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1. DATA PROCESSING

1.1. MAIT single-cell sequencing data processing. Adaptor sequences from the FastQ
files were trimmed by fastqtrimmer (Blankenberg et al.; [2010). Sequences were aligned to
the UCSC Human genome assembly version 19 and gene expression levels quantified us-
ing RSEM (Li and Dewey, [2011)), and TPM values were loaded into R (Gentleman et al.,
2004)) for analyses. Libraries were deemed to be of good quality if they met the following
conditions: exonic rate greater than 30%, percent of reads mapped to human greater than
60%, and number of genes with non-zero TPM values greater than 4000. Transcripts were
annotated using the BioConductor (Gentleman et al., [2004) transcript annotation database
TxDB.Hsapiens.UCSC.hgl9.knownGene.

1.2. Mouse dendritic cells (mDC). The bone-marrow derived dendritic cells were pro-
cessed and provided by the Shalek lab (see supplemental information on Shalek et al.| (2014)
for details). We removed the cluster disruptive cells using Lyzl and Serpinb6b expression,
as previously described.

For each dataset, an adaptive thresholding method was applied to groups of genes condi-
tional on median expression level, to help discriminate background noise, with a minimum
threshold of 1 log,-TPM (see section on thresholding). Following thresholding, invariant
genes (expressed in fewer than 20% of cells) were removed. Throughout the paper we
use thresholded log,TPM values. The thresholding procedure decreased the number of
non-normally distributed genes in the mDC data set (conditional on Et > 0) from 602 to
241, and in the MAIT data set from 246 to 69, as determined by the Shapiro-Wilk test
performed on the continuous component model residuals.

1.3. Thresholding expression noise by adaptive gene pooling. In previous studies,
small, but non-zero expression values were thresholded using an arbitrary fixed thresh-
old (Shalek et al.| [2014). These conservative fixed thresholds do not allow any variation
between genes for differing levels of background noise as suggested by [Kharchenko et al.
(2014). In order to adaptively determine the level of background noise, we propose a
thresholding routine that shares information across genes. The N genes are divided into K
equally spaced bins over the P cells based on each gene’s median log,(count). The bins are
indexed such that the median of bin & is greater than bin k + 1, and so forth. This binning
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allows for thresholding that varies with the expression level of the gene. For each bin we
apply kernel density estimation and determine if the distribution is bimodal, then apply
peak finding to estimate the threshold t; as the minimum density point between the two
major peaks in the bin. If the distribution for the kth bin is not bimodal, its threshold is
set as follows. If the £™th bin is the bin with the median threshold amongst bins where a
reliable threshold could be found, we examine all bins k* where k*x < k™ and set tg, = ]
if ¢ > t7'. Similarly, for all bins ™ > k™", we set tj« = ¢} if t+« < ¢}*. This ensures that
the thresholds are monotonically increasing and shares information across bins to impute
thresholds for bins where the distribution of the data was not bimodal. This function is
implemented in the thresholdSCRNACountMatrix function of the MAST package.

2. MODEL SPECIFICATION

2.1. Empirical Bayes derivation of variance hyper parameters. Suppose there are
genes g = 1,...,G. Assume that the precision (inverse variance) for the continuous com-
ponent of gene g is distributed

74|, Bo ~ Gamma-rate(ayg, Bo)
and that ¢ # j = 7; L 7j|ag, Bo. Thus 74|ap, fo has density
F(rglag, Bo) = 7507 e 7970 B30 /T (a).

Assume that n, cells have non-zero expression vector Y, in gene g under the linear model
E [Y,|X] = Xn, with dim(n) = p, so that

Yy|tg,n ~ N(Xn,1y).

This implies that R, = > (y;—7X;)? is sufficient for 7, and that statistic has scale chi-square
distribution with n, —p degrees of freedom, or equivalently, a gamma-rate distribution with
shape oy = (ng — p)/2 and rate 3, = 7,/2. Here 7 is the typical OLS estimator.

The joint distribution of 7,4, Ry|ao, fo has density

F(Ry, 7ol Bo) = 73"~ exp (=7, 8") B5° /T (o) RG™a=P/2=1 (1/2) " ™P/2 /T ((n, — p) /2).

for o/ = ag+ (ng—p)/2 and B’ = Bo+ Ry/2. In terms of 7, this density has the kernel of a
gamma distribution, with aforementioned parameters, so that marginalizing out 7, yields

7\ 30 (ng—p)/2
f(Rylao, Bo) = E((joiﬁ?a' F(l({i)g — p)/Z)Réng—p)M—l
_ Ty =p)2+agfy /2™ e
T(ag) (Bo + Ry/2) e 7P)/2 20 T ((ng — p)/2) 7
[((ng —p)/2+ a0)B5° (1/2)" 7" Ry
T'ayp) I'((ng —p)/2) 5(()"9—17)/2-0-010 (1+ Rg/@ﬁo))(ngﬂ?)/%roco
1) _ (1/2>(n9—p)/2 Rgngfp)/Qfl

B ((ng — p)/2,00) 85" 7% (14 Ry/(28,)) " ~P)/3F
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where B is the beta function. This is recognized as the kernel of a (scale) F-distribution.
Since 1+ Ry is raised to the — ((ng —p)/2 + ap), Ry is raised to the (ng —p)/2 — 1 power,
and Ry is divided by 20y, we identify the parameters of the scale-F distribution dq,d2, o as

di+d
= l(ng = p)/2+
d
S -1=(n-p)/2-1
dy
— =1/(2p).
L= 1/CR)
Solving this system gives
dy=ng—p
do = 2qy
- /BO(ng - p) ]
%y

Working backwards from a F' (ng —p, 20, %ﬁ) distribution, we would have that

f(Rg) = ! ((ng p)>(ng_p)/2 |:]%gaoj| (ra=p)/2=1 |:1 + Rg :|_(”_q—p+20¢0)/2
B ( ) Bo p)

(ng2—P) , 0 2(10 (ng — (260)

which after some algebra verifies to be equivalent to equation

2.1.1. Mazimum Likelihood Estimators. Equation [I] can be used as the basis for maximum
likelihood estimation of «ag, By. Dropping constants that do not depend on the parameters,
the log-likelihood and score functions have the form

L(aofo) = —1og B((ny = p)/2, a0) — ~LLlog By — log (1 + By /(28)) ((ny — p)/2 + )
Loy = ((ng = p)/2+ o) = ¥ (a0) — log (1 + B/ (280)
agRy — (ng —p)Bo
RgBO + 253 ’

Eﬁo -

where v is the digamma function dl;gf). This likelihood may be maximized numerically,

eg, using the optim function in R.

2.1.2. Posterior MLE for 74. Given estimates g, 3y derived by MLE, then the posterior
distribution of 7, is Gamma-rate with parameters o = o+ (ng—p)/2 and 8’ = o+ R, /2.
The log-likelihood and score for 7, is

L(rg) = (O/ —1)log Ty — Tgﬁl

£Tg - _/8/
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which implies that

ad =1
Ty = 2]
which has an interpretation in terms of pseudo-observations as follows
Rg/2 + ﬂo - Rg Ng —p 60 20[0

1/7, = = - -
/7o ag+(ng—p)/2 ng—p2a9+ng—p ag2a9+ng—p

= (YN (1 - N

(Tg_ 1)MLE = % would be the typical MLE of the variance 7,° 1 and that

7o = /o would be the MLE of 7 using only the prior information. This final formulation
of the shrunken precision as a convex combination of the MLE and the global value 7y is
used in practice.

noting that

2.2. Bayesian logistic regression for discrete component. In logistic regression,
when the binary outcome can be perfectly predicted by a covariate (or linear combina-
tion of covariates), then “linear separation” is said to be present, and parameter estimates
will diverge towards +o0o while the Fisher information becomes singular. (In contrast, if
even a single cell were to violate this linear separation, then the Fisher Information would
be invertible.) Yet cases with linear separation are of particular interest, since a gene that
so sharply changes by condition is noteworthy. To accommodate this scenario, we apply a
Bayesian logistic regression procedure available in the bayesglm function in the R package
arm. A Cauchy distribution prior centered at zero for the regression coefficients results in
maximum aposteriori (MAP) estimates nearly identical to the maximum likelihood esti-
mates when linear separation is not present. Under linear separation the Bayesian MAP
estimate is finite, with non-singular Hessian about the MAP (providing an estimate of the
statistical precision, akin to the Fisher information.) Favorable small-sample frequentist
properties have also been described in (Gelman et al.| (2008).

3. RESIDUAL ANALYSIS

3.1. Deviance Residuals. The hurdle model, in general, provides two residuals—one for
the discrete component and one for the continuous. Standardized deviance residuals are
calculated for the discrete and continuous component separately, then we combine the
residuals by averaging them. If a cell is unexpressed, then its residual is missing and it is
omitted from the average.

For a given gene, and model component (discrete or continuous) the residual deviance D
is -2 times the maximized log-likelihood, (centered so that D = 0 when every observation
has its own mean parameter). The deviance can be written as a sum of -2 times the
log-likelihood of each observation, or
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The deviance residual is defined as
ri = sign(y; — U:)\V/d;

and the standardized deviance residual given by ;" = \/% where h; is the leverage

(3

associated with observation i.
The combined deviance residual for cell ¢ is the average of the standardized discrete

and continuous deviance residuals for the cell if both are present, otherwise it is only the
standardized discrete residual.

4. GENE SET ENRICHMENT

Fix a gene module, ie, a collection of gene indices. Let g = 1,..., Gy, ..., G index the
G genes measured, with G — Gy genes in the test set (set of interest) and G genes in the
null set (outside the set of interest). We assume that the following hurdle linear models

E(Yg|Yg > 0) = 28, + Zn,
logit E(Yg > 0) = zf, + Z1,

have been fit for ¢ = 1,...,G. Here z is a simple covariate of interest (scalar in each
observation) while Z is all other covariates (potentially a vector in each observation). The
competitive gene set enrichment test considers the average coefficient of interest in the test
and null sets:

1 G
0 = G — Z By
0 g=Go+1
1 G
“ > 7
_ g
G 0 g=Go+1
1 o
o=—=)> B
Gy 2
g=
1 &
N Al
0 — GO Zlﬂg
g=
and forms the test statistics
0 — 0
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with Z’ formed analogously. The goal is to form an estimate of Var(d) and Var(fy). Since,
for example,

o 1 Go .
Var(fy) = Var | 7
ar(6p) ar Go 2 Byq

Go
Z Vang + 2 Z Cov (B_m Bh)
g=1

1<g<h<Go

Q=
oN

it suffices to find some estimate of the genewise covariance matrix 3 € REXG for B We
chose to accomplish this by bootstrap. Repeat R times: sample cells with replacement and
generate an expression matrix Y*, and refit the hurdle linear model providing coeflicients
B* (and B’*) Collect the the bootstrapped coefficients in matrix 8* € RE*C. Estimate 3

via the sample covariance on 3*.

4.1. Implementation Notes. We find that the bootstrapped covariances converge rather
quickly, and R = 100 typically more than suffices. An adjustment to Z to account for
Monte Carlo variation in the bootstrap estimate 3 is also available by comparing Z to a
t-distribution with degrees of freedom determined through Welch’s approximation on R
effective observations.

Note that the full covariance matrix estimate 3 never need be explicitly formed (since it is
potentially memory intensive). Rather we accumulate the sum over the (G — Go) (G — Go + 1) /2
inner products on the genes in the test set, to yield Var(). A working estimate of Var(fy) is
updated by adding and subtracting only the covariances that have changed as Gy changes
between modules.

4.2. Combining Z and Z'. Stouffer’s method for combining Z-scores is used to form the
composite Z = (Z + Z') /2.

5. SIMULATION

In order to assess the effect of the including/excluding CDR effects when modeling single-
cell gene expression data, we simulated log, TPM expression matrix with 2500 genes where
100 genes are differentially expressed for sample size of 100 in each of two stimulation
conditions. We tested four scenarios: one with no CDR effect in the simulated data
generating process; and three others with varying levels of confounding between CDR and
stimulation effect. The four scenarios are described in Table [If and depicted in Figure
[ The parameters in the data generating model were chosen to mimic the the observed
features of the MAIT experiment, as described below.

The results based on 100 replication is summarized by the ROC curves in Figure []
showing the importance of controlling for CDR when there is a CDR effect in the data
generating process. This is especially important when there is confounding between the
stimulation and the CDR, as ignoring the CDR effect would typically inflate the type I

error rate. At the same time our results also indicates the robustness of our proposed
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model for including CDR even when there is no CDR effect in the data generating process,
promoting the inclusion of CDR as a default model.

5.1. Data generating protocol. We set the sample size N = 200, the number of genes
J=2500 and defined the stimulation indicator s as 0 for first 100 cells and 1 for the last
100. Given stimulation indicator s we generated the data accordingly:

7]2 ~  Gammal(agp,by)

CDR; ~ (1 - s;)Beta(ay,by) + s;Beta(as, bs)
2ij|CDR; ~ Bernoulli(logitfl(,u;l + a?si + ﬁijDRZ-))
Yijlzij; CDRy  ~ 2 N(u + ofs; + BSCDRy, 1/77)

The coefficients u, «, and [ were generated from a Normal distribution with hyper
parameters based on the distribution of these quantities observed in the MAIT experiment.
We also set a; = 0 for j > 100, since only the first 100 genes are differentially expressed
(i.e. have a non-zero treatment effect). The precision hyperparameters ay and by are set

to the point estimates found in the MAIT experiment. The code with all the simulation
details can be found in AdditionalAnalyses.Rmd.

TABLE 1. Hyper parameter settings for CDR generation model.

‘ strong confounding ‘ moderate confounding ‘ no confounding

Ay, 4 6 8
bs 16 14 12
as 12 10 8
bs 8 10 12

6. R PACKAGES MAST AND MASTDATAPACKAGE

6.1. R data package M ASTDataPackage. We compiled the data used in this paper
into an R data package, containing all data as R objects to version control the dataset for
convenient reproducibility. The data package can be installed using the devtools package,
as follows,

devtools: :install_github("RGLab/MASTdata")

After installation, the package can be loaded as a standard R package, and the data
available as SingleCellAssay object.

library(MASTDataPackage)
data(MASTDataPackage)

Analysis described in the main paper and the supplementary figure are available as
the vignette of MASTDataPackage. The MAIT cells and mouse dendritic cells analysis are
accessible by

vignette ("MAIT analysis)
Page 7
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and
vignette("mDC analysis)

respectively on the R terminal.
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FIGURE 1. Scatter plot of p-values for differential expression from adaptive
and fixed thresholding on the A) MAIT and B) mDC data sets, demon-
strating robustness to the thresholding method. Two selected genes from
each data set, with large differences in p-values between fixed and adaptive
thresholding in C) MAIT and D) mDC, are genes that exhibit substantial
bimodality and our adaptive thresholding appears preferable.

TABLE 2. Standard deviations of module scores for stimulated and non-

stimulated MAIT cells

set Unstim Stim
signaling in T cells (IT) (M35.1) 1.2301815 | 2.1008091
chaperonin mediated protein folding (I) (M204.0) 0.6746352 | 1.4881732
respiratory electron transport chain (mitochondrion) (M238) | 0.9977339 | 1.0474434
AP-1 transcription factor network (M20) 1.5442480 | 1.0009314
proteasome (M226) 1.0019731 | 1.8099783
cell cycle and growth arrest (M31) 1.4221590 | 0.7827468
chaperonin mediated protein folding (II) (M204.1) 0.8101438 | 1.6062428
purine nucleotide biosynthesis (M212) 0.7082552 | 1.5784755
spliceosome (M250) 1.1026929 | 1.3047972
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FIGURE 2. Scatter plot of normalized (scaled to unit variance and zero
mean) CDR (cellular detection rate) calculated from all genes vs. the CDR
calculated from housekeeping genes (Padovan-Merhar et al., [2015)), for stim-
ulated A) and unstimulated B) MAIT cells. The estimated CDRs are lin-
early related within each condition.

= Stim
Unstim
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FIGURE 3. Amount of variability, measured as percent of null model de-
the treatment effect, in each
dataset. The CDR accounts for 5.2% of the variability in the MAIT and
4.8% of the variability in the mDC data sets for the average gene. Greater
than 9% of the variability is attributed to over 10% of genes in both data
sets. CDR contributes the most variability to the discrete component in

viance, attributed to the CDR effect vs.

both data sets and more so in the MAIT data than the mDC data.
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FiGURE 4. Effect of CDR and confounding with treatment using different
methods. A) ROC curve comparing the effect of controlling for CDR in the
MAST model. The solid line is the median and the top and the bottom
dashed line represents the 95 and 5 percent quantile. The result indicates
that inclusion of CDR improves the performance when there is confounding
between the CDR and stimulation and performs nearly the same when there
is no confounding or when there is no CDR effect in the data generating
model. B) Density plot of generated CDR values across cells using the three
levels of confounding between the stimulation and the CDR effects.
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F1GURE 5. Comparison of the empirical CDR (centered and scaled) and
other correction methods, the cell by gene weights of Shalek et. al., and

RUV and SVA. The CDR and Shalek et.

al.

weights are correlated, in

fact generally just shifted by a constant (panel A, in a random subsample
of genes, each in a different color), and the correlation coefficient is nearly
unity (panel B). The location shift between the CDR and Shalek et. al.
weights would be absorbed by the intercept term in the logistic regression.
C) Scatterplots of CDR vs. the first and second SVA and RUV components.
Treatment groups are shown in different colors. The first SVA and second
RUV components are associated with CDR. D) In the mDC data, the first
SVA and RUV components are correlated with CDR.

Page 13



Supplemental Methods and Extended Derivations

biolagical_process

bialogical cellular retabolic
regulation PrOCESS process
regulation cellular organic substance
of biological metabolic metabolic
process process process
regulation macramaolecule fimary metahalic
of metabolic metabolic i ¥
process
process process
regulation cellular \
of macromolecule macromolecule protein metabolic
metabolic metabalic prOCEss
process process /
; regulation cellular
regulation ' . . :
. of biolagical protein metabolic
of gene expression :
guality process

posttranscriptional
regulation protein falding
of gene expression

\

regulation
of RMA stability

FIGURE 6. Gene Ontology Enrichment Analysis using the GOrilla online
tools for the set of genes not detected as differentially expressed in the MAIT
data set when the CDR is included in the MAST linear model.
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FIGURE 7. False discoveries in genes (A) and modules (B) based on numeric
permutation experiments for various methods. The unstimulated MAIT
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pression under the Hurdle model (MAST), Limma, edgeR, and DEseq. In
this scenario, any gene discovered is an a priori false discovery, so the num-
ber of false discoveries is plotted against the FDR-adjusted significance. We
show the average values from ten permutations.
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FiGUrE 8. The distribution of log p-values in permuted datasets is com-
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dataset (N = 73) the Hurdle is inflated in the tail of the test statistic, pro-
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deflated, yielding .5 too few rejections per 1,000 tests at a = 1073
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FIGURE 9. Gene Ontology Enrichment Analysis using the GOrilla online
tools for the set of genes detected as differentially expressed by DESeq but
not by MAST.
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FiGURE 10. Gene Ontology Enrichment Analysis using the GOrilla online
tools for the set of genes detected as differentially expressed by edgeR but
not by MAST.
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F1GURE 11. Gene Ontology Enrichment Analysis using the GOrilla online

tools for the set of genes detected as differentially expressed by Limma but
not by MAST.
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FIGURE 12. Gene Ontology Enrichment Analysis using the GOrilla online
tools for the set of genes detected as differentially expressed by SCDE but
not by MAST.
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FicurE 13. Proportion of immune-specific GO modules amongst all GO
modules enriched in differentially expressed genes in the MAIT data set.
Immune-specific GO modules were defined to be terms with experimental
evidence codes within the Biological Process ontology that were descen-
dants in the GO graph of the Immune System Process term. Differential
expression of genes was determined at three increasing false discovery rate
thresholds, and then GO enrichment in differentially expressed genes was
tested using the hypergeometric distribution, calling significant enrichment
at the 1% FDR level. Inclusion of the CDR in the model for differential
expression increases the rate of detection of immune specific modules for the
MAST and Limma methods. Among models that do not adjust for CDR,
SCDE has highest specificity, but is dominated by MAST under CDR ad-
justment (SCDE cannot adjust for covariates, so was omitted from the CDR

models).
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FIGURE 14. Post-sort experiments via flow cytometry show that the sorted
cell populations were over 90% pure MAITs ( Figure A), and exhibited
a change in cell size upon stimulation (Figure B) and that up to 44% of
stimulated MAITs did not respond to cytokine stimulation (Figure C).
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F1GURE 15. Gene set enrichment analysis of the mDC data set, LPS stim-
ulated cells using the BTM (blood transcriptional modules) of Li et. al.
Decreased expression for AP-1 transcriptional network genes is observed
after LPS stimulation, consistent with previous findings in the literature
(De Wit et al., [1996). Type-1 interferon response and antiviral IFN mod-
ules are among the most significantly enriched and are consistent with the
findings of the original publication (Shalek et al. 2014)) .
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F1GURE 16. Number of modules discovered plotted against FDR-adjusted
significance of the module. MAST-based GSEA detects more modules than
other methods.
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F1GUureE 17. Comparison of raw expression values (log,TPM) and coeffi-
cients estimates (Unstimulated as reference) of modules identified as differ-
entially expressed using MAST GSEA but not with CAMERA. Differences
in the expression profile are evident, however CAMERA failed to detect
them. A) Violin plots showing the expression of genes in the ”T-cell sur-
face signature” module. B) Model coefficient estimates for the genes in the
"T-cell surface signature” module from GSEA, with 95% confidence inter-
vals, from the discrete and continuous components of the model. C) Violin
plots showing the expression of genes in the ”chaperonin mediate protein
folding” module. D) Model coefficient estimates for the genes in the ”chap-
eronin mediate protein folding” module from GSEA, with 95% confidence
intervals, from the discrete and continuous components of the model.
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FiGure 18. Distribution of changes in pairwise correlations of MAST
model residuals after adjusting for CDR. Controlling for the CDR effect
modestly reduces the background correlation in the median gene in both
stimulated cells (red) and unstimulated (blue). Each distribution consists
of approximately 1.8 million gene pairs.

pc2

FI1GURE 19. The six stimulated MAIT cells that did not exhibit an expres-
sion profile indicative of activation are shown in comparison to A) other
stimulated MAITs and B) unstimulated MAITs. Differentially expressed
genes between these six cells and the stimulated but activated and non-
stimulated cells are shown, identified using MAST at a g-value of 15% and
fold change threshold of at least 2. Panel C) shows PCA of the MAITs
based on the differentially expressed genes. 13 selected gene with largest
loadings discriminating between the three classes of cells are shown.
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F1GURE 21. PCA of the model residuals of LPS stimulated cells using the
genes in the core antiviral module identified in [Shalek et al. (2014) The
two “outlier” cells evident at the 1h timepoint correspond to the “early
These results show that
these cells exhibit coordinated co-expression of genes in the core antiviral

marcher” precocious cells described previously.

signature at the single-cell level.
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FIGURE 22. Co-expression plot for PAM (synthetic mimic of bacterial
lipopeptides) stimulated cells of cells in the mDC data. Panel A in each fig-
ure shows principal component analysis (PCA) of the model residuals using
the top 100 differentially expressed genes. Cells are faceted by time, which
is correlated with the first principal component. Panel B shows heatmaps of
the pairwise correlations between genes in the model residuals across cells at
each timepoint. The order of genes in the heatmaps is based on clustering
at the 6h timepoint.
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F1GURE 23. Co-expression plot for PIC (viral-like double-stranded RNA)
stimulated cells of cells in the mDC data. Panel A in each figure shows
principal component analysis (PCA) of the model residuals using the top
100 differentially expressed genes. Cells are faceted by time, which is cor-
related with the first principal component. Panel B shows heatmaps of the
pairwise correlations between genes in the model residuals across cells at
each timepoint. The order of genes in the heatmaps is based on clustering

at the 6h timepoint.
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