turn good assay robustness (data not shown). 

  

Assay performance was monitored throughout the campaign by means of controls for 

the maximum signal and 50% and 100% inhibition, to ensure reproducibility of the 

assay signal and inhibition. Whilst DMSO was used as a control for the maximal 

signal, a previously reported inhibitor of USP7 was also utilised for the inhibitory 

controls (Compound 1j/B, Patent: WO 2007/066200 A2). Z´ values were monitored 

throughout testing and values >0.7 were consistently generated throughout primary 

and follow-up screening (data not shown).  

 

A primary hit rate of approximately 5.3% was obtained and the compound inhibition 

data yielded the expected bell-shaped distribution around a median of approximately 

0% inhibition (Fig. S1e).   

Based on this assay, a validation rate of 36% was obtained leading to an overall hit 

rate of 0.3% (15/40000) for the entire screen. Our subsequent characterisation, 

commencing with IC50 determination, focused exclusively on these likely-specific 

inhibitors.   

 
Biophysical Techniques: 

NanoTemper Microscale Thermophoresis (MST) was employed to confirm compound 

binding and this technique involved labelling of the USP28 target protein with a red 

fluorescent dye (NT-647) or utilised its intrinsic fluorescence. The target was then 

treated with a serial dilution of unlabelled compounds in a glass capillary. An infrared 

laser was used to generate precise microscopic temperature gradients in the capillary 

and the motion of fluorescently labelled molecules along these gradients is measured. 

Ligand binding to a target protein alters the enveloping hydration shell causing 

unbound and ligand-bound protein to respond differently to the thermophoretic force 

allowing determination of binding affinities.  
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Effects on Cell Cycle: 
 
To investigate the effect of the compounds over a longer period of time, flow 

cytometry analysis was performed. HCT116 cells were treated with various 

concentrations of the compounds (typically 10, 20 and 40 µM), fixed and stained with 

Propidium Iodide (PI) after 24 and 48 hrs of treatment.  Under the conditions of these 

experiments, this analysis revealed that AZ1 and AZ2 induced cell death in a dose-

dependent manner as evidenced by the accumulation of a sub-G1 population.  Whilst 

the effect was clearly noticeable at 24 hrs, apoptosis induction was particularly strong 

following 40 µM compound treatment after 48 h (25% vs >60%; Fig. S4).  At lower 

concentrations (<20 μM), the cell cycle profiles were directly comparable to the 

control.  No significant effects were observed on the cell cycle profiles following 

treatment of cells with the less active analogue AZ3 at 48 hrs (up to 40 µM). 
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Supplementary Figures:  
 
 
Figure S1: Characterisation of USP28 in vitro enzyme activity, assay 

development and screening. 

 

(a) Representative reaction progress and assay signal following the cleavage 

of Ubiquitin-Rhodamine 110 by USP28. Reaction time course of 80 nM 

Ubiquitin-Rhodamine 110 and 0.25 nM USP28. The graph shows 

representative data from one of three independent experiments. The data are 

the mean of the three replicates from that experiment and the error bars are the 

standard deviation of the replicates within the experiment. 
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(b) Determination of the Km of USP28 for Ubiquitin-Rhodamine 110. Varying 

concentrations of Ubiquitin-Rhodamine 110 were incubated in the presence of 

0.25 nM USP28. The diagram shows the mean of n = 4 data from one of two 

independent experiments. The initial rate data were fitted to the Michaelis-

Menten equation using GraFit V.7 (Erithacus Software, Surrey, UK), giving a 

Km value of 1918 ± 100 nM.  
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(c) Measuring the effect of different reducing agents on USP28 activity. 80 

nM Ubiquitin-Rhodamine 110 was incubated with 0.25 nM USP28 in the 

presence of different reducing agents tested at 1 mM. The data shown are 

representative data from a single experiment. The data are the mean of four 

replicates from that experiment and the error bars are the standard deviation of 

the replicates within the experiment.  
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(d) Validation of the USP28 enzyme assay with Ubiquitin aldehyde. 80 nM 

Ubiquitin-Rhodamine 110 was incubated with 0.25 nM USP28 in the presence 

of different concentrations of Ubiquitin aldehyde (as indicated). The data 

shown are representative data from a single experiment. The data were fitted 

to a sigmoidal curve using GraphPad Prism (GraphPad Software, Inc, La Jolla, 

CA), giving an IC50 value of 6.4 nM (95% CIR 1.22). Error bars represent the 

standard deviation of 3 replicates. 
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(e) Normalised distribution of USP28 primary screen data. The data is centred 

around zero. The data was analysed using proprietary AstraZeneca software 

and TIBCO Spotfire 5.0.1 (TIBCO Software Inc., Boston, MA). 
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(f) Indication of non-stoichiometric inhibition (“ratio test assay”). The data 

are the derived pEC50 values determined at 0.5 nM USP28, 30 min incubation 

(circles) and at 5 nM USP28, 3 min incubation (squares).  The data was 

analysed using proprietary AstraZeneca software and TIBCO Spotfire 5.0.1 

(TIBCO Software Inc., Boston, MA). 
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Compound AZ1, Kd = 3.7µM ± 1.2 µM 

 

 
 
(a) Microscale Thermophoresis: AZ1 

 
Compound AZ2, Kd = 10.3 µM  ± 4 µM 

 

 
 
(b) Microscale Thermophoresis: AZ2 

 
 

Figure S2: Confirmation of USP28 binding by Microscale 

Thermophoresis (MST). Kd values were determined utilising the intrinsic 

fluorescence of USP28 with a 30 minutes incubation with compound for (a) 

AZ1 and (b) AZ2. The data presented represent two replicates within an 

experiment, generated on two separate experimental occasions. The data were 

analysed using Origin software (OriginLab Corporation, Northampton, MA, 

USA). 
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(a) SW480 
  
 

 
 
 
b) HT29 
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Figure S3 - Modulation of c-Myc levels and apoptosis induction in multiple 

other cell lines. (a) SW480, (b) HT29 cells were treated with compounds (as 

indicated) and samples collected after 3 hrs for Western blot analysis probing for 

USP28, c-Myc and PARP.  β-actin was included as loading control. Full-length 

PARP (116 kDa), cleaved PARP (cl. PARP, 85 kDa). These data are 

representative data from at least 2 independent experiments. 
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Figure S4: Cell Cycle Analysis of compound treated cells: HCT116 

cells were treated with compounds (as indicated), stained with PI and 

analysed by flow cytometry after 24 and 48 hrs (as indicated).  Cell 

death is evidenced by the accumulation of a sub-G1 population.  Data 

presented as mean of at least three independent experiments. The 

histogram representations were derived using GraphPadPrism 

(GraphPad Software, Inc, La Jolla, CA). 
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Supplementary Table 1 – Anti-proliferative activity of AZ1-3 against a range of 

cancer cell lines and tissue-matched normal cell lines. Cells were treated  

with compounds (0-100µM) for 72 hr and viability assessment using the Cell-

Titer-Glo assay (Promega). EC50 values were derived using GraphPad Prism 

(GraphPad Software, Inc, La Jolla, CA) from at least two independent 

experiments. 
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Figure S5: Reversible binding of AZ1-4 was demonstrated by high-dilution 
assay. USP28 was pre-incubated with 10x IC50 of the inhibitor or controls (based on 
Table 1) for 30 min followed by 100x dilution of the samples. Biochemical activity 
was monitored after 15 min (as described previously). Activity recovery is indicative 
of reversible binding following inhibitor re-equilibration. Iodoacetamide was included 
as a positive assay control acting as a non-specific covalent, irreversible inhibitor 
(cysteine alkylator). DMSO: no compound control using the same DMSO final 
concentration for AZ1-4. Data reported as the mean of at least 3 independent 
experiments with standard deviations. 
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Figure S6: Characterisation of the mode of inhibition of USP28 by AZ1. a, 
Representative Michaelis-Menten plot. Inhibition was performed as indicated using 
varying concentrations of Tetra-Ub (from 0 to 40 µM) and inhibitor concentration 
(from 0 to 5.0 µM, as indicated). R-square values for fitting were >0.95 in all cases. b, 
Lineweaver-Burk plot (plotted using data from A).  
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Figure S7: Selectivity profile against a panel of cysteine proteases. Representative 
selectivity profile of AZ1 against a panel of representative caspases and cathepsins (as 
indicated). AZ1 was screened at a fixed concentration of 30 µM. Data was normalised 
to DMSO control and reported as the mean of 2 independent experiments with 
standard deviations. 
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