In vivo effects of resveratrol.

Species	Assay	Daily Dose	Route	Result	Refs
Cancer		1			
Hamst er	N-nitrosobis(2-oxopropyl)amine-induced pancreatic cancer	10 ppm	diet	no significant effect on the multiplicities of pancreatic lesions	1
Mouse	s.c. implanted MDA-MB-231 human breast cancer	25 mg/kg	i.p.	decreased tumor size and microvessel density, increased apoptotic index	2
Rat	1,2-dimethylhydrazine-induced colon carcinogenesis	8 mg/kg	per os	reduced tumor incidence and size, and degree of histological lesions, blocked the rise in liver TBARS and fall in colonic mucosa TBARS when given continuously	3
Mouse	UVB-induced skin cancer	25, 50 µmol	top.	delayed onset and decreased incidence of tumorigenesis whether resveratrol was applied pre- or post-UVB	4
Rat	potential chemopreventive effects	50, 300 mg/kg	diet	increased plasma antioxidant capacity, non-significant increase in glutathione-S-transferase activity, no change in vitamin E status	5
Mouse	spontaneous development of mammary tumors	~ 0.2 mg/kg	d.w.	delayed tumor development, decreased size and number of tumors, lung metastases, and HER-2/neu expression, increased apoptosis	6
Mouse	intestinal tumor load in familial adenomatous polyposis	~ 60, 240 mg/kg	diet	decreased number of adenomas (240 mg/kg), and PGE ₂ in intestinal mucosa	7
Mouse	s.c. implanted human primary gastric carcinoma	500, 1000, 1500 /48 h	inj.	inhibited tumor growth, increased apoptosis	8
Mouse	UVB exposure	10 µmol	top.	decreased edema, hyperplasia, leukocyte infiltration, cell cycle proteins, increased p21 and p53	9
Mouse	benzo[a]pyrene (BaP)-induced lung tumorigenesis	6-8 mg/kg	diet	no change in tumor incidence or multiplicity, CYP1A1 or 1B1 expression, or BaP protein adducts	10
Mouse	hepatic implanted H22 hepatoma	10, 15 mg/kg	abd.	36.3%, 49.3% reduction in tumor size, further enhanced by 5-FU	11
Mouse	CTX-induced micronucleus formation, DMBA/croton oil-induced skin cancer	25, 50, 100 mg/kg	gav.	decreased micronucleus formation, ODC activity, and incidence and multiplicity of papillomas, increased latency	12
Mouse	s.c. implanted neuro-2a neuroblastoma	40 mg/kg	i.p.	slowed growth, increased survival from 0 to 70%	13
Mouse	markers of proliferation and tumor development in skin following UVB exposure	10 µmol	top.	blocked increases in proliferation (Ki-67 immunostaining), COX and ODC activity, and mRNA and phosphorylation levels of survivin	14
Mouse	COX and ODC activity in liver and lungs before and after NDEA treatment	2.5 mg/kg	oral	decreased ODC and COX activity, blocked induction of ODC and COX by NDEA	15
Mouse	intestinal tumor load in familial adenomatous polyposis	4, 20, 90 mg/kg	diet	non-significant decrease in small intestinal tumors, no effect on large intestinal tumors, decrease in PGE ₂ in tumor	16
Rat	s.c. and intracerebral implanted RT-2 gliomas	10, 40, 100 mg/kg	i.p.	slowed tumor growth, angiogenesis, increased apoptosis, host survival for subcutaneous and intracerebral (100 mg/kg) tumors	17
Mouse	UVB irradiation	25 µmol	top.	decreased edema, leukocyte infiltration, COX and ODC activity, and oxidative damage	18
Rat	prepubertal MNU-induced mammary carcinomas (post-resveratrol)	10, 100 mg/kg	s.c.	10 mg/kg ineffective, 100 mg/kg increased tumor incidence	19
Rat	s.c. implanted AH109A hepatoma	~ 1, 5 mg/kg	diet	decreased levels of LDL, VLDL, and lipid peroxide, non-significant decrease in tumor growth	20
Mouse	hepatic implanted H22 hepatoma	5, 10, 15 mg/kg	abd.	decreased tumor size (10, 15 mg/kg), cyclin B1 and p34cdc2	21
Rat	lymphocytic DNA integrity	1-100 mg/kg	diet	increased lymphocytic DNA damage	22
Mouse	benzo[a]pyrene-induced lung damage	50 /wk	ini	reduced DNA-adduct formation, CYP1A1 expression, and apoptosis	23
Mouse	implanted (right axilla) H22 hepatoma	500, 1000, 1500 mg/kg	i.p.	31.5%, 45.6%, 48.7% reduction in tumor size	24
Mouse	DMBA-induced, TPA-promoted skin cancer	1, 5, 10, 25 μmol (twice/wk)	top.	decreased tumor formation (ED ₅₀ ~ 6 μ mol)	25
Rat	DMBA-induced mammary carcinogenesis	~ 12-15 mg/kg	diet	no effect on body weight, decreased incidence and multiplicity of tumors, COX-2, MMP-9, and NF?B activity	26
Rat	NMBA-induced esophageal tumorigenesis	1, 2 mg/kg	per os or i.p.	reduced number and size of tumors, non-significant decrease in tumor incidence, decreased COX-1, COX-2, and PGE ₂	27
Mouse	foodpad or intrasplenic implanted B16M melanoma	20 (twice/day) or 23 mg/L	oral or d.w.	ineffective for solid tumor, decreased hepatic invasion, no effect on host survival	28
Mouse	implanted 32Dp210 myeloid leukemia	8, 40, 80 mg/kg (5	oral	non-significant increase in survival at 80 mg/kg (2/14 animals vs. 0 in other groups)	29

		days/wk)			
Mouse	s.c. implanted 4T1 breast cancer	1, 3, 5 mg/kg	i.p.	no effect on tumor growth, metastasis, body weight, organ histology, or estrous cycling	30
Mouse	benzo[a]pyrene (BaP)-induced sperm damage	50 /wk	s.c.	decreased DNA adducts and apoptosis	31
Rat	<i>N</i> -methyl- <i>N</i> -nitrosourea-induced mammary tumorigenesis	10, 100 mg/kg (5 days/wk)	i.g.	no effect on body weight, decreased incidence and increased latency of tumors (100 mg/kg)	32
Mouse	intestinal tumor load in familial adenomatous polyposis	0.3-0.4 mg	d.w.	decreased incidence of tumors in large and small intestine, and expression of cell cycle proteins	33
Mouse	s.c. implanted T241 fibrosarcoma	1 mg/kg	d.w.	decreased tumor growth	34
Mouse	s.c. implanted Lewis lung carcinoma	0.6, 2.5, 10 mg/kg	i.p.	decreased tumor volume, weight, metastasis, and neovascularization (2.5, 10 mg/kg)	35
Mouse	intramuscular implanted B16-BL6 melanoma	50 mg/kg	i.p.	decreased tumor volume, no effect on body weight, mortality, or lung colonization	36
Rat	(AOM)-induced colorectal aberrant crypt foci (ACF)	0.2 mg/kg	d.w.	reduced number and multiplicity of ACF, increased bax, decreased p21 in normal mucosa	37
Mouse	lung tumorigenesis induced by a mixture of benzo[a]pyrene and 4-(methyl-nitrosoamino)-1-(3- pyridyl)-1-butanone	500 ppm	diet	no effect on body weight, incidence or multiplicity of tumors	38
Rat	innoculated Yoshida AH-130 ascites hepatoma	1 mg/kg	i.p.	25% decrease in tumor cell number, increase in G ₂ /M cells, appearance of an aneuploid peak	39
Mouse	DMBA initiated, TPA-promoted skin cancer	1, 5, 10, 15 μmol (twice weekly)	top.	decrease in multiplicity (98%) and incidence (88%) of skin tumors	40
Heart D	isease				1
Rat	cardiac hypertrophy induced by partial nephrectomy	10, 50 mg/kg	gav.	decreased systolic blood pressure, heart weight, and serum endothelin and angiotensin II concentrations, increased serum NO	41
Rat, Guinea Pig	aconitine, ouabain, and coronary ligation-induced arrhythmyia	5, 15, 45 mg/kg	i.v.	increased the mount of aconitine or ouabain required to cause arrhythmia, decreased arrhythmia, ventricular tachycardia, and mortality following coronary ligation	42
Rabbit	development of atherosclerosis on a 1.5% cholesterol diet	3 mg/kg	d.w.	no effect on plasma cholesterol or triglycerides, decreased atherosclerotic plaques and thickness of the intima layer in thoracic aorta, prevented loss of flow-mediated dilation	43
Rat	permanent left anterior descending coronary artery occlusion	1 mg/kg	d.w.	reduced infarct size, increased capillary density, thioredoxin-1, heme oxygenase-1 (HO-1), and VEGF expression in heart, and improved ventricular function, all effects except thioredoxin-1 and HO-1 expression blocked by an HO-1 inhibitor	44
Rat	fructose-induced biochemical cardiovascular changes	10 mg/kg	gav.	prevented the increase in systolic blood pressure, cardiac hypertrophy, and TBARS, restored mesenteric and cardiac eNOS,	45
Hamst er	aortic fatty streak accumulation	0.1428 mg/kg	gav.	decreased aortic fatty streak area and serum cholesterol, no effect on plasma antioxidant capacity or apolipoprotein-B, nonsignificant increase in apolipoprotein-A1	46
Hamst er	development of atherosclerosis on an atherogenic diet	0.1428 mg/kg	gav.	decreased aortic fatty acid streak area, nonsignificant decrease in apolipoprotein A1, no effect on plasma antioxidant capacity	47
Mouse	atherothrombotic tendency after laser-induced damage to endothelium	9.6, 96 mg/kg	diet	${\sim}30\%$ reduction in atheroma, ${\sim}25\%$ decrease in thrombus size, no change in plasma lipids	48
Guinea Pig	cardiac DT-diaphorase and catalase activity, menadione-induced ROS	~ 14 mg/kg	d.w.	increased DT-diaphorase and catalase, decrease in menadione- induced ROS	49
Rabbit	endothelial function on a hypercholesterolemic diet	3 mg/kg	i.g.	improved flow-mediated dilation, partially blocked decrease in nitric oxide and increase in endothelin 1	50
Rat	inflammatory responses in mesenteries exposed to ischemia/reperfusion (IR), hypoxanthine/xanthine oxidase (HX/XO), platelet activating factor (PAF), or leukotriene B ₄	0.7 mg/kg	inj.	reduction in adherent and emigrated leukocytes and venular albumin leakage in response to IR, HX/XO, and PAF, but not leukotriene B_4	51
Rabbit	platelet aggregation on a hypercholesterolemic diet	4 mg/kg	i.g	reduced platelet aggregation, no effect on LDL, HDL, or total cholesterol	52
Rabbit	serum lipids and platelet aggregation on a hypercholesterolemic diet	4 mg/kg	i.g.	blocked increases in platelet aggregation, no effect on total cholesterol, LDL, HDL, or triglycerides	53
Mouse	TNFa-induced vascular leakage (by liver perfusion with trypan blue)	1 μM	i.p.	complete block of TNFa-induced vascular leakage	54
Rat	urinary and plasma markers of oxidative stress in both genders	1 mg/kg	i.g.	decrease in urinary 8-hydroxyguanosine and plasma glycated albumin, non-significant decrease in hydroperoxide, no change in food intake, b.w., blood pressure, glucose, lipids, albumin	55
Rat	lipid profile, Cu2+-dependent formation of thiobarbituric acid reactive substances (TBARS)	20, 40 mg/kg	i.p.	non-significant decrease in triacylglycerides, no change in total, HDL, LDL, or IDL cholesterol, or TBARS in Cu ²⁺ -treated serum	56
Rabbit	atherosclerotic development on a hypercholestoremic diet	0.6, then 1 mg/kg	oral	no change in body or liver weight, cholesterol, or LDL oxidation, increase in aortic atherosclerotic lesions	57

		mg/kg		serum cholesterol, triglycerides, free fatty acids	
Mouse	triglyceride synthesis	25, 50 mg/kg	i.p. or oral	reduced lipogenesis in liver and adipose	58
Ischemie	: Heart				
Rat	expression of NOS and potential NO targets in heart, ischemia/reperfusion of isolated hearts	2.5 mg/kg	gav.	induction of iNOS and VEGF, followed by KDR and eNOS, improvement in ventricular functional recovery, decrease in infarct size and apoptosis	59
Rat	ischemia/reperfusion of isolated hearts	20, +/- 10 μM	i.g., perf.	improved post-ischemic recovery with chronic treatment regardless of acute treatment, partially protected with acute treatment only	60
Rat	low-flow ischemia/reperfusion of isolated hearts	10 µM	perf.	increased adenosine release and coronary flow, prevented by perfusion with an adenosine antagonist	61
Rat	low-flow ischemia/reperfusion of isolated heart 24 hours after treatment	~1 mg/kg	d.w.	improved functional recovery, prevented by perfusion with an adenosine antagonist or NOS inhibitor, no effect on ATP or phosphocreatine levels	61
Mouse	ischemia/reperfusion of isolated wild type or iNOS null hearts	10 µM	perf.	iNOS-dependent improvement in ventricular functional recovery, decrease in infarct size, apoptosis, and malondialdehyde	62
Rat	ischemia/reperfusion of isolated hearts	10 µM	perf.	improved developed pressure and aortic flow, decreased infarct size, apoptosis and malondialdehyde, all effects iNOS-dependent	63
Rat	ischemia/reperfusion of isolated hearts	10 µM	perf.	non-significant increase in coronary flow, decrease in infarct size and superoxide	64
Rat	myocardial ischemia by temporary occlusion of the left main coronary artery	0.23, 2.3, 23 μg/kg	perf.	no effect on arrhythmias or mortality, reduced incidence and duration of ventricular tachycardia and ventricular fibrillation, increased NO and decreased lactate dehydrogenase in carotid blood	65
Rat	ischemia/reperfusion of isolated heart	10 µM	perf.	improved post-ischemic recovery (rate pressure product), decreased phosphorylation potential	66
Rat	ischemia/reperfusion of isolated heart	10 µM	perf.	increased developed pressure and aortic flow, decreased infarct size and malondialdehyde	67
Rat	ischemia/reperfusion of isolated heart	10 µM	perf.	increased developed pressure and aortic flow, decreased infarct size and malondialdehyde	68
	ne Effects				
Rat	streptozotocin (+/- nicotinamide)-induced diabetes	0.1, 0.25, 0.5, 0.75, 0.5 mg/kg (3 times/day)	oral	reduced plasma glucose and triglycerides, weight loss, polyphagia, and polydispsia, enhanced glucose uptake in skeltal muscle, hepatocytes, and adipocytes, and glycogen synthesis in liver, decreased insulin secretion and delayed the onset of insulin resistance in nicotinamide-treated animals	69
Trout	handling-induced, aryl hydrocarbon receptor- dependent stress response (+/- suppression by ß- napthoflavone)	20 mg/kg	diet	blocked the ability of β-napthoflavone to stimulate liver and kidney CYP1A expression, to suppress handling-induced increases in plasma cortisol and glucose, and to decrease expression of interrenal, steroidogenic acute regulatory protein, CYP450 cholesterol side chain cleavage, and 11β-hydroxylase in kidney	70
Rat	steroidogenesis in explanted adenocortical cells	840 mg/kg	diet	increased adrenal weight, decreased CYP450 c21 expression and corticosterone production	71
Neurolo	gical Effects			<u>^</u>	
Mouse	middle cerebral artery occlusion	50 mg/kg	gav.	decreased infarct volume and attenuated the increase in MMP-9 mRNA and protein expression in brain tissue	72
Rabbit	ischemia/reperfusion-induced spinal injury	0.1 mg/kg	i.v.	improved neurologic function (Tarlov score) and survival of motor neurons, decreased myeloperoxidase activity and malondialdehyde in spinal tissue	73
Rat	brain biochemistry following ovariectomy	5 mg/kg	gav.	prevented the decrease in N-acetyl aspartate and increase in choline	74
Rat	kainic acid-induced neurotoxicity	30 mg/kg	i.p.	reduced damage to hippocampal neurons, activation of astrocytes and microglial cells	
Mouse	permanent middle cerebral artery occlusion	2, 20 mg/kg	oral	3 day treatment with 20 mg/kg reduced infarct volume 36% in wild type but not PPARa -/- mice	76
Rat	auditory brainstem responses pre- and post 105 dB noise	0.43 mg/kg	gav.	protective effect on hearing loss, significant at 2 of 4 frequencies	77
Rat	permanent middle cerebral artery occlusion	10, 100, 1000 ng/kg	i.v.	ischemic volume and brain water content reduced in 100, 1000 ng/kg, no effect on p65 (NF?B)	78
Rat	experimentally induced spinal cord injury	50, 100 mg/kg	i.p.	decreased spinal edema, lactate dehydrogenase, and malondialdehyde, increased Na ⁺ , K ⁺ -ATPase activity	79
Rat	experimentally-induced spinal cord injury	100, 500 mg/kg	i.p.	increased Ca ²⁺ -ATPase, Mg ²⁺ -ATPase, and Ca ²⁺ , Mg ²⁺ -ATPase activity	80
Rat	intracerebroventricular streptozotocin-induced cognitive impairment and oxidative stress	10, 20 mg/kg	i.p.	prevented decreases in malondialdehyde and glutathione levels in brain, partially restored behavior/cognition	81
Rat	lipopolysaccharide-induced anorexia (COX-2 dependent)	2.5, 10, 40 mg/kg	i.p.	no significant effect on food intake in controls, enhanced anorexia, no effect on PGE_2 levels in cerebrospinal fluid	82
Rat	focal ischemia induced by middle cerebral artery	20 mg/kg	i.p.	prevented motor impairment, rise in reduced glutathione and	83

	occlusion			malondialdehyde, decreased infarct volume	
Gerbil	transient global cerebral ischemia induced by occlusion of both common carotid arteries for 5 min	30 mg/kg	i.p.	decreased delayed neuronal cell death and glial cell activation in hippocampal CA1 area	84
Rat	pentylenetetrazole-induced seizures	20, 40, 80 mg/kg	i.p.	reduced seizures, potentiated the anticonvulsive effects of sodium valproate, diazepam, and adenosine	85
Rat	kainic acid-induced seizures	20, 40 mg/kg	i.p.	single dose ineffective, reduced incidence of seizures and lowered malondialdehyde levels in brain when additional 30 and 90-minute doses were given, no effect on glutathione levels	86
Rat	intracortical FeCl3-induced posttraumatic seizures	20, 40 mg/kg	i.p.	delayed the onset and reduced the severity of epileptic EEG discharge, blocked rise in malondialdehyde	87
Rat	focal cerebral ischemia induced by middle cerebral artery occlusion	1, 10, 100, 1000 ng/kg	i.v.	significant reduction in infarct volume at 100, 1000 ng/kg, no effect on heart rate or blood pressure	88
Rat	damage to olfactory cortex and hippocampus caused by systemic injection of kainic acid	8 mg/kg	d.w.	partially blocked the decrease in glutamate decarboxylase in olfactory cortex and hippocampus	89
Longevi	ý ý				
N. furzeri (fish)	longevity and degenerative phenotypes in a short- lived vertebrate	~1.2, 6, 30 mg/kg	diet	dose dependent increase in mean survival at 6 and 30 mg/kg, slowed neurofibrillary degeneration, and the decline in locomotor activity and active avoidance behavior	90
Other P	rotective Effects				
Rat	sodium taurocholate-induced pancreatitis	20 mg/kg	i.v.	decreased lipid peroxidation in cell membranes, serum amylase, pancreatic lesions, and malondialdehyde	91
Rat	sodium taurocholate-induced pancreatitis	10 mg/kg	i.v.	decreased expression of NF?B and iNOS in peritoneal macrophages, levels of TNF-a, IL-1, and NO in serum and media following culture of macrophages, and pancreatic damage	92
Rat	renal ischemia/reperfusion injury	5 mg/kg	per os	improved renal function and morphology, reduced NO levels and oxidative stress	93
Rat	streptozotocin-induced diabetic nephropathy	5, 10 mg/kg	oral	improved creatinine and urea clearance, decreased proteinuria, and lipid peroxidation, and restored antioxidant enzymes	94
Rat	5/6th nephrectomy	5 mg/kg	per os	blocked the increase in systolic blood pressure, urinary protein excretion, glomerulosclerosis, blood urea nitrogen, and plasma creatinine, restored urinary secretion of NO ₂ + NO ₃ , all effects attenuated by coadministration of a NOS inhibitor	95
Rat	renal ischemia	5 mg/kg	oral	decreased kidney damage, plasma creatinine, blood urea nitrogen, and TBARS, increased renal and urine NO, creatinine clearance, reduced glutathione, catalase, and SOD, similar to the effects of ischemic preconditioning, all effects abolished by NO synthase inhibitor	96
Rat	apoptosis in germ cells following testicular torsion	30 mg/kg	i.p.	decreased TUNEL staining and caspase 3 activation	97
Rat	half mustard gas-induced acute lung injury	100 µL	liposo mes	48% decrease in lung injury (leakage of ¹²⁵ I-albumin from blood)	98
Rat	liver injury induced by chronic biliary obstruction	10 mg/kg	i.p.	decreased ductular proliferation and lymphocytic infiltration, plasma bilirubin, alanine and aspartate aminotransferases, liver malondialdehyde, NO, IL-1a, IL-6, and TNF-a, increased liver reduced glutathione	99,100
Rat	tert-butyl hydroperoxide-induced pancreatitis	~6.6 mg/kg	i.p.	decreased serum amylase and pancreatic mass, decreased edema, vacuolization, bleeding, necrosis, carbonyl groups, and damage to ER and mitochondria, and increased reduced glutathione in pancreatic tissue	101
Rat	ischemia-reperfusion injury induced by testicular torsion	30 mg/kg	i.p.	decreased testicular injury and malondialdehdye, increased glutathione	102
Rat	cyclosporine-induced nephrotoxicity	2, 5, 10 mg/kg	oral	NOS-dependent improvement in renal function, NO levels, oxidative stress, and renal morphology	103
Rat	bone loss following ovariectomy	0.7 mg/kg	gav.	partially restored femoral epiphysis bone mineral density and bone calcium content, no effect on femoral midpoint bone mineral density	104
Rat	ischemia/reperfusion injury in kidney	4 mg/kg	i.p.	prevented the increase in serum creatine levels and CD86 expression in kidney	105
Rat	sperm production	20 mg/kg	gav.	increased sperm counts, gonadotrophins and testosterone, no effect on testes weight or sperm quality, decreased diameter and increased density of seminiferous tubules	106
Rat	toxicogenomics in liver	300, 1000, 3000 mg/kg	gav.	some liver and kidney toxicity at the highest dose, general decrease in the expression of phase I drug metabolizing enzymes and increase in the expression of phase II enzymes	107
Rat	microcirculatory disorders following severe acute pancreatitis	0.1 mg/kg	i.p.	improved blood flow and decreased microcirculatory disorder in lung	108
Rat	electron paramagnetic resonance of liver mitochondrial phospholipid bilayer structure after gavage with CCl ₄	~ 75 mg/kg	gav.	prevented disordering of the bilayer by 50%	109
Rat	intestinal transit (Evans blue migration) after skin incision, laparotomy, or laparotomy plus gut	10 mg/kg	s.c.	in combination with tin protoporphyrin-IX, reversed the inhibitory effects of laparotomy and gut handling on intestinal transit	110

TNBS (10 mg/animal)-induced colitis intestinal transit following laparotomy and gut manipulation gentamicin-induced nephrotoxicity enzymatic activities in duodenum, jejunum, and ileum half-mustard-gas-induced acute lung injury computer morphometric analysis of kidney morphology following ischemia/reperfusion injury b.w., food and water consumption, histopathology	5, 10 mg/kg 1, 3, 10 mg/kg 120 mg/kg 20 mg/kg 50 mg/kg 1 nmol	gav. i.v. gav. oral	reduced colonic injury, neutrophil count, IL-1ß, PGD ₂ , and COX-2 expression, no effect on PGE ₂ or COX-1 expression, enhanced apoptosis significant improvement in 3, 10 mg/kg, but not 1 mg/kg improved glomerular filtration rate and renal blood flow, prevented increases in N-acetyl-beta-D-glucosaminidase and lipid peroxidation no significant change in maltase, sucrase, trehalase, lactase, or	111 112 113
manipulation gentamicin-induced nephrotoxicity enzymatic activities in duodenum, jejunum, and ileum half-mustard-gas-induced acute lung injury computer morphometric analysis of kidney morphology following ischemia/reperfusion injury	mg/kg 120 mg/kg 20 mg/kg 50 mg/kg	gav. oral	improved glomerular filtration rate and renal blood flow, prevented increases in N-acetyl-beta-D-glucosaminidase and lipid peroxidation	
gentamicin-induced nephrotoxicity enzymatic activities in duodenum, jejunum, and ileum half-mustard-gas-induced acute lung injury computer morphometric analysis of kidney morphology following ischemia/reperfusion injury	120 mg/kg 20 mg/kg 50 mg/kg	oral	increases in N-acetyl-beta-D-glucosaminidase and lipid peroxidation	113
half-mustard-gas-induced acute lung injury computer morphometric analysis of kidney morphology following ischemia/reperfusion injury	50 mg/kg			1
computer morphometric analysis of kidney morphology following ischemia/reperfusion injury	00	in	alkaline phosphatase	114
morphology following ischemia/reperfusion injury	1 nmol	i.p.	61% decrease in lung injury (extravasation)	115
b.w., food and water consumption, histopathology		inf.	decreased mortality from 50% to 10%, prevented decrease in glomerular volume, improved shape, decreased endocapillary clots and serum creatine	116
	20 mg/kg	oral	no effect on b.w., food or water consumption, hematological or clinical biochemistry variables, or histopathology	117
i.v. injection of anti-rat kidney glomerular basement membrane rabbit antiserum	0.5 mg/kg	oral	reduced enlargement of kidney and liver, reduced weight loss, reduced urinary protein secretion, increased serum albumin, reduced hyperlipidemia	118
ischemia/reperfusion injury in kidney	0.23 µg/kg	inf.	reduced mortality from 50% to 10%, partially blocked increase in creatine and decrease in NO, blocked rise in thiobarbituric acid-reactive substances	119
potassium bromate-induced oxidative damage to kidney DNA	16 mg/kg	i.p.	blocked increase of 8-oxo-7,8-dihydro-2'-deoxyguanosine and increase in kidney weight	120
12-O-tetradecanoylphorbol-13-acetate-induced oxidative events and gene expression in skin	1, 5, 10, 25 μmol	top.	restored H ₂ O ₂ , glutathione, myeloperoxidase, oxidized glutathione reductase, and super oxide dismutase to control levels, prevented upregulation of c- <i>fos</i> and TGF - βI	121
on of Mild (Protective) Stresses				
protection of pancreas from cerulein-induced injury by ischemic preconditioning	10 mg/kg	i.g.	blocked the protective effect of preconditioning, to a lesser extent than rofecoxib	122
protection of gastric mucosa from ischemic injury by preconditioning with brief exposures to ischemia	10 mg/kg	i.g.	blocked the protective effect of preconditioning, unless PGE ₂ was also given	123
protection of gastric mucosa from ischemic injury by	10 mg/kg	i.g.	blocked the protective effect of preconditioning, unless PGE ₂ was	124
protection from caerulein-induced pancreatitis by pre treatment with low dose LPS	2, 10 mg/kg	i.p.	prevented LPS-induced decrease in edema, leukocyte infiltration, and pancreatic weight, prevented increase in pancreatic blood flow	125
protection from gastric mucosal damage due to water immersion and restraint stress (WRS) by pre-exposure to mild WRS	10 mg/kg	i.g.	no effect on WRS, but decreased the protective effect of pre-exposure on gastric lesions and blood flow unless PGE ₂ was also administered	126
logical/Inflammatory Effects				
xylene-induced ear edema	200 mg/kg	oral	reduced ear weight by 38.9% (similar to ibuprofen)	127
vaginal HSV-1 and HSV-2 infection	6.25, 12.5, 19% cream	top.	decreased viral titers and extravaginal lesions, HSV-2 mortality was reduced from 37% (control) to 40%, 24%, and 3% respectively	128
allograft rejection following orthotopic liver transplantation	25, 50, 100 mg/kg	i.p.	increased NF?B activity in peripheral blood lymphocytes (all groups), increased surival and serum albumin, decreased serum bile acid, alanine aminotransferase, IL-2, and interferon ? (significant only at 100 mg/kg)	129
allograft rejection following orthotopic liver transplantation	100 mg/kg	i.p.	in combination with cyclosporine, increased survival and serum albumin, decreased serum bile acid, alanine aminotransferase, IL-2, and interferon ?, NF?B activation in peripheral blood T lymphocytes, and histological damage as compared to cyclosporine alone or control	130
osteoarthritis induced by ligament transection	~ 2.3 mg/kg	inj.	reduced loss of cartilage tissue and matrix proteoglycan, non- significant decrease in synovial inflammation	131
lipopolysaccharide-induced airway inflammation	1, 3, 10, 30 mg/kg	trach.	reduced neutrophilia, pro-inflammatory cytokines, PGE ₂ levels (30 mg/kg)	132
inflammatory effects following severe acute pancreatitis	30 mg/kg	i.p.	decreased expression of NF?B and inflammatory markers	133
skin lesions formed in response to HSV-1 infection	12.5, 25% cream	top.	decreased skin lesions in wild type or acyclovir-resistant HSV-1	134
b.w., cell counts in blood, marrow, and spleen, cytokine levels, T cell proliferation	~ 10-12 mg/kg	oral	no significant change in weight, cell counts, or IL-12, reduced TNF-a and marginally reduced allo-antigen induced T cell proliferation	135
DNFB-induced delayed type hypersensitivity (DTH) response	4, 16 mg/kg	oral	increased DTH, MHC class I and II expression on spleenocytes, antagonized EtOH-induced decrease in macrophage number	136
concavalin A-induced rise in the cytosolic Ca ²⁺ content of splenic T cells during sepsis	10 mg/kg	i.p.	no effect on Ca ²⁺ response in controls, non-significant further decrease in septic animals	137
carrageenan-induced inflammation nesis/Wound Healing	3, 8 mg/kg	oral	decreased acute and chronic edema (paw volume)	40
	kidney DNA 12-O-tetradecanoylphorbol-13-acetate-induced oxidative events and gene expression in skin on of Mild (Protective) Stresses protection of pancreas from cerulein-induced injury by ischemic preconditioning protection of gastric mucosa from ischemic injury by preconditioning with brief exposures to ischemia protection from carulein-induced pancreatitis by pre treatment with low dose LPS protection from gastric mucosal damage due to water immersion and restraint stress (WRS) by pre-exposure to mild WRS logical/Inflammatory Effects xylene-induced ear edema vaginal HSV-1 and HSV-2 infection allograft rejection following orthotopic liver transplantation osteoarthritis induced by ligament transection lipopolysaccharide-induced airway inflammation inflammatory effects following severe acute pancreatitis skin lesions formed in response to HSV-1 infection b.w., cell counts in blood, marrow, and spleen, cytokine levels, T cell proliferation DNFB-induced delayed type hypersensitivity (DTH) response concavalin A-induced rise in the cytosolic Ca ²⁺ content of splenic T cells during sepsis carrageenan-induced inflammation	kidney DNAImage: Second se	kidney DNAI.12-O-tetradecanoylphorbol-13-acetate-induced oxidative events and gene expression in skin1, 5, 10, 25 µmoltop. <i>on of Mild (Protective) Stresses</i> 10 mg/kgi.g.protection of pancreas from cerulein-induced injury by ischemic preconditioning protection of gastric mucosa from ischemic injury by preconditioning with brief exposures to ischemia protection from caerulein-induced pancreatitis by pre treatment with low dose LPS10 mg/kgi.g.protection from gastric mucosal damage due to water immersion and restraint stress (WRS) by pre-exposure to mild WRS10 mg/kgi.g. <i>logical/Inflammatory Effects</i> 200 mg/kgoralallograft rejection following orthotopic liver transplantation25, 50, 100i.p.allograft rejection following orthotopic liver transplantation100 mg/kgi.p.inflammatory effects following severe acute pancreatitis30 mg/kginj.inflammatory effects following severe acute pancreatitis30 mg/kgi.p.osteoarthritis induced by ligament transection transplantation2.5, 55% top.top. <i>b.w.</i> , cell counts in blood, marrow, and spleen, cytokine levels, T cell proliferation20.12, 52% top.top. <i>DNFB</i> -induced dialy type hypersensitivity (DTH) response4, 16 mg/kgoral <i>concavalin</i> A-induced rise in the cytosolic Ca ²⁺¹ content of splenic T cells during sepsis carrageenan-induced inflammation3, 8 mg/kgoral	protessium bromate-induced oxidative damage to kidney DNA reactive substances 12-O-tetradecanoylphorbol-13-acetate-induced oxidative events and gene expression in skin i.p. hocked interase in kidney weight protection of parenas from cerulein-induced injury by ischemic preconditioning. i.p. hocked the protective effect of preconditioning, unless PGE ₂ was also given protection of gastric mucosa from ischemic injury by ischemic preconditioning with brief exposures to ischemia pretoction of gastric mucosa from ischemic injury by preconditioning with brief exposures to ischemia protection of gastric mucosa from ischemic injury by preconditioning with brief exposures to ischemia protection of gastric mucosa from ischemic injury by preconditioning with brief exposures to ischemia protection of gastric mucosal damage due to water immersion and restrain stress (WRS) by pre-exposure to mid WRS i.g. hocked the protective effect of preconditioning, unless PGE ₂ was also administered orgical/Inflammatory Effects xylene-induced ear edema vagianal BSV-1 and HSV-2 infection transplantation 10 mg/kg i.g. allograft rejection following orthotopic liver transplantation 6.25, 1.25, top. top. fect of MSR, but decreased serum bile acid, alanine aminotransferase, IL-2, and interforo 7, NF2B activation in peripheral blood Tymphocytes (all groups), transplantation 30 mg/kg ii.p. allograft rejection following orthotopic liver transplantation 100 mg/kg ii.p. iii.p. 100 mg/kg iii.p. ii

Mouse	corneal micropocket assay for vascularization	~ 48 µg/kg	d.w.	decreased corneal vascularization (number of microvessels)	34
Mouse	wound healing in skin	5.7 μg/mL	d.w.	prolonged wound healing (increased wound size and percentage of open wounds)	34
Rat	gastric ulcers produced by serosal application of acetic acid	10 mg/kg	i.g.	prolonged ulcer healing, decreased PGE ₂ production, increased plasma TNFa and IL-1ß	138
Rat	gastric lesions resulting from ischemia/reperfusion by clamping the celiac artery	10 mg/kg	i.g.	augmented gastric lesions and delayed healing, decreased PGE ₂ generation	139
Analges	ic Effects				
Rat	antinociception by the formalin test (flinching behavior after local injection of formalin)	25, 50, 100, 200 μg	inj.	decrease in flinching behavior that was blocked by inhibitors of Ca^{2+} and voltage-dependent K ⁺ channels, but not inhibitors of ATP- sensitive K ⁺ channels	140
Rat	antinociception by the formalin test (flinching behavior following injection of 1 or 5% formalin into paw)	50, 100, 200 μg	inj.	reduction in phase II (15-60 min) flinching, no effect when injected into the contralateral paw	141
Rat	hyperalgesia, edema, and swelling induced by injection of carrageenan into the paw	0.4, 2, 10, 50 mg/kg	i.p.	analgesic effects at 2, 10 mg/kg by vocalization threshold (50 mg/kg caused agitation), no effect on paw circumference	142
Estroger	nic/Developmental Effects				
Rat	vaginal epithelial maturation following ovariectomy	5 mg/kg	per os	restored the proportions parabasal and superficial, but not intermediate and anuclear cells in vaginal smears	143
Mouse	development of the reproductive tract and mammary glands after prepubertal exposure	10 mg/kg	s.c.	no effect on vaginal opening, estrous cyclicity, vaginal morphology, or mammary gland growth	144
Mouse	estrous cycling and onset of puberty after treatment from gestational day 15	0.5, 10 mg/kg (4 times/day)	s.c.	increased body weight, no effect on vaginal opening, elongated estrous cycle, transient effects on reproductive tract and mammary gland development at 10 mg/kg	145
Mouse	b.w., organ weight, reproductive fitness over two generations	3 mg/L	d.w.	no effect on b.w., decreased liver and spleen weight in P, kidney weight in F1, no effect on acrosomal integrity, sperm quality, or litters	146
Rat	sexual differentiation, open field behavior, brain development during fetal and suckling periods	5 mg/L	d.w.	abolished sex difference in locus coeruleus size, inhibited female sexual behavior, delayed vaginal opening, no effect on open field behavior	147
Mouse	female sexual development	2 mg/kg	oral or s.c.	shortened latency to vaginal opening	148
Rat	b.w. and estrous cycling, estrogen sensitivity and sociosexual behavior following ovariectomy	100 μM, or 10, 100, 1000 μg	d.w. or s.c.	decreased b.w., ovarian hypertrophy, disrupted estrous cycling, failure to mimic the action of 17 ß-estradiol benzoate in ovariectomized animals	149
Rat	uterine weight, histopathological changes, ERa and progesterone receptor (PR) expression, peroxidase induction	18, 58, 575 mg/kg	s.c.	mild decrease in uterine weight, no change in histology, decrease in ERa protein levels, no change in PR protein or mRNA, no peroxidase induction	150
Rat	ovariectomy-induced hypertension and bone loss	5 mg/kg	diet	no significant effect on body weight, lowered systolic blood pressure, improved acetylcholine-induced vascular relaxation and bone strength	151
Rat	comparison to estradiol (100 μ g) for effects on growth, development, and gene expression	1, 4, 10, 40, 100, 1000 μg	gav.	no significant effect on body weight, serum cholesterol, radial bone growth, epithelial cell height, or IGF-1 expression, antagonized the cholesterol-lowering effect of estradiol	152

i.p.-intraperitoneal, top.-topical, d.w.-drinking water, inj.-injection, adb.-abdominal injection, gav.-gavage, s.c.-subcutaneous injection, i.g.-intragastric, i.v.-intravenous injection, perf.-perfusion.

- 1. Kuroiwa, Y. *et al.* Protective effects of benzyl isothiocyanate and sulforaphane but not resveratrol against initiation of pancreatic carcinogenesis in hamsters. *Cancer Lett* (2005).
- 2. Garvin, S., Ollinger, K. & Dabrosin, C. Resveratrol induces apoptosis and inhibits angiogenesis in human breast cancer xenografts *in vivo. Cancer Lett* **231**, 113–22 (2006).
- 3. Sengottuvelan, M., Viswanathan, P. & Nalini, N. Chemopreventive effect of trans-resveratrol- a phytoalexin against colonic aberrant crypt foci and cell proliferation in **1**, 2-dimethylhydrazine induced colon carcinogenesis. *Carcinogenesis* (2005).
- 4. Aziz, M. H., Reagan-Shaw, S., Wu, J., Longley, B. J. & Ahmad, N. Chemoprevention of skin cancer by grape constituent resveratrol: relevance to human disease? *Faseb J* (2005).
- Wenzel, E., Soldo, T., Erbersdobler, H. & Somoza, V. Bioactivity and metabolism of trans-resveratrol orally administered to Wistar rats. *Mol Nutr Food Res* 49, 482–94 (2005).
- Provinciali, M. *et al.* Effect of resveratrol on the development of spontaneous mammary tumors in HER-2/neu transgenic mice. *Int J Cancer* 115, 36–45 (2005).
- Sale, S. *et al.* Comparison of the effects of the chemopreventive agent resveratrol and its synthetic analog trans 3, 4, 5, 4'tetramethoxystilbene (DMU-212) on adenoma development in the Apc(Min+) mouse and cyclooxygenase-2 in human-derived colon
 cancer cells. *Int J Cancer* 115, 194–201 (2005).

- Zhou, H. B., Chen, J. J., Wang, W. X., Cai, J. T. & Du, Q. Anticancer activity of resveratrol on implanted human primary gastric carcinoma cells in nude mice. *World J Gastroenterol* 11, 280–4 (2005).
- Reagan-Shaw, S., Afaq, F., Aziz, M. H. & Ahmad, N. Modulations of critical cell cycle regulatory events during chemoprevention of ultraviolet B-mediated responses by resveratrol in SKH-1 hairless mouse skin. *Oncogene* 23, 5151–60 (2004).
- 10. Berge, G., Ovrebo, S., Eilertsen, E., Haugen, A. & Mollerup, S. Analysis of resveratrol as a lung cancer chemopreventive agent in A/J mice exposed to benzo[a]pyrene. *Br J Cancer* **91**, 1380–3 (2004).
- 11. Wu, S. L. et al. Effect of resveratrol and in combination with 5-FU on murine liver cancer. World J Gastroenterol 10, 3048–52 (2004).
- 12. Fu, Z. D., Cao, Y., Wang, K. F., Xu, S. F. & Han, R. [Chemopreventive effect of resveratrol to cancer]. Ai Zheng 23, 869–73 (2004).
- Chen, Y., Tseng, S. H., Lai, H. S. & Chen, W. J. Resveratrol-induced cellular apoptosis and cell cycle arrest in neuroblastoma cells and antitumor effects on neuroblastoma in mice. *Surgery* 136, 57–66 (2004).
- 14. Aziz, M., Afaq, F. & Ahmad, N. Prevention of ultraviolet B radiation- damage by resveratrol in mouse skin is mediated via modulation in Survivin. *Photochem Photobiol* (2004).
- 15. Khanduja, K. L., Bhardwaj, A. & Kaushik, G. Resveratrol inhibits N-nitrosodiethylamine-induced ornithine decarboxylase and cyclooxygenase in mice. *J Nutr Sci Vitaminol (Tokyo)* **50**, 61–5 (2004).
- 16. Ziegler, C. C., Rainwater, L., Whelan, J. & McEntee, M. F. Dietary resveratrol does not affect intestinal tumorigenesis in Apc(Min/+) mice. *J Nutr* **134**, 5–10 (2004).
- 17. Tseng, S. H. et al. Resveratrol suppresses the angiogenesis and tumor growth of gliomas in rats. Clin Cancer Res 10, 2190-202 (2004).
- Afaq, F., Adhami, V. M. & Ahmad, N. Prevention of short-term ultraviolet B radiation-mediated damages by resveratrol in SKH-1 hairless mice. *Toxicol Appl Pharmacol* 186, 28–37 (2003).
- 19. Sato, M. *et al.* Prepubertal resveratrol exposure accelerates N-methyl-N-nitrosourea-induced mammary carcinoma in female Sprague-Dawley rats. *Cancer Lett* **202**, 137–45 (2003).
- Miura, D., Miura, Y. & Yagasaki, K. Hypolipidemic action of dietary resveratrol, a phytoalexin in grapes and red wine, in hepatomabearing rats. *Life Sci* 73, 1393–400 (2003).
- 21. Yu, L., Sun, Z. J., Wu, S. L. & Pan, C. E. Effect of resveratrol on cell cycle proteins in murine transplantable liver cancer. *World J Gastroenterol* 9, 2341–3 (2003).
- Breinholt, V. M. *et al.* Effects of dietary antioxidants and 2-amino-3-methylimidazo[4, 5-f]- quinoline (IQ) on preneoplastic lesions and on oxidative damage, hormonal status, and detoxification capacity in the rat. *Food Chem Toxicol* 41, 1315–23 (2003).
- 23. Revel, A. *et al.* Resveratrol, a natural aryl hydrocarbon receptor antagonist, protects lung from DNA damage and apoptosis caused by benzo[a]pyrene. *J Appl Toxicol* **23**, 255–61 (2003).

Describes the in vivo confirmation of effects predicted based on the ability of resveratrol to inhibit the aryl hydrocarbon receptor.

- 24. Liu, H. S., Pan, C. E., Yang, W. & Liu, X. M. Antitumor and immunomodulatory activity of resveratrol on experimentally implanted tumor of H22 in Balb/c mice. *World J Gastroenterol* **9**, 1474–6 (2003).
- 25. Soleas, G. J., Grass, L., Josephy, P. D., Goldberg, D. M. & Diamandis, E. P. A comparison of the anticarcinogenic properties of four red wine polyphenols. *Clin Biochem* **35**, 119–24 (2002).
- 26. Banerjee, S., Bueso-Ramos, C. & Aggarwal, B. B. Suppression of 7, 12-dimethylbenz(a)anthracene-induced mammary carcinogenesis in rats by resveratrol: role of nuclear factor-kappaB, cyclooxygenase 2, and matrix metalloprotease 9. *Cancer Res* **62**, 4945–54 (2002).
- 27. Li, Z. G. *et al.* Suppression of N-nitrosomethylbenzylamine (NMBA)-induced esophageal tumorigenesis in F344 rats by resveratrol. *Carcinogenesis* **23**, 1531–6 (2002).
- 28. Asensi, M. et al. Inhibition of cancer growth by resveratrol is related to its low bioavailability. Free Radic Biol Med 33, 387–98 (2002).
- 29. Gao, X. *et al.* Disparate *in vitro* and *in vivo* antileukemic effects of resveratrol, a natural polyphenolic compound found in grapes. *J Nutr* **132**, 2076–81 (2002).
- 30. Bove, K., Lincoln, D. W. & Tsan, M. F. Effect of resveratrol on growth of 4T1 breast cancer cells *in vitro* and *in vivo*. *Biochem Biophys Res Commun* 291, 1001–5 (2002).
- 31. Revel, A. *et al.* Resveratrol, a natural aryl hydrocarbon receptor antagonist, protects sperm from DNA damage and apoptosis caused by benzo(a)pyrene. *Reprod Toxicol* **15**, 479–86 (2001).
- 32. Bhat, K. P. et al. Estrogenic and antiestrogenic properties of resveratrol in mammary tumor models. Cancer Res 61, 7456–63 (2001).
- 33. Schneider, Y. *et al.* Resveratrol inhibits intestinal tumorigenesis and modulates host-defense-related gene expression in an animal model of human familial adenomatous polyposis. *Nutr Cancer* **39**, 102–7 (2001).
- 34. Brakenhielm, E., Cao, R. & Cao, Y. Suppression of angiogenesis, tumor growth, and wound healing by resveratrol, a natural compound in red wine and grapes. *Faseb J* **15**, 1798–800 (2001).
- 35. Kimura, Y. & Okuda, H. Resveratrol isolated from Polygonum cuspidatum root prevents tumor growth and metastasis to lung and tumorinduced neovascularization in Lewis lung carcinoma-bearing mice. *J Nutr* **131**, 1844–9 (2001).
- 36. Caltagirone, S. *et al.* Flavonoids apigenin and quercetin inhibit melanoma growth and metastatic potential. *Int J Cancer* **87**, 595–600 (2000).

- Tessitore, L., Davit, A., Sarotto, I. & Caderni, G. Resveratrol depresses the growth of colorectal aberrant crypt foci by affecting bax and p21(CIP) expression. *Carcinogenesis* 21, 1619–22 (2000).
- Hecht, S. S. *et al.* Evaluation of butylated hydroxyanisole, myo-inositol, curcumin, esculetin, resveratrol and lycopene as inhibitors of benzo[a]pyrene plus 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung tumorigenesis in A/J mice. *Cancer Lett* 137, 123–30 (1999).
- Carbo, N., Costelli, P., Baccino, F. M., Lopez-Soriano, F. J. & Argiles, J. M. Resveratrol, a natural product present in wine, decreases tumour growth in a rat tumour model. *Biochem Biophys Res Commun* 254, 739–43 (1999).
- 40. Jang, M. et al. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275, 218-20 (1997).

Demonstrates that resveratrol is a naturally occurring inhibitor of cyclooxygenase, and possesses anti-inflammatory as well as anticarcinogenic properties in vivo.

- 41. Liu, Z. et al. Effects of trans-resveratrol on hypertension-induced cardiac hypertrophy using the partially nephrectomized rat model. *Clin Exp Pharmacol Physiol* **32**, 1049–54 (2005).
- 42. Zhang, Y. *et al.* Resveratrol, a natural ingredient of grape skin: Antiarrhythmic efficacy and ionic mechanisms. *Biochem Biophys Res Commun* **340**, 1192–9 (2006).
- 43. Wang, Z. *et al.* Dealcoholized red wine containing known amounts of resveratrol suppresses atherosclerosis in hypercholesterolemic rabbits without affecting plasma lipid levels. *Int J Mol Med* **16**, 533–40 (2005).
- 44. Kaga, S., Zhan, L., Matsumoto, M. & Maulik, N. Resveratrol enhances neovascularization in the infarcted rat myocardium through the induction of thioredoxin-1, heme oxygenase-1 and vascular endothelial growth factor. *J Mol Cell Cardiol* **39**, 813–22 (2005).
- Miatello, R. *et al.* Chronic administration of resveratrol prevents biochemical cardiovascular changes in fructose-fed rats. *Am J Hypertens* 18, 864–70 (2005).
- 46. Auger, C. *et al.* Dietary wine phenolics catechin, quercetin, and resveratrol efficiently protect hypercholesterolemic hamsters against aortic fatty streak accumulation. *J Agric Food Chem* **53**, 2015–21 (2005).
- 47. Auger, C. *et al.* Dietary Wine Phenolics Catechin, Quercetin, and Resveratrol Efficiently Protect Hypercholesterolemic Hamsters against Aortic Fatty Streak Accumulation. *J Agric Food Chem* **53**, 2015–2021 (2005).
- 48. Fukao, H. *et al.* Effect of trans-resveratrol on the thrombogenicity and atherogenicity in apolipoprotein E-deficient and low-density lipoprotein receptor-deficient mice. *Blood Coagul Fibrinolysis* **15**, 441–6 (2004).
- Floreani, M., Napoli, E., Quintieri, L. & Palatini, P. Oral administration of trans-resveratrol to guinea pigs increases cardiac DT-diaphorase and catalase activities, and protects isolated atria from menadione toxicity. *Life Sci* 72, 2741–50 (2003).
- Zou, J. G., Wang, Z. R., Huang, Y. Z., Cao, K. J. & Wu, J. M. Effect of red wine and wine polyphenol resveratrol on endothelial function in hypercholesterolemic rabbits. *Int J Mol Med* 11, 317–20 (2003).
- 51. Shigematsu, S. *et al.* Resveratrol, a red wine constituent polyphenol, prevents superoxide-dependent inflammatory responses induced by ischemia/reperfusion, platelet-activating factor, or oxidants. *Free Radic Biol Med* **34**, 810–7 (2003).
- 52. Wang, Z. et al. Effect of resveratrol on platelet aggregation in vivo and in vitro. Chin Med J (Engl) 115, 378-80 (2002).
- 53. Wang, Z. *et al.* Effects of red wine and wine polyphenol resveratrol on platelet aggregation *in vivo* and *in vitro*. *Int J Mol Med* **9**, 77–9 (2002).
- 54. Fulgenzi, A., Bertelli, A. A., Magni, E., Ferrero, E. & Ferrero, M. E. *In vivo* inhibition of TNFalpha-induced vascular permeability by resveratrol. *Transplant Proc* **33**, 2341–3 (2001).
- 55. Mizutani, K., Ikeda, K., Kawai, Y. & Yamori, Y. Protective effect of resveratrol on oxidative damage in male and female stroke-prone spontaneously hypertensive rats. *Clin Exp Pharmacol Physiol* **28**, 55–9 (2001).
- Turrens, J. F., Lariccia, J. & Nair, M. G. Resveratrol has no effect on lipoprotein profile and does not prevent peroxidation of serum lipids in normal rats. *Free Radic Res* 27, 557–62 (1997).
- 57. Wilson, T., Knight, T. J., Beitz, D. C., Lewis, D. S. & Engen, R. L. Resveratrol promotes atherosclerosis in hypercholesterolemic rabbits. *Life Sci* **59**, PL15–21 (1996).
- 58. Arichi, H. *et al.* Effects of stilbene components of the roots of Polygonum cuspidatum Sieb. et Zucc. on lipid metabolism. *Chem Pharm Bull (Tokyo)* **30**, 1766–70 (1982).
- 59. Das, S. *et al.* Coordinated induction of iNOS-VEGF-KDR-eNOS after resveratrol consumption A potential mechanism for resveratrol preconditioning of the heart. *Vascul Pharmacol* **42**, 281–9 (2005).
- Explores the molecular basis of resveratrol's ability to protect hearts from ischemic injury, upstream and downstream of nitric oxide.
- 60. Dernek, S. *et al.* Cardioprotection with resveratrol pretreatment: improved beneficial effects over standard treatment in rat hearts after global ischemia. *Scand Cardiovasc J* **38**, 245–54 (2004).
- 61. Bradamante, S. *et al.* Resveratrol provides late-phase cardioprotection by means of a nitric oxide- and adenosine-mediated mechanism. *Eur J Pharmacol* **465**, 115–23 (2003).
- 62. Imamura, G. *et al.* Pharmacological preconditioning with resveratrol: an insight with iNOS knockout mice. *Am J Physiol Heart Circ Physiol* **282**, H1996–2003 (2002).

- Hattori, R., Otani, H., Maulik, N. & Das, D. K. Pharmacological preconditioning with resveratrol: role of nitric oxide. Am J Physiol Heart Circ Physiol 282, H1988–95 (2002).
- 64. Hung, L. M. *et al.* The protective effect of resveratrols on ischaemia-reperfusion injuries of rat hearts is correlated with antioxidant efficacy. *Br J Pharmacol* **135**, 1627–33 (2002).
- Hung, L. M., Chen, J. K., Huang, S. S., Lee, R. S. & Su, M. J. Cardioprotective effect of resveratrol, a natural antioxidant derived from grapes. *Cardiovasc Res* 47, 549–55 (2000).
- 66. Bradamante, S. et al. Does resveratrol induce pharmacological preconditioning? Int J Tissue React 22, 1-4 (2000).
- 67. Sato, M. et al. Myocardial protection with red wine extract. J Cardiovasc Pharmacol 35, 263-8 (2000).
- Ray, P. S. *et al.* The red wine antioxidant resveratrol protects isolated rat hearts from ischemia reperfusion injury. *Free Radic Biol Med* 27, 160–9 (1999).
- 69. Su, H. C., Hung, L. M. & Chen, J. K. Resveratrol, a red wine antioxidant, possesses an insulin-like effect in streptozotocin-induced diabetic rats. *Am J Physiol Endocrinol Metab* (2006).

Reports that resveratrol causes a significant improvement of the phenotype in a rat model of the diabetes, improving glucose and triglyceride metabolism, and preventing overeating.

- Aluru, N. & Vijayan, M. M. Ah receptor activation impairs cortisol response to stress in rainbow trout by disrupting the rate limiting steps in steroidogenesis. *Endocrinology* (2006).
- Supornsilchai, V., Svechnikov, K., Seidlova-Wuttke, D., Wuttke, W. & Soder, O. Phytoestrogen resveratrol suppresses steroidogenesis by rat adrenocortical cells by inhibiting cytochrome P450 c21-hydroxylase. *Horm Res* 64, 280–6 (2005).
- 72. Gao, D. et al. Resveratrol reduces the elevated level of MMP-9 induced by cerebral ischemia-reperfusion in mice. Life Sci (2005).
- 73. Kaplan, S., Bisleri, G., Morgan, J. A., Cheema, F. H. & Oz, M. C. Resveratrol, a natural red wine polyphenol, reduces ischemiareperfusion-induced spinal cord injury. *Ann Thorac Surg* **80**, 2242–9 (2005).
- Celik, O., Erdem, G., Hascalik, S., Karakas, H. M. & Tamser, M. Magnetic resonance spectroscopic comparison of the effects of resveratrol (3, 4', 5-trihydroxy stilbene) to conjugated equine estrogen, tibolone and raloxifene on ovariectomized rat brains. *Eur J Obstet Gynecol Reprod Biol* 120, 73–9 (2005).
- 75. Wang, Q. et al. Resveratrol protects against neurotoxicity induced by kainic acid. Neurochem Res 29, 2105–12 (2004).
- Inoue, H. *et al.* Brain protection by resveratrol and fenofibrate against stroke requires peroxisome proliferator-activated receptor alpha in mice. *Neurosci Lett* 352, 203–6 (2003).
- Seidman, M., Babu, S., Tang, W., Naem, E. & Quirk, W. S. Effects of resveratrol on acoustic trauma. *Otolaryngol Head Neck Surg* 129, 463–70 (2003).
- 78. Wang, Y. J., He, F. & Li, X. L. [The neuroprotection of resveratrol in the experimental cerebral ischemia]. *Zhonghua Yi Xue Za Zhi* 83, 534–6 (2003).
- 79. Yang, Y. B. & Piao, Y. J. Effects of resveratrol on secondary damages after acute spinal cord injury in rats. *Acta Pharmacol Sin* 24, 703–10 (2003).
- Yang, Y. & Piao, Y. [Effects of resveratrol on Ca2+, Mg(2+)-ATPase activities after spinal cord trauma in rats]. Zhong Yao Cai 25, 882– 5 (2002).
- Sharma, M. & Gupta, Y. K. Chronic treatment with trans resveratrol prevents intracerebroventricular streptozotocin induced cognitive impairment and oxidative stress in rats. *Life Sci* 71, 2489–98 (2002).
- Lugarini, F., Hrupka, B. J., Schwartz, G. J., Plata-Salaman, C. R. & Langhans, W. A role for cyclooxygenase-2 in lipopolysaccharideinduced anorexia in rats. *Am J Physiol Regul Integr Comp Physiol* 283, R862–8 (2002).
- Sinha, K., Chaudhary, G. & Gupta, Y. K. Protective effect of resveratrol against oxidative stress in middle cerebral artery occlusion model of stroke in rats. *Life Sci* 71, 655–65 (2002).
- 84. Wang, Q. et al. Resveratrol protects against global cerebral ischemic injury in gerbils. Brain Res 958, 439-47 (2002).
- Gupta, Y. K., Chaudhary, G. & Srivastava, A. K. Protective effect of resveratrol against pentylenetetrazole-induced seizures and its modulation by an adenosinergic system. *Pharmacology* 65, 170–4 (2002).
- Gupta, Y. K., Briyal, S. & Chaudhary, G. Protective effect of trans-resveratrol against kainic acid-induced seizures and oxidative stress in rats. *Pharmacol Biochem Behav* 71, 245–9 (2002).
- Gupta, Y. K., Chaudhary, G., Sinha, K. & Srivastava, A. K. Protective effect of resveratrol against intracortical FeCl3-induced model of posttraumatic seizures in rats. *Methods Find Exp Clin Pharmacol* 23, 241–4 (2001).
- Huang, S. S., Tsai, M. C., Chih, C. L., Hung, L. M. & Tsai, S. K. Resveratrol reduction of infarct size in Long-Evans rats subjected to focal cerebral ischemia. *Life Sci* 69, 1057–65 (2001).
- Virgili, M. & Contestabile, A. Partial neuroprotection of *in vivo* excitotoxic brain damage by chronic administration of the red wine antioxidant agent, trans-resveratrol in rats. *Neurosci Lett* 281, 123–6 (2000).
- 90. Valenzano, D. R. *et al.* Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. *Curr Biol* **16**, 296–300 (2006).

A study showing that resveratrol can extend lifespan and delay neurodegeneration in vertebrates, although sirtuin-dependence of the effect is not addressed.

- 91. Li, Z. D., Ma, Q. Y. & Wang, C. A. Effect of resveratrol on pancreatic oxygen free radicals in rats with severe acute pancreatitis. *World J Gastroenterol* **12**, 137–40 (2006).
- 92. Ma, Z. H. et al. Effect of resveratrol on peritoneal macrophages in rats with severe acute pancreatitis. Inflamm Res 54, 522-7 (2005).
- Chander, V. & Chopra, K. Protective effect of nitric oxide pathway in resveratrol renal ischemia-reperfusion injury in rats. Arch Med Res 37, 19–26 (2006).
- 94. Sharma, S., Anjaneyulu, M., Kulkarni, S. K. & Chopra, K. Resveratrol, a polyphenolic phytoalexin, attenuates diabetic nephropathy in rats. *Pharmacology* **76**, 69–75 (2006).
- 95. Chander, V. & Chopra, K. Possible Role of Nitric Oxide in the Protective Effect of Resveratrol in 5/6th Nephrectomized Rats. *J Surg Res* (2005).
- 96. Chander, V. & Chopra, K. Role of nitric oxide in resveratrol-induced renal protective effects of ischemic preconditioning. *J Vasc Surg* **42**, 1198–205 (2005).
- Uguralp, S., Usta, U. & Mizrak, B. Resveratrol may reduce apoptosis of rat testicular germ cells after experimental testicular torsion. *Eur J Pediatr Surg* 15, 333–6 (2005).
- 98. McClintock, S. D. et al. Attenuation of half sulfur mustard gas-induced acute lung injury in rats. J Appl Toxicol (2005).
- 99. Ara, C. et al. Protective effect of resveratrol against oxidative stress in cholestasis. J Surg Res 127, 112-7 (2005).
- 100. Ara, C. et al. Protective effect of resveratrol against renal oxidative stress in cholestasis. Ren Fail 27, 435-40 (2005).
- 101. Lawinski, M. et al. Does resveratrol prevent free radical-induced acute pancreatitis? Pancreas 31, 43-7 (2005).
- Uguralp, S., Mizrak, B. & Bay Karabulut, A. Resveratrol reduces ischemia reperfusion injury after experimental testicular torsion. *Eur J Pediatr Surg* 15, 114–9 (2005).
- Chander, V., Tirkey, N. & Chopra, K. Resveratrol, a polyphenolic phytoalexin protects against cyclosporine-induced nephrotoxicity through nitric oxide dependent mechanism. *Toxicology* 210, 55–64 (2005).
- 104. Liu, Z. P. *et al.* Effects of trans-resveratrol from Polygonum cuspidatum on bone loss using the ovariectomized rat model. *J Med Food* **8**, 14–9 (2005).
- 105. Saito, M. *et al.* Effects of a phenolic compound, resveratrol, on the renal function and costimulatory adhesion molecule CD86 expression in rat kidneys with ischemia/reperfusion injury. *Arch Histol Cytol* **68**, 41–9 (2005).
- 106. Juan, M. E. et al. trans-Resveratrol, a natural antioxidant from grapes, increases sperm output in healthy rats. J Nutr 135, 757-60 (2005).
- 107. Hebbar, V. et al. Toxicogenomics of resveratrol in rat liver. Life Sci 76, 2299-314 (2005).
- Meng, Y., Zhang, M., Xu, J., Liu, X. M. & Ma, Q. Y. Effect of resveratrol on microcirculation disorder and lung injury following severe acute pancreatitis in rats. World J Gastroenterol 11, 433–5 (2005).
- 109. Megli, F. M. & Sabatini, K. Mitochondrial phospholipid bilayer structure is ruined after liver oxidative injury *in vivo. FEBS Lett* **573**, 68–72 (2004).
- 110. Korolkiewicz, R. P. *et al.* The role and interactions of nitric oxide (NO), carbon monoxide (CO), and prostanoids in the pathogenesis of postoperative ileus in rats. *J Gastrointest Surg* **8**, 346–57 (2004).
- 111. Martin, A. R., Villegas, I., La Casa, C. & de la Lastra, C. A. Resveratrol, a polyphenol found in grapes, suppresses oxidative damage and stimulates apoptosis during early colonic inflammation in rats. *Biochem Pharmacol* 67, 1399–410 (2004).
- 112. Korolkiewicz, R. P. *et al.* Differential salutary effects of nonselective and selective COX-2 inhibitors in postoperative ileus in rats. *J Surg Res* **109**, 161–9 (2003).
- 113. Morales, A. I. et al. Protective effect of trans-resveratrol on gentamicin-induced nephrotoxicity. Antioxid Redox Signal 4, 893-8 (2002).
- 114. Juan, M. E. & Planas, J. M. Trans-resveratrol oral administration does not affect the enzymatic activities in rat small intestine. *J Physiol Biochem* 58, 59–60 (2002).
- 115. McClintock, S. D., Till, G. O., Smith, M. G. & Ward, P. A. Protection from half-mustard-gas-induced acute lung injury in the rat. *J Appl Toxicol* 22, 257–62 (2002).
- 116. Bertelli, A. A. *et al.* Resveratrol, a component of wine and grapes, in the prevention of kidney disease. *Ann N Y Acad Sci* **957**, 230–8 (2002).
- 117. Juan, M. E., Vinardell, M. P. & Planas, J. M. The daily oral administration of high doses of trans-resveratrol to rats for 28 days is not harmful. *J Nutr* **132**, 257–60 (2002).
- 118. Nihei, T., Miura, Y. & Yagasaki, K. Inhibitory effect of resveratrol on proteinuria, hypoalbuminemia and hyperlipidemia in nephritic rats. *Life Sci* **68**, 2845–52 (2001).
- 119. Giovannini, L. *et al.* Resveratrol, a polyphenol found in wine, reduces ischemia reperfusion injury in rat kidneys. *J Cardiovasc Pharmacol* **37**, 262–70 (2001).
- Cadenas, S. & Barja, G. Resveratrol, melatonin, vitamin E, and PBN protect against renal oxidative DNA damage induced by the kidney carcinogen KBrO3. Free Radic Biol Med 26, 1531–7 (1999).

- 121. Jang, M. & Pezzuto, J. M. Effects of resveratrol on 12-O-tetradecanoylphorbol-13-acetate-induced oxidative events and gene expression in mouse skin. *Cancer Lett* **134**, 81–9 (1998).
- 122. Warzecha, Z. et al. Ischemic preconditioning inhibits development of edematous cerulein-induced pancreatitis: Involvement of cyclooxygenases and heat shock protein 70. World J Gastroenterol **11**, 5958–65 (2005).
- 123. Pajdo, R. *et al.* Ischemic preconditioning, the most effective gastroprotective intervention: involvement of prostaglandins, nitric oxide, adenosine and sensory nerves. *Eur J Pharmacol* **427**, 263–76 (2001).
- 124. Konturek, S. J. *et al.* Gastric preconditioning induced by short ischemia: the role of prostaglandins, nitric oxide and adenosine. *Med Sci Monit* **7**, 610–21 (2001).
- 125. Jaworek, J. *et al.* Involvement of cyclooxygenase-derived prostaglandin E2 and nitric oxide in the protection of rat pancreas afforded by low dose of lipopolysaccharide. *J Physiol Pharmacol* 52, 107–26 (2001).
- 126. Brzozowski, T. *et al.* Expression of cyclooxygenase (COX)-1 and COX-2 in adaptive cytoprotection induced by mild stress. *J Physiol Paris* **94**, 83–91 (2000).
- 127. Chen, G. et al. Synthesis and anti-inflammatory activity of resveratrol analogs. Chem Pharm Bull (Tokyo) 53, 1587-90 (2005).
- 128. Docherty, J. J. et al. Effect of resveratrol on herpes simplex virus vaginal infection in the mouse. Antiviral Res 67, 155–62 (2005).
- 129. Wu, S. L., Yu, L., Meng, K. W., Ma, Z. H. & Pan, C. E. Resveratrol prolongs allograft survival after liver transplantation in rats. *World J Gastroenterol* 11, 4745–9 (2005).
- Wu, S. L., Pan, C. E., Yu, L. & Meng, K. W. Immunosuppression by combined use of cyclosporine and resveratrol in a rat liver transplantation model. *Transplant Proc* 37, 2354–9 (2005).
- 131. Elmali, N. et al. Effect of resveratrol in experimental osteoarthritis in rabbits. Inflamm Res 54, 158-62 (2005).
- 132. Birrell, M. A. *et al.* Resveratrol, an extract of red wine, inhibits lipopolysaccharide induced airway neutrophilia and inflammatory mediators through an NF-kappaB-independent mechanism. *Faseb J* (2005).
- 133. Meng, Y., Ma, Q. Y., Kou, X. P. & Xu, J. Effect of resveratrol on activation of nuclear factor kappa-B and inflammatory factors in rat model of acute pancreatitis. *World J Gastroenterol* **11**, 525–8 (2005).
- 134. Docherty, J. J., Smith, J. S., Fu, M. M., Stoner, T. & Booth, T. Effect of topically applied resveratrol on cutaneous herpes simplex virus infections in hairless mice. *Antiviral Res* **61**, 19–26 (2004).
- 135. Gao, X. *et al.* Immunomodulatory activity of resveratrol: discrepant *in vitro* and *in vivo* immunological effects. *Biochem Pharmacol* **66**, 2427–35 (2003).
- 136. Feng, Y. H. et al. Low dose of resveratrol enhanced immune response of mice. Acta Pharmacol Sin 23, 893–7 (2002).
- 137. Alattar, M. H. et al. Sepsis-induced alteration in T-cell Ca(2+) signaling in neonatal rats. Biol Neonate 80, 300-4 (2001).
- 138. Brzozowski, T. *et al.* Classic NSAID and selective cyclooxygenase (COX)-1 and COX-2 inhibitors in healing of chronic gastric ulcers. *Microsc Res Tech* **53**, 343–53 (2001).
- 139. Brzozowski, T. *et al.* Role of prostaglandins generated by cyclooxygenase-1 and cyclooxygenase-2 in healing of ischemia-reperfusioninduced gastric lesions. *Eur J Pharmacol* **385**, 47–61 (1999).
- Granados-Soto, V., Arguelles, C. F. & Ortiz, M. I. The peripheral antinociceptive effect of resveratrol is associated with activation of potassium channels. *Neuropharmacology* 43, 917–23 (2002).
- 141. Torres-Lopez, J. E. *et al.* Comparison of the antinociceptive effect of celecoxib, diclofenac and resveratrol in the formalin test. *Life Sci* **70**, 1669–76 (2002).
- 142. Gentilli, M. et al. Resveratrol decreases hyperalgesia induced by carrageenan in the rat hind paw. Life Sci 68, 1317-21 (2001).
- 143. Hascalik, S., Celik, O., Tamser, M. & Mizrak, B. Effects of resveratrol, raloxifene, tibolone and conjugated equine estrogen on vaginal squamous cell maturation of ovariectomized rats. *Gynecol Obstet Invest* 60, 186–91 (2005).
- 144. Nikaido, Y. *et al.* Effects of prepubertal exposure to xenoestrogen on development of estrogen target organs in female CD-1 mice. *In Vivo* **19**, 487–94 (2005).
- 145. Nikaido, Y. *et al.* Effects of maternal xenoestrogen exposure on development of the reproductive tract and mammary gland in female CD-1 mouse offspring. *Reprod Toxicol* **18**, 803–11 (2004).
- 146. Kyselova, V., Peknicova, J., Buckiova, D. & Boubelik, M. Effects of p-nonylphenol and resveratrol on body and organ weight and *in vivo* fertility of outbred CD-1 mice. *Reprod Biol Endocrinol* **1**, 30 (2003).
- 147. Kubo, K. *et al.* Low dose effects of bisphenol A on sexual differentiation of the brain and behavior in rats. *Neurosci Res* **45**, 345–56 (2003).
- 148. Liu, Z., Yu, B., Li, W. & Sun, J. [Estrogenicity of trans-resveratrol in immature mice in vivo]. Wei Sheng Yan Jiu 31, 188–90 (2002).
- 149. Henry, L. A. & Witt, D. M. Resveratrol: phytoestrogen effects on reproductive physiology and behavior in female rats. *Horm Behav* **41**, 220–8 (2002).
- 150. Freyberger, A., Hartmann, E., Hildebrand, H. & Krotlinger, F. Differential response of immature rat uterine tissue to ethinylestradiol and the red wine constituent resveratrol. *Arch Toxicol* **74**, 709–15 (2001).

- 151. Mizutani, K., Ikeda, K., Kawai, Y. & Yamori, Y. Resveratrol attenuates ovariectomy-induced hypertension and bone loss in stroke-prone spontaneously hypertensive rats. *J Nutr Sci Vitaminol (Tokyo)* **46**, 78–83 (2000).
- Turner, R. T., Evans, G. L., Zhang, M., Maran, A. & Sibonga, J. D. Is resveratrol an estrogen agonist in growing rats? *Endocrinology* 140, 50–4 (1999).