ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Relative Risk Analysis of Several Manufactured Nanomaterials:  An Insurance Industry Context

View Author Information
Rice University, 6100 Main Street, MS 317, Houston, Texas 77005, Golder Associates, Inc., 3015 Richmond Suite 201, Houston, Texas 77098, and XL Insurance, Mythenquai 10, P.O. Box 3032, CH-8002 Zurich, Switzerland
Cite this: Environ. Sci. Technol. 2005, 39, 22, 8985–8994
Publication Date (Web):October 4, 2005
https://doi.org/10.1021/es0506509
Copyright © 2005 American Chemical Society

    Article Views

    2425

    Altmetric

    -

    Citations

    124
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    A relative risk assessment is presented for the industrial fabrication of several nanomaterials. The production processes for five nanomaterials were selected for this analysis, based on their current or near-term potential for large-scale production and commercialization:  single-walled carbon nanotubes, bucky balls (C60), one variety of quantum dots, alumoxane nanoparticles, and nano-titanium dioxide. The assessment focused on the activities surrounding the fabrication of nanomaterials, exclusive of any impacts or risks with the nanomaterials themselves. A representative synthesis method was selected for each nanomaterial based on its potential for scaleup. A list of input materials, output materials, and waste streams for each step of fabrication was developed and entered into a database that included key process characteristics such as temperature and pressure. The physical-chemical properties and quantities of the inventoried materials were used to assess relative risk based on factors such as volatility, carcinogenicity, flammability, toxicity, and persistence. These factors were first used to qualitatively rank risk, then combined using an actuarial protocol developed by the insurance industry for the purpose of calculating insurance premiums for chemical manufacturers. This protocol ranks three categories of risk relative to a 100 point scale (where 100 represents maximum risk):  incident risk, normal operations risk, and latent contamination risk. Results from this analysis determined that relative environmental risk from manufacturing each of these five materials was comparatively low in relation to other common industrial manufacturing processes.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Rice University.

     Golder Associates, Inc.

    §

     XL Insurance

    *

     Corresponding author phone (713)348-5129; fax (713)348-5203; e-mail:  [email protected].

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    A detailed explanation of the XL Insurance Database protocol, process maps depicting the nanomaterials production processes evaluated in this study, and assumptions behind entering the nanomaterials fabrication methods into the XL Insurance Database for ranking their relative risk. This information is provided free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 124 publications.

    1. Matthew J. Eckelman, Meagan S. Mauter, Jacqueline A. Isaacs, and Menachem Elimelech . New Perspectives on Nanomaterial Aquatic Ecotoxicity: Production Impacts Exceed Direct Exposure Impacts for Carbon Nanotoubes. Environmental Science & Technology 2012, 46 (5) , 2902-2910. https://doi.org/10.1021/es203409a
    2. Shihong Lin, Yingwen Cheng, Jie Liu, and Mark R. Wiesner . Polymeric Coatings on Silver Nanoparticles Hinder Autoaggregation but Enhance Attachment to Uncoated Surfaces. Langmuir 2012, 28 (9) , 4178-4186. https://doi.org/10.1021/la202884f
    3. Igor Linkov , Thomas P. Seager . Coupling Multi-Criteria Decision Analysis, Life-Cycle Assessment, and Risk Assessment for Emerging Threats. Environmental Science & Technology 2011, 45 (12) , 5068-5074. https://doi.org/10.1021/es100959q
    4. Desirée L. Plata, A. John Hart, Christopher M. Reddy and Philip M. Gschwend . Early Evaluation of Potential Environmental Impacts of Carbon Nanotube Synthesis by Chemical Vapor Deposition. Environmental Science & Technology 2009, 43 (21) , 8367-8373. https://doi.org/10.1021/es901626p
    5. Mark R. Wiesner, Gregory V. Lowry, Kimberly L. Jones, Michael F. Hochella, Jr., Richard T. Di Giulio, Elizabeth Casman, Emily S. Bernhardt. Decreasing Uncertainties in Assessing Environmental Exposure, Risk, and Ecological Implications of Nanomaterials. Environmental Science & Technology 2009, 43 (17) , 6458-6462. https://doi.org/10.1021/es803621k
    6. Liangliang Ji, Wei Chen, Lin Duan and Dongqiang Zhu . Mechanisms for strong adsorption of tetracycline to carbon nanotubes: A comparative study using activated carbon and graphite as adsorbents. Environmental Science & Technology 2009, 43 (7) , 2322-2327. https://doi.org/10.1021/es803268b
    7. David E. Meyer, Mary Ann Curran and Michael A. Gonzalez. An Examination of Existing Data for the Industrial Manufacture and Use of Nanocomponents and Their Role in the Life Cycle Impact of Nanoproducts. Environmental Science & Technology 2009, 43 (5) , 1256-1263. https://doi.org/10.1021/es8023258
    8. Wei Chen, Lin Duan, Lilin Wang and Dongqiang Zhu. Adsorption of Hydroxyl- and Amino-Substituted Aromatics to Carbon Nanotubes. Environmental Science & Technology 2008, 42 (18) , 6862-6868. https://doi.org/10.1021/es8013612
    9. Sasikumar Naidu, Rapinder Sawhney and Xueping Li. A Methodology for Evaluation and Selection of Nanoparticle Manufacturing Processes Based on Sustainability Metrics. Environmental Science & Technology 2008, 42 (17) , 6697-6702. https://doi.org/10.1021/es703030r
    10. Mélanie Auffan, Wafa Achouak, Jérôme Rose, Marie-Anne Roncato, Corinne Chanéac, David T. Waite, Armand Masion, Joseph C. Woicik, Mark R. Wiesner and Jean-Yves Bottero . Relation between the Redox State of Iron-Based Nanoparticles and Their Cytotoxicity toward Escherichia coli. Environmental Science & Technology 2008, 42 (17) , 6730-6735. https://doi.org/10.1021/es800086f
    11. Jin Miyawaki, Masako Yudasaka, Takeshi Azami, Yoshimi Kubo and Sumio Iijima . Toxicity of Single-Walled Carbon Nanohorns. ACS Nano 2008, 2 (2) , 213-226. https://doi.org/10.1021/nn700185t
    12. Damir Krznarić,, George R. Helz,, Elvira Bura-Nakić, and, Darija Jurašin. Accumulation Mechanism for Metal Chalcogenide Nanoparticles at Hg0 Electrodes: Copper Sulfide Example. Analytical Chemistry 2008, 80 (3) , 742-749. https://doi.org/10.1021/ac071180z
    13. Aasgeir Helland, Martin Scheringer, Michael Siegrist, Hans G. Kastenholz, Arnim Wiek and Roland W. Scholz . Risk Assessment of Engineered Nanomaterials: A Survey of Industrial Approaches. Environmental Science & Technology 2008, 42 (2) , 640-646. https://doi.org/10.1021/es062807i
    14. Wei Chen, Lin Duan and Dongqiang Zhu . Adsorption of Polar and Nonpolar Organic Chemicals to Carbon Nanotubes. Environmental Science & Technology 2007, 41 (24) , 8295-8300. https://doi.org/10.1021/es071230h
    15. Alok Dhawan,, Julian S. Taurozzi,, Alok K. Pandey,, Wenqian Shan,, Sarah M. Miller,, Syed A. Hashsham, and, Volodymyr V. Tarabara. Stable Colloidal Dispersions of C60 Fullerenes in Water: Evidence for Genotoxicity. Environmental Science & Technology 2006, 40 (23) , 7394-7401. https://doi.org/10.1021/es0609708
    16. Jaleesia D. Amos, Zhao Zhang, Yuan Tian, Gregory V. Lowry, Mark R. Wiesner, Christine Ogilvie Hendren. Knowledge and Instance Mapping: architecture for premeditated interoperability of disparate data for materials. Scientific Data 2024, 11 (1) https://doi.org/10.1038/s41597-024-03006-8
    17. Siddharth Singh, Vishakha Jaiswal, Jangjeet Karan Singh, Ravindra Semwal, Deepika Raina. Nanoparticle formulations: A smart era of advanced treatment with nanotoxicological imprints on the human body. Chemico-Biological Interactions 2023, 373 , 110355. https://doi.org/10.1016/j.cbi.2023.110355
    18. Jiali Zheng, Zhihui Li, Dongsheng Zhang, Qiusheng Yang, Xinqiang Zhao, Baoquan Zhang, Yanji Wang. Thermal decomposition behavior, thermal stability and thermal explosion risk evaluation of a novel green hydroxylamine ionic liquid salt. Journal of Molecular Liquids 2022, 348 , 118407. https://doi.org/10.1016/j.molliq.2021.118407
    19. Saurabh Joglekar, Renuka Gajaralwar. Potential risk and safety concerns of industrial nanomaterials in environmental management. 2021, 1057-1079. https://doi.org/10.1016/B978-0-12-821496-1.00019-2
    20. Bishwambhar Mishra, Rajasri Yadavalli, Y. Vineetha, C. Nagendranatha Reddy. Recent advancements and challenges of nanomaterials application in biofuel production. 2021, 7-55. https://doi.org/10.1016/B978-0-12-822401-4.00014-3
    21. Nimisha Gaur, Navneet Sharma, Aditya Dahiya, Pooja Yadav, Himanshu Ojha, Ramesh K Goyal, Rakesh Kumar Sharma. Toxicity and Regulatory Concerns for Nanoformulations in Medicine. 2020, 333-357. https://doi.org/10.1002/9781119592990.ch13
    22. Panagiotis Isigonis, Danail Hristozov, Christina Benighaus, Elisa Giubilato, Khara Grieger, Lisa Pizzol, Elena Semenzin, Igor Linkov, Alex Zabeo, Antonio Marcomini. Risk Governance of Nanomaterials: Review of Criteria and Tools for Risk Communication, Evaluation, and Mitigation. Nanomaterials 2019, 9 (5) , 696. https://doi.org/10.3390/nano9050696
    23. Rigers Bakiu. Nanotechnology Interaction with Environment. 2019, 2233-2256. https://doi.org/10.1007/978-3-319-73645-7_150
    24. Benjamin D. Trump, Danail Hristozov, Timothy Malloy, Igor Linkov. Risk associated with engineered nanomaterials: Different tools for different ways to govern. Nano Today 2018, 21 , 9-13. https://doi.org/10.1016/j.nantod.2018.03.002
    25. Yingyi Wang, Shanshan Wang, Chunsong Lu, Xiaoming Yang. Three kinds of DNA-directed nanoclusters cooperating with graphene oxide for assaying mucin 1, carcinoembryonic antigen and cancer antigen 125. Sensors and Actuators B: Chemical 2018, 262 , 9-16. https://doi.org/10.1016/j.snb.2018.01.235
    26. Rigers Bakiu. Nanotechnology Interaction with Environment. 2018, 1-24. https://doi.org/10.1007/978-3-319-58538-3_150-1
    27. Indrani Mahapatra, Julian R. A. Clark, Peter J. Dobson, Richard Owen, Iseult Lynch, Jamie R. Lead. Expert perspectives on potential environmental risks from nanomedicines and adequacy of the current guideline on environmental risk assessment. Environmental Science: Nano 2018, 5 (8) , 1873-1889. https://doi.org/10.1039/C8EN00053K
    28. Andrew Kristoffer Dean, Nick Ellis, Victoria K. Wells. Science ‘fact’ and science ‘fiction’? Homophilous communication in high-technology B2B selling. Journal of Marketing Management 2017, 33 (9-10) , 764-788. https://doi.org/10.1080/0267257X.2017.1324895
    29. Lakshmi Priya Datta, Ananya Chatterjee, Krishnendu Acharya, Priyadarsi De, Mahuya Das. Enzyme responsive nucleotide functionalized silver nanoparticles with effective antimicrobial and anticancer activity. New Journal of Chemistry 2017, 41 (4) , 1538-1548. https://doi.org/10.1039/C6NJ02955H
    30. Michelle Romero-Franco, Hilary A Godwin, Muhammad Bilal, Yoram Cohen. Needs and challenges for assessing the environmental impacts of engineered nanomaterials (ENMs). Beilstein Journal of Nanotechnology 2017, 8 , 989-1014. https://doi.org/10.3762/bjnano.8.101
    31. Nathan Bossa, Perrine Chaurand, Clément Levard, Daniel Borschneck, Hélène Miche, Jérôme Vicente, Christophe Geantet, Olivier Aguerre-Chariol, F. Marc Michel, Jérôme Rose. Environmental exposure to TiO2 nanomaterials incorporated in building material. Environmental Pollution 2017, 220 , 1160-1170. https://doi.org/10.1016/j.envpol.2016.11.019
    32. Serkan Erbis, Zeynep Ok, Jacqueline A. Isaacs, James C. Benneyan, Sagar Kamarthi. Review of Research Trends and Methods in Nano Environmental, Health, and Safety Risk Analysis. Risk Analysis 2016, 36 (8) , 1644-1665. https://doi.org/10.1111/risa.12546
    33. Marco Cinelli, Stuart R. Coles, Omowunmi Sadik, Barbara Karn, Kerry Kirwan. A framework of criteria for the sustainability assessment of nanoproducts. Journal of Cleaner Production 2016, 126 , 277-287. https://doi.org/10.1016/j.jclepro.2016.02.118
    34. Eamonn M. McAlea, Martin Mullins, Finbarr Murphy, Syed A.M. Tofail, Anthony G. Carroll. Engineered nanomaterials: risk perception, regulation and insurance. Journal of Risk Research 2016, 19 (4) , 444-460. https://doi.org/10.1080/13669877.2014.988168
    35. Jean-Yves Bottero. Environmental Risks of Nanotechnology: A New Challenge?. 2016, 287-311. https://doi.org/10.1007/978-3-319-19360-1_13
    36. David M. Zalk, Samuel Y. Paik. Risk Assessment Using Control Banding. 2016, 121-152. https://doi.org/10.1016/B978-0-323-35323-6.00006-2
    37. Sylviane Pulvin. Toxicity Associated with the Photo Catalytic and Photo Stable Forms of Titanium Dioxide Nanoparticles Used in Sunscreen lotion. MOJ Toxicology 2015, 1 (3) https://doi.org/10.15406/mojt.2015.01.00011
    38. Vrishali Subramanian, Elena Semenzin, Danail Hristozov, Esther Zondervan-van den Beuken, Igor Linkov, Antonio Marcomini. Review of decision analytic tools for sustainable nanotechnology. Environment Systems and Decisions 2015, 35 (1) , 29-41. https://doi.org/10.1007/s10669-015-9541-x
    39. Xiaoming Yang, Yan Zhuo, Shanshan Zhu, Yawen Luo, Yuanjiao Feng, Yan Xu. Selectively assaying CEA based on a creative strategy of gold nanoparticles enhancing silver nanoclusters' fluorescence. Biosensors and Bioelectronics 2015, 64 , 345-351. https://doi.org/10.1016/j.bios.2014.09.029
    40. H.J. van der Fels‐Klerx, E.D. van Asselt, M. Raley, M. Poulsen, H. Korsgaard, L. Bredsdorff, M. Nauta, V. Flari, M. d'Agostino, D. Coles, L. Frewer. Critical review of methodology and application of risk ranking for prioritisation of food and feed related issues, on the basis of the size of anticipated health impact. EFSA Supporting Publications 2015, 12 (1) https://doi.org/10.2903/sp.efsa.2015.EN-710
    41. Danail R. Hristozov, Stefania Gottardo, Marco Cinelli, Panagiotis Isigonis, Alex Zabeo, Andrea Critto, Martie Van Tongeren, Lang Tran, Antonio Marcomini. Application of a quantitative weight of evidence approach for ranking and prioritising occupational exposure scenarios for titanium dioxide and carbon nanomaterials. Nanotoxicology 2014, 8 (2) , 117-131. https://doi.org/10.3109/17435390.2012.760013
    42. Rupesh Kumar Basniwal, Vasuda Bhatia, Nitin Bhardwaj, V. K. Jain. Toxicity Study of TiO2, ZnO and CNT Nanomaterials. 2014, 703-706. https://doi.org/10.1007/978-3-319-03002-9_181
    43. M.A. Virji, A.B. Stefaniak. A Review of Engineered Nanomaterial Manufacturing Processes and Associated Exposures. 2014, 103-125. https://doi.org/10.1016/B978-0-08-096532-1.00811-6
    44. Maria Gavrilescu. Colloid-Mediated Transport and the Fate of Contaminants in Soils. 2014, 397-451. https://doi.org/10.1016/B978-0-444-63283-8.00017-X
    45. Samuel W. Bennett, Adeyemi Adeleye, Zhaoxia Ji, Arturo A. Keller. Stability, metal leaching, photoactivity and toxicity in freshwater systems of commercial single wall carbon nanotubes. Water Research 2013, 47 (12) , 4074-4085. https://doi.org/10.1016/j.watres.2012.12.039
    46. Shih-Min Wang, Trong-Neng Wu, Yow-Jer Juang, Yu-Tung Dai, Perng-Jy Tsai, Chiu-Ying Chen. Developing a Semi-Quantitative Occupational Risk Prediction Model for Chemical Exposures and Its Application to a National Chemical Exposure Databank. International Journal of Environmental Research and Public Health 2013, 10 (8) , 3157-3171. https://doi.org/10.3390/ijerph10083157
    47. Itzel G. Godinez, Christophe J.G. Darnault, Amid P. Khodadoust, Dorin Bogdan. Deposition and release kinetics of nano-TiO2 in saturated porous media: Effects of solution ionic strength and surfactants. Environmental Pollution 2013, 174 , 106-113. https://doi.org/10.1016/j.envpol.2012.11.002
    48. Paul K. Westerhoff, Mehlika A. Kiser, Kiril Hristovski. Nanomaterial Removal and Transformation During Biological Wastewater Treatment. Environmental Engineering Science 2013, 30 (3) , 109-117. https://doi.org/10.1089/ees.2012.0340
    49. Benjamin P. Colman, Christina L. Arnaout, Sarah Anciaux, Claudia K. Gunsch, Michael F. Hochella, Bojeong Kim, Gregory V. Lowry, Bonnie M. McGill, Brian C. Reinsch, Curtis J. Richardson, Jason M. Unrine, Justin P. Wright, Liyan Yin, Emily S. Bernhardt, . Low Concentrations of Silver Nanoparticles in Biosolids Cause Adverse Ecosystem Responses under Realistic Field Scenario. PLoS ONE 2013, 8 (2) , e57189. https://doi.org/10.1371/journal.pone.0057189
    50. Z. Yang, Z. W. Liu, R. P. Allaker, P. Reip, J. Oxford, Z. Ahmad, G. Reng. A Review of Nanoparticle Functionality and Toxicity on the Central Nervous System. 2013, 313-332. https://doi.org/10.1007/978-94-007-1787-9_18
    51. Farid Bensebaa. Environmental and Societal Applications and Implications. 2013, 481-516. https://doi.org/10.1016/B978-0-12-369550-5.00008-2
    52. Farid Bensebaa. Challenges and Perspectives. 2013, 517-530. https://doi.org/10.1016/B978-0-12-369550-5.00009-4
    53. Indranil Chowdhury, Sharon L. Walker, Steven E. Mylon. Aggregate morphology of nano-TiO 2 : role of primary particle size, solution chemistry, and organic matter. Environ. Sci.: Processes Impacts 2013, 15 (1) , 275-282. https://doi.org/10.1039/C2EM30680H
    54. Xiaoqian Guo, Liu Deng, Jianxiu Wang. Oligonucleotide-stabilized silver nanoclusters as fluorescent probes for sensitive detection of hydroquinone. RSC Adv. 2013, 3 (2) , 401-407. https://doi.org/10.1039/C2RA21615A
    55. ALMAS IQBAL, IQRA AHMAD, MOHAMMAD HASSAN KHALID, MUHAMMAD SULAMAN NAWAZ, SIEW HUA GAN, MOHAMMAD A. KAMAL. Nanoneurotoxicity to Nanoneuroprotection Using Biological and Computational Approaches. Journal of Environmental Science and Health, Part C 2013, 31 (3) , 256-284. https://doi.org/10.1080/10590501.2013.829706
    56. Danail R. Hristozov, Stefania Gottardo, Andrea Critto, Antonio Marcomini. Risk assessment of engineered nanomaterials: a review of available data and approaches from a regulatory perspective. Nanotoxicology 2012, 6 (8) , 880-898. https://doi.org/10.3109/17435390.2011.626534
    57. Coleman Henry, Jonathan A. Brant. Mechanistic analysis of microfiltration membrane fouling by buckminsterfullerene (C60) nanoparticles. Journal of Membrane Science 2012, 415-416 , 546-557. https://doi.org/10.1016/j.memsci.2012.05.042
    58. Coleman Henry, Bryce Dorr, Jonathan A. Brant. Buckminsterfullerene (C60) nanoparticle fouling of microfiltration membranes operated in a cross-flow configuration. Separation and Purification Technology 2012, 100 , 30-43. https://doi.org/10.1016/j.seppur.2012.08.019
    59. Hong‐Sheng Jiang, Ming Li, Feng‐Yi Chang, Wei Li, Li‐Yan Yin. Physiological analysis of silver nanoparticles and AgNO 3 toxicity to Spirodela polyrhiza. Environmental Toxicology and Chemistry 2012, 31 (8) , 1880-1886. https://doi.org/10.1002/etc.1899
    60. Khara D. Grieger, Alexis Laurent, Mirko Miseljic, Frans Christensen, Anders Baun, Stig I. Olsen. Analysis of current research addressing complementary use of life-cycle assessment and risk assessment for engineered nanomaterials: have lessons been learned from previous experience with chemicals?. Journal of Nanoparticle Research 2012, 14 (7) https://doi.org/10.1007/s11051-012-0958-6
    61. . Nanoparticles and Biological Molecules. 2012, 1-40. https://doi.org/10.1201/b12154-2
    62. Mira S. Olson, Patrick L. Gurian. Risk assessment strategies as nanomaterials transition into commercial applications. Journal of Nanoparticle Research 2012, 14 (4) https://doi.org/10.1007/s11051-012-0786-8
    63. Adamo Riccardo Petosa, Spencer John Brennan, Faraz Rajput, Nathalie Tufenkji. Transport of two metal oxide nanoparticles in saturated granular porous media: Role of water chemistry and particle coating. Water Research 2012, 46 (4) , 1273-1285. https://doi.org/10.1016/j.watres.2011.12.033
    64. Khara D. Grieger, Igor Linkov, Steffen Foss Hansen, Anders Baun. Environmental risk analysis for nanomaterials: Review and evaluation of frameworks. Nanotoxicology 2012, 6 (2) , 196-212. https://doi.org/10.3109/17435390.2011.569095
    65. Kristin Clement, Angela Iseli, Dennis Karote, Jessica Cremer, Shyamala Rajagopalan. Nanostructured Materials: Industrial Applications. 2012, 265-306. https://doi.org/10.1007/978-1-4614-4259-2_9
    66. So-Ryong Chae, Mathieu Therezien, Jeffrey Farner Budarz, Lauren Wessel, Shihong Lin, Yao Xiao, Mark R. Wiesner. Comparison of the photosensitivity and bacterial toxicity of spherical and tubular fullerenes of variable aggregate size. Journal of Nanoparticle Research 2011, 13 (10) , 5121-5127. https://doi.org/10.1007/s11051-011-0492-y
    67. Yonggang Wang, Winfred G. Aker, Huey-min Hwang, Clement G. Yedjou, Hongtao Yu, Paul B. Tchounwou. A study of the mechanism of in vitro cytotoxicity of metal oxide nanoparticles using catfish primary hepatocytes and human HepG2 cells. Science of The Total Environment 2011, 409 (22) , 4753-4762. https://doi.org/10.1016/j.scitotenv.2011.07.039
    68. . Nanoconstructions Based on Nucleic Acid Molecules. 2011, 171-214. https://doi.org/10.1201/b11264-13
    69. Thomas L. Theis, Bhavik R. Bakshi, Delcie Durham, Vasilis M. Fthenakis, Timothy G. Gutowski, Jacqueline A. Isaacs, Thomas Seager, Mark R. Wiesner. A life cycle framework for the investigation of environmentally benign nanoparticles and products. physica status solidi (RRL) – Rapid Research Letters 2011, 5 (9) , 312-317. https://doi.org/10.1002/pssr.201105083
    70. Stefano Zuin, Christian Micheletti, Andrea Critto, Giulio Pojana, Helinor Johnston, Vicki Stone, Lang Tran, Antonio Marcomini. Weight of Evidence approach for the relative hazard ranking of nanomaterials. Nanotoxicology 2011, 5 (3) , 445-458. https://doi.org/10.3109/17435390.2010.512986
    71. David M. Berube, Christopher L. Cummings, Jordan H. Frith, Andrew R. Binder, Robert Oldendick. Comparing nanoparticle risk perceptions to other known EHS risks. Journal of Nanoparticle Research 2011, 13 (8) , 3089-3099. https://doi.org/10.1007/s11051-011-0325-z
    72. Jean-Marc Brignon. Socio-economic analysis: a tool for assessing the potential of nanotechnologies. Journal of Physics: Conference Series 2011, 304 , 012069. https://doi.org/10.1088/1742-6596/304/1/012069
    73. Akiyoshi Hoshino, Sanshiro Hanada, Kenji Yamamoto. Toxicity of nanocrystal quantum dots: the relevance of surface modifications. Archives of Toxicology 2011, 85 (7) , 707-720. https://doi.org/10.1007/s00204-011-0695-0
    74. Christian E. H. Beaudrie, Milind Kandlikar. Horses for courses: risk information and decision making in the regulation of nanomaterials. Journal of Nanoparticle Research 2011, 13 (4) , 1477-1488. https://doi.org/10.1007/s11051-011-0234-1
    75. Jérôme Labille, Christine O. Hendren, Armand Masion, Mark R. Wiesner. Life Cycle Models and Risk Assessment. 2011, 397-417. https://doi.org/10.1007/978-3-642-20177-6_17
    76. David M. Zalk, Samuel Y. Paik. Risk Assessment Using Control Banding. 2011, 139-166. https://doi.org/10.1016/B978-1-4377-7863-2.00006-6
    77. Guo-Yu Lan, Wei-Yu Chen, Huan-Tsung Chang. One-pot synthesis of fluorescent oligonucleotide Ag nanoclusters for specific and sensitive detection of DNA. Biosensors and Bioelectronics 2011, 26 (5) , 2431-2435. https://doi.org/10.1016/j.bios.2010.10.026
    78. N. Musee. Nanowastes and the environment: Potential new waste management paradigm. Environment International 2011, 37 (1) , 112-128. https://doi.org/10.1016/j.envint.2010.08.005
    79. Mark R. Wiesner, Jean-Yves Bottero. A risk forecasting process for nanostructured materials, and nanomanufacturing. Comptes Rendus. Physique 2011, 12 (7) , 659-668. https://doi.org/10.1016/j.crhy.2011.06.008
    80. RG Lee, S Vaughan. REACHing Down: Nanomaterials and Chemical Safety in the European Union. Law, Innovation and Technology 2010, 2 (2) , 193-217. https://doi.org/10.5235/175799610794046168
    81. Jo Anne Shatkin, Linda Carolyn Abbott, Ann E. Bradley, Richard Alan Canady, Tee Guidotti, Kristen M. Kulinowski, Ragnar E. Löfstedt, Garrick Louis, Margaret MacDonell, Andrew D. Maynard, Greg Paoli, Lorraine Sheremeta, Nigel Walker, Ronald White, Richard Williams. Nano Risk Analysis: Advancing the Science for Nanomaterials Risk Management. Risk Analysis 2010, 30 (11) , 1680-1687. https://doi.org/10.1111/j.1539-6924.2010.01493.x
    82. Emily S. Bernhardt, Benjamin P. Colman, Michael F. Hochella, Bradley J. Cardinale, Roger M. Nisbet, Curtis J. Richardson, Liyan Yin. An Ecological Perspective on Nanomaterial Impacts in the Environment. Journal of Environmental Quality 2010, 39 (6) , 1954-1965. https://doi.org/10.2134/jeq2009.0479
    83. Gregory V. Lowry, Ernest M. Hotze, Emily S. Bernhardt, Dionysios D. Dionysiou, Joel A. Pedersen, Mark R. Wiesner, Baoshan Xing. Environmental Occurrences, Behavior, Fate, and Ecological Effects of Nanomaterials: An Introduction to the Special Series. Journal of Environmental Quality 2010, 39 (6) , 1867-1874. https://doi.org/10.2134/jeq2010.0297
    84. Muhammad Imran, Anne-Marie Revol-Junelles, Agnieszka Martyn, Elmira Arab Tehrany, Muriel Jacquot, Michel Linder, Stéphane Desobry. Active Food Packaging Evolution: Transformation from Micro- to Nanotechnology. Critical Reviews in Food Science and Nutrition 2010, 50 (9) , 799-821. https://doi.org/10.1080/10408398.2010.503694
    85. Matt Hotze, Greg Lowry. Nanotechnology for Sustainable Water Treatment. 2010, 138-164. https://doi.org/10.1039/9781849732253-00138
    86. Z. Yang, Z. W. Liu, R. P. Allaker, P. Reip, J. Oxford, Z. Ahmad, G. Ren. A review of nanoparticle functionality and toxicity on the central nervous system. Journal of The Royal Society Interface 2010, 7 (suppl_4) https://doi.org/10.1098/rsif.2010.0158.focus
    87. Baoyou Shi, Xiaoyan Zhuang, Xiaomin Yan, Jiajuan Lu, Hongxiao Tang. Adsorption of atrazine by natural organic matter and surfactant dispersed carbon nanotubes. Journal of Environmental Sciences 2010, 22 (8) , 1195-1202. https://doi.org/10.1016/S1001-0742(09)60238-2
    88. Elise McCarthy, Christopher Kelty. Responsibility and nanotechnology. Social Studies of Science 2010, 40 (3) , 405-432. https://doi.org/10.1177/0306312709351762
    89. Lingling Wang, Huzhi Zheng, Yijuan Long, Mei Gao, Jianyu Hao, Juan Du, Xiaojiao Mao, Dongbo Zhou. Rapid determination of the toxicity of quantum dots with luminous bacteria. Journal of Hazardous Materials 2010, 177 (1-3) , 1134-1137. https://doi.org/10.1016/j.jhazmat.2009.12.001
    90. Emmanuel Kymakis. Photovoltaic Devices based on Carbon Nanotubes and Related Structures. 2010, 291-303. https://doi.org/10.1002/9783527629930.ch9
    91. Thabet M. Tolaymat, Amro M. El Badawy, Ash Genaidy, Kirk G. Scheckel, Todd P. Luxton, Makram Suidan. An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: A systematic review and critical appraisal of peer-reviewed scientific papers. Science of The Total Environment 2010, 408 (5) , 999-1006. https://doi.org/10.1016/j.scitotenv.2009.11.003
    92. Huzhi Zheng, Li Liu, Yihui Lu, Yijuan Long, Lingling Wang, Kam-Piu Ho, Kwok-Yin Wong. Rapid Determination of Nanotoxicity Using Luminous Bacteria. Analytical Sciences 2010, 26 (1) , 125-128. https://doi.org/10.2116/analsci.26.125
    93. Eva Roblegga, Frank Sinner, Andreas Zimmer. Health Risks of Nanotechnology. EURO-NanoTox-Letters 2009, 1 (1) , 1-18. https://doi.org/10.1515/entl-2015-0001
    94. David M. Zalk, Samuel Y. Paik, Paul Swuste. Evaluating the Control Banding Nanotool: a qualitative risk assessment method for controlling nanoparticle exposures. Journal of Nanoparticle Research 2009, 11 (7) , 1685-1704. https://doi.org/10.1007/s11051-009-9678-y
    95. Guobin Shan, Rao Y. Surampalli, Rajeshwar D. Tyagi, Tian C. Zhang. Nanomaterials for environmental burden reduction, waste treatment, and nonpoint source pollution control: a review. Frontiers of Environmental Science & Engineering in China 2009, 3 (3) , 249-264. https://doi.org/10.1007/s11783-009-0029-0
    96. John L. Ferry, Preston Craig, Cole Hexel, Patrick Sisco, Rebecca Frey, Paul L. Pennington, Michael H. Fulton, I. Geoff Scott, Alan W. Decho, Shosaku Kashiwada, Catherine J. Murphy, Timothy J. Shaw. Transfer of gold nanoparticles from the water column to the estuarine food web. Nature Nanotechnology 2009, 4 (7) , 441-444. https://doi.org/10.1038/nnano.2009.157
    97. Valerie E. Fako, Darin Y. Furgeson. Zebrafish as a correlative and predictive model for assessing biomaterial nanotoxicity. Advanced Drug Delivery Reviews 2009, 61 (6) , 478-486. https://doi.org/10.1016/j.addr.2009.03.008
    98. Shinya Kato, Hisae Aoshima, Yasukazu Saitoh, Nobuhiko Miwa. Biological Safety of LipoFullerene composed of Squalane and Fullerene‐C60 upon Mutagenesis, Photocytotoxicity, and Permeability into the Human Skin Tissue. Basic & Clinical Pharmacology & Toxicology 2009, 104 (6) , 483-487. https://doi.org/10.1111/j.1742-7843.2009.00396.x
    99. Guo-Bin Shan, Rao Y. Surampalli, Rajeshwar D. Tyagi, Tian C. Zhang, Keith C. Lai, Song Yan. Nanomaterials for Environmental Burden Reduction, Waste Treatment and Non-Point Source Pollution Control. 2009, 444-473. https://doi.org/10.1061/9780784410301.ch14
    100. Guo-Bin Shan, Rao Y. Surampalli, R. D. Tyagi, Tian C. Zhang, Zhiqiang Hu, S. Yan. Environmental Risks of Nanomaterials. 2009, 591-618. https://doi.org/10.1061/9780784410301.ch17
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect