
1 

A Novel Replication Clock for Mycobacterium tuberculosis 

Wendy P. Gill, Nada S. Harik, Molly R. Whiddon, Reiling P. Liao, John E. Mittler and 

David R. Sherman  

 

Supplementary Materials. 

Supplementary Methods. 

Mathematical Model of in vitro and in vivo Plasmid Loss. To model in vitro growth 

and plasmid loss, we made four assumptions:   1. Cell death is negligible during log phase 

growth; 2. Growth rate in log phase is constant; 3. Plasmid free and plasmid bearing 

strains have the same growth rates (experimentally verified in preliminary experiments, 

data not shown); and 4. Segregation rate (i.e., plasmid loss per generation) is independent 

of growth rate (Fig. 1c and f) and does not change with time.  We obtain equations for 

dynamics during log phase growth: 
dN/dt = rN         (1) 

dP/dt = r(1 – s)P        (2)  

dF/dt = rF + rsP        (3) 

where N = total number of bacteria, P = number of bacteria carrying the plasmid, F = 

number of plasmid-free bacteria, r = population growth rate, s = segregation constant, δ = 

population death rate (= 0 in vitro), and t = time in days.  These equations were integrated 

to yield:  

N(t) = N(0)ert         (4) 

P(t) = P(0)er(1–s)t        (5) 

These equations predict that the frequency f of plasmid-bearing bacteria at time t is 

f(t) = P(t)/N(t) = P(0)er(1–s)t / N(0)ert  =  f(0)e–rst    (6) 
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From these equations, r and rs, respectively, were estimated by fitting regression lines 

through plots of ln[N(t)] and ln[f(t)] versus t (quantifies we refer to as SlopeN and Slopef).  

In our studies, f and N were estimated from CFU counts on selective and non-selective 

plates.  Finally, s was obtained by dividing our estimate for rs by our estimate for r. 

To assess in vivo growth, we altered the model to allow for changes in growth rate over 

time and nonzero time-dependent death (or removal) rates.  As with in vitro model, we 

assumed that the plasmid-free and plasmid-bearing strains have the same growth rates and 

that segregation rate is independent of growth rate and does not change with time.  We 

also assumed that no bacteria immigrate into the lung from other organs.  With these 

assumptions, the equations become 

dN/dt = r(t)N  –  δ(t)N        (7) 

dP/dt = r(t)(1 – s)P  –  δ(t)P       (8) 

dF/dt = r(t)F  +  r(t)sP  –  δ(t)F      (9) 

where r(t) and δ(t), respectively, are the time-dependent growth and death rates. Again, 

we use the CFU, the percentage of bacilli carrying plasmid and the segregation constant to 

calculate the number of bacterial replications and the total number of bacilli that have died. 

Using the segregation constant estimated from in vitro experiments, we estimated r(t) and 

δ(t): 

 r(t)  =  [SlopeN – SlopeP ] / s       (10) 

δ(t)  =  r(t) – SlopeN         (11) 

where SlopeN and SlopeP, respectively, are estimated from plots of ln[N(t)] and ln[P(t)] 

versus t in vivo.  We assumed that r(t) and δ(t) were constant within time intervals, but 

could change between time intervals. We then calculated the number of dead cells, D, 

from  
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 dD/dt  =  δ(t)N(t)          (12) 

where N(t) is defined using equation (7) above. Integrating this equation, we find that the 

number of dead and removed cells at the end of each interval is 

 D(tf) =  D(ts)  +  δN(ts)[ e
(r – δ)(tf–ts) – 1] /( r – δ)    (13) 

where δ and r are the death and growth rates during that interval, and ts and tf are the start 

and end times, respectively, of that time interval.  We defined the cumulative bacterial 

burden at time t as the total number of bacilli (living, dead, and removed) within the host 

lung, N(t) + D(t).  N(0) was set to the first measurement on day 1, while D(0) was set to 

zero.  Although setting D(0) to zero underestimates the number of dead cells, this 

approximation has little effect on our final calculations given the large increases in 

bacterial density over the first four weeks of infection. 

Bootstrap analysis. We constructed 1000 bootstrapped data sets by randomly sampling 

five values with replacement from the five mice sampled at each time point with R2.6.1 

statistical computing software1.  For each parameter, the 95% bootstrap confidence 

intervals were estimated from values lying at the 2.5 and 97.5 percentile. 
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Supplementary Figure 1.  In vitro stability of pBP10 in Mtb in the absence of antibiotic 

selection, as measured by qRT-PCR in log phase (a) and stationary phase (b).  Data on 

bacterial CFU and plasmid stability as determined by plating are from Figures 1 and 2, 

and are presented here for comparison.  PCR consistently measures slightly more plasmid 

per time point than CFU, probably because the plasmid copy number per cell is slightly 

>1.  Both PCR and CFU measure identical rates of plasmid loss per generation. 

 

Supplementary Equation 1:  Measurable cell death rate in vitro. 

Allowing for a non-zero death gives 

dN/dt = rN  -  δN        (S1) 

dP/dt = r(1 - s)P  -  δP      (S2)  

dF/dt = rF + rsP  -  δF       (S3) 

These equations can be integrated to yield:  

N(t) = N(0)e(r - δ)t        (S4) 

P(t) = P(0)e[r(1-s) - δ]t        (S5) 

meaning that the frequency f of plasmid-bearing bacteria at time t is 
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f(t) = P(t)/N(t) = P(0)e[r(1-s) - δ]t / N(0)e(r - δ)t =  f(0)e-rst    (S6) 

which is the same as equation (6) in the paper.  Cell death does, however, affect estimates 

for r and s.  In the absence of cell death, r and rs, respectively, can be estimated from 

SlopeN and Slopef [estimated from slopes of ln[N(t)] and ln[f(t)] versus t]  With in vitro 

cell death, r and s should be estimated using the equations: 

 r = SlopeN + δ         (S7) 

and 

 s = - Slopef/r = - Slopef/(SlopeN + δ).      (S8) 

Failure to account for in vitro death, therefore, would lead to artificially low estimates for 

r and artificially high estimates for s.  When fitting our in vivo model to data, we find that 

lower values for s lead to higher estimates for bacterial turnover in vivo.  Therefore, 

assuming no bacterial death in vitro is conservative with respect to our conclusion that 

bacteria are turning over during the chronic phase in the mouse.  

 

Supplementary Equation 2: Effect of assuming that the plasmid-carrying 

bacterium has a lower growth rate.   

If we assume that the plasmid imposes a fitness cost, the equations become 

 dF/dt  =  rF  +  s(1-c)rP  - δF       (S9) 

 dP/dt  =  (1-s)(1-c)rP  -  δP       (S10) 

where r is the growth rate of the plasmid-free bacteria and c is the decrease in the growth 

rate caused by the plasmid.  

Although these equations can be solved analytically, the solution does not yield a straight-

forward expression for r.  However, if we restrict ourselves to modelling the chronic 
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phase (the more interesting and relevant phase biologically), we can take advantage of the 

fact that plasmid-bearing bacteria have fallen to a low frequency.   If P << F, segregation 

contributes little to F, leading to the following simplified equations:  

 dF/dt  =  [r - δ]F        (S11) 

 dP/dt  =  [(1-s)(1-c)r  -  δ]P       (S12) 

Solving these equations, it is not hard to show that 

 

  SlopeF  -  SlopeP       (S13) 
 r =       -----------------------  
      1 - (1-c)(1-s) 

where SlopeF = r - δ and SlopeP = (1-s)(1-c)r  - δ, respectively, are estimated from the 

slopes of ln[F(t)] and ln[P(t)] versus t.  From the mouse experiments, we know that 

SlopeF = ~0.010/day and SlopeP = ~ -0.022/day during the last interval.  Using these 

estimates, we can use equation S13 to see how changing the fitness cost, c, (assumed to 

be zero in the text) would affect our estimates for r. 

   s       c        r     . 

 0.18 0.00   0.18   

 0.18 0.10   0.12    

 0.18 0.20   0.09 

 0.18 0.35   0.07 

 0.18 0.50   0.05 

For example, assuming a 20% fitness cost during the chronic phase would reduce our 

estimate for the growth rate of bacteria during the last time interval from ~0.18 per day to 

~0.09 per day.  Numerical fits of the full model (equations S9 and S10) to this data gave 
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nearly identical results (with all five cost-dependent estimates for r during the last time 

interval being within 1.3% of the values above). 
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