Tumor	Observation	Role of Notch	Refs
Breast Cancer	Increased NOTCH 4 and decreased	Oncogenic and	1
	NOTCH 1 activity in the tumor initiating	tumor suppressive	
	cell population		
	Increased expression of NOTCH	Tumor progression	2
	receptors, ligands and HES-1 and HES-5		
	Increased Notch mediated EMT under	Tumor maintenance	3
	hypoxic conditions	and progression	
	Increased Notch signaling is associated	Tumor progression	4
	with increased metastatic potential of		
	breast cancer cells		
	Increased NOTCH activation in ER	Drug resistance and	5
	negative breast cancer results in increased	tumor progression	
	cell proliferation		
	NOTCH 2 over expression associated	Tumor progression	6
	with invasive breast cancer		
	Increased JAG 1 expression correlated	Tumor progression	7
	with recurrence in lymph node negative		
	breast cancer		
	Notch activation induces Slug, promotes	Tumor progression	8
	tumor growth and metastases and inhibits		
	anoikis		
	Notch 2 signaling inhibits xenograft	Isoform specific	9
	growth and promotes apoptosis. Notch 4	Oncogenic and	
	signaling promotes tumor growth	tumor suppressive	
	Increased JAG1 indicates poor prognosis	Tumor progression	10
	Increased nuclear accumulation of NICD	Tumor progression	11
	and increased signaling		
	Increased NOTCH 1 and decreased	Isoform specific	12
	NOTCH 2 in poorly differentiated tumors	Oncogenic and	
		tumor suppressive	

Supplementary information S1 | Role of Notch in solid tumors

	increased Notch signaling		
Colorectal cancer	Somatic mutations of FBXW7 which can	Oncogenic	14
	result in increased NOTCH activity		
	Increased Jagged (Notch Signaling) due	Oncogenic	15,16
	to active Wnt		
	Increased NOTCH 1 activation confers	Drug resistance	17
	chemoresistance		
	Notch inhibits the expression of the	Oncogenic	18
	tumor suppressor KLF4		
	Increased expression of JAGGED1,	Tumor progression	19
	NOTCH 1 and HES-1		
	Notch signaling can overcome taxane	Drug Resistance	20
	induced mitotic arrest and apoptosis		
	Increased JAGGED 1 results in loss of	Oncogenic	21
	contact inhibition and goblet cell		
	differentiation		
Prostate cancer	Activation of Notch signaling results in	Tumor suppressor	22
	inhibition of growth		
	Loss of Notch 1 resulting in loss of	Tumor suppressor	23
	PTEN expression		
	Loss of Notch 1 results in reduced MMP-	Tumor progression	24
	9 and uPA and decreased invasion		
	Increased Jagged 1	Tumor progression	25
	Increased Jagged 1 associated with	Tumor progression	26
	metastases and recurrence		
	Notch signaling important for bone	Tumor progression	27
	metastasis		
Liver cancer	Lower expression of NOTCH and	Tumor Suppressor	28
	JAGGED correlates with increased		
	nuclear b CATENIN and tumor		
	progression		
	Notch signaling induces p53 by inhibiting	Drug Resistance	29
	the AKT/HDM2 mediated degradation		

	and sensitize the cells to TRAIL		
	mediated apoptosis		
	Loss of NOTCH 3 increases p53 and cell	Drug Resistance	30
	death by doxirubicin		
	Inhibition of Notch signaling by GSI	Tumor progression	31
	results in reduced proliferation in HepG2		
	cells		
	Notch expression deregulated	Tumor progression	32
	NOTCH3, JAGGED 1, DELTA like 1	Tumor progression	33
	and HES-1 overexpressed in HepG2		
	Notch 1 overexpressed in	Tumor progression	34
	cholangicarcinoma		
	NOTCH 1 overexpression results in cell	Tumor Suppressor	35
	cycle arrest and increased p53 levels		
Pancreatic cancer	Inhibition of NOTCH 3 inactivates	Drug Resistance	36
	PI3K/AKT and sensitizes the cells to		
	gemcitabine		
	Active NOTCH signaling synergizes with	Tumor Progression	37
	KRAS in acinar cells for initiation and		
	progression of PanINs		
	Inhibition of cell proliferation by	Drug Resistance	38
	exosomal nano particles requires		
	downregulation of Notch		
	Anti-tumor activity of TW-37 (small	Drug Resistacne	39
	molecule inhibitor of Bcl-2) acts by		
	attenuating Notch signaling		
	Notch signaling linked to the EMT	Drug resistance	40
	phenotype (cancer stem cells) and		
	resistance to gemcitabine.		
	Over-expression of NOTCH1, 2;	Oncogenic and	41
	JAGGED2; DLL3 (amplification) and	tumor progression	
	DLL4 suggesting a role for ligand		
	dependent Notch signaling in tumor		
		1	1

cogenic	
	42
C	
cogenic	43
C	
mor progression	44
1 0	
cogenic	45
C	
ug resistance	46-48
C	
mor progression	49
1 0	
mor progression	50
mor progression	51
dioresistance	52
mor progression	53
mor	54
intenance/progres	
	acogenic mor progression acogenic acogenic <t< td=""></t<>

	an undifferentiated state		
	Knockdown of <i>DLL1</i> or <i>JAG1</i> resulted in	Tumor progression	55
	decreased cell growth and/or cell death		
	Non-canonical Notch signaling through	Tumor Suppressor	56
	the ligand DNER has a differentiating		
	and tumor suppressive effect in GBM		
Cervical cancer	NOTCH activation activates the NF-kB	Drug Resistance	57
	via association with IKKalpha and		
	protects CasKi cells against cisplatin		
	induced apoptosis		
	Co-activation of Notch and NF-KB	Tumor progression	58
	pathways		
	Disruption of <i>NOTCH</i> by HPV-16	Tumor progression	59,60
	integration - NOTCH1 activation is seen		
	only in late stages of HPV-positive		
	tumors		
	NOTCH activity is correlated with tumor	Tumor progression	56
	progression and inhibition of Notch with		
	GSI resulted in decreased cell		
	proliferation and increased apoptosis		
Squamous cell	NOTCH 1 levels correlated to LN	Tumor progression	61
carcinoma (Oral)	metastasis and invasion		
	Overexpression of NOTCH results in cell	Tumor Suppressor	62
	cycle arrest and apoptosis. There is		
	decrease in b-CATENIN, SKP and BCL-		
	2 and increase in p21 and p53		
	Amplification and overexpression of	Tumor progression	63
	JAG1, RBP/SUH, FJX1, DLL1 and		
	NOTCH 4		
Skin	NOTCH 1 is down regulated in UV-	Tumor Suppressor	64
	induced squamous cell carcinoma		
	Mice expressing dominant negative	Tumor Suppressor	65
	MAML in the epidermis develop		

spontaneous SCC with increased nuclear		
-		
	Drug Desistance	66
	Drug Kesistance	
		67
	Tumor progression	07
transcripts		
HES-1 expression negatively associated	Tumor progression	67
with patient survival		
Blocking NOTCH with GSI decreases	Tumor Maintenance	68
cell proliferation and increases apoptosis	and progression	
Tumors have increased NOTCH activity	Tumor progression	69,70
compared to non-transformed controls		
NOTCH1 activation increases metastasis	Tumor maintenance	71,72
and tumor cell survival in vivo	and progression	
NOTCH over-expression leads to	Tumor maintenance	69,70
increased cell proliferation and	and progression	
dysregulated adhesion and migration		
Blocking NOTCH activation suppresses	Tumor progression	71,72
melanoma growth in vitro and in vivo		
NOTCH3 expression seen in 39% of	Tumor progression	73
resected human lung tumors		
One-third of NSCLC have increased	Oncogenic/ Tumor	74
NOTCH activity due to gain-of-function	Progression	
mutations or loss of NUMB		
Blocking interaction between NOTCH3	Tumor Progression	75,76
and JAG1 results in increased apoptosis	_	
and decreased transcription of <i>HEY-1</i>		
_	Tumor Suppressor	77
and decreased transcription of <i>HEY-1</i> Over-expression of NOTCH1 or NOTCH2 in SCLC cells results in growth	Tumor Suppressor	77
	 with patient survival Blocking NOTCH with GSI decreases cell proliferation and increases apoptosis Tumors have increased NOTCH activity compared to non-transformed controls NOTCH1 activation increases metastasis and tumor cell survival <i>in vivo</i> NOTCH over-expression leads to increased cell proliferation and dysregulated adhesion and migration Blocking NOTCH activation suppresses melanoma growth <i>in vitro</i> and <i>in vivo</i> NOTCH3 expression seen in 39% of resected human lung tumors One-third of NSCLC have increased NOTCH activity due to gain-of-function mutations or loss of NUMB Blocking interaction between NOTCH3 	b-CATENIN and CYCLIN-D1 which is also observed in human SCC High NOTCH1 and STAT3 correlate with cisplatin resistance indicating active survival pathways High NOTCH2, but not NOTCH1 transcripts HES-1 expression negatively associated with patient survival Blocking NOTCH with GSI decreases cell proliferation and increases apoptosis numor shave increased NOTCH activity compared to non-transformed controls NOTCH1 activation increases metastasis and tumor cell survival <i>in vivo</i> NOTCH over-expression leads to increased cell proliferation and migration Blocking NOTCH activation suppresses melanoma growth <i>in vitro</i> and <i>in vivo</i> NOTCH3 expression seen in 39% of resected human lung tumors One-third of NSCLC have increased Blocking interaction between NOTCH3 Tumor Progression

- 1. Harrison, H., *et al.* Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. *Cancer Res* **70**, 709-718 (2010).
- 2. Mittal, S., Subramanyam, D., Dey, D., Kumar, R. & Rangarajan, A. Cooperation of Notch and Ras/MAPK signaling pathways in human breast carcinogenesis. *Mol Cancer* **8**, 128 (2009).
- 3. Chen, J., Imanaka, N. & Griffin, J.D. Hypoxia potentiates Notch signaling in breast cancer leading to decreased E-cadherin expression and increased cell migration and invasion. *Br J Cancer* **102**, 351-360 (2010).
- 4. Nam, D.H., *et al.* Activation of notch signaling in a xenograft model of brain metastasis. *Clin Cancer Res* **14**, 4059-4066 (2008).
- 5. Lee, C.W., Raskett, C.M., Prudovsky, I. & Altieri, D.C. Molecular dependence of estrogen receptor-negative breast cancer on a notch-survivin signaling axis. *Cancer Res* **68**, 5273-5281 (2008).
- 6. Florena, A.M., *et al.* Associations between Notch-2, Akt-1 and HER2/neu expression in invasive human breast cancer: a tissue microarray immunophenotypic analysis on 98 patients. *Pathobiology* **74**, 317-322 (2007).
- 7. Reedijk, M., *et al.* JAG1 expression is associated with a basal phenotype and recurrence in lymph node-negative breast cancer. *Breast Cancer Res Treat* **111**, 439-448 (2008).
- 8. Leong, K., *et al.* Jagged1-mediated Notch activation induces epithelial-tomesenchymal transition through Slug-induced repression of E-cadherin. *J Exp Med* **204**, 2935-2948 (2007).
- 9. O'Neill, C.F., *et al.* Notch2 signaling induces apoptosis and inhibits human MDA-MB-231 xenograft growth. *Am J Pathol* **171**, 1023-1036 (2007).
- 10. Reedijk, M., *et al.* High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. *Cancer Res* **65**, 8530-8537 (2005).
- Stylianou, S., Clarke, R.B. & Brennan, K. Aberrant activation of notch signaling in human breast cancer. *Cancer Res* 66, 1517-1525 (2006).
 This paper shows accumulation of NICD in human breast carcinomas and demonstrates that increasing Notch signaling is sufficient to transform normal breast epithelial cells, while attenuate of the pathway reverts this phenotype.
- 12. Parr, C., Watkins, G. & Jiang, W.G. The possible correlation of Notch-1 and Notch-2 with clinical outcome and tumour clinicopathological parameters in human breast cancer. *Int J Mol Med* **14**, 779-786 (2004).
- 13. Pece, S., *et al.* Loss of negative regulation by Numb over Notch is relevant to human breast carcinogenesis. *J Cell Biol* **167**, 215-221 (2004).
- 14. Miyaki, M., *et al.* Somatic mutations of the CDC4 (FBXW7) gene in hereditary colorectal tumors. *Oncology* **76**, 430-434 (2009).
- 15. Rodilla, V., *et al.* Jagged1 is the pathological link between Wnt and Notch pathways in colorectal cancer. *Proc Natl Acad Sci U S A* **106**, 6315-6320 (2009).
- 16. Fre, S., *et al.* Notch and Wnt signals cooperatively control cell proliferation and tumorigenesis in the intestine. *Proc Natl Acad Sci U S A* **106**, 6309-6314 (2009).
- 17. Meng, R.D., *et al.* gamma-Secretase inhibitors abrogate oxaliplatin-induced activation of the Notch-1 signaling pathway in colon cancer cells resulting in enhanced chemosensitivity. *Cancer Res* **69**, 573-582 (2009).

- 18. Ghaleb, A.M., Aggarwal, G., Bialkowska, A.B., Nandan, M.O. & Yang, V.W. Notch inhibits expression of the Kruppel-like factor 4 tumor suppressor in the intestinal epithelium. *Mol Cancer Res* **6**, 1920-1927 (2008).
- 19. Reedijk, M., *et al.* Activation of Notch signaling in human colon adenocarcinoma. *Int J Oncol* **33**, 1223-1229 (2008).
- 20. Akiyoshi, T., *et al*. Gamma-secretase inhibitors enhance taxane-induced mitotic arrest and apoptosis in colon cancer cells. *Gastroenterology* **134**, 131-144 (2008).
- 21. Guilmeau, S., Flandez, M., Mariadason, J.M. & Augenlicht, L.H. Heterogeneity of Jagged1 expression in human and mouse intestinal tumors: implications for targeting Notch signaling. *Oncogene* **29**, 992-1002 (2010).
- 22. Shou, J., Ross, S., Koeppen, H., de Sauvage, F.J. & Gao, W.Q. Dynamics of notch expression during murine prostate development and tumorigenesis. *Cancer Res* **61**, 7291-7297 (2001).
- 23. Whelan, J.T., Kellogg, A., Shewchuk, B.M., Hewan-Lowe, K. & Bertrand, F.E. Notch-1 signaling is lost in prostate adenocarcinoma and promotes PTEN gene expression. *J Cell Biochem* **107**, 992-1001 (2009).
- 24. Bin Hafeez, B., *et al.* Targeted knockdown of Notch1 inhibits invasion of human prostate cancer cells concomitant with inhibition of matrix metalloproteinase-9 and urokinase plasminogen activator. *Clin Cancer Res* **15**, 452-459 (2009).
- 25. Zhang, Y., *et al.* Down-regulation of Jagged-1 induces cell growth inhibition and S phase arrest in prostate cancer cells. *Int J Cancer* **119**, 2071-2077 (2006).
- 26. Santagata, S., *et al.* JAGGED1 expression is associated with prostate cancer metastasis and recurrence. *Cancer Res* **64**, 6854-6857 (2004).
- 27. Zayzafoon, M., Abdulkadir, S.A. & McDonald, J.M. Notch signaling and ERK activation are important for the osteomimetic properties of prostate cancer bone metastatic cell lines. *J Biol Chem* **279**, 3662-3670 (2004).
- 28. Wang, M., *et al.* Expression of Notch1, Jagged1 and beta-catenin and their clinicopathological significance in hepatocellular carcinoma. *Neoplasma* **56**, 533-541 (2009).
- 29. Wang, C., *et al.* Notch1 signaling sensitizes tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human hepatocellular carcinoma cells by inhibiting Akt/Hdm2-mediated p53 degradation and upregulating p53-dependent DR5 expression. *J Biol Chem* **284**, 16183-16190 (2009).
- 30. Giovannini, C., *et al.* Selective ablation of Notch3 in HCC enhances doxorubicin's death promoting effect by a p53 dependent mechanism. *J Hepatol* **50**, 969-979 (2009).
- 31. Suwanjunee, S., Wongchana, W. & Palaga, T. Inhibition of gamma-secretase affects proliferation of leukemia and hepatoma cell lines through Notch signaling. *Anticancer Drugs* **19**, 477-486 (2008).
- 32. Gramantieri, L., *et al.* Aberrant Notch3 and Notch4 expression in human hepatocellular carcinoma. *Liver Int* **27**, 997-1007 (2007).
- Giovannini, C., Lacchini, M., Gramantieri, L., Chieco, P. & Bolondi, L. Notch3 intracellular domain accumulates in HepG2 cell line. *Anticancer Res* 26, 2123-2127 (2006).

- 34. Ishimura, N., Bronk, S.F. & Gores, G.J. Inducible nitric oxide synthase upregulates Notch-1 in mouse cholangiocytes: implications for carcinogenesis. *Gastroenterology* **128**, 1354-1368 (2005).
- 35. Qi, R., *et al.* Notch1 signaling inhibits growth of human hepatocellular carcinoma through induction of cell cycle arrest and apoptosis. *Cancer Res* **63**, 8323-8329 (2003).
- 36. Yao, J. & Qian, C. Inhibition of Notch3 enhances sensitivity to gemcitabine in pancreatic cancer through an inactivation of PI3K/Akt-dependent pathway. *Med Oncol* (2009).
- 37. De La, O.J., *et al.* Notch and Kras reprogram pancreatic acinar cells to ductal intraepithelial neoplasia. *Proc Natl Acad Sci U S A* **105**, 18907-18912 (2008).
- 38. Ristorcelli, E., Beraud, E., Mathieu, S., Lombardo, D. & Verine, A. Essential role of Notch signaling in apoptosis of human pancreatic tumoral cells mediated by exosomal nanoparticles. *Int J Cancer* **125**, 1016-1026 (2009).
- 39. Wang, Z., *et al.* TW-37, a small-molecule inhibitor of Bcl-2, inhibits cell growth and induces apoptosis in pancreatic cancer: involvement of Notch-1 signaling pathway. *Cancer Res* **69**, 2757-2765 (2009).
- 40. Wang, Z., *et al.* Acquisition of epithelial-mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway. *Cancer Research* **69**, 2400-2407 (2009).
- 41. Mullendore, M.E., *et al.* Ligand-dependent Notch signaling is involved in tumor initiation and tumor maintenance in pancreatic cancer. *Clin Cancer Res* **15**, 2291-2301 (2009).
- 42. Plentz, R., *et al.* Inhibition of gamma-secretase activity inhibits tumor progression in a mouse model of pancreatic ductal adenocarcinoma. *Gastroenterology* **136**, 1741-1749 e1746 (2009).
- 43. Sawey, E.T., Johnson, J.A. & Crawford, H.C. Matrix metalloproteinase 7 controls pancreatic acinar cell transdifferentiation by activating the Notch signaling pathway. *Proc Natl Acad Sci U S A* **104**, 19327-19332 (2007).
- 44. Doucas, H., *et al.* Expression of nuclear Notch3 in pancreatic adenocarcinomas is associated with adverse clinical features, and correlates with the expression of STAT3 and phosphorylated Akt. *J Surg Oncol* **97**, 63-68 (2008).
- 45. Kimura, K., *et al.* Activation of Notch signaling in tumorigenesis of experimental pancreatic cancer induced by dimethylbenzanthracene in mice. *Cancer Sci* **98**, 155-162 (2007).
- 46. Wang, Z., Zhang, Y., Banerjee, S., Li, Y. & Sarkar, F.H. Notch-1 downregulation by curcumin is associated with the inhibition of cell growth and the induction of apoptosis in pancreatic cancer cells. *Cancer* **106**, 2503-2513 (2006).
- 47. Wang, Z., *et al.* Down-regulation of Notch-1 contributes to cell growth inhibition and apoptosis in pancreatic cancer cells. *Mol Cancer Ther* **5**, 483-493 (2006).
- 48. Wang, Z., Zhang, Y., Banerjee, S., Li, Y. & Sarkar, F.H. Inhibition of nuclear factor kappab activity by genistein is mediated via Notch-1 signaling pathway in pancreatic cancer cells. *Int J Cancer* **118**, 1930-1936 (2006).
- 49. Wang, Z., *et al.* Down-regulation of notch-1 inhibits invasion by inactivation of nuclear factor-kappaB, vascular endothelial growth factor, and matrix metalloproteinase-9 in pancreatic cancer cells. *Cancer Res* **66**, 2778-2784 (2006).

- 50. Buchler, P., *et al.* The Notch signaling pathway is related to neurovascular progression of pancreatic cancer. *Ann Surg* **242**, 791-800, discussion 800-791 (2005).
- 51. Mazur, P.K., *et al.* Notch2 is required for progression of pancreatic intraepithelial neoplasia and development of pancreatic ductal adenocarcinoma. *Proc Natl Acad Sci U S A* **107**, 13438-13443 (2010).
- 52. Wang, J., *et al.* Notch promotes radioresistance of glioma stem cells. *Stem Cells* **28**, 17-28 (2010).
- 53. Hulleman, E., *et al.* A role for the transcription factor HEY1 in glioblastoma. *J Cell Mol Med* **13**, 136-146 (2009).
- 54. Kanamori, M., *et al.* Contribution of Notch signaling activation to human glioblastoma multiforme. *J Neurosurg* **106**, 417-427 (2007).
- 55. Purow, B., *et al.* Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation. *Cancer Res* **65**, 2353-2363 (2005).

The authors show that Notch-1, Delta-like-1, and Jagged-1 are over-expressed in glioma cell lines and primary human gliomas and knockdown of these induces apoptosis. In addition, they show that knockdown of Notch-1 or Delta-like-1 is sufficient to prolong survival in a murine orthotopic brain tumor model.

- 56. Sun, P., *et al.* DNER, an epigenetically modulated gene, regulates glioblastoma-derived neurosphere cell differentiation and tumor propagation. *Stem Cells* **27**, 1473-1486 (2009).
- 57. Song, L.L., *et al.* Notch-1 associates with IKKalpha and regulates IKK activity in cervical cancer cells. *Oncogene* **27**, 5833-5844 (2008).
- 58. Ramdass, B., *et al.* Coexpression of Notch1 and NF-kappaB signaling pathway components in human cervical cancer progression. *Gynecol Oncol* **104**, 352-361 (2007).
- 59. Thorland, E.C., Myers, S.L., Gostout, B.S. & Smith, D.I. Common fragile sites are preferential targets for HPV16 integrations in cervical tumors. *Oncogene* **22**, 1225-1237 (2003).
- 60. Veeraraghavalu, K., *et al.* Papillomavirus-mediated neoplastic progression is associated with reciprocal changes in JAGGED1 and manic fringe expression linked to notch activation. *J Virol* **78**, 8687-8700 (2004).
- 61. Joo, Y.H., Jung, C.K., Kim, M.S. & Sun, D.I. Relationship between vascular endothelial growth factor and Notch1 expression and lymphatic metastasis in tongue cancer. *Otolaryngol Head Neck Surg* **140**, 512-518 (2009).
- 62. Duan, L., Yao, J., Wu, X. & Fan, M. Growth suppression induced by Notch1 activation involves Wnt-beta-catenin down-regulation in human tongue carcinoma cells. *Biol Cell* **98**, 479-490 (2006).
- 63. Snijders, A.M., *et al.* Rare amplicons implicate frequent deregulation of cell fate specification pathways in oral squamous cell carcinoma. *Oncogene* **24**, 4232-4242 (2005).
- 64. Panelos, J., *et al.* Photoexposition discriminates Notch 1 expression in human cutaneous squamous cell carcinoma. *Mod Pathol* **21**, 316-325 (2008).
- 65. Proweller, A., *et al.* Impaired notch signaling promotes de novo squamous cell carcinoma formation. *Cancer Res* **66**, 7438-7444 (2006).
- 66. Gu, F., *et al.* Expression of Stat3 and Notch1 is associated with cisplatin resistance in head and neck squamous cell carcinoma. *Oncol Rep* **23**, 671-676 (2010).

- 67. Fan, X., *et al.* Notch1 and notch2 have opposite effects on embryonal brain tumor growth. *Cancer Res* **64**, 7787-7793 (2004).
- 68. Hallahan, A., *et al.* The SmoA1 mouse model reveals that notch signaling is critical for the growth and survival of sonic hedgehog-induced medulloblastomas. *Cancer Res* **64**, 7794-7800 (2004).
- 69. Hoek, K., *et al.* Expression profiling reveals novel pathways in the transformation of melanocytes to melanomas. *Cancer Res* **64**, 5270-5282 (2004).
- 70. Pinnix, C., *et al.* Active Notch1 confers a transformed phenotype to primary human melanocytes. *Cancer Res* **69**, 5312-5320 (2009).
- 71. Liu, Z., *et al.* Notch1 signaling promotes primary melanoma progression by activating mitogen-activated protein kinase/phosphatidylinositol 3-kinase-Akt pathways and up-regulating N-cadherin expression. *Cancer Res* **66**, 4182-4190 (2006).
- 72. Balint, K., *et al.* Activation of Notch1 signaling is required for beta-cateninmediated human primary melanoma progression. *J Clin Invest* **115**, 3166-3176 (2005).
- 73. Haruki, N., *et al.* Dominant-negative Notch3 receptor inhibits mitogenactivated protein kinase pathway and the growth of human lung cancers. *Cancer Res* **65**, 3555-3561 (2005).
- 74. Westhoff, B., *et al.* Alterations of the Notch pathway in lung cancer. *Proc Natl Acad Sci U S A* **106**, 22293-22298 (2009).
- 75. Konishi, J., *et al.* Gamma-secretase inhibitor prevents Notch3 activation and reduces proliferation in human lung cancers. *Cancer Res* **67**, 8051-8057 (2007).
- 76. Lin, L., *et al.* Targeting specific regions of the Notch3 ligand-binding domain induces apoptosis and inhibits tumor growth in lung cancer. *Cancer Res* **70**, 632-638 (2010).
- 77. Sriuranpong, V., *et al.* Notch signaling induces cell cycle arrest in small cell lung cancer cells. *Cancer Res* **61**, 3200-3205 (2001).