Skip to main content

IMPORTANT NOTICE: The ARC website is being updated on Tuesday, May 28, 2024. ARC will be in a "Read Only" mode. Viewing and downloading content will be available but other functions are restricted. For further inquiries, please contact [email protected].

Skip to article control options
Published Online:https://doi.org/10.2514/1.J051895

Multidisciplinary design optimization is a field of research that studies the application of numerical optimization techniques to the design of engineering systems involving multiple disciplines or components. Since the inception of multidisciplinary design optimization, various methods (architectures) have been developed and applied to solve multidisciplinary design-optimization problems. This paper provides a survey of all the architectures that have been presented in the literature so far. All architectures are explained in detail using a unified description that includes optimization problem statements, diagrams, and detailed algorithms. The diagrams show both data and process flow through the multidisciplinary system and computational elements, which facilitate the understanding of the various architectures, and how they relate to each other. A classification of the multidisciplinary design-optimization architectures based on their problem formulations and decomposition strategies is also provided, and the benefits and drawbacks of the architectures are discussed from both theoretical and experimental perspectives. For each architecture, several applications to the solution of engineering-design problems are cited. The result is a comprehensive but straightforward introduction to multidisciplinary design optimization for nonspecialists and a reference detailing all current multidisciplinary design-optimization architectures for specialists.

References

  • [1] Schmit L. A., “Structural Design by Systematic Synthesis,” 2nd Conference on Electronic Computation, American Society of Civil Engineers, New York, 1960, pp. 105–132. Google Scholar

  • [2] Schmit L. A. and Thornton W. A., “Synthesis of an Airfoil at Supersonic Mach Number,” NASA CR-144, Jan. 1965. Google Scholar

  • [3] Schmit L. A., “Structural Synthesis: Its Genesis and Development,” AIAA Journal, Vol. 19, No. 10, 1981, pp. 1249–1263. doi:https://doi.org/10.2514/3.7859 AIAJAH 0001-1452 LinkGoogle Scholar

  • [4] Schmit L. A.,, “Structural Synthesis: Precursor and Catalyst, Recent Experiences in Multidisciplinary Analysis and Optimization,” NASA CP-2337, 1984. Google Scholar

  • [5] Haftka R. T., “Automated Procedure for Design of Wing Structures to Satisfy Strength and Flutter Requirements,” NASA Langley Research Center TN-D-7264, Hampton, VA, 1973. Google Scholar

  • [6] Haftka R. T., Starnes J. H.,, Barton F. W. and Dixon S. C., “Comparison of Two Types of Optimization Procedures for Flutter Requirements,” AIAA Journal, Vol. 13, No. 10, 1975, pp. 1333–1339. doi:https://doi.org/10.2514/3.60545 AIAJAH 0001-1452 LinkGoogle Scholar

  • [7] Haftka R. T., “Optimization of Flexible Wing Structures Subject to Strength and Induced Drag Constraints,” AIAA Journal, Vol. 14, No. 8, 1977, pp. 1106–1977. doi:https://doi.org/10.2514/3.7400 AIAJAH 0001-1452 Google Scholar

  • [8] Haftka R. T. and Shore C. P., “Approximate Methods for Combined Thermal/Structural Design,” NASA TP-1428, June 1979. Google Scholar

  • [9] Ashley H., “On Making Things the Best: Aeronautical Uses of Optimization,” Journal of Aircraft, Vol. 19, No. 1, 1982, pp. 5–28. doi:https://doi.org/10.2514/3.57350 JAIRAM 0021-8669 LinkGoogle Scholar

  • [10] Green J. A., “Aeroelastic Tailoring of Aft-Swept High-Aspect-Ratio Composite Wings,” Journal of Aircraft, Vol. 24, No. 11, 1987, pp. 812–819. doi:https://doi.org/10.2514/3.45525 JAIRAM 0021-8669 LinkGoogle Scholar

  • [11] Grossman B., Gurdal Z., Strauch G. J., Eppard W. M. and Haftka R. T., “Integrated Aerodynamic/Structural Design of a Sailplane Wing,” Journal of Aircraft, Vol. 25, No. 9, 1988, pp. 855–860. doi:https://doi.org/10.2514/3.45670 JAIRAM 0021-8669 LinkGoogle Scholar

  • [12] Grossman B., Haftka R. T., Kao P.-J., Polen D. M. and Rais-Rohani M., “Integrated Aerodynamic-Structural Design of a Transport Wing,” Journal of Aircraft, Vol. 27, No. 12, 1990, pp. 1050–1056. doi:https://doi.org/10.2514/3.45980 JAIRAM 0021-8669 LinkGoogle Scholar

  • [13] Livne E., Schmit L. and Friedmann P., “Towards Integrated Multidisciplinary Synthesis of Actively Controlled Fiber Composite Wings,” Journal of Aircraft, Vol. 27, No. 12, 1990, pp. 979–992. doi:https://doi.org/10.2514/3.45972 JAIRAM 0021-8669 LinkGoogle Scholar

  • [14] Livne E., “Integrated Aeroservoelastic Optimization: Status and Direction,” Journal of Aircraft, Vol. 36, No. 1, 1999, pp. 122–145. doi:https://doi.org/10.2514/2.2419 JAIRAM 0021-8669 LinkGoogle Scholar

  • [15] Jansen P., Perez R. E. and Martins J. R. R. A., “Aerostructural Optimization of Nonplanar Lifting Surfaces,” Journal of Aircraft, Vol. 47, No. 5, 2010, pp. 1491–1503. doi:https://doi.org/10.2514/1.44727 JAIRAM 0021-8669 LinkGoogle Scholar

  • [16] Ning S. A. and Kroo I., “Multidisciplinary Considerations in the Design of Wings and Wing Tip Devices,” Journal of Aircraft, Vol. 47, No. 2, 2010, pp. 534–543. doi:https://doi.org/10.2514/1.41833 JAIRAM 0021-8669 LinkGoogle Scholar

  • [17] Kroo I. M., Altus S., Braun R. D., Gage P. J. and Sobieski I. P., “Multidisciplinary Optimization Methods for Aircraft Preliminary Design,” Proceedings of the AIAA 5th Symposium on Multidisciplinary Analysis and Optimization, AIAA Paper  1994-4325, Panama City Beach, FL , 1994. Google Scholar

  • [18] Manning V. M., “Large-Scale Design of Supersonic Aircraft via Collaborative Optimization,” Ph.D. Thesis, Stanford Univ., Stanford, CA, 1999. Google Scholar

  • [19] Antoine N. E. and Kroo I. M., “Framework for Aircraft Conceptual Design and Environmental Performance Studies,” AIAA Journal, Vol. 43, No. 10, 2005, pp. 2100–2109. doi:https://doi.org/10.2514/1.13017 AIAJAH 0001-1452 LinkGoogle Scholar

  • [20] Henderson R. P., Martins J. R. R. A. and Perez R. E., “Aircraft Conceptual Design for Optimal Environmental Performance,” The Aeronautical Journal, Vol. 116, No. 1175, Jan. 2012, pp. 1–22. CrossrefGoogle Scholar

  • [21] Alonso J. J. and Colonno M. R., “Multidisciplinary Optimization with Applications to Sonic-Boom Minimization,” Annual Review of Fluid Mechanics, Vol. 44, No. 1, 2012, pp. 505–526. doi:https://doi.org/10.1146/annurev-fluid-120710-101133 ARVFA3 0066-4189 CrossrefGoogle Scholar

  • [22] Balling R. and Rawlings M. R., “Collaborative Optimization with Disciplinary Conceptual Design,” Structural and Multidisciplinary Optimization, Vol. 20, No. 3, 2000, pp. 232–241. doi:https://doi.org/10.1007/s001580050151 CrossrefGoogle Scholar

  • [23] Choudhary R., Malkawi A. and Papalambros P. Y., “Analytic Target Cascading in Simulation- Based Building Design,” Automation in Construction, Vol. 14, No. 4, 2005, pp. 551–568. doi:https://doi.org/10.1016/j.autcon.2004.11.004 AUCOES 0926-5805 CrossrefGoogle Scholar

  • [24] Geyer P., “Component-Oriented Decomposition for Multidisciplinary Design Optimization in Building Design,” Advanced Engineering Informatics, Vol. 23, No. 1, 2009, pp. 12–31. doi:https://doi.org/10.1016/j.aei.2008.06.008 CrossrefGoogle Scholar

  • [25] He Y. and McPhee J., “Multidisciplinary Optimization of Multibody Systems with Application to the Design of Rail Vehicles,” Multibody System Dynamics, Vol. 14, No. 2, 2005, pp. 111–135. doi:https://doi.org/10.1007/s11044-005-4310-0 CrossrefGoogle Scholar

  • [26] Enblom R., “Two-Level Numerical Optimization of Ride Comfort in Railway Vehicles,” Journal of Rail and Rapid Transit, Vol. 220, No. 1, 2006, pp. 1–11. doi:https://doi.org/10.1243/095440905X33279 CrossrefGoogle Scholar

  • [27] Potsaid B., Bellouard Y. and Wen J. T.-Y., “A Multidisciplinary Design and Optimization Methodology for the Adaptive Scanning Optical Microscope (ASOM),” Proceedings of the SPIE, Vol. 6289, 2006, pp. 62890L1–62890L12. doi:https://doi.org/10.1117/12.680450 CrossrefGoogle Scholar

  • [28] McAllister C. D. and Simpson T. W., “Multidisciplinary Robust Design Optimization of an Internal Combustion Engine,” Journal of Mechanical Design, Vol. 125, No. 1, 2003, pp. 124–130. doi:https://doi.org/10.1115/1.1543978 CrossrefGoogle Scholar

  • [29] Kokkolaras M., Louca L. S., Delagrammatikas G. J., Michelena N. F., Filipi Z. S., Papalambros P. Y., Stein J. L. and Assanis D. N., “Simulation-Based Optimal Design of Heavy Trucks by Model- Based Decomposition: An Extensive Analytical Target Cascading Case Study,” International Journal of Heavy Vehicle Systems, Vol. 11, No. 3/4, 2004, pp. 403–433. doi:https://doi.org/10.1504/IJHVS.2004.005456 CrossrefGoogle Scholar

  • [30] Peri D. and Campana E. F., “Multidisciplinary Design Optimization of a Naval Surface Combatant,” Journal of Ship Research, Vol. 47, No. 1, 2003, pp. 1–12. JSRHAR 0022-4502 Google Scholar

  • [31] Kalavalapally R., Penmetsa R. and Grandhi R., “Multidisciplinary Optimization of a Lightweight Torpedo Structure Subjected to an Underwater Explosion,” Finite Elements in Analysis and Design, Vol. 43, No. 2, 2006, pp. 103–111. doi:https://doi.org/10.1016/j.finel.2006.07.005 FEADEU 0168-874X CrossrefGoogle Scholar

  • [32] Takekoshi Y., Kawamura T., Yamaguchi H., Maeda M., Ishii N., Kimura K., Taketani T. and Fujii A., “Study on the Design of Propeller Blade Sections Using the Optimization Algorithm,” Journal of Marine Science and Technology, Vol. 10, No. 2, 2005, pp. 70–81. doi:https://doi.org/10.1007/s00773-005-0197-y CrossrefGoogle Scholar

  • [33] Young Y., Baker J. and Motley M., “Reliability-Based Design and Optimization of Adaptive Marine Structures,” Composite Structures, Vol. 92, No. 2, 2010, pp. 244–253. doi:https://doi.org/10.1016/j.compstruct.2009.07.024 COMSE2 0263-8223 CrossrefGoogle Scholar

  • [34] Ganguli R., “Survey of Recent Developments in Rotorcraft Design Optimization,” Journal of Aircraft, Vol. 41, No. 3, 2004, pp. 493–510. doi:https://doi.org/10.2514/1.58 JAIRAM 0021-8669 LinkGoogle Scholar

  • [35] Glaz B., Friedmann P. P. and Liu L., “Helicopter Vibration Reduction Throughout the Entire Flight Envelope Using Surrogate-Based Optimization,” Journal of the American Helicopter Society, Vol. 54, No. 1, 2009, pp. 12007-1–12007-15. doi:https://doi.org/10.4050/JAHS.54.012007 JHESAK 0002-8711 CrossrefGoogle Scholar

  • [36] Fuglsang P. and Madsen H., “Optimization Method for Wind Turbine Rotors,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 80, Nos. 1–2, 1999, pp. 191–206. doi:https://doi.org/10.1016/S0167-6105(98)00191-3 JWEAD6 0167-6105 CrossrefGoogle Scholar

  • [37] Fuglsang P., Bak C., Schepers J. G., Bulder B., Cockerill T. T., Claiden P., Olesen A. and van Rossen R., “Site-Specific Design Optimization of Wind Turbines,” Wind Energy, Vol. 5, No. 4, 2002, pp. 261–279. doi:https://doi.org/10.1002/we.61 WENTEO CrossrefGoogle Scholar

  • [38] Kenway G. and Martins J. R. R. A., “Aerostructural Shape Optimization of Wind Turbine Blades Considering Site-Specific Winds,” 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Sept. 2008.doi:https://doi.org/10.2514/6.2008-6025 LinkGoogle Scholar

  • [39] Braun R. D., Moore A. A. and Kroo I. M., “Collaborative Approach to Launch Vehicle Design,” Journal of Spacecraft and Rockets, Vol. 34, No. 4, 1997, pp. 478–486. doi:https://doi.org/10.2514/2.3237 JSCRAG 0022-4650 LinkGoogle Scholar

  • [40] Cai G., Fang J., Zheng Y., Tong X., Chen J. and Wang J., “Optimization of System Parameters for Liquid Rocket Engines with Gas-Generator Cycles,” Journal of Propulsion and Power, Vol. 26, No. 1, 2010, pp. 113–119. doi:https://doi.org/10.2514/1.40649 JPPOEL 0748-4658 LinkGoogle Scholar

  • [41] Hwang J. T., Lee D. Y., Cutler J. and Martins J. R. R. A., “Large-Scale MDO of a Small Satellite Using a Novel Framework for the Solution of Coupled Systems and Their Derivatives,” Proceedings of the 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Boston, MA , April 2013.doi:https://doi.org/10.2514/6.2013-1599 LinkGoogle Scholar

  • [42] Zingg D. W., Nemec M. and Pulliam T. H., “A Comparative Evaluation of Genetic and Gradient-Based Algorithms Applied to Aerodynamic Optimization,” European Journal of Computational Mechanics, Vol. 17, Nos. 1–2, Jan. 2008, pp. 103–126. doi:https://doi.org/10.2514/1.40649 CrossrefGoogle Scholar

  • [43] Nocedal J. and Wright S. J., Numerical Optimization, 2nd ed., Springer–Verlag, New York, 2006, p. 321. Google Scholar

  • [44] Tappeta R. V. and Renaud J. E., “Multiobjective Collaborative Optimization,” Journal of Mechanical Design, Vol. 119, No. 3, 1997, pp. 403–411. doi:https://doi.org/10.1115/1.2826362 CrossrefGoogle Scholar

  • [45] Lewis K. and Mistree F., “The Other Side of Multidisciplinary Design Optimization: Accommodating a Multiobjective, Uncertain and Non-Deterministic World,” Engineering Optimization, Vol. 31, No. 2, 1998, pp. 161–189. doi:https://doi.org/10.1080/03052159808941369 EGOPAX 0305-215X CrossrefGoogle Scholar

  • [46] Miettinen K. M., Nonlinear Multiobjective Optimization, Kluwer Academic, Norwell, MA, 1998. CrossrefGoogle Scholar

  • [47] Haftka R. T. and Watson L. T., “Decomposition Theory for Multidisciplinary Design Optimization Problems with Mixed Integer Quasiseparable Subsystems,” Optimization and Engineering, Vol. 7, No. 2, 2006, pp. 135–149. doi:https://doi.org/10.1007/s11081-006-6836-2 OEPNBR 1389-4420 CrossrefGoogle Scholar

  • [48] Michalek J. J. and Papalambros P. Y., “BB-ATC: Analytical Target Cascading Using Branch and Bound for Mixed Integer Nonlinear Programming,” Proceedings of the ASME Design Engineering Technical Conference, Philadelphia, PA , DET2006/DAC-99040, 2006. Google Scholar

  • [49] Zadeh P. M., Toropov V. V. and Wood A. S., “Metamodel-Based Collaborative Optimization Framework,” Structural and Multidisciplinary Optimization, Vol. 38, No. 2, 2009, pp. 103–115. doi:https://doi.org/10.1007/s00158-008-0286-8 CrossrefGoogle Scholar

  • [50] Conn A. R., Schienburg K. and Vicente L. N., Introduction to Derivative-Free Optimization, Society for Industrial and Applied Mathematics, Philadelphia, 2009. CrossrefGoogle Scholar

  • [51] Rao S. S., “Game Theory Approach for Multiobjective Structural Optimization,” Computers and Structures, Vol. 25, No. 1, 1987, pp. 119–127. doi:https://doi.org/10.1016/0045-7949(87)90223-9 CMSTCJ 0045-7949 CrossrefGoogle Scholar

  • [52] Lewis K. and Mistree F., “Modeling Interactions in Multidisciplinary Design: A Game Theoretic Approach,” AIAA Journal, Vol. 35, No. 8, 1997, pp. 1387–1392. doi:https://doi.org/10.2514/2.248 AIAJAH 0001-1452 LinkGoogle Scholar

  • [53] Honda T., Cucci F. and Yang M. C., “Achieving Pareto Optimality in a Decentralized Design Environment,” Proceedings of the International Conference on Engineering Design, Stanford, CA , Aug. 2009. Google Scholar

  • [54] Sobieszczanski–Sobieski J., Altus T. D., Phillips M. and Sandusky R. R.,, “Bilevel Integrated System Synthesis for Concurrent and Distributed Processing,” AIAA Journal, Vol. 41, No. 10, 2003, pp. 1996–2003. doi:https://doi.org/10.2514/2.1889 AIAJAH 0001-1452 LinkGoogle Scholar

  • [55] Tosserams S., Kokkolaras M., Etman L. F. P. and Rooda J. E., “A Nonhierarchical Formulation of Analytical Target Cascading,” Journal of Mechanical Design, Vol. 132, No. 5, 2010, pp. 051002-1–051002-13. doi:https://doi.org/10.1115/1.4001346 CrossrefGoogle Scholar

  • [56] Roth B. and Kroo I., “Enhanced Collaborative Optimization: Application to an Analytic Test Problem and Aircraft Design,” 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, AIAA Paper  2008-5841, Sept. 2008. LinkGoogle Scholar

  • [57] Agte J., de Weck O., Sobieszczanski–Sobieski J., Arendsen P., Morris A. and Spieck M., “MDO: Assessment and Direction for Advancement, An Opinion of One International Group,” Structural and Multidisciplinary Optimization, Vol. 40, Nos. 1–6, 2010, pp. 17–33. doi:https://doi.org/10.1007/s00158-009-0381-5 CrossrefGoogle Scholar

  • [58] Kim H. M., Michelena N. F., Papalambros P. Y. and Jiang T., “Target Cascading in Optimal System Design,” Journal of Mechanical Design, Vol. 125, No. 3, 2003, pp. 474–480. doi:https://doi.org/10.1115/1.1582501 CrossrefGoogle Scholar

  • [59] Michelena N. F., Park H. and Papalambros P. Y., “Convergence Properties of Analytical Target Cascading,” AIAA Journal, Vol. 41, No. 5, 2003, pp. 897–905. doi:https://doi.org/10.2514/2.2025 AIAJAH 0001-1452 LinkGoogle Scholar

  • [60] Michalek J. J. and Papalambros P. Y., “An Efficient Weighting Update Method to Achieve Acceptable Consistency Deviation in Analytical Target Cascading,” Journal of Mechanical Design, Vol. 127, No. 2, 2005, pp. 206–214. doi:https://doi.org/10.1115/1.1830046 CrossrefGoogle Scholar

  • [61] Cramer E. J., Dennis J. E.,, Frank P. D., Lewis R. M. and Shubin G. R., “Problem Formulation for Multidisciplinary Optimization,” SIAM Journal on Optimization, Vol. 4, No. 4, 1994, pp. 754–776. doi:https://doi.org/10.1137/0804044 SJOPE8 1095-7189 CrossrefGoogle Scholar

  • [62] Alexandrov N. M. and Lewis R. M., “Analytical and Computational Aspects of Collaborative Optimization for Multidisciplinary Design,” AIAA Journal, Vol. 40, No. 2, 2002, pp. 301–309. doi:https://doi.org/10.2514/2.1646 AIAJAH 0001-1452 LinkGoogle Scholar

  • [63] Alexandrov N. M. and Lewis R. M., “Reconfigurability in MDO Problem Synthesis, Part 1,” 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, AIAA Paper  2004-4307, Sept. 2004. LinkGoogle Scholar

  • [64] Alexandrov N. M. and Lewis R. M., “Reconfigurability in MDO Problem Synthesis, Part 2,” 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, AIAA Paper  2004-4308, Sept. 2004. LinkGoogle Scholar

  • [65] Wujek B. A., Renaud J. E., Batill S. M. and Brockman J. B., “Concurrent Subspace Optimization Using Design Variable Sharing in a Distributed Computing Environment,” Concurrent Engineering: Research and Applications, Vol. 4, No. 4, 1996, pp. 361–377. doi:https://doi.org/10.1177/1063293X9600400405 CRAPEM 1063-293X CrossrefGoogle Scholar

  • [66] Haftka R. T. and Watson L. T., “Multidisciplinary Design Optimization with Quasiseparable Subsystems,” Optimization and Engineering, Vol. 6, No. 1, 2005, pp. 9–20. doi:https://doi.org/10.1023/B:OPTE.0000048534.58121.93 OEPNBR 1389-4420 CrossrefGoogle Scholar

  • [67] Sobieszczanski-Sobieski J. and Haftka R. T., “Multidisciplinary Aerospace Design Optimization: Survey of Recent Developments,” Structural Optimization, Vol. 14, No. 1, 1997, pp. 1–23. doi:https://doi.org/10.1007/BF01197554 SOPTEQ 0934-4373 CrossrefGoogle Scholar

  • [68] Kodiyalam S. and Sobieszczanski–Sobieski J., “Bilevel Integrated System Synthesis with Response Surfaces,” AIAA Journal, Vol. 38, No. 8, 2000, pp. 1479–1485. doi:https://doi.org/10.2514/2.1126 AIAJAH 0001-1452 LinkGoogle Scholar

  • [69] Sellar R. S., Batill S. M. and Renaud J. E., “Response Surface Based, Concurrent Subspace Optimization for Multidisciplinary System Design,” 34th AIAA Aerospace Sciences and Meeting Exhibit, AIAA Paper  1996-0714, Jan. 1996. LinkGoogle Scholar

  • [70] Sobieszczanski–Sobieski J., Agte J. S. and Sandusky R. R.,, “Bilevel Integrated System Synthesis,” AIAA Journal, Vol. 38, No. 1, 2000, pp. 164–172. doi:https://doi.org/10.2514/2.937 AIAJAH 0001-1452 LinkGoogle Scholar

  • [71] Shin M.-K. and Park G.-J., “Multidisciplinary Design Optimization Based on Independent Subspaces,” International Journal for Numerical Methods in Engineering, Vol. 64, 2005, pp. 599–617. doi:https://doi.org/10.1002/(ISSN)1097-0207 IJNMBH 0029-5981 CrossrefGoogle Scholar

  • [72] DeMiguel V. and Murray W., “A Local Convergence Analysis of Bilevel Decomposition Algorithms,” Optimization and Engineering, Vol. 7, No. 2, 2006, pp. 99–133. doi:https://doi.org/10.1007/s11081-006-6835-3 OEPNBR 1389-4420 CrossrefGoogle Scholar

  • [73] Braun R. D. and Kroo I. M., “Development and Application of the Collaborative Optimization Architecture in a Multidisciplinary Design Environment,” Multidisciplinary Design Optimization: State-of-the-Art, edited by Alexandrov N. and Hussaini M. Y., Society for Industrial and Applied Mathematics, Philadelphia, 1997, pp. 98–116. Google Scholar

  • [74] Kroo I. M., “MDO for Large-Scale Design,” Multidisciplinary Design Optimization: State-of-the-Art, edited by Alexandrov N. and Hussaini M. Y., Society for Industrial and Applied Mathematics, Philadelphia, 1997, pp. 22–44. Google Scholar

  • [75] Sobieski I. P. and Kroo I. M., “Collaborative Optimization Using Response Surface Estimation,” AIAA Journal, Vol. 38, No. 10, 2000, pp. 1931–1938. doi:https://doi.org/10.2514/2.847 AIAJAH 0001-1452 LinkGoogle Scholar

  • [76] Chittick I. R. and Martins J. R. R. A., “Aero-Structural Optimization Using Adjoint Coupled Post Optimality Sensitivities,” Structural and Multidisciplinary Optimization, Vol. 36, No. 1, 2008, pp. 59–70. doi:https://doi.org/10.1007/s00158-007-0200-9 CrossrefGoogle Scholar

  • [77] Haftka R. T., Sobieszczanski–Sobieski J. and Padula S. L., “On Options for Interdisciplinary Analysis and Design Optimization,” Structural Optimization, Vol. 4, No. 2, 1992, pp. 65–74. doi:https://doi.org/10.1007/BF01759919 SOPTEQ 0934-4373 CrossrefGoogle Scholar

  • [78] Balling R. J. and Sobieszczanski–Sobieski J., “Optimization of Coupled Systems: A Critical Overview of Approaches,” AIAA Journal, Vol. 34, No. 1, 1996, pp. 6–17. doi:https://doi.org/10.2514/3.13015 AIAJAH 0001-1452 LinkGoogle Scholar

  • [79] Alexandrov N. and Hussaini M. Y. (eds.), Multidisciplinary Design Optimization: State-of-the-Art, Society for Industrial and Applied Mathematics, Philadelphia, 1997, pp. 22–44. Google Scholar

  • [80] Alexandrov N. M., “Multilevel Methods for MDO,” Multidisciplinary Design Optimization: State-of-the-Art, edited by Alexandrov N. M. and Hussaini M. Y., Society for Industrial and Applied Mathematics, Philadelphia, 1997, pp. 79–89. Google Scholar

  • [81] Balling R. J., “Approaches to MDO Which Support Disciplinary Autonomy,” Multidisciplinary Design Optimization: State-of-the-Art, edited by Alexandrov N. M. and Hussaini M. Y., Society for Industrial and Applied Mathematics, Philadelphia, 1997, pp. 90–97. Google Scholar

  • [82] Willcox K. and Wakayama S., “Simultaneous Optimization of a Multiple-Aircraft Family,” Journal of Aircraft, Vol. 40, No. 4, 2003, pp. 616–622. doi:https://doi.org/10.2514/2.3156 JAIRAM 0021-8669 LinkGoogle Scholar

  • [83] Piperni P., Abdo M., Kafyeke F. and Isikveren A. T., “Preliminary Aerostructural Optimization of a Large Business Jet,” Journal of Aircraft, Vol. 44, No. 5, 2007, pp. 1422–1438. doi:https://doi.org/10.2514/1.26989 JAIRAM 0021-8669 LinkGoogle Scholar

  • [84] Simpson T. W. and Martins J. R. R. A., “Multidisciplinary Design Optimization for Complex Engineered Systems Design: Report from an NSF Workshop,” Journal of Mechanical Design, Vol. 133, No. 10, Oct. 2011, pp. 101002-1–101002-10. doi:https://doi.org/10.1115/1.4004465 CrossrefGoogle Scholar

  • [85] Tosserams S., Etman L. F. P. and Rooda J. E., “A Classification of Methods for Distributed System Optimization Based on Formulation Structure,” Structural and Multidisciplinary Optimization, Vol. 39, No. 5, 2009, pp. 503–517. doi:https://doi.org/10.1007/s00158-008-0347-z CrossrefGoogle Scholar

  • [86] Lambe A. B. and Martins J. R. R. A., “Extensions to the Design Structure Matrix for the Description of Multidisciplinary Design, Analysis, and Optimization Processes,” Structural and Multidisciplinary Optimization, Vol. 46, No. 2, 2012, pp. 273–284. doi:https://doi.org/10.1007/s00158-012-0763-y CrossrefGoogle Scholar

  • [87] Steward D. V., “The Design Structure Matrix: A Method for Managing the Design of Complex Systems,” IEEE Transactions on Engineering Management, Vol. 28, 1981, pp. 71–74. doi:https://doi.org/10.1109/TEM.1981.6448589 IEEMA4 0018-9391 CrossrefGoogle Scholar

  • [88] Browning T. R., “Applying the Design Structure Matrix to System Decomposition and Integration Problems: A Review and New Directions,” IEEE Transactions on Engineering Management, Vol. 48, No. 3, 2001, pp. 292–306. doi:https://doi.org/10.1109/17.946528 IEEMA4 0018-9391 CrossrefGoogle Scholar

  • [89] Haftka R. T., “Simultaneous Analysis and Design,” AIAA Journal, Vol. 23, No. 7, 1985, pp. 1099–1103. doi:https://doi.org/10.2514/3.9043 AIAJAH 0001-1452 LinkGoogle Scholar

  • [90] Schmit L. A., and Ramanathan R. K., “Multilevel Approach to Minimum Weight Design Including Buckling Constraints,” AIAA Journal, Vol. 16, No. 2, 1978, pp. 97–104. doi:https://doi.org/10.2514/3.60867 AIAJAH 0001-1452 LinkGoogle Scholar

  • [91] Biegler L. T., Ghattas O., Heinkenschloss M. and van Bloemen Waanders B. (eds.), Large-Scale PDE-Constrained Optimization, Springer–Verlag, New York, 2003. CrossrefGoogle Scholar

  • [92] Squire W. and Trapp G., “Using Complex Variables to Estimate Derivatives of Real Functions,” SIAM Review, Vol. 40, No. 1, 1998, pp. 110–112. doi:https://doi.org/10.1137/S003614459631241X SIREAD 0036-1445 CrossrefGoogle Scholar

  • [93] Martins J. R. R. A., Sturdza P. and Alonso J. J., “The Complex-Step Derivative Approximation,” ACM Transactions on Mathematical Software, Vol. 29, No. 3, 2003, pp. 245–262. doi:https://doi.org/10.1145/838250 ACMSCU 0098-3500 CrossrefGoogle Scholar

  • [94] Adelman H. M. and Haftka R. T., “Sensitivity Analysis of Discrete Structural Systems,” AIAA Journal, Vol. 24, No. 5, 1986, pp. 823–832. doi:https://doi.org/10.2514/3.48671 AIAJAH 0001-1452 LinkGoogle Scholar

  • [95] Jameson A., “Aerodynamic Design via Control Theory,” Journal of Scientific Computing, Vol. 3, No. 3, 1988, pp. 233–260. doi:https://doi.org/10.1007/BF01061285 JSCOEB 0885-7474 CrossrefGoogle Scholar

  • [96] Giles M. B., Duta M. C., Muller J.-D. and Pierce N. A., “Algorithm Developments for Discrete Adjoint Methods,” AIAA Journal, Vol. 41, No. 2, 2003, pp. 198–205. doi:https://doi.org/10.2514/2.1961 AIAJAH 0001-1452 LinkGoogle Scholar

  • [97] van Keulen F., Haftka R. and Kim N., “Review of Options for Structural Design Sensitivity Analysis. Part 1: Linear Systems,” Computer Methods in Applied Mechanics and Engineering, Vol. 194, Nos. 30–33, 2005, pp. 3213–3243. doi:https://doi.org/10.1016/j.cma.2005.02.002 CMMECC 0045-7825 CrossrefGoogle Scholar

  • [98] Mader C. A., Martins J. R. R. A., Alonso J. J. and van der Weide E., “ADjoint: An Approach for the Rapid Development of Discrete Adjoint Solvers,” AIAA Journal, Vol. 46, No. 4, 2008, pp. 863–873. doi:https://doi.org/10.2514/1.29123 AIAJAH 0001-1452 LinkGoogle Scholar

  • [99] Martins J. R. R. A., Alonso J. J. and Reuther J. J., “A Coupled-Adjoint Sensitivity Analysis Method for High-Fidelity Aero-Structural Design,” Optimization and Engineering, Vol. 6, No. 1, 2005, pp. 33–62. doi:https://doi.org/10.1023/B:OPTE.0000048536.47956.62 OEPNBR 1389-4420 CrossrefGoogle Scholar

  • [100] Barcelos M., Bavestrello H. and Maute K., “A Schur-Newton-Krylov Solver for Steady-State Aeroelastic Analysis and Design Sensitivity Analysis,” Computer Methods in Applied Mechanics and Engineering, Vol. 195, Nos. 17–18, 2006, pp. 2050–2069. doi:https://doi.org/10.1016/j.cma.2004.09.013 CMMECC 0045-7825 CrossrefGoogle Scholar

  • [101] Hicken J. and Zingg D., “Aerodynamic Optimization Algorithm with Integrated Geometry Parameterization and Mesh Movement,” AIAA Journal, Vol. 48, No. 2, Feb. 2009, pp. 400–413. doi:https://doi.org/10.2514/1.44033 AIAJAH 0001-1452 LinkGoogle Scholar

  • [102] Martins J. R. R. A. and Hwang J. T., “Review and Unification of Methods for Computing Derivatives of Multidisciplinary Computational Models,” AIAA Journal, 2013. doi:https://doi.org/10.2514/1.J052184. AIAJAH 0001-1452 LinkGoogle Scholar

  • [103] Bloebaum C., “Coupling Strength-Based System Reduction for Complex Engineering Design,” Structural Optimization, Vol. 10, No. 2, 1995, pp. 113–121. doi:https://doi.org/10.1007/BF01743538 SOPTEQ 0934-4373 CrossrefGoogle Scholar

  • [104] Kennedy G. J. and Martins J. R. R. A., “Parallel Solution Methods for Aerostructural Analysis and Design Optimization,” 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference, AIAA Paper  2010-9308, Sept. 2010. LinkGoogle Scholar

  • [105] Vanderplaats G. N., “An Efficient Feasible Directions Algorithm for Design Synthesis,” AIAA Journal, Vol. 22, No. 11, 1984, pp. 1633–1640. doi:https://doi.org/10.2514/3.8829 AIAJAH 0001-1452 LinkGoogle Scholar

  • [106] Gill P. E., Murray W. and Saunders M. A., “SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization,” SIAM Review, Vol. 47, No. 1, 2005, pp. 99–131. doi:https://doi.org/10.1137/S0036144504446096 SIREAD 0036-1445 CrossrefGoogle Scholar

  • [107] Wright S. J., Primal-Dual Interior Point Methods, Society for Industrial and Applied Mathematics, Philadelphia, 1997. CrossrefGoogle Scholar

  • [108] Sobieszczanski–Sobieski J., “Sensitivity of Complex, Internally Coupled Systems,” AIAA Journal, Vol. 28, No. 1, 1990, pp. 153–160. doi:https://doi.org/10.2514/3.10366 AIAJAH 0001-1452 LinkGoogle Scholar

  • [109] Kenway G. K. W., Kennedy G. J. and Martins J. R. R. A., “A Scalable Parallel Approach for High-Fidelity Steady-State Aeroelastic Analysis and Derivative Computations,” AIAA Journal, 2013 (in press). Google Scholar

  • [110] Kenway G. K. W. and Martins J. R. R. A., “Multi-Point High-Fidelity Aerostructural Optimization of a Transport Aircraft Configuration,” Journal of Aircraft, 2013 (in press). Google Scholar

  • [111] Marriage C. J. and Martins J. R. R. A., “Reconfigurable Semi-Analytic Sensitivity Methods and MDO Architectures Within the π MDO Framework,” 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, AIAA Paper  2008-5956, Sept. 2008. LinkGoogle Scholar

  • [112] Martins J. R. R. A. and Hwang J. T., “Review and Unification of Discrete Methods for Computing Derivatives of Single- and Multi-Disciplinary Computational Models,” AIAA Journal (in press). Google Scholar

  • [113] Lasdon L. S., Optimization Theory for Large Systems, Macmillan, New York, 1970, pp. 104–143, Chap. 2. Google Scholar

  • [114] Conejo A. J., Nogales F. J. and Prieto F. J., “A Decomposition Procedure Based on Approximate Newton Directions,” Mathematical Programming, Vol. 93, No. 3, 2002, pp. 495–515. doi:https://doi.org/10.1007/s10107-002-0304-3 MHPGA4 1436-4646 CrossrefGoogle Scholar

  • [115] Dantzig G. B. and Wolfe P., “Decomposition Principle for Linear Programs,” Operations Research, Vol. 8, No. 1, 1960, pp. 101–111. doi:https://doi.org/10.1287/opre.8.1.101 OPREAI 0030-364X CrossrefGoogle Scholar

  • [116] Benders J. F., “Partitioning Procedures for Solving Mixed Variables Programming Problems,” Numerische Mathematik, Vol. 4, No. 1, 1962, pp. 238–252. doi:https://doi.org/10.1007/BF01386316 NUMMA7 0029-599X CrossrefGoogle Scholar

  • [117] Michelena N. F. and Papalambros P. Y., “A Network Reliability Approach to Optimal Decomposition of Design Problems,” Journal of Mechanical Design, Vol. 117, No. 3, 1995, pp. 433–440. doi:https://doi.org/10.1115/1.2826697 CrossrefGoogle Scholar

  • [118] Michelena N. F. and Papalambros P. Y., “A Hypergraph Framework for Optimal Model-Based Decomposition of Design Problems,” Computational Optimization and Applications, Vol. 8, No. 2, 1997, pp. 173–196. doi:https://doi.org/10.1023/A:1008673321406 CPPPEF 0926-6003 CrossrefGoogle Scholar

  • [119] Tosserams S., Hofkamp A. T., Etman L. F. P. and Rooda J. E., “A Specification Language for Problem Partitioning in Decomposition-Based Design Optimization,” Structural and Multidisciplinary Optimization, Vol. 42, No. 5, 2010, pp. 707–723. doi:https://doi.org/10.1007/s00158-010-0512-z CrossrefGoogle Scholar

  • [120] Bertsekas D. P. and Tsitsiklis J. N., Parallel and Distributed Computation: Numerical Methods, Athena Scientific, Belmont, MA, 1997, pp. 88–104. Google Scholar

  • [121] Zadeh P. M. and Toropov V. V., “Multi-Fidelity Multidisciplinary Design Optimization Based on Collaborative Optimization Framework,” 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA Paper  2002-5504, Sept. 2002. LinkGoogle Scholar

  • [122] Robinson T. D., Willcox K. E., Eldred M. S. and Haimes R., “Multifidelity Optimization for Variable Complexity Design,” 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, AIAA Paper  2006-7114, Sept. 2006. LinkGoogle Scholar

  • [123] Chittick I. R. and Martins J. R. R. A., “An Asymmetric Suboptimization Approach to Aerostructural Optimization,” Optimization and Engineering, Vol. 10, No. 1, 2009, pp. 133–152. doi:https://doi.org/10.1007/s11081-008-9046-2 OEPNBR 1389-4420 CrossrefGoogle Scholar

  • [124] Alexandrov N. M. and Lewis R. M., “Comparative Properties of Collaborative Optimization and Other Approaches to MDO,” NASA Technical Rept. CR-1999-209354, Hampton, VA, July 1999. Google Scholar

  • [125] De Wit A. J. and Van Keulen F., “Overview of Methods for Multilevel and/or Multidisciplinary Optimization,” 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper  2010-2914, April 2010. Google Scholar

  • [126] Geethaikrishnan C., Mujumdar P. M., Sudhakar K. and Adimurthy V., “A Hybrid MDO Architecture for Launch Vehicle Conceptual Design,” 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper  2010-2757, April 2010. LinkGoogle Scholar

  • [127] Sobieszczanski–Sobieski J., “Optimization by Decomposition: A Step from Hierarchic to Non- Hierarchic Systems,” NASA Langley Research Center TR-CP-3031, Hampton, VA, Sept. 1988. Google Scholar

  • [128] Bloebaum C. L., Hajela P. and Sobieszczanski–Sobieski J., “Non-Hierarchic System Decomposition in Structural Optimization,” Engineering Optimization, Vol. 19, No. 3, 1992, pp. 171–186. doi:https://doi.org/10.1080/03052159208941227 EGOPAX 0305-215X CrossrefGoogle Scholar

  • [129] Shankar J., Ribbens C. J., Haftka R. T. and Watson L. T., “Computational Study of a Nonhierarchical Decomposition Algorithm,” Computational Optimization and Applications, Vol. 2, No. 3, 1993, pp. 273–293. doi:https://doi.org/10.1007/BF01299452 CPPPEF 0926-6003 CrossrefGoogle Scholar

  • [130] Renaud J. E. and Gabriele G. A., “Approximation in Non-Hierarchic System Optimization,” AIAA Journal, Vol. 32, No. 1, 1994, pp. 198–205. doi:https://doi.org/10.2514/3.11967 AIAJAH 0001-1452 LinkGoogle Scholar

  • [131] Renaud J. E. and Gabriele G. A., “Improved Coordination in Nonhierarchic System Optimization,” AIAA Journal, Vol. 31, No. 12, 1993, pp. 2367–2373. doi:https://doi.org/10.2514/3.11938 AIAJAH 0001-1452 LinkGoogle Scholar

  • [132] Parashar S. and Bloebaum C. L., “Multi-Objective Genetic Algorithm Concurrent Subspace Optimization (MOGACSSO) for Multidisciplinary Design,” 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, AIAA Paper  2006-2047, May 2006. LinkGoogle Scholar

  • [133] Huang C.-H., Galuski J. and Bloebaum C. L., “Multi-Objective Pareto Concurrent Subspace Optimization for Multidisciplinary Design,” AIAA Journal, Vol. 45, No. 8, 2007, pp. 1894–1906. doi:https://doi.org/10.2514/1.19972 AIAJAH 0001-1452 LinkGoogle Scholar

  • [134] Zhang K.-S., Han Z.-H., Li W.-J. and Song W.-P., “Bilevel Adaptive Weighted Sum Method for Multidisciplinary Multi-Objective Optimization,” AIAA Journal, Vol. 46, No. 10, 2008, pp. 2611–2622. doi:https://doi.org/10.2514/1.36853 AIAJAH 0001-1452 LinkGoogle Scholar

  • [135] Parashar S. and Bloebaum C. L., “Robust Multi-Objective Genetic Algorithm Concurrent Subspace Optimization (R-MOGACSSO) for Multidisciplinary Design,” 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, AIAA Paper  2006-6907, Sept. 2006. LinkGoogle Scholar

  • [136] Tappeta R. V., Nagendra S. and Renaud J. E., “A Multidisciplinary Design Optimization Approach for High Temperature Aircraft Engine Components,” Structural Optimization, Vol. 18, Nos. 2–3, 1999, pp. 134–145. doi:https://doi.org/10.1007/BF01195988 SOPTEQ 0934-4373 CrossrefGoogle Scholar

  • [137] Perez R. E., Liu H. H. T. and Behdinan K., “Evaluation of Multidisciplinary Optimization Approaches for Aircraft Conceptual Design,” 10th AIAA/ISSMO Muldisciplinary Analysis and Optimization Conference, AIAA Paper  2004-4537, Aug. 2004. LinkGoogle Scholar

  • [138] Yi S. I., Shin J. K. and Park G. J., “Comparison of MDO Methods with Mathematical Examples,” Structural and Multidisciplinary Optimization, Vol. 39, No. 5, 2008, pp. 391–402. doi:https://doi.org/10.1007/s00158-007-0150-2 CrossrefGoogle Scholar

  • [139] Tedford N. P. and Martins J. R. R. A., “Benchmarking Multidisciplinary Design Optimization Algorithms,” Optimization and Engineering, Vol. 11, No. 1, 2010, pp. 159–183. doi:https://doi.org/10.1007/s11081-009-9082-6 OEPNBR 1389-4420 CrossrefGoogle Scholar

  • [140] de Wit A. J. and van Keulen F., “Numerical Comparison of Multi-Level Optimization Techniques,” 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper  2007-1895, April 2007. LinkGoogle Scholar

  • [141] Braun R. D., “Collaborative Optimization: An Architecture for Large-Scale Distributed Design,” Ph.D. Thesis, Stanford Univ., Stanford, CA, 1996. Google Scholar

  • [142] Braun R. D., Gage P. J., Kroo I. M. and Sobieski I. P., “Implementation and Performance Issues in Collaborative Optimization,” 6th AIAA/USAF/NASA/ISSMO Multidisciplinary Analysis and Optimization Symposium, AIAA Paper  1996-4017, Sept. 1996. LinkGoogle Scholar

  • [143] DeMiguel A.-V. and Murray W., “An Analysis of Collaborative Optimization Methods,” 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA Paper  2000-4720, 2000. LinkGoogle Scholar

  • [144] Lin J. G., “Analysis and Enhancement of Collaborative Optimization for Multidisciplinary Design,” AIAA Journal, Vol. 42, No. 2, 2004, pp. 348–360. doi:https://doi.org/10.2514/1.9098 AIAJAH 0001-1452 LinkGoogle Scholar

  • [145] Fiacco A. V. and McCormick G. P., Nonlinear Programming: Sequential Unconstrained Minimization Techniques, Society for Industrial and Applied Mathematics, Philadelphia, 1990, pp. 53–72. CrossrefGoogle Scholar

  • [146] Brown N. F. and Olds J. R., “Evaluation of Multidisciplinary Optimization Techniques Applied to a Reusable Launch Vehicle,” Journal of Spacecraft and Rockets, Vol. 43, No. 6, 2006, pp. 1289–1300. doi:https://doi.org/10.2514/1.16577 JSCRAG 0022-4650 LinkGoogle Scholar

  • [147] Perez R. E., “A Multidisciplinary Optimization Framework for Flight Dynamics and Control Integration in Aircraft Design,” Ph.D. Thesis, Univ. of Toronto, Toronto, 2007. Google Scholar

  • [148] Marriage C., “Automatic Implementation of Multidisciplinary Design Optimization Architectures Using π MDO ,” M.S. Thesis, Univ. of Toronto, Toronto, 2008. Google Scholar

  • [149] Li X., Li W. and Liu C., “Geometric Analysis of Collaborative Optimization,” Structural and Multidisciplinary Optimization, Vol. 35, No. 4, 2008, pp. 301–313. doi:https://doi.org/10.1007/s00158-007-0127-1 CrossrefGoogle Scholar

  • [150] Budianto I. A. and Olds J. R., “Design and Deployment of a Satellite Constellation Using Collaborative Optimization,” Journal of Spacecraft and Rockets, Vol. 41, No. 6, 2004, pp. 956–963. doi:https://doi.org/10.2514/1.14254 JSCRAG 0022-4650 LinkGoogle Scholar

  • [151] Ledsinger L. A. and Olds J. R., “Optimized Solutions for Kistler K-1 Branching Trajectories Using Multidisciplinary Design Optimization Techniques,” Journal of Spacecraft and Rockets, Vol. 39, No. 3, 2002, pp. 420–429. doi:https://doi.org/10.2514/2.3825 JSCRAG 0022-4650 LinkGoogle Scholar

  • [152] Perez R. E., Liu H. H. T. and Behdinan K., “Multidisciplinary Optimization Framework for Control-Configuration Integration in Aircraft Conceptual Design,” Journal of Aircraft, Vol. 43, No. 6, 2006, pp. 1937–1948. doi:https://doi.org/10.2514/1.22263 JAIRAM 0021-8669 LinkGoogle Scholar

  • [153] Allison J. T., Roth B., Kokkolaras M., Kroo I. M. and Papalambros P. Y., “Aircraft Family Design Using Decomposition-Based Methods,” 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, AIAA Paper  2006-6950, Sept. 2006. LinkGoogle Scholar

  • [154] McAllister C. D., Simpson T. W., Hacker K., Lewis K. and Messac A., “Integrating Linear Physical Programming Within Collaborative Optimization for Multiobjective Multidisciplinary Design Optimization,” Structural and Multidisciplinary Optimization, Vol. 29, No. 3, 2005, pp. 178–189. doi:https://doi.org/10.1007/s00158-004-0481-1 CrossrefGoogle Scholar

  • [155] Gu X., Renaud J. E., Ashe L. M., Batill S. M., Budhiraja A. S. and Krajewski L. J., “Decision-Based Collaborative Optimization,” Journal of Mechanical Design, Vol. 124, No. 1, 2002, pp. 1–13. doi:https://doi.org/10.1115/1.1432991 CrossrefGoogle Scholar

  • [156] Gu X. S., Renaud J. E. and Penninger C. L., “Implicit Uncertainty Propagation for Robust Col-laborative Optimization,” Journal of Mechanical Design, Vol. 128, No. 4, 2006, pp. 1001–1013. doi:https://doi.org/10.1115/1.2205869 CrossrefGoogle Scholar

  • [157] Huang H.-Z., Tao Y. and Liu Y., “Multidisciplinary Collaborative Optimization Using Fuzzy Satisfaction Degree and Fuzzy Sufficiency Degree Model,” Soft Computing, Vol. 12, No. 10, 2008, pp. 995–1005. doi:https://doi.org/10.1007/s00500-007-0268-6 CrossrefGoogle Scholar

  • [158] Roth B. D., “Aircraft Family Design Using Enhanced Collaborative Optimization,” Ph.D. Thesis, Stanford Univ., Stanford, CA, 2008. Google Scholar

  • [159] Kodiyalam S., “Evaluation of Methods for Multidisciplinary Design Optimization (MDO), Phase I,” NASA CR-1998-208716, Sept. 1998. Google Scholar

  • [160] Kodiyalam S. and Yuan C., “Evaluation of Methods for Multidisciplinary Design Optimization (MDO), Part 2,” NASA CR-2000-210313, Nov. 2000. Google Scholar

  • [161] Conn A. R., Gould N. I. M. and Toint P. L., Trust Region Methods, Society for Industrial and Applied Mathematics, Philadelphia, 2000. CrossrefGoogle Scholar

  • [162] Kim H., Ragon S., Soremekun G., Malone B. and Sobieszczanski–Sobieski J., “Flexible Approximation Model Approach for Bi-Level Integrated System Synthesis,” 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, AIAA Paper  2004-4545, Aug. 2004. LinkGoogle Scholar

  • [163] Ahn J. and Kwon J. H., “An Efficient Strategy for Reliability-Based Multidisciplinary Design Optimization Using BLISS,” Structural and Multidisciplinary Optimization, Vol. 31, No. 5, 2006, pp. 363–372. doi:https://doi.org/10.1007/s00158-005-0565-6 CrossrefGoogle Scholar

  • [164] LeGresley P. A. and Alonso J. J., “Improving the Performance of Design Decomposition Methods with POD,” 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, AIAA Paper  2004-4465, Aug. 2004. LinkGoogle Scholar

  • [165] Berkooz G., Holmes P. and Lumley J. L., “The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows,” Annual Review of Fluid Mechanics, Vol. 25, 1993, pp. 539–575. doi:https://doi.org/10.1146/annurev.fl.25.010193.002543 ARVFA3 0066-4189 CrossrefGoogle Scholar

  • [166] Sobieszczanski–Sobieski J., “Integrated System-of-Systems Synthesis,” AIAA Journal, Vol. 46, No. 5, 2008, pp. 1072–1080. doi:https://doi.org/10.2514/1.27953 AIAJAH 0001-1452 LinkGoogle Scholar

  • [167] Kim H. M., “Target Cascading in Optimal System Design,” Ph.D. Thesis, Univ. of Michigan, Ann Arbor, MI, 2001. Google Scholar

  • [168] Tosserams S., Etman L. F. P. and Rooda J. E., “Augmented Lagrangian Coordination for Distributed Optimal Design in MDO,” International Journal for Numerical Methods in Engineering, Vol. 73, 2008, pp. 1885–1910. doi:https://doi.org/10.1002/(ISSN)1097-0207 IJNMBH 0029-5981 CrossrefGoogle Scholar

  • [169] Kim H. M., Chen W. and Wiecek M. M., “Lagrangian Coordination for Enhancing the Convergence of Analytical Target Cascading,” AIAA Journal, Vol. 44, No. 10, 2006, pp. 2197–2207. doi:https://doi.org/10.2514/1.15326 AIAJAH 0001-1452 LinkGoogle Scholar

  • [170] Tosserams S., Etman L. F. P., Papalambros P. Y. and Rooda J. E., “An Augmented Lagrangian Relaxation for Analytical Target Cascading Using the Alternating Direction Method of Multipliers,” Structural and Multidisciplinary Optimization, Vol. 31, No. 3, 2006, pp. 176–189. doi:https://doi.org/10.1007/s00158-005-0579-0 CrossrefGoogle Scholar

  • [171] Bertsekas D. P., Constrained Optimization and Lagrange Multiplier Methods, Athena Scientific, Belmont, MA, 1996, pp. 104–125. Google Scholar

  • [172] Li Y., Lu Z. and Michalek J. J., “Diagonal Quadratic Approximation for Parallelization of Analytical Target Cascading,” Journal of Mechanical Design, Vol. 130, No. 5, 2008, pp. 051402-1–051402-11. doi:https://doi.org/10.1115/1.2838334 CrossrefGoogle Scholar

  • [173] Ruszczynski A., “On Convergence of an Augmented Lagrangian Decomposition Method for Sparse Convex Optimization,” Mathematics of Operations Research, Vol. 20, No. 3, 1995, pp. 634–656. doi:https://doi.org/10.1287/moor.20.3.634 MOREDQ 0364-765X CrossrefGoogle Scholar

  • [174] Han J. and Papalambros P. Y., “A Sequential Linear Programming Coordination Algorithm for Analytical Target Cascading,” Journal of Mechanical Design, Vol. 132, No. 3, 2010, pp. 021003-1–021003-8. doi:https://doi.org/10.1115/1.4000758 CrossrefGoogle Scholar

  • [175] Bazaara M. S., Sherali H. D. and Shetty C. M., Nonlinear Programming: Theory and Algorithms, Wiley, New York, 2006, pp. 568–576. CrossrefGoogle Scholar

  • [176] Chen T.-Y., “Calculation of the Move Limits for the Sequential Linear Programming Method,” International Journal for Numerical Methods in Engineering, Vol. 36, No. 15, 1993, pp. 2661–2679. doi:https://doi.org/10.1002/(ISSN)1097-0207 IJNMBH 0029-5981 CrossrefGoogle Scholar

  • [177] Han J. and Papalambros P. Y., “A Note on the Convergence of Analytical Target Cascading with Infinite Norms,” Journal of Mechanical Design, Vol. 132, No. 3, 2010, pp. 034502-1–034502-6. doi:https://doi.org/10.1115/1.4001001 CrossrefGoogle Scholar

  • [178] Kokkolaras M., Fellini R., Kim H. M., Michelena N. F. and Papalambros P. Y., “Extension of the Target Cascading Formulation to the Design of Product Families,” Structural and Multidisciplinary Optimization, Vol. 24, No. 4, 2002, pp. 293–301. doi:https://doi.org/10.1007/s00158-002-0240-0 CrossrefGoogle Scholar

  • [179] Kim H. M., Kokkolaras M., Louca L. S., Delagrammatikas G. J., Michelena N. F., Filipi Z. S., Papalambros P. Y., Stein J. L. and Assanis D. N., “Target Cascading in Vehicle Redesign: A Class VI Truck Study,” International Journal of Vehicle Design, Vol. 29, No. 3, 2002, pp. 199–225. doi:https://doi.org/10.1504/IJVD.2002.002010 IJVDDW 0143-3369 CrossrefGoogle Scholar

  • [180] Kim H. M., Rideout D. G., Papalambros P. Y. and Stein J. L., “Analytical Target Cascading in Automotive Vehicle Design,” Journal of Mechanical Design, Vol. 125, No. 3, 2003, pp. 481–490. doi:https://doi.org/10.1115/1.1586308 CrossrefGoogle Scholar

  • [181] Blouin V. Y., Fadel G. M., Haque I. U., Wagner J. R. and Samuels H. B., “Continuously Variable Transmission Design for Optimum Vehicle Performance by Analytical Target Cascading,” International Journal of Heavy Vehicle Systems, Vol. 11, No. 3/4, 2004, pp. 327–348. doi:https://doi.org/10.1504/IJHVS.2004.005454 CrossrefGoogle Scholar

  • [182] Tajima J., Momiyama F. and Yuhara N., “A New Solution for Two-Bag Air Suspension System with Leaf Spring for Heavy-Duty Vehicle,” Vehicle System Dynamics, Vol. 44, No. 2, 2006, pp. 107–138. doi:https://doi.org/10.1080/00423110500385907 VSDYA4 0042-3114 CrossrefGoogle Scholar

  • [183] Chen Y., Chen X. and Lin Y., “The Application of Analytical Target Cascading in Parallel Hybrid Electric Vehicle,” IEEE Vehicle Power and Propulsion Conference, IEEE Publ., Piscataway, NJ, 2009, pp. 1602–1607. Google Scholar

  • [184] Han J. and Papalambros P. Y., “Optimal Design of Hybrid Electric Fuel Cell Vehicles Under Uncer-tainty and Enterprise Considerations,” Journal of Fuel Cell Science and Technology, Vol. 7, No. 2, 2010, pp. 021020-1–021020-9. doi:https://doi.org/10.1115/1.3179762 CrossrefGoogle Scholar

  • [185] Allison J. T., Walsh D., Kokkolaras M., Papalambros P. Y. and Cartmell M., “Analytical Target Cascading in Aircraft Design,” 44th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper  2006-1325, Jan. 2006. LinkGoogle Scholar

  • [186] Li Z., Kokkolaras M., Papalambros P. Y. and Hu S. J., “Product and Process Tolerance Allocation in Multistation Compliant Assembly Using Analytical Target Cascading,” Journal of Mechanical Design, Vol. 130, No. 9, 2008, pp. 091701-1–091701-9. doi:https://doi.org/10.1115/1.2943296 CrossrefGoogle Scholar

  • [187] Huang G. Q. and Qu T., “Extending Analytical Target Cascading for Optimal Configuration of Supply Chains with Alternative Autonomous Suppliers,” International Journal of Production Economics, Vol. 115, No. 1, 2008, pp. 39–54. doi:https://doi.org/10.1016/j.ijpe.2008.04.008 CrossrefGoogle Scholar

  • [188] Michalek J. J., Feinberg F. M. and Papalambros P. Y., “Linking Marketing and Engineering Product Design Decisions via Analytical Target Cascading,” Journal of Product Innovation Management, Vol. 22, No. 1, 2005, pp. 42–62. doi:https://doi.org/10.1111/jpim.2005.22.issue-1 JPIMDD 0737-6782 CrossrefGoogle Scholar

  • [189] Huang G. Q., Qu T., Cheung D. W. L. and Liang L., “Extensible Multi-Agent System for Optimal Design of Complex Systems Using Analytical Target Cascading,” International Journal of Advanced Manufacturing Technology, Vol. 30, Nos. 1–10, 2006, pp. 917–926. doi:https://doi.org/10.1007/s00170-005-0064-3 IJATEA 1433-3051 CrossrefGoogle Scholar

  • [190] Etman L. F. P., Kokkolaras M., Hofkamp A. T., Papalambros P. Y. and Rooda J. E., “Coordination Specification in Distributed Optimal Design of Multilevel Systems Using the χ Language,” Structural and Multidisciplinary Optimization, Vol. 29, No. 3, 2005, pp. 198–212. doi:https://doi.org/10.1007/s00158-004-0467-z CrossrefGoogle Scholar

  • [191] Kokkolaras M., Mourelatos Z. P. and Papalambros P. Y., “Design Optimization of Hierarchically Decomposed Multilevel Systems Under Uncertainty,” Journal of Mechanical Design, Vol. 128, No. 2, 2006, pp. 503–508. doi:https://doi.org/10.1115/1.2168470 CrossrefGoogle Scholar

  • [192] Liu H., Chen W., Kokkolaras M., Papalambros P. Y. and Kim H. M., “Probabilistic Analytical Target Cascading: A Moment Matching Formulation for Multilevel Optimization Under Uncertainty,” Journal of Mechanical Design, Vol. 128, No. 4, 2006, pp. 991–1000. doi:https://doi.org/10.1115/1.2205870 CrossrefGoogle Scholar

  • [193] Tosserams S., Etman L. F. P. and Rooda J. E., “Block-Separable Linking Constraints in Augmented Lagrangian Coordination in MDO,” Structural and Multidisciplinary Optimization, Vol. 37, No. 5, 2009, pp. 521–527. doi:https://doi.org/10.1007/s00158-008-0244-5 CrossrefGoogle Scholar

  • [194] DeMiguel A.-V., “Two Decomposition Algorithms for Nonconvex Optimization Problems with Global Variables,” Ph.D. Thesis, Stanford Univ., Stanford, CA, 2001. Google Scholar

  • [195] Tosserams S., Etman L. F. P. and Rooda J. E., “An Augmented Lagrangian Decomposition Method for Quasiseparable Problems in MDO,” Structural and Multidisciplinary Optimization, Vol. 34, No. 3, 2007, pp. 211–227. doi:https://doi.org/10.1007/s00158-006-0077-z CrossrefGoogle Scholar

  • [196] Shin M. K., Kang B. S. and Park G. J., “Application of the Multidisciplinary Design Optimization Algorithm to the Design of a Belt-Integrated Seat While Considering Crashworthiness,” Journal of Automobile Engineering, Vol. 219, No. 11, 2005, pp. 1281–1292. doi:https://doi.org/10.1243/095440705X34928 CrossrefGoogle Scholar

  • [197] Liu B., Haftka R. T. and Watson L. T., “Global-Local Structural Optimization Using Response Surfaces of Local Optimization Margins,” Structural and Multidisciplinary Optimization, Vol. 27, No. 5, 2004, pp. 352–359. doi:https://doi.org/10.1007/s00158-004-0393-0 CrossrefGoogle Scholar

  • [198] Martins J. R. R. A., Alonso J. J. and Reuther J. J., “High-Fidelity Aerostructural Design Optimization of a Supersonic Business Jet,” Journal of Aircraft, Vol. 41, No. 3, 2004, pp. 523–530. doi:https://doi.org/10.2514/1.11478 JAIRAM 0021-8669 LinkGoogle Scholar

  • [199] Kennedy G., Martins J. R. R. A. and Hansen J. S., “Aerostructural Optimization of Aircraft Structures Using Asymmetric Subspace Optimization,” 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, AIAA Paper  2008-5847, Sept. 2008. LinkGoogle Scholar

  • [200] Kaufman M., Balabanov V., Burgee S. L., Giunta A. A., Grossman B., Haftka R. T., Mason W. H. and Watson L. T., “Variable-Complexity Response Surface Approximations for Wing Structural Weight in HSCT Design,” Computational Mechanics, Vol. 18, No. 2, 1996, pp. 112–126. doi:https://doi.org/10.1007/BF00350530 0178-7675 CrossrefGoogle Scholar

  • [201] Hosder S., Watson L. T., Grossman B., Mason W. H., Kim H., Haftka R. T. and Cox S. E., “Polynomial Response Surface Approximations for the Multidisciplinary Design Optimization of a High Speed Civil Transport,” Optimization and Engineering, Vol. 2, No. 4, 2001, pp. 431–452. doi:https://doi.org/10.1023/A:1016094522761 OEPNBR 1389-4420 CrossrefGoogle Scholar

  • [202] Hulme K. F. and Bloebaum C. L., “A Simulation-Based Comparison of Multidisciplinary Design Optimization Solution Strategies Using CASCADE,” Structural and Multidisciplinary Optimization, Vol. 19, No. 1, 2000, pp. 17–35. doi:https://doi.org/10.1007/s001580050083 CrossrefGoogle Scholar

  • [203] Allison J. T., Kokkolaras M. and Papalambros P. Y., “On Selecting Single-Level Formulations for Complex System Design Optimization,” Journal of Mechanical Design, Vol. 129, No. 9, 2007, pp. 898–906. doi:https://doi.org/10.1115/1.2747632 CrossrefGoogle Scholar

  • [204] Martins J. R. R. A., Marriage C. and Tedford N., “pyMDO: An Object-Oriented Framework for Multidisciplinary Design Optimization,” ACM Transactions on Mathematical Software, Vol. 36, No. 4, 2009, pp. 20:1–20:25. doi:https://doi.org/10.1145/1555386 ACMSCU 0098-3500 CrossrefGoogle Scholar

  • [205] Gray J., Moore K. T. and Naylor B. A., “OpenMDAO: An Open Source Framework for Multidisciplinary Analysis and Optimization,” 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference, AIAA Paper  2010-9101, Sept. 2010. LinkGoogle Scholar

  • [206] Lu Z. and Martins J. R. R. A., “Graph Partitioning-Based Coordination Methods for Large-Scale Multidisciplinary Design Optimization Problems,” Proceedings of the 14th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference, Indianapolis, IN , AIAA Paper  2012-5522, 2012. Google Scholar

  • [207] Padula S. L. and Gillian R. E., “Multidisciplinary Environments: A History of Engineering Framework Development,” 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, AIAA Paper  2006-7083, Sept. 2006. LinkGoogle Scholar

  • [208] Kodiyalam S. and Sobieszczanski–Sobieski J., “Multidisciplinary Design Optimization: Somemal Methods, Framework Requirements, and Application to Vehicle Design,” International Journal of Vehicle Design, Vol. 25, No. 1/2, 2001, pp. 3–22. doi:https://doi.org/10.1504/IJVD.2001.001904 IJVDDW 0143-3369 CrossrefGoogle Scholar

  • [209] Kodiyalam S., Kremenetsky M. and Posey S., “Balanced HPC Infrastructure for CFD and Associated Multi-Discipline Simulations of Engineering Systems,” Journal of Aerospace Sciences and Technologies, Vol. 61, No. 3, 2009, pp. 434–443. Google Scholar

  • [210] Tosserams S., Etman L. F. P. and Rooda J. E., “A Micro-Accelerometer MDO Benchmark Problem,” Structural and Multidisciplinary Optimization, Vol. 41, No. 2, 2010, pp. 255–275. doi:https://doi.org/10.1007/s00158-009-0422-0 CrossrefGoogle Scholar

  • [211] Tosserams S., Etman L. F. P. and Rooda J. E., “Multi-Modality in Augmented Lagrangian Co-ordination for Distributed Optimal Design,” Structural and Multidisciplinary Optimization, Vol. 40, Nos. 1–6, 2010, pp. 329–352. doi:https://doi.org/10.1007/s00158-009-0371-7 CrossrefGoogle Scholar

  • [212] Padula S. L., Alexandrov N. and Green L. L., “MDO Test Suite at NASA Langley Research Center,” 6th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, AIAA Paper  1996-4028, Sept. 1996. LinkGoogle Scholar