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Six immune-related promising biomarkers 
may promote hepatocellular carcinoma 
prognosis: a bioinformatics analysis 
and experimental validation
Xia‑Hui Lin1,2†, Dong‑ping Li1,2†, Zhi‑Yong Liu1,2†, Si Zhang3, Wen‑qing Tang1,2, Rong‑xin Chen4, 
Shu‑qiang Weng1,2*, Yu‑jen Tseng5*, Ru‑yi Xue1,2* and Ling Dong1,2*   

Abstract 

Background Abnormal miRNA and mRNA expression and dysregulated immune microenvironment have been 
found to frequently induce the progression of hepatocellular carcinoma (HCC) in recent reports. In particular, the 
immune‑related competing endogenous RNAs (ceRNA) mechanism plays a crucial role in HCC progression. However, 
the underlying mechanisms remain unclear.

Methods Differentially expressed immune‑related genes were obtained from the Immport, GEO, and TCGA data‑
bases. The mRNA and protein expression levels in HCC tissues and adjacent normal tissues were confirmed, and we 
further investigated the methylation levels of these biomarkers to explore their function. Then, the TIMER and TISCH 
databases were used to assess the relationship between immune infiltration and hub genes. Survival analysis and 
univariate and multivariate Cox models were used to evaluate the association between hub genes and HCC diagno‑
sis. Hub gene expression was experimentally validated in six HCC cell lines and 15 HCC samples using qRT‑PCR and 
immunohistochemistry. The hub genes were uploaded to DSigDB for drug prediction enrichment analysis.

Results We identified that patients with abnormal miRNAs (hsa‑miR‑125b‑5p and hsa‑miR‑21‑5p) and their tar‑
geted genes (NTF3, PSMD14, CD320, and SORT1) had a worse prognosis. Methylation analysis of miRNA‑targeted 
genes suggested that alteration of methylation levels is also a factor in the induction of tumorigenesis. We also 
found that the development of HCC progression caused by miRNA‑mRNA interactions may be closely correlated 
with the infiltration of immunocytes. Moreover, the GSEA, GO, and KEGG analysis suggested that several common 
immune‑related biological processes and pathways were related to miRNA‑targeted genes. The results of qRT‑PCR, 
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Background
Cancer is not only the second leading cause of death in 
people after heart disease but also the first or second 
leading cause of death for every age group [1]. Hepato-
cellular carcinoma (HCC) is one of the most common 
cancers worldwide. Although surgical resection, liver 
transplantation, radiotherapy, and chemotherapy have 
improved the survival rate of patients with HCC, most 
patients are diagnosed with HCC at an advanced stage 
and are unsuitable for surgery due to the concealment 
of HCC and the lack of specific early biomarkers [2–4]. 
Therefore, there is an urgent need to identify novel prog-
nostic biomarkers and/or therapeutic targets to bridge 
the gap in the diagnosis, prevention, and treatment of 
HCC [5].

As is well known, public data can provide us with a 
large amount of clinical data and genetic data that can 
help us deeply mine the biomarkers (miRNA, mRNA, 
etc.) of diseases and study their pathogenesis. It has been 
reported that miRNA-mRNA interactions can regu-
late the progression of many diseases, including HCC 
[6–8]. Previous studies have focused on this point and 
revealed that the ceRNA network is involved in HCC 
growth, metastasis, and prognosis; for example, Xu et al. 
found that miR-885-5p can regulate HCC progression 
by silencing hexokinase 2 [9]. Xiao et al. confirmed that 
miR-330-5p can promote HCC progression by target-
ing SPRY2 [10]. In addition, secreted miRNAs have been 
reported to act in a paracrine manner in the surrounding 
microenvironment to promote tumor progression [11]. 
In addition, the existence of tumor-infiltrating immune 
cells, such as macrophages [12] and lymphocytes [13], 
is evidence of immune system activity and is thought 
to play a crucial role in cancer growth, metastasis, and 
progression. However, studies focusing on the regula-
tory mechanisms between ceRNA networks and immune 
infiltration in HCC remain unclear.

In our study, we first identified differentially 
expressed miRNAs (DEMis) and immune-related genes 
(DEIRGs). KEGG and GO enrichment analyses were 
performed to investigate the functions of DEMis and 
DEIRGs. Survival analysis was performed to screen 
for key miRNA-targeted genes. The protein expression 
and methylation levels of hub genes were confirmed by 

immunohistochemistry using the HPA and ULCAN 
databases. The TIMER and Cell Marker databases were 
used to explore the correlation between hub gene sig-
natures and immune cells. The signals of key genes were 
assessed using gene set enrichment analysis (GSEA). 
We then conducted univariate and multivariate Cox 
regression models to screen for novel prognostic mark-
ers and confirm the independent prognostic role of the 
hub gene signature. A nomogram was developed to 
predict the outcomes of HCC. Finally, we performed a 
qRT-PCR assay to confirm the expression of miRNAs, 
and western blot and immunohistochemistry assays to 
confirm the expression of miRNA-targeted genes. The 
flow chart of our study is presented in Fig.  1. In sum-
mary, our study screened several novel biomarkers that 
could be used as prognostic predictors of HCC.

Materials and methods
Data processing
The TCGA dataset (including 50 normal and 374 tumor 
patients) was collected from The Cancer Genome 
Atlas (TCGA) project (https:// portal. gdc. cancer. gov/). 
Gene expression in fragments per kilobase per million 
(FPKM) format was converted to transcript per million 
reads (TPM).

Additionally, the GSE69580 array dataset (Platform: 
GPL10850) was accessed from the Gene Expression 
Omnibus (GEO) database (https:// www. ncbi. nlm. nih. 
gov/ geo/), including five tumors and five normal sam-
ples. Each gene was normalized to the median, and 
the data were quantile-normalized. GSE14520 and 
GSE76427 were used to validate the expression levels of 
the hub genes.

A list of immune-related gene was downloaded from 
the ImmPort portal database (https:// www. immpo rt. 
org/ home).

Differential analysis of miRNAs and mRNAs
Using the “limma” R package [14] to screen differen-
tially expressed miRNAs (DEMis) and mRNAs (DEMs) 
with the thresholds of |logFC| > 0.5 and p adj < 0.05. The 
volcano plots and heatmap were drawn by the “ggplot2” 
R packages.

immunohistochemistry, and western blotting were consistent with our bioinformatics results, suggesting that abnor‑
mal miRNAs and their targeted genes may affect HCC progression.

Conclusions Briefly, our study systematically describes the mechanisms of miRNA‑mRNA interactions in HCC and 
predicts promising biomarkers that are associated with immune filtration for HCC progression.

Keywords Hepatocellular carcinoma, Prognosis, Immune gene signature, Competing endogenous RNA
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Construction of the miRNA‑mRNA network
Based on the mechanism by which miRNAs can directly 
bind mRNAs to suppress the translation process in the 
cytoplasm, the steps for constructing an miRNA-mRNA 
network are as follows: (1) miRecords (https:// www. hsls. 
pitt. edu/ obrc/ index. php? page= URL12 37998 207), miR-
Tarbase (http:// mirta rbase. cuhk. edu. cn/ php/ index. php), 
and Tarbase (http:// carol ina. imis. athen ainno vation. gr/ 
diana_ tools/ web/ index. php? Ther= tarba sev8% 2Find 
ex) database was used to retrieve the validated miRNA-
mRNA interaction pairs; (2) The Venny 2.1.0 online web-
site (https:// bioin fogp. cnb. csic. es/ tools/ venny/) was used 
to obtain the overlapping genes between the miRNAs’ 
validated targets, immune-related genes, and TCGA 
DEMs; (3) the overlapping genes were imported into the 
String (https:// www. string- db. org/) database for the con-
struction of the PPI network [15]; and (4) the miRNA–
mRNA network was integrated.

Functional enrichment analysis
To further explore the biological mechanisms of the 
promising biomarkers, we conducted Kyoto Encyclope-
dia of Genes and Genomes (KEGG) and Gene Ontology 
(GO) analysis. The FunRich software (version 3.1.3) was 
used to perform functional enrichment analysis of DEMis 
[16]. Functional enrichment analysis of DEMs was per-
formed using the “ClusterProfiler” R package [17]. The 

bubble plots and Gocircle plots were visualized by the 
“ggplot2” R package. GSEA analysis was performed using 
the GSEA software (version 4.1.0) [18].

Methylation analysis
DNA methylation is a critical epigenetic process that 
controls gene expression and behavior of cancer cells. 
UALCAN (http:// ualcan. path. uab. edu/) was used to 
assess the methylation levels of hub genes in HCC and 
normal tissues, and MEXPRESS (http:// mexpr ess. be) was 
used to evaluate the relationship between gene expres-
sion and DNA methylation.

Immunohistochemistry and immune infiltrate analysis
The Human Protein Atlas (https:// www. prote inatl as. org/) 
was used to assess the protein expression levels in HCC 
and normal tissues. The correlation between gene expres-
sion and tumor-infiltrating immune cells (B cells, CD8+ 
T cells, CD4+ T cells, macrophages, neutrophils, and 
dendritic cells) was evaluated using the Tumor Immune 
Estimation Resource (TIMER) database (https:// cistr 
ome. shiny apps. io/ timer/) and tumor immune single-cell 
hub (TISCH) database (http:// tisch. comp- genom ics. org/ 
home/).

Slides were dewaxed and rehydrated in a gradient of 
xylene and ethanol, then treated with citric acid epitope 
repair reagent at 100  °C for 20 min and cooled to room 

Fig. 1 Flow chart of the whole study
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temperature to inhibit endogenous peroxidase activity. 
The cells were incubated with 5% bovine serum albumin 
(BSA) at room temperature for 30 min. Subsequently, the 
cells were incubated with the primary antibody (CD320: 
Santa Cruz sc-393892 Mouse 1:100; PSMD14: ABclonal 
A9608 Rabbit 1:100; SORT1: Santa Cruz sc-376561 
Mouse 1:100; NTF3: ABclonal A12476 Rabbit 1:100); 
overnight at 4 °C. The next day, the cells were incubated 
with the corresponding HRP-labeled secondary antibody 
for 1  h. Finally, the sections were stained with diamin-
obenzidine (DAB) and observed under a microscope.

Survival analysis and prognostic model
The survival curves of hub genes were obtained from 
the GEPIA database (http:// gepia. cancer- pku. cn/ index. 
html). The prognosis model (univariate and multivariate 
Cox regression analysis) was analyzed using the “Sur-
vival” and “Survminer” R packages. A nomogram has 
been used to predict cancer prognosis [19]. The “ggplot2” 
and “RMS” R packages were used to visualize the analy-
sis results of the prognosis model. Statistical significance 
was set at p < 0.05.

Cell lines and cell culture
Human liver cells L0-2, HCC cells (PLC/PRF/5, HepG2, 
and Hep3B) (Cell Bank of the Chinese Academy of Sci-
ences, Shanghai, China), MHCC97H and HCCLM3 
(Liver Cancer Institute, Fudan University, Shanghai, 
China), and Huh7 (Japanese Cancer Research Resources 
Bank) were cultured in Dulbecco’s modified Eagle’s 
medium (Gibco) supplemented with 10% fetal bovine 
serum (Gibco) and 1% penicillin–streptomycin (Invit-
rogen). Cell cultures were performed in a thermostatic 
incubator at 37 °C in a humidified atmosphere of 95% air 
and 5%  CO2.

Human samples
Ethical approval was obtained from the Zhongshan Hos-
pital of Fudan University (Shanghai, China), and written 
informed consent was obtained from each patient. HCC 
and matched non-tumor liver tissues were collected from 
15 patients who underwent curative resection at the Liver 
Cancer Institute, Zhongshan Hospital of Fudan Univer-
sity (Shanghai, China) in 2015. A pathological diagnosis 
of HCC was confirmed. Clinicopathological information 
was retrieved from the medical records.

Quantitative reverse‑transcription polymerase chain 
reaction (qRT‑PCR) assay
Total RNA, including miRNA, was extracted from cells or 
tissues using TRIzol Reagent (Invitrogen), and cDNA was 
synthesized from RNA using the Reverse Transcription 
Kit (Takara). Subsequently, cDNA was amplified using 

the Maxinma SYBR Green qPCR Master Mix (Thermo 
Scientific). Target genes were quantified using the  2−ΔΔCt 
method with glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH) for normalization. Melting curve analysis was 
performed to assess the specificity of PCR products. The 
NTF3, SORT1, CD320, and PSMD14 primers were used 
for real-time PCR. Primers for qRT-PCR were purchased 
from Genepharma (Shanghai, China) and the sequences 
were as follows: CD320, forward: 5′-CGA TGA GGA GGA 
GTG CAG GATT-3′, reverse: 5′-CAT GGT TGT GGC ATT 
CCT GAG-3′; PSMD14, forward: 5′-GAA GCC TTG TCG 
GAG AGA GC-3′, reverse: 5′-TGC CTG GAT AGA TGG 
CTT GT-3′; SORT1, forward: 5′-TCT CAG AGC CGA ATG 
CCG TAGG-3′, reverse: 5′-GGT CCT TCC AGC ATC TTT 
GTC CAG -3′; NTF3, forward: 5′-TGG TTA CTT TTG 
CCA CGA TCT-3′, reverse: 5′-GGT GTC CAT TGC AAT 
CAC CG-3′. The levels of miRNAs were measured by 
qRT-PCR using miDETECT A Track™ miRNA qRT-PCR 
Kit (RiboBio, Guangzhou, China) and performed on an 
ABI 7500 System (Applied Biosystems). The primers for 
hsa-miR-125b-5p, hsa-miR-21-5p, and U6 small nuclear 
RNA were obtained from RiboBio Company (Guang-
zhou, China). The sequences were covered by patents. 
miRNA expression was normalized to the expression of 
internal control U6 using the  2−ΔΔCT method.

Western blot
Proteins were extracted from cells or tissues using RIPA 
cell lysis with Protease Inhibitor Cocktail (Beyotime 
Biotechnology). The proteins were quantified using the 
BCA kit, subjected to 10% SDS-PAGE for separation, 
and transferred to 0.45  μM PVDF membranes (Mil-
lipore, USA). The membrane was incubated with the 
corresponding primary antibodies (CD320: Santa Cruz 
sc-393892 Mouse 1:500; PSMD14: ABclonal A9608 Rab-
bit 1:1000; SORT1: Santa Cruz sc-376561 Mouse 1:500; 
NTF3: ABclonal A12476 Rabbit 1:1000; GAPDH: Ser-
vicebio GB11002 Rabbit 1:1000; mTOR: CST #2983S 
Rabbit 1:1000; p-mTOR: CST #5536 Rabbit 1:1000; 
LC3B: CST #2775S Rabbit 1:1000; p62: CST #23214 Rab-
bit 1:1000; ATG5: CST #12994S Rabbit 1:1000) at 4  °C 
overnight, after blocking with 5% skim milk. followed by 
incubation with the corresponding HRP-conjugated sec-
ondary antibody (PeproTech), and the bands were visu-
alized by enhanced chemiluminescence. The intensity of 
protein expression was measured using ImageJ software.

Transwell migration and invasion assay
For invasion assay, 1 ×  105 cells suspended in serum-free 
medium were seeded into the upper chamber coated 
with 1  µg/µl Matrigel (BD Biosciences, USA) in 24-well 
transwell plates (8-μm pore size, Corning, NY, USA), and 
600  μl DMEM with 10% FBS was added into the lower 

http://gepia.cancer-pku.cn/index.html
http://gepia.cancer-pku.cn/index.html
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chamber. After incubation for an indicated time points at 
37 °C in 5%  CO2, the migrating and invading cells on the 
outer side of the upper chamber membrane were then 
fixed with 4% paraformaldehyde, stained with crystal vio-
let and counted under a light microscope (100× magnifi-
cation) in eight randomly selected areas.

Statistical analysis
R software (version 4.0.3), GraphPad Prism (version 6.0), 
and SPSS (version 21.0) were used for the statistical anal-
ysis of the experimental data. Continuous data were com-
pared using the Student’s t-test. Categorical data between 
the groups were compared using the chi-square test. The 
survival values of DEIRGs were evaluated using Kaplan–
Meier (K–M) analysis. Statistical significance was set at 
p < 0.05.

Results
Identification of differentially expressed miRNAs in HCC
The miRNA microarray data (GSE69580) containing five 
HCC tumors and five normal tissues were first quantile-
normalized before data analysis (Additional file  1: Fig. 
S1). The filtering criteria were as described previously 
(|log2FC| > 0.5, adjusted p < 0.05). We identified seven 
upregulated and two downregulated miRNAs (Table  1). 
Volcano and heatmaps were drawn to show the dif-
ferential expression of the nine miRNAs between the 
tumor and normal tissues (Fig. 2A, B). We then imported 
nine miRNAs into FunRich (3.1.3) software to perform 
miRNA GO enrichment analysis. The GO biological pro-
cess terms (BP) showed that most miRNAs were involved 
in the regulation of nucleobase, nucleoside, nucleo-
tide, and nucleic acid metabolism (19.7%, p < 0.001) 
(Fig.  2C). Regarding the GO cellular component terms, 
most miRNAs may be localized in the nucleus (48.2%, 
p < 0.001) and cytoplasm (45%, P < 0.001) (Fig.  2D). The 
GO molecular function terms showed that most of 

the miRNAs were associated with transcription factor 
activity (8%, p < 0.001), protein serine/threonine kinase 
(2.9%, P = 0.001), transcription regulator activity (6.4%, 
P = 0.007), ubiquitin-specific protease activity (3.3%, 
P = 0.01), and guanyl-nucleotide exchange factor (1.3%, 
P = 0.014) (Fig. 2E). For transcription factor analysis, we 
found that most miRNAs were related to transcription 
factors (TFs). We chose the top 10 TFs that were closely 
related to miRNAs. As shown in Fig.  2F, the TFs SP1, 
EGR1, POU2F1, SP4, MEF2A, FOXA1, SOX1, FOXO1, 
NKX6-1, and HOXD8 are associated with differentially 
expressed miRNAs.

Identification of differentially expressed immune‑related 
miRNA targeted‑genes
We first uploaded nine miRNAs to three databases 
(miRecords, miRTarbase, and Tarbase), and then aggre-
gated all validated interacting target genes in these three 
databases. After that, the final 393 immune-related tar-
get mRNA genes were obtained by screening overlap-
ping genes between miRNA targeted genes and the list 
of genes downloaded from the ImmPort Portal database 
(Additional file 1: Fig. S2). We then extracted the expres-
sion matrix of these 393 genes from the TCGA database 
and normalized it before differential gene analysis (Addi-
tional file  1: Fig. S3). The filter criteria are |log2FC| > 1 
and adjusted p-value < 0.05. We confirmed that 97 genes 
were upregulated and 37 genes were downregulated 
in HCC tumor tissues. Volcano and heatmaps were 
drawn to show the differential expression of these genes 
(Fig.  3A, B). Ultimately, we obtained the final genes by 
screening the overlapping genes between the upregu-
lated/downregulated mRNAs in HCC tumor tissues 
and the targets of downregulated/upregulated miRNAs 
(Fig. 3C).

Establishment of the network of miRNA‑mRNA interaction
The top 20 upregulated and downregulated mRNAs 
were chosen from the overlapping gene list for further 
analysis (Tables  2 and 3). As shown in Fig.  4A, B, we 
constructed the miRNA-mRNA network and utilized 
the MCODE plugin of Cytoscape software to obtain 
the sub-network from the whole network. Next, KEGG 
and GO analyses were performed using the “Cluster-
Profiler” R package. The results showed that the major-
ity of the genes were enriched in the MAPK signaling 
pathway, cytokine-cytokine receptor interaction, and 
PI3K-Akt signaling pathway, etc. (Fig. 4C). Furthermore, 
most of the genes were related to GO:0050673 (epithelial 
cell proliferation), GO:0031649 (heat generation), and 
GO:0043434 (response to peptide hormone) (Fig.  4D). 
Subsequently, survival analyses of 40 genes were per-
formed. Genes with a p-value < 0.05, were included in 

Table 1 Differentially expressed miRNAs in miRNA microarray 
data (GSE69580)

miRNA log2FC P value adj P value

hsa‑miR‑501‑3p 6.942884019 3.29E−08 3.08E−05

hsa‑miR‑652 7.179979898 7.25E−07 0.000339885

hsa‑miR‑21 3.751696865 1.20E−06 0.00037339

hsa‑miR‑25 1.526300306 2.45E−05 0.005008273

hsa‑miR‑106b 2.31647731 2.67E−05 0.005008273

hsa‑miR‑19b 2.464975508 0.000321295 0.037983968

hsa‑miR‑93 1.500181836 0.000364841 0.037983968

hsa‑miR‑125b − 3.854404135 0.000204187 0.031887224

hsa‑miR‑199a‑5p − 3.409947962 0.000341212 0.037983968



Page 6 of 20Lin et al. Cancer Cell International           (2023) 23:52 

further analyses. Therefore, 15 miRNA targets were 
identified. We then retrieved studies and papers about 
the 15 miRNA targets in PubMed, and ultimately 
obtained four targets (NTF3, PSMD14, SORT1, and 

CD320) that had not been previously studied in-depth 
in HCC, especially the relationship between immune 
infiltration and HCC progression (Fig.  4E, Additional 
file 1: Fig. S4). Finally, we established a ceRNA network 

Fig. 2 Identification of differentially expressed miRNAs in HCC. A The volcano plot shows differentially expressed genes (DEGs) (|log2FC| > 0.5, adj 
P‑value < 0.05). B The heatmap shows the different expression level of DEGs. C The biological process terms of miRNAs. D The cellular component 
terms of miRNAs. E The molecular function terms of miRNAs. F The transcription factors enrichment analysis of miRNAs
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Fig. 3 Identification of differentially expressed immune‑related miRNA targeted‑genes. A The volcano plot shows the differentially expressed 
mRNAs (DGMis). B The heatmap shows the different expression level of DEMis. C The Venn diagrams show the overlapping genes between the 
up‑/down‑regulated mRNAs in HCC tumor tissues and the targets of down‑/up‑regulated miRNA



Page 8 of 20Lin et al. Cancer Cell International           (2023) 23:52 

of hsa-miR-125b-5p-PSMD14/CD320/SORT1 and 
hsa-miR-21-5p-NTF3.

Correlation between miRNA targeted‑genes expression 
and immune infiltration
We further investigated whether certain links exist 
between genes and immune cells. The correlations were 
explored from the Tumor Immune Estimation Resource 
(TIMER) database, which showed that CD320 was 
positively associated with B cells, CD4+ T cells, mac-
rophages, and dendritic cells immune infiltration level 
(Fig. 5A); PSMD14 was positively associated with B cells, 
CD8+ T cells, CD4+ T cells, macrophages, neutro-
phils, and dendritic cell infiltration (Fig. 5B); NTF3 was 
negatively associated with tumor purity and was related 
to CD4+ T cells, macrophage, and neutrophil infiltra-
tion (Fig.  5C), and SORT1 was positively associated 
with B cells, CD4+ T cells, macrophages, neutrophils, 
and dendritic cells immune infiltration level (Fig.  5D). 
Meanwhile, the average expression heatmaps of CD320, 
SORT1, NTF3, and PSMD14 in various immune cells 
are shown in Additional file 1: Fig. S5 using the TISCH 
database.

Based on the above results, we further investigated the 
correlation between these four hub genes and the cell 
markers of the corresponding immune cells. Immune 
marker data were obtained from the Cell Marker data-
base (http:// bio- bigda ta. hrbmu. edu. cn/ CellM arker/). 
Correlation heatmaps are presented in Fig. 4E.

Relationship between miRNA targeted‑genes expression 
and methylation
Previous studies reported that tumor purity as a con-
founding factor affects gene expression and DNA meth-
ylation levels, and copy number affects gene expression 
levels, which in turn is related to tumor purity and 
immune cell infiltration levels [20]. Therefore, we 
obtained the methylation expression levels of four 
genes from the UALCAN database. We also in-depth 
investigated the relationship between gene expression 
and methylation levels in HCC using the MEXPRESS 
database. We found that the promoter methylation 
level of CD320 in HCC tissues was significantly lower 
than that in normal tissues, and CD320 expression was 
negatively related to its promoter methylation level 
(Fig. 6A, E). Moreover, similar to CD320, the promoter 
methylation levels of SORT1 and PSMD14 were con-
siderably lower in tumor tissues than in normal tissues, 
and there was also a negative correlation between gene 
expression and promoter methylation levels (Fig.  6B, 
C, E). However, the analysis results of NTF3 differed 
from those of CD320, SORT1, and PSMD14. NTF3 
expression was positively associated with promoter 

Table 2 The top 20 up‑regulated mRNAs in 97 immune‑related 
target upregulated genes

mRNA log2FC P value Adj P value

APLN 4.099198436 8.06E−48 1.56E−45

STC2 3.438263368 1.85E−39 1.43E−37

ULBP1 2.038451905 9.84E−12 4.42E−11

TNFSF15 1.813937955 1.90E−15 1.22E−14

SORT1 1.702385929 2.80E−22 5.15E−21

PLXNA1 1.469397288 7.21E−27 2.53E−25

CMTM4 1.427441247 4.52E−19 4.84E−18

NR6A1 1.374408406 3.17E−14 1.75E−13

ABCC4 1.203128419 6.43E−07 1.62E−06

PLAU 1.18222759 2.19E−18 2.28E−17

TFRC 1.113029395 3.28E−16 2.48E−15

OPRL1 1.040268995 4.08E−10 1.51E−09

TGFB2 1.01873334 9.97E−06 2.20E−05

PRKCA 0.905992335 5.53E−13 2.81E−12

PLXND1 0.903769326 5.93E−16 4.01E−15

NDRG1 0.836579573 3.88E−06 8.97E−06

KL 0.825403262 0.000733615 0.00128716

CD320 0.774862617 3.39E−09 1.13E−08

THRA 0.731531843 7.49E−12 3.40E−11

PSMD14 0.715514554 6.06E−17 5.19E−16

Table 3 The top 20 down‑regulated mRNAs in 37 immune‑
related target downregulated genes

mRNA log2FC P value Adj P value

FCN2 − 7.268236784 2.86E−38 1.84E−36

NTF3 − 4.167516609 1.63E−27 6.28E−26

IGF2 − 3.792040278 3.02E−11 1.28E−10

ESR1 − 3.446868963 6.23E−26 1.85E−24

LIFR − 3.150230613 3.48E−47 4.48E−45

TNFRSF17 − 2.233835877 0.001542129 0.002599396

NR4A1 − 2.173312708 1.67E−22 3.22E−21

SOCS3 − 2.070701175 8.99E−20 9.91E−19

TNFSF11 − 2.039241178 3.66E−08 1.04E−07

IL1RAP − 2.003326002 8.96E−29 3.84E−27

TNFRSF11B − 1.991456369 4.37E−10 1.61E−09

THBS1 − 1.858174887 5.66E−16 3.97E−15

NR4A2 − 1.810446793 1.76E−16 1.41E−15

IL1B − 1.789334147 1.25E−13 6.71E−13

PLXNA4 − 1.740009766 7.69E−05 0.000149968

IL10 − 1.720330149 8.74E−09 2.70E−08

FGFR2 − 1.712538611 5.50E−05 0.000109468

ADRB1 − 1.705463538 1.61E−05 3.39E−05

TEK − 1.58302732 3.44E−15 2.14E−14

EDNRB − 1.514996456 1.75E−20 2.05E−19

http://bio-bigdata.hrbmu.edu.cn/CellMarker/
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Fig. 4 Establishment of the network of miRNA‑mRNA interaction. A Network diagram composed of miRNA and top 20 up‑/down‑regulated. B 
The sub‑network of miRNA‑mRNA network. C, D The KEGG and GO analysis of top 20 up‑/down‑regulated mRNAs. E The overall survival of DEMs. 
(*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, n.s. not statistically significant)
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methylation levels (Fig.  6D, E). This partly indicates 
that NTF3 as a tumor suppressor gene and SORT1, 
CD320, and PSMD14 as oncogenes regulate HCC 
progression. Next, we performed correlation analyses 
between the four genes and related methyltransferase 
genes (DNMT1, DNMT3A, and DNMT3B). The results 
showed that HCC tumors with high levels of CD320, 

SORT1, and PSMD14 had high levels of methyltrans-
ferase genes (DNMT1, DNMT3A, and DNMT3B), 
whereas there was no significant correlation between 
NTF3 and methyltransferase genes (Fig.  6F). Moreo-
ver, we analyzed the relationship between miRNA (hsa-
miR-21-5p and hsa-miR125b-5p) and methyltransferase 
genes (DNMT1, DNMT3A, and DNMT3B) in HCC. 

Fig. 5 Correlation between miRNA targeted‑genes expression and immune infiltration. A Correlation of CD320 expression with immune infiltration 
level in HCC. B Correlation of PSMD14 expression with immune infiltration level in HCC. C Correlation of NTF3 expression with immune infiltration 
level in HCC. D Correlation of SORT1 expression with immune infiltration level in HCC. E The correlation between the four hub genes (CD320, 
PSMD14, SORT1, and NTF3) and the cell markers of corresponding immune cells by Cell Marker database



Page 11 of 20Lin et al. Cancer Cell International           (2023) 23:52  

As shown in Additional file  1: Fig. S6A, B, the results 
showed that there was a positive relationship between 
hsa-miR-21-5p and DNMT1 (R = 0.190, p < 0.001) 
and DNMT3A (R = 0.170, p < 0.001), but there was no 
significant relationship between hsa-miR-21-5p and 

DNMT3B (R = 0.013, p = 0.811). Furthermore, a sig-
nificant negative relationship was observed between 
hsa-miR125b-5p and DNMT1 (R = − 0.270, p < 0.001), 
DNMT3A (R = − 0.400, p < 0.001), and DNMT3B 
(R = − 0.190, p < 0.001). Together, these results provide 

Fig. 6 Relationship between miRNA targeted‑genes expression and methylation. A–E Correlation between gene expression (CD320, PSMD14, 
SORT1, and NTF3) and promoter methylation levels. F The correlation analyses between the four hub genes (CD320, PSMD14, SORT1, and NTF3) and 
related methyltransferase genes (DNMT1, DNMT3A, and DNMT3B)
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important insights that altered methylation levels may 
contribute to the function of these hub genes.

Gene set enrichment analysis of miRNA targeted‑genes 
in HCC tissues
To study the downstream pathways of these miRNA-
targeted genes, we grouped the matrix of TCGA data-
base according to the gene expression level for GSEA 
analysis. We chose five of all statistically significant 
analysis results. CD320 is related to RNA Polymerase 
(NES = 1.9784905, NOM p < 0.001, FDR = 0.06683415), 
Pyrimedine Metabolism (NES = 1.9404032, NOM 
p < 0.001, FDR = 0.063131504), Purine Metabolism 

(NES = 1.8211129, NOM p < 0 0.001, FDR = 0.15423618), 
Base Excision Repair (NES = 1.7193841, NOM p < 0  
0.001, FDR = 0.13022694), and Proteasome (NES =  
2.0096643, NOM p = 0.001953125, FDR = 0.10067051) 
(Fig.  7A). PSMD14 was associated with oocyte meiosis 
(NES = 1.9725554, NOM p < 0.001, FDR = 0.114430845), 
cell cycle (NES = 1.9679518, NOM p < 0.001, FDE =  
0.057919133), vasopressin-regulated water reabsorption 
(NES = 1.9385664, NOM p < 0.001, FDR = 0.05596375), 
ubiquitin-mediated proteolysis (NES = 1.9356284, NOM  
p < 0.001, FDR = 0.04440799), and regulation of autophagy 
NES = 1.9276263, NOM p < 0.001, FDR = 0.045232568) 
(Fig.  7B). NTF3 was associated with the calcium 

Fig. 7 Gene set enrichment analysis of miRNA targeted‑genes in HCC tissues. A–D The GSEA analysis of CD320, PSMD14, NTF3, and SORT1
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signaling pathway (NES = 2.3056374, NOM p < 0.001, FDR  
= 0.00468132), cytokine-cytokine receptor interaction 
(NES = 2.2316432, NOM p < 0.001, FDR = 0.003475299), 
chemokine signaling pathway (NES = 2.116517, NOM 
p < 0.001, FDR = 0.003489959), TGF-β signaling pathway 
(NES = 2.1123161, NOM p < 0.001, FDR = 0.003384397), 
and MAPK signaling pathway (NES = 2.0579696, NOM  
p < 0.001, FDR = 0.004097538) (Fig. 7C). SORT1 was  
associated with the mTOR signaling pathway (NES =  
1.9278517, NOM p < 0.001, FDR = 0.021522397), pathways  
in cancer (NES = 1.9270834, NOM p < 0.001, FDR =  
0.018652743), VEGF signaling pathway (NES = 1.916239, 
NOM p < 0.001, FDR = 0.017952878), lysosome (NES =  
1.9507663, NOM p < 0.001, FDR = 0.026280008), and 

neurotrophin signaling pathway (NES = 1.9135792, 
NOM p < 0.001, FDR = 0.017722571) (Fig. 7D).

Survival analysis and prognostic model
To investigate the impact of four key genes on the prog-
nosis of HCC, an effective model was established for pre-
dicting prognostic status by univariate and multivariate 
Cox proportional hazards regression analysis. The area 
under the curve (AUC) of the ROC curve showed that 
CD320 (AUC = 0.922460), PSMD14 (AUC = 0.937861), 
SORT1 (AUC = 0.871925), and NTF3 (AUC = 0.966288) 
were significant predictors (Fig.  8A). In the univariate 
Cox proportional hazards regression analysis, four genes 
and tumor stage were identified as prognostic biomarkers 

Fig. 8 Survival Analysis and Prognostic Model. A The ROC curve of CD320, PSMD14, NTF3, and SORT1 in HCC. B The univariate cox regression 
analysis of CD320, PSMD14, NTF3, SORT1 and clinicopathological characteristics. C The multivariate cox regression analysis of CD320, PSMD14, NTF3, 
SORT1. D The Nomogram shows the prognostic model of CD320, PSMD14, NTF3, SORT1
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(Fig. 8B). Multivariate Cox proportional hazards regres-
sion analysis showed that CD320 (HR = 2.484, 95% 
CI = 1.571–3.928, p < 0.001), PSMD14 (HR = 1.787, 95% 
CI = 1.153–2.767, p = 0.009), and SORT1 (HR = 1.743, 
95% CI = 1.121–2.710, p = 0.014), with significant effects 
on prognosis, were identified (Fig.  8C-a–c). Meanwhile, 
NTF3 (HR = 0.649, 95% CI = 0.422–0.998, p = 0.049) was 
also statistically significant in the multivariate Cox pro-
portional hazards regression analysis (Fig. 8C-d). A nom-
ogram was used for prognostic judgment. “Points” is a 
scoring scale for each factor, and “Total points” is a scale 
for total score (Fig. 8D-a–d). Moreover, the results of the 
calibration analysis suggest that the four prognostic mod-
els were in good concordance with the outcomes of HCC 
patients (Additional file 1: Fig. S7A–D).

Validation of miRNA and their targeted genes expressions
We validated the expression of two miRNAs and their 
target genes in HCC cell lines and HCC samples using 
qRT-PCR. hsa-miR-21-5p expression was significantly 
upregulated in six HCC cell lines (HCCLM3, MHCC97H, 
Hep3B, Huh7, PLC/PRF/5, and HepG2) compared to that 
in L02 cells (Fig.  9A-a). In contrast, hsa-miR-125b-5p 
expression was significantly upregulated in L02 liver cells 
compared to that in the five HCC cell lines (Fig.  9A-b). 
The mRNA expression of CD320 and PSMD14 was sig-
nificantly upregulated in six HCC cell lines (HCCLM3, 
MHCC97H, Hep3B, Huh7, PLC/PRF/5, and HepG2) 
compared to liver cells L02 (Fig.  9B-a, b). The mRNA 
level of SORT1 was higher in the five HCC cell lines than 
in the L02 cells (Fig.  9B-c). In contrast, NTF3 mRNA 
levels in five HCC cell lines (HCCLM3, MHCC97H, 
Hep3B, PLC/PRF/5, and HepG2), except for huh7 cell 
lines, were remarkably lower than those in liver cells 
L02 (Fig. 9B-d). Interestingly, we found that the expres-
sion of miRNAs and mRNAs did not significantly change 
in Huh7 cells. Then, we selected 15 pairs of human liver 
cancer and para-cancerous tissues to further detect 
the expression levels of the four hub genes. The results 
showed that NTF3 was downregulated in 9 of 15 HCC 
tissues, PSMD14 was upregulated in 11 of 15 HCC tis-
sues, and SORT1 was upregulated in 9 of 15 HCC tissues 
(Fig. 9C-a–c).

CD320 expression was not significantly different 
between HCC tumor tissues and matched adjacent nor-
mal tissues (Fig.  9C-d). Next, western blot analysis was 
used to validate the protein levels of PSMD14, SORT1, 
and NTF3 in 12 pairs of HCC tissues and normal liver 
tissues (Fig.  9D). Moreover, we further explored the 
changes of 4 genes protein expression from the Human 
Protein Atlas database. The results indicated that CD320, 
PSMD14, and SORT1 protein levels were higher in tumor 
tissues than in normal tissues (Additional file 1: Fig. S8A, 

B, D), while the level of NTF3 in the normal tissues was 
higher than that in the tumor tissues (Additional file  1: 
Fig. S8C). Similarly, immunohistochemistry assay indi-
cated that the levels of CD320, PSMD14, and SORT1 
were higher than those in matched adjacent normal tis-
sues in 15 HCC patients (Fig.  9E-a–c), whereas NTF3 
showed the opposite result (Fig.  9E-d). We also utilized 
the GSE14520, GSE76427, and TCGA expression matri-
ces to investigate the expression levels of the four hub 
genes (Additional file 1: Fig. S9A–C).

Validation of the potential mechanisms in HCC
According to the previous PCR, MHCC97H and 
HCCLM3 cell were selected for the further experiments. 
The PSMD14 and SORT1 expression in MHCC97H and 
HCCLM3 cells transfected with siRNA were confirmed 
using qRT-PCR (Fig. 10A). And the CCK-8 and transwell 
assays suggest that the downregulation of PSMD14 and 
SORT1 can slow down the growth and migration and 
invasion of MHCC97H and HCCLM3 cells (Fig. 10B–D). 
Furthermore, the results of cellular function assay are 
consistent with recent studies, suggesting that the onco-
genic role of PSMD14 and SORT1 in various cancer 
[21–24]. However, the potential mechanisms of them in 
HCC are still unclear. Above GSEA reveals that PSMD14 
is related to the autophagy process and SORT1 is asso-
ciation with the mTOR signaling pathway. Therefore, we 
detected the protein expression levels of these pathways’ 
biomarker by performing the western blot assay. And 
we found that the interference of SORT1 downregulates 
the p-mTOR (Ser2448) expression, leading to the inac-
tivation of mTOR signaling pathway (Fig.  10E). Then, 
the autophagy process in HCC cells was inhibited after 
the downregulation of PSMD14. The LC3B and ATG5 
expression were significantly decreased and p62 protein 
was remarkably increased when interfering the PSMD14 
(Fig.  10F). Consistent with GSEA, SORT1 can activate 
the mTOR pathway to enhance the HCC progression. 
Meanwhile, we conjectured that elevated PSMD14 may 
maintain tumor cell survival by stimulating autophagy 
enabling then to ensure their own energy metabolism as 
well as reduce damage under specific circumstances. All 
in all, these results reveal the oncogenic role of SORT1 
and PSMD14 in HCC cells.

Prediction of DEIRGs‑related drugs
The miRNA targeted genes screened before were 
uploaded to DSigDB for drug prediction enrich-
ment analysis (Additional file  1: Table  S1). We then 
chose the top 10 drugs that were related to miRNA-
targeted genes. The screen criteria were adjusted 
with p-value < 0.05. The results of the drug prediction 
enrichment analysis are shown in Additional file  1: 
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Fig. S10 and Table  S1. We found that pinaflavol TTD 
00010236, harmaline CTD 00006074, GNF-Pf-3464 
TTD 00008265, sulfuretin TTD 00011132, chlorox-
ine TTD 00007143, Tyrphostin B48 CTD 00003485, 
chloroxine, and Redoxal TTD 00010526 may be asso-
ciated with PSMD14; AlphaRedisol BOSS may be 
associated with CD320, and selenium methyl cysteine 
CTD 00000103 may be associated with SORT1. Some 

of these drugs have been reported to have anti-can-
cer effects. For example, harmaline can suppress the 
growth of liver cancer cells by inducing the p53/p21 
and Fas/FasL signaling pathways [25], and may have 
therapeutic potential for controlling breast cancer inva-
siveness [26], and chloroxine can facilitate platinum-
induced DNA damage to induce cancer cell death in 
high-grade serous cancer [27]. Therefore, the prediction 

Fig. 9 Validation of miRNA and their targeted‑genes expressions. A‑a, b and B‑a–d The qRT‑PCR results of hsa‑miR‑125b‑5p, hsa‑miR‑21‑5p, CD320, 
PSMD14, SORT1, and NTF3 in different cell lines. C‑a–d The qRT‑PCR results of CD320, NTF3, PSMD14 and SORT1 in 15 pairs of human liver cancer 
and para‑cancerous tissues. D Western blot of CD320, NTF3, PSMD14 and SORT1 in 12 pairs HCC tumor tissues and matched adjacent normal 
tissues. E‑a–d IHC of CD320, NTF3, PSMD14 and SORT1 in 15 pairs HCC tumor tissues and matched adjacent normal tissues. (*P < 0.05, **P < 0.01, 
***P < 0.001, ****P < 0.0001, n.s. not statistically significant)



Page 16 of 20Lin et al. Cancer Cell International           (2023) 23:52 

of DERIGs-related drugs as a good reference advances 
our future scientific research.

Discussion
The ceRNA regulatory network is thought to play a role 
in carcinogenesis, according to earlier research [28, 29], 
including breast cancer [30], lung cancer [31, 32], gastric 
cancer [33, 34], and pancreatic cancer [35]. However, few 
studies have focused on a comprehensive ceRNA regu-
latory network, which is linked to immune filtration for 
predicting the prognosis of HCC. Accordingly, in this 

study, we attempted to validate some promising biomark-
ers via the miRNA-mRNA interaction mechanism, which 
are related to immune cells.

In our study, we first identified 9 DEMis, 97 upregu-
lated, and 37 downregulated differentially expressed 
immune-related mRNAs. Next, we chose the top 20 up-/
down-regulated mRNAs for further functional enrich-
ment analysis, and the results showed that the top 20 
upregulated and downregulated DEIRGs were associated 
with the MAPK signaling pathway, cytokine-cytokine 
receptor interaction, and PI3K-AKT signaling pathway. 

Fig. 10 Validation of the potential mechanisms in HCC. A The interference of PSMD14 and SORT1 were confirmed using qRT‑PCR. B The 
proliferation of HCC cells was assessed using CCK‑8 assay. C, D The migration and invasion of HCC cells assessed by transwell assay. E, F The protein 
levels of mTOR pathway and autophagy‑related biomarkers in HCC cells with si‑SORT1 and si‑PSMD14 were detected using western blot
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Key DEGs such as CD320, PSMD14, NTF3, and SORT1 
were identified as key genes according to survival analy-
sis, and the miRNA-mRNA network revealed that hsa-
miR-125b-5p and hsa-miR-21-5p may act as sponges of 
the four key immune-related DEGs (CD320, PSMD14, 
NTF3, and SORT1).

Previous studies have suggested that immune infiltra-
tion affects patient prognosis [36, 37]. Therefore, we also 
explored the correlation between immune infiltration and 
the four prognostic DEMs using the TIMER and TISCH 
databases. In this study, we found that CD320, PSMD14, 
NTF3, and SORT1 were associated with some types of 
immunocytes. B cells, CD4+ T cells, macrophages, and 
dendritic cells were positively correlated with CD320; 
PSMD14 was positively correlated with B cells, CD8+ 
T cells, CD4+ T cells, neutrophils, and dendritic cells; 
NTF3 was negatively related to tumor purity and posi-
tively associated with CD4+ T cells and neutrophils, 
and SORT1 is positively associated with CD4+ T cells, 
macrophages, and neutrophils. Moreover, it was reported 
that DNA methylation as a confounding factor affects 
tumor purity and the infiltration levels of immunocytes 
[20]. Therefore, the methylation levels of these genes may 
also be important factors leading to disease. Our study 
found that CD320, PSMD14, NTF3, and SORT1 expres-
sion are associated with promoter methylation levels 
through the MEXPRESS and UALCAN databases. More 
importantly, the correlation analysis also showed that 
there is a close relationship between altered methylation 
levels and gene expression.

In addition, the GSEA results of multiple genes showed 
that they were highly enriched in cytokine-cytokine 
receptor interactions and chemokine signaling pathways. 
Then, an effective model was established for predicting 
the prognostic status using univariate and multivariate 
Cox proportional hazards regression analyses. The four 
prognostic immune-related DEMs and clinicopathologi-
cal features were validated and found to be independent 
prognostic factors for HCC. The calibration curve of the 
model also showed a good prediction function for prog-
nosis. In addition, the results of qRT-PCR, immunohis-
tochemistry, and western blot were consistent with our 
bioinformatics results.

The deubiquitinating enzyme (DUB) 26S protea-
some non-ATPase regulatory subunit 14 (PSMD14, also 
known as RPN11 and POH1) is a component of the 19S 
regulatory cap in the 26S proteasome, which belongs to 
the JAB1/MPN/Mov34 (JAMM) domain [38]. Previ-
ous studies have reported that PSMD14 is involved in a 
variety of biological processes, including cell viability 
[39, 40], double-strand DNA break repair [41, 42], cell 
differentiation [40, 43, 44], and tumor progression [45] 
by regulating protein deubiquitination and stabilization 

[46]. Furthermore, the high expression of PSMD14 in 
several cancers has been validated and reported to act 
as an oncogene in several human cancers. For instance, 
PSMD14 is upregulated in esophageal squamous cell 
carcinoma (ESCC) tissues and can promote tumor cell 
migration and invasion through the PSMD14/SNAIL 
axis [47]. Similarly, in head and neck squamous cell car-
cinoma (HNSCC), PSMD14 decreased E2F1 ubiquitina-
tion and degradation, which improved AKT pathway 
activation and SOX2 transcription, thereby facilitating 
HNSCC growth, chemoresistance, and stemness [48]. 
Additionally, PSMD14 can accelerate hepatocellular car-
cinoma development and metastasis by stabilizing GRB2 
[22]. However, other mechanisms of PSMD14-mediated 
tumor progression, such as the immune microenviron-
ment, remain elusive.

NTF3 is a member of the nerve growth factor (NGF) 
family [49] and plays a critical role in neuronal differen-
tiation, survival, neurite growth, and neurotransmitter 
synthesis by binding Trk receptors (high affinity) and 
receptor p75NTR (low affinity) [50–52]. Furthermore, 
NTFs have been shown to contribute to tumor progres-
sion in a variety of cancers, including testicular germ cell 
tumors (TGCTs) [53], human hepatocellular carcinoma 
(HCC) [54], intrahepatic cholangiocarcinoma (ICC) [55], 
and breast cancer [56].

Although this study is the first to investigate miRNA-
mRNA interactions that are closely correlated with the 
infiltration of immunocytes by multiple databases, there 
are still some limitations. First, we only compared the 
tumor tissues with normal tissues in HCC. Key miRNAs 
and genes in different periods, such as metastatic HCC, 
require further exploration. Second, although we identi-
fied abnormal miRNAs (hsa-miR-125b-5p and hsa-miR-
21-5p) and their target genes (NTF3, PSMD14, CD320, 
and SORT1), which might be prognostic predictors for 
HCC using TCGA data, GEO data, and other databases, 
we also validated gene expression in normal liver cells 
and HCC cell lines by qRT-PCR, immunohistochemis-
try, and western blot. Functional experiments in  vitro 
and animal models in  vivo should be added in further 
studies. Third, the source of the microarrays is only the 
tissues. Body fluid-like serum may contain circulating 
miRNAs, which are more likely to be accepted for clinical 
application.

For further experiments, we found that SORT1 is close 
to mTOR signaling pathway, which lead to the tumor 
progression. According to previous studies, the role of 
mTOR in cancers has been well investigated. Also, sev-
eral mTOR-related drugs have been developed for the 
treatment of cancers before [57, 58]. So our experimen-
tal finding that SORT1 can activate the mTOR signal-
ing pathway to cause tumorigenesis is very promising, 
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and the subsequent in-depth study may achieve unex-
pected results. However, autophagy-related studies are 
still somewhat controversial. Initial studies found that 
autophagy inhibits tumorigenesis [59]. Moreover, it has 
been found that tumors can also maintain their own sur-
vival with the help of autophagy. Yang et  al. found that 
some tumor cell lines maintain abnormal high levels of 
autophagy even under energetic conditions, probably 
because the intense metabolic stress forces the cells to 
increase their autophagy levels to keep their survival 
[60, 61]. In our study, we also found that the PSMD14 
is related to the autophagy process in HCC cells. The 
experiments show that PSMD14 may maintain the HCC 
cell survival by inducing the autophagy process. How-
ever, there are still some limitation in our study. We are 
temporarily unable to investigate the mechanisms of all 
genes, but the current study is considered to provide 
some help in the current field and serve as a good refer-
ence for subsequent studies.

Conclusion
In conclusion, six potential immune-related prognostic 
predictors or biomarkers including two abnormal miR-
NAs (hsa-miR-125b-5p and hsa-miR-21-5p) and four 
targeted genes (NTF3, PSMD14, CD320, and SORT1) 
were identified in HCC, which may be closely correlated 
with the infiltration of immunocytes. Meanwhile, further 
experiments found that SORT1-mediated activation of 
mTOR pathway and PSMD14-mediated autophagy pro-
cess may induce the progression of HCC, which indicates 
that our study as a good reference for future studies can 
accelerate the development of HCC-related biomarkers 
and treatments.
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