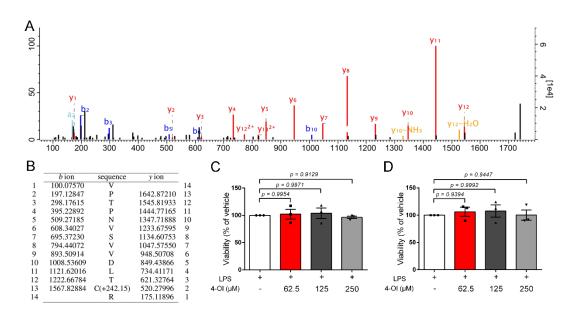
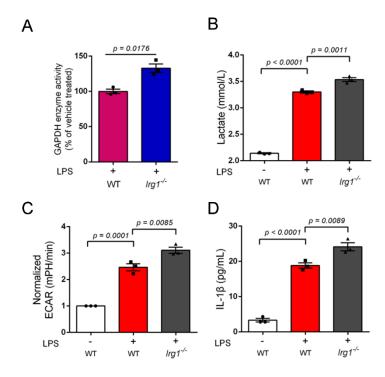
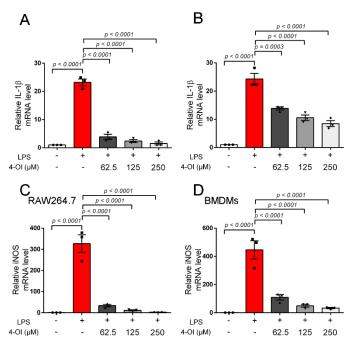
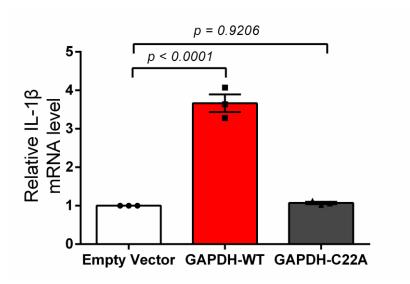

Supplementary Information

4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to exert anti-inflammatory effects


Liao et al.


Supplementary Fig. 1 LC-MS/MS metabolomics of control (CON) and LPS-stimulated (LPS) groups. (A), Score plots of the principal component analysis (PCA) model differentiated metabolites of control (CON) and LPS-stimulated (LPS) RAW264.7 macrophages. (B), Scatter plots of the statistical validations obtained by 200 permutation tests for OPLS-DA analysis in RAW264.7 macrophages. Results are from seven independent experiments.


Supplementary Fig. 2 4-OI was hydrolysed to itaconate in LPS stimulated RAW264.7 macrophages. Macrophages were treated with vehicle or 4-OI at the indicated concentrations. After 3 h, cells were stimulated with or without 1 μ g/mL LPS for 24 h. Itaconate levels in RAW264.7 macrophages were quantitative by LC-MS/MS. Data represent the mean \pm SEM of four independent experiments. p values were determined by one-way ANOVA with Sidak's correction for multiple comparisons. Source data are provided as a Source Data file.


Supplementary Fig. 3 4-OI modified recombinant mouse GAPDH. (A) and (B), Representative LC-MS/MS spectra demonstrated modification of GAPDH cysteine 245 (+242.15 Da) in recombinant mouse GAPDH incubated with 4-OI (500 μ M) for 4 h at 37 °C. Da = daltons. (C) and (D), RAW264.7 macrophages (C) or BMDMs (D) were treated with 100 ng/ml or 1 μ g/ml LPS plus the indicated doses of 4-OI for 24 h. Viability was assessed by cell counting kit-8. Data represent the mean \pm SEM of three experiments performed in duplicate. The results are non-significant by one-way ANOVA with Sidak's correction for multiple comparisons. Source data are provided as a Source Data file.

Supplementary Fig. 4 Irg1 deficiency leads to enhanced GAPDH activity and glycolysis. WT BMDMs and Irg1 BMDMs were detected for GAPDH enzyme activity (A) after 100 ng/mL LPS stimulation for 24 h. Levels of lactate (B), ECAR (C) and IL-1 β (D) were determined in WT and Irg1 BMDMs with or without LPS stimulation for 24 h. All data shown are summarized from three independent experiments. Values represent the mean \pm SEM at each time point. p values were calculated using two-tailed Student's t-test or one-way ANOVA with Sidak's correction for multiple comparisons. Source data are provided as a Source Data file.

Supplementary Fig. 5 4-OI inhibited IL-1 β and iNOS mRNA expressions. Macrophages were treated with vehicle or 4-OI at the indicated concentrations. After 3 h, cells were stimulated with LPS (1 µg/mL or 100 ng/mL) for 24 h. (A) and (B), The mRNA levels of IL-1 β in RAW264.7 macrophages (A) and BMDMs (B) were measured by qRT-PCR. (C) and (D), The mRNA expression of IL-1 β in RAW264.7 macrophages (C) and BMDMs (D) was identified by qRT-PCR. Data represent the mean \pm SEM of three independent experiments. p values were determined by one-way ANOVA with Sidak's correction for multiple comparisons. Source data are provided as a Source Data file.

Supplementary Fig. 6 Wild-type GAPDH (GAPDH-WT) abolished the inhibitory effect of 4-OI. GAPDH-WT or the Cys-22 mutant (GAPDH-C22A) was overexpressed in RAW264.7 macrophages for 24 h, and the cells were then treated with LPS and 4-OI for 24 h, followed by measurement of IL-1 β mRNA levels by qRT-PCR. Data represent the mean \pm SEM of three experiments. p values were calculated by one-way ANOVA with Sidak's correction for multiple comparisons. Source data are provided as a Source Data file.

Supplementary Table 1. The sequence of mouse GAPDH peptide

	b ion	sequence	y ion	
1	72.04440	A		7
2	143.08152	A	820.44850	6
3	256.16559	I	749.41138	5
4	601.32659	C+(242.15)	636.32731	4
5	688.35862	S	291.16631	3
6	745.38009	G	204.13428	2
7		K	147.11281	1

 $^{4\}text{-}OI$ modified Cys 22 of GAPDH in RAW264.7 macrophages.

Supplementary Table 2. The sequence of mouse GAPDH peptide

	b ion	sequence	y ion	
1	72.04440	A		7
2	143.08152	A	708.32330	6
3	256.16559	I	637.28618	5
4	489.20139	C+(130.02)	524.20211	4
5	576.23342	S	291.16631	3
6	633.25489	G	204.13428	2
7		K	147.11281	1

Itaconate covalently modified Cys 22-containing GAPDH peptide in LPS-induced RAW264.7 macrophages.

Supplementary Table 3. The sequence of recombinant mouse GAPDH peptide

	b ion	sequence	y ion	
1	72.04440	A		7
2	143.08152	A	820.44850	6
3	256.16559	I	749.41138	5
4	601.32659	C+(242.15)	636.32731	4
5	688.35862	S	291.16631	3
6	745.38009	G	204.13428	2
7		K	147.11281	1

⁴⁻OI covalently modified Cys 22 of recombinant mouse GAPDH.