ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Assay-Dependent Phytotoxicity of Nanoparticles to Plants

View Author Information
Department of Biology and Environmental Science and Department of Physics, University of New Haven, 300 Boston Post Road, West Haven, Connecticut 06516, and Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut 06504
* Corresponding author e-mail: [email protected]; phone: 203-974-8523; fax: 203-974-8502.
†Department of Biology and Environmental Science, University of New Haven.
‡Department of Physics, University of New Haven.
§The Connecticut Agricultural Experiment Station.
Cite this: Environ. Sci. Technol. 2009, 43, 24, 9473–9479
Publication Date (Web):November 19, 2009
https://doi.org/10.1021/es901695c
Copyright © 2009 American Chemical Society

    Article Views

    6371

    Altmetric

    -

    Citations

    775
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    The effects of five nanomaterials (multiwalled carbon nanotubes [MWCNTs], Ag, Cu, ZnO, Si) and their corresponding bulk counterparts on seed germination, root elongation, and biomass of Cucurbita pepo (zucchini) were investigated. The plants were grown in hydroponic solutions amended with nanoparticles or bulk material suspensions at 1000 mg/L. Seed germination was unaffected by any of the treatments, but Cu nanoparticles reduced emerging root length by 77% and 64% relative to unamended controls and seeds exposed to bulk Cu powder, respectively. During a 15-day hydroponic trial, the biomass of plants exposed to MWCNTs and Ag nanoparticles was reduced by 60% and 75%, respectively, as compared to control plants and corresponding bulk carbon and Ag powder solutions. Although bulk Cu powder reduced biomass by 69%, Cu nanoparticle exposure resulted in 90% reduction relative to control plants. Both Ag and Cu ion controls (1−1000 mg/L) and supernatant from centrifuged nanoparticle solutions (1000 mg/L) indicate that half the observed phytotoxicity is from the elemental nanoparticles themselves. The biomass and transpiration volume of zucchini exposed to Ag nanoparticles or bulk powder at 0−1000 mg/mL for 17 days was measured. Exposure to Ag nanoparticles at 500 and 100 mg/L resulted in 57% and 41% decreases in plant biomass and transpiration, respectively, as compared to controls or to plants exposed to bulk Ag. On average, zucchini shoots exposed to Ag nanoparticles contained 4.7 greater Ag concentration than did the plants from the corresponding bulk solutions. These findings demonstrate that standard phytotoxicity tests such as germination and root elongation may not be sensitive enough or appropriate when evaluating nanoparticle toxicity to terrestrial plant species.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Additional table and figures. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 775 publications.

    1. Garret D. Bland, Matthew Battifarano, Ana Elena Pradas del Real, Géraldine Sarret, Gregory V. Lowry. Distinguishing Engineered TiO2 Nanomaterials from Natural Ti Nanomaterials in Soil Using spICP-TOFMS and Machine Learning. Environmental Science & Technology 2022, 56 (5) , 2990-3001. https://doi.org/10.1021/acs.est.1c02950
    2. Theo Uskoković, Evangelina Uskoković, Victoria Wu, Vuk Uskoković. Calcium Phosphate and Senescence of Orange Jubilees in the Summertime. ACS Applied Bio Materials 2020, 3 (6) , 3770-3784. https://doi.org/10.1021/acsabm.0c00357
    3. Liangliang Sun, Ruting Wang, Qiong Ju, Jin Xu. Physiological, Metabolic, and Transcriptomic Analyses Reveal the Responses of Arabidopsis Seedlings to Carbon Nanohorns. Environmental Science & Technology 2020, 54 (7) , 4409-4420. https://doi.org/10.1021/acs.est.9b07133
    4. Tao-Ho Chang, Yung-Wen Liu, Ying-Hong Lin, Jiang-Jen Lin, Jenn-Wen Huang, Adil Hussain, Pi-Fang Linda Chang. Silver Nanoparticles on Nanoscale Silica Platelets (AgNP/NSP) and Nanoscale Silica Platelets (NSP) Inhibit the Development of Fusarium oxysporum f. sp. niveum. ACS Applied Bio Materials 2019, 2 (11) , 4978-4985. https://doi.org/10.1021/acsabm.9b00699
    5. Zeinah Elhaj Baddar, Jason M. Unrine. Functionalized-ZnO-Nanoparticle Seed Treatments to Enhance Growth and Zn Content of Wheat (Triticum aestivum) Seedlings. Journal of Agricultural and Food Chemistry 2018, 66 (46) , 12166-12178. https://doi.org/10.1021/acs.jafc.8b03277
    6. Ashley M. Smith, Leanne M. Gilbertson. Rational Ligand Design To Improve Agrochemical Delivery Efficiency and Advance Agriculture Sustainability. ACS Sustainable Chemistry & Engineering 2018, 6 (11) , 13599-13610. https://doi.org/10.1021/acssuschemeng.8b03457
    7. Nicholas K. Geitner, Jane L. Cooper, Astrid Avellan, Benjamin T. Castellon, Brittany G. Perrotta, Nathan Bossa, Marie Simonin, Steven M. Anderson, Sayako Inoue, Michael F. Hochella, Jr., Curtis J. Richardson, Emily S. Bernhardt, Gregory V. Lowry, P. Lee Ferguson, Cole W. Matson, Ryan S. King, Jason M. Unrine, Mark R. Wiesner, Heileen Hsu-Kim. Size-Based Differential Transport, Uptake, and Mass Distribution of Ceria (CeO2) Nanoparticles in Wetland Mesocosms. Environmental Science & Technology 2018, 52 (17) , 9768-9776. https://doi.org/10.1021/acs.est.8b02040
    8. Huiling Zhang, Wenchao Du, Jose R. Peralta-Videa, Jorge L. Gardea-Torresdey, Jason C. White, Arturo Keller, Hongyan Guo, Rong Ji, Lijuan Zhao. Metabolomics Reveals How Cucumber (Cucumis sativus) Reprograms Metabolites To Cope with Silver Ions and Silver Nanoparticle-Induced Oxidative Stress. Environmental Science & Technology 2018, 52 (14) , 8016-8026. https://doi.org/10.1021/acs.est.8b02440
    9. Roberta Ruotolo, Elena Maestri, Luca Pagano, Marta Marmiroli, Jason C. White, Nelson Marmiroli. Plant Response to Metal-Containing Engineered Nanomaterials: An Omics-Based Perspective. Environmental Science & Technology 2018, 52 (5) , 2451-2467. https://doi.org/10.1021/acs.est.7b04121
    10. Orestis Antonoglou, Julietta Moustaka, Ioannis-Dimosthenis S. Adamakis, Ilektra Sperdouli, Anastasia A. Pantazaki, Michael Moustakas, and Catherine Dendrinou-Samara . Nanobrass CuZn Nanoparticles as Foliar Spray Nonphytotoxic Fungicides. ACS Applied Materials & Interfaces 2018, 10 (5) , 4450-4461. https://doi.org/10.1021/acsami.7b17017
    11. Ryan A. Davis, Devin A. Rippner, Sven H. Hausner, Sanjai J. Parikh, Andrew J. McElrone, and Julie L. Sutcliffe . In Vivo Tracking of Copper-64 Radiolabeled Nanoparticles in Lactuca sativa. Environmental Science & Technology 2017, 51 (21) , 12537-12546. https://doi.org/10.1021/acs.est.7b03333
    12. Ying Wang, Chong Hyun Chang, Zhaoxia Ji, Dermont C. Bouchard, Roger M. Nisbet, Joshua P. Schimel, Jorge L. Gardea-Torresdey, and Patricia A. Holden . Agglomeration Determines Effects of Carbonaceous Nanomaterials on Soybean Nodulation, Dinitrogen Fixation Potential, and Growth in Soil. ACS Nano 2017, 11 (6) , 5753-5765. https://doi.org/10.1021/acsnano.7b01337
    13. Yongguang Yin, Zhiqiang Tan, Ligang Hu, Sujuan Yu, Jingfu Liu, and Guibin Jiang . Isotope Tracers To Study the Environmental Fate and Bioaccumulation of Metal-Containing Engineered Nanoparticles: Techniques and Applications. Chemical Reviews 2017, 117 (5) , 4462-4487. https://doi.org/10.1021/acs.chemrev.6b00693
    14. Ghazala Mustafa and Setsuko Komatsu . Insights into the Response of Soybean Mitochondrial Proteins to Various Sizes of Aluminum Oxide Nanoparticles under Flooding Stress. Journal of Proteome Research 2016, 15 (12) , 4464-4475. https://doi.org/10.1021/acs.jproteome.6b00572
    15. Lijuan Zhao, Cruz Ortiz, Adeyemi S. Adeleye, Qirui Hu, Hongjun Zhou, Yuxiong Huang, and Arturo A. Keller . Metabolomics to Detect Response of Lettuce (Lactuca sativa) to Cu(OH)2 Nanopesticides: Oxidative Stress Response and Detoxification Mechanisms. Environmental Science & Technology 2016, 50 (17) , 9697-9707. https://doi.org/10.1021/acs.est.6b02763
    16. Shailise S. Ross, Matthew J. Owen, Brian P. Pedersen, Gang-yu Liu, and William J. W. Miller . Using Mung Beans as a Simple, Informative Means To Evaluate the Phytotoxicity of Engineered Nanomaterials and Introduce the Concept of Nanophytotoxicity to Undergraduate Students. Journal of Chemical Education 2016, 93 (8) , 1428-1433. https://doi.org/10.1021/acs.jchemed.5b01038
    17. Xingmao Ma, Qiang Wang, Lorenzo Rossi, and Weilan Zhang . Cerium Oxide Nanoparticles and Bulk Cerium Oxide Leading to Different Physiological and Biochemical Responses in Brassica rapa. Environmental Science & Technology 2016, 50 (13) , 6793-6802. https://doi.org/10.1021/acs.est.5b04111
    18. Lijuan Zhao, Yuxiong Huang, Jerry Hu, Hongjun Zhou, Adeyemi S. Adeleye, and Arturo A. Keller . 1H NMR and GC-MS Based Metabolomics Reveal Defense and Detoxification Mechanism of Cucumber Plant under Nano-Cu Stress. Environmental Science & Technology 2016, 50 (4) , 2000-2010. https://doi.org/10.1021/acs.est.5b05011
    19. Chuanxin Ma, Sudesh Chhikara, Rakesh Minocha, Stephanie Long, Craig Musante, Jason C. White, Baoshan Xing, and Om Parkash Dhankher . Reduced Silver Nanoparticle Phytotoxicity in Crambe abyssinica with Enhanced Glutathione Production by Overexpressing Bacterial γ-Glutamylcysteine Synthase. Environmental Science & Technology 2015, 49 (16) , 10117-10126. https://doi.org/10.1021/acs.est.5b02007
    20. John P. Stegemeier, Fabienne Schwab, Benjamin P. Colman, Samuel M. Webb, Matthew Newville, Antonio Lanzirotti, Christopher Winkler, Mark R. Wiesner, and Gregory V. Lowry . Speciation Matters: Bioavailability of Silver and Silver Sulfide Nanoparticles to Alfalfa (Medicago sativa). Environmental Science & Technology 2015, 49 (14) , 8451-8460. https://doi.org/10.1021/acs.est.5b01147
    21. Weilan Zhang, Stephen D. Ebbs, Craig Musante, Jason C. White, Cunmei Gao, and Xingmao Ma . Uptake and Accumulation of Bulk and Nanosized Cerium Oxide Particles and Ionic Cerium by Radish (Raphanus sativus L.). Journal of Agricultural and Food Chemistry 2015, 63 (2) , 382-390. https://doi.org/10.1021/jf5052442
    22. Jae-Hwan Kim, Youngjun Oh, Hakwon Yoon, Inhwan Hwang, and Yoon-Seok Chang . Iron Nanoparticle-Induced Activation of Plasma Membrane H+-ATPase Promotes Stomatal Opening in Arabidopsis thaliana. Environmental Science & Technology 2015, 49 (2) , 1113-1119. https://doi.org/10.1021/es504375t
    23. Divya Singh Arun Kumar . Identifying Knowledge Gaps in Assessing Implication of Engineered Nanomaterials on Wastewater Reuse. 2015, 135-148. https://doi.org/10.1021/bk-2015-1198.ch007
    24. Joseph Hawthorne, Roberto De la Torre Roche, Baoshan Xing, Lee A. Newman, Xingmao Ma, Sanghamitra Majumdar, Jorge Gardea-Torresdey, and Jason C. White . Particle-Size Dependent Accumulation and Trophic Transfer of Cerium Oxide through a Terrestrial Food Chain. Environmental Science & Technology 2014, 48 (22) , 13102-13109. https://doi.org/10.1021/es503792f
    25. M. Marmiroli, L. Pagano, M. L. Savo Sardaro, M. Villani, and N. Marmiroli . Genome-Wide Approach in Arabidopsis thaliana to Assess the Toxicity of Cadmium Sulfide Quantum Dots. Environmental Science & Technology 2014, 48 (10) , 5902-5909. https://doi.org/10.1021/es404958r
    26. Elijah J. Petersen, Theodore B. Henry, Jian Zhao, Robert I. MacCuspie, Teresa L. Kirschling, Marina A. Dobrovolskaia, Vincent Hackley, Baoshan Xing, and Jason C. White . Identification and Avoidance of Potential Artifacts and Misinterpretations in Nanomaterial Ecotoxicity Measurements. Environmental Science & Technology 2014, 48 (8) , 4226-4246. https://doi.org/10.1021/es4052999
    27. Jae-Hwan Kim, Yongjik Lee, Eun-Ju Kim, Sungmin Gu, Eun Ju Sohn, Young Sook Seo, Hyun Joo An, and Yoon-Seok Chang . Exposure of Iron Nanoparticles to Arabidopsis thaliana Enhances Root Elongation by Triggering Cell Wall Loosening. Environmental Science & Technology 2014, 48 (6) , 3477-3485. https://doi.org/10.1021/es4043462
    28. Saheli Pradhan, Prasun Patra, Sumistha Das, Sourov Chandra, Shouvik Mitra, Kushal Kumar Dey, Shirin Akbar, Pratip Palit, and Arunava Goswami . Photochemical Modulation of Biosafe Manganese Nanoparticles on Vigna radiata: A Detailed Molecular, Biochemical, and Biophysical Study. Environmental Science & Technology 2013, 47 (22) , 13122-13131. https://doi.org/10.1021/es402659t
    29. Lok R. Pokhrel, Brajesh Dubey, and Phillip R. Scheuerman . Impacts of Select Organic Ligands on the Colloidal Stability, Dissolution Dynamics, and Toxicity of Silver Nanoparticles. Environmental Science & Technology 2013, 47 (22) , 12877-12885. https://doi.org/10.1021/es403462j
    30. Roberto De La Torre-Roche, Joseph Hawthorne, Yingqing Deng, Baoshan Xing, Wenjun Cai, Lee A. Newman, Qiang Wang, Xingmao Ma, Helmi Hamdi, and Jason C. White . Multiwalled Carbon Nanotubes and C60 Fullerenes Differentially Impact the Accumulation of Weathered Pesticides in Four Agricultural Plants. Environmental Science & Technology 2013, 47 (21) , 12539-12547. https://doi.org/10.1021/es4034809
    31. Rashid Kaveh, Yue-Sheng Li, Sibia Ranjbar, Rouzbeh Tehrani, Christopher L. Brueck, and Benoit Van Aken . Changes in Arabidopsis thaliana Gene Expression in Response to Silver Nanoparticles and Silver Ions. Environmental Science & Technology 2013, 47 (18) , 10637-10644. https://doi.org/10.1021/es402209w
    32. Mohamed H. Lahiani, Enkeleda Dervishi, Jihua Chen, Zeid Nima, Alain Gaume, Alexandru S. Biris, and Mariya V. Khodakovskaya . Impact of Carbon Nanotube Exposure to Seeds of Valuable Crops. ACS Applied Materials & Interfaces 2013, 5 (16) , 7965-7973. https://doi.org/10.1021/am402052x
    33. Youzhi Feng, Xiangchao Cui, Shiying He, Ge Dong, Min Chen, Junhua Wang, and Xiangui Lin . The Role of Metal Nanoparticles in Influencing Arbuscular Mycorrhizal Fungi Effects on Plant Growth. Environmental Science & Technology 2013, 47 (16) , 9496-9504. https://doi.org/10.1021/es402109n
    34. Qiaoling Liu, Xuejie Zhang, Yuanyuan Zhao, Jinxing Lin, Chunying Shu, Chunru Wang, and Xiaohong Fang . Fullerene-Induced Increase of Glycosyl Residue on Living Plant Cell Wall. Environmental Science & Technology 2013, 47 (13) , 7490-7498. https://doi.org/10.1021/es4010224
    35. Chuanxin Ma, Sudesh Chhikara, Baoshan Xing, Craig Musante, Jason C. White, and Om Parkash Dhankher . Physiological and Molecular Response of Arabidopsis thaliana (L.) to Nanoparticle Cerium and Indium Oxide Exposure. ACS Sustainable Chemistry & Engineering 2013, 1 (7) , 768-778. https://doi.org/10.1021/sc400098h
    36. Jing Wang, Yeonjong Koo, Anne Alexander, Yu Yang, Samantha Westerhof, Qingbo Zhang, Jerald L. Schnoor, Vicki L. Colvin, Janet Braam, and Pedro J. J. Alvarez . Phytostimulation of Poplars and Arabidopsis Exposed to Silver Nanoparticles and Ag+ at Sublethal Concentrations. Environmental Science & Technology 2013, 47 (10) , 5442-5449. https://doi.org/10.1021/es4004334
    37. Xiangang Hu and Qixing Zhou . Health and Ecosystem Risks of Graphene. Chemical Reviews 2013, 113 (5) , 3815-3835. https://doi.org/10.1021/cr300045n
    38. Christian O. Dimkpa, Joan E. McLean, Nicole Martineau, David W. Britt, Richard Haverkamp, and Anne J. Anderson . Silver Nanoparticles Disrupt Wheat (Triticum aestivum L.) Growth in a Sand Matrix. Environmental Science & Technology 2013, 47 (2) , 1082-1090. https://doi.org/10.1021/es302973y
    39. Roberto De La Torre-Roche, Joseph Hawthorne, Craig Musante, Baoshan Xing, Lee A. Newman, Xingmao Ma, and Jason C. White . Impact of Ag Nanoparticle Exposure on p,p′-DDE Bioaccumulation by Cucurbita pepo (Zucchini) and Glycine max (Soybean). Environmental Science & Technology 2013, 47 (2) , 718-725. https://doi.org/10.1021/es3041829
    40. Jie Hong Jose R. Peralta-Videa Jorge L. Gardea-Torresdey . Nanomaterials in Agricultural Production: Benefits and Possible Threats?. 2013, 73-90. https://doi.org/10.1021/bk-2013-1124.ch005
    41. Lijuan Zhao, Bo Peng, Jose A. Hernandez-Viezcas, Cyren Rico, Youping Sun, Jose R. Peralta-Videa, Xiaolei Tang, Genhua Niu, Lixin Jin, Armando Varela-Ramirez, Jian-ying Zhang, and Jorge L. Gardea-Torresdey . Stress Response and Tolerance of Zea mays to CeO2 Nanoparticles: Cross Talk among H2O2, Heat Shock Protein, and Lipid Peroxidation. ACS Nano 2012, 6 (11) , 9615-9622. https://doi.org/10.1021/nn302975u
    42. Danielle L. Slomberg and Mark H. Schoenfisch . Silica Nanoparticle Phytotoxicity to Arabidopsis thaliana. Environmental Science & Technology 2012, 46 (18) , 10247-10254. https://doi.org/10.1021/es300949f
    43. Pola Miralles, Tamara L. Church, and Andrew T. Harris . Toxicity, Uptake, and Translocation of Engineered Nanomaterials in Vascular plants. Environmental Science & Technology 2012, 46 (17) , 9224-9239. https://doi.org/10.1021/es202995d
    44. Roberto De La Torre-Roche, Joseph Hawthorne, Yingqing Deng, Baoshan Xing, Wenjun Cai, Lee A. Newman, Chen Wang, Xingmao Ma, and Jason C. White . Fullerene-Enhanced Accumulation of p,p′-DDE in Agricultural Crop Species. Environmental Science & Technology 2012, 46 (17) , 9315-9323. https://doi.org/10.1021/es301982w
    45. Zhenyu Wang, Xiaoyan Xie, Jian Zhao, Xiaoyun Liu, Wenqiang Feng, Jason C. White, and Baoshan Xing . Xylem- and Phloem-Based Transport of CuO Nanoparticles in Maize (Zea mays L.). Environmental Science & Technology 2012, 46 (8) , 4434-4441. https://doi.org/10.1021/es204212z
    46. Donald H. Atha, Huanhua Wang, Elijah J. Petersen, Danielle Cleveland, R. David Holbrook, Pawel Jaruga, Miral Dizdaroglu, Baoshan Xing, and Bryant C. Nelson . Copper Oxide Nanoparticle Mediated DNA Damage in Terrestrial Plant Models. Environmental Science & Technology 2012, 46 (3) , 1819-1827. https://doi.org/10.1021/es202660k
    47. Peng Zhang, Yuhui Ma, Zhiyong Zhang, Xiao He, Zhi Guo, Renzhong Tai, Yayun Ding, Yuliang Zhao, and Zhifang Chai . Comparative toxicity of nanoparticulate/bulk Yb2O3 and YbCl3 to cucumber (Cucumis sativus). Environmental Science & Technology 2012, 46 (3) , 1834-1841. https://doi.org/10.1021/es2027295
    48. Elijah J. Petersen, Liwen Zhang, Nikolai T. Mattison, Denis M. O’Carroll, Andrew J. Whelton, Nasir Uddin, Tinh Nguyen, Qingguo Huang, Theodore B. Henry, R. David Holbrook, and Kai Loon Chen . Potential Release Pathways, Environmental Fate, And Ecological Risks of Carbon Nanotubes. Environmental Science & Technology 2011, 45 (23) , 9837-9856. https://doi.org/10.1021/es201579y
    49. Fabienne Schwab, Thomas D. Bucheli, Lungile P. Lukhele, Arnaud Magrez, Bernd Nowack, Laura Sigg, and Katja Knauer . Are Carbon Nanotube Effects on Green Algae Caused by Shading and Agglomeration?. Environmental Science & Technology 2011, 45 (14) , 6136-6144. https://doi.org/10.1021/es200506b
    50. Cyren M. Rico, Sanghamitra Majumdar, Maria Duarte-Gardea, Jose R. Peralta-Videa, and Jorge L. Gardea-Torresdey . Interaction of Nanoparticles with Edible Plants and Their Possible Implications in the Food Chain. Journal of Agricultural and Food Chemistry 2011, 59 (8) , 3485-3498. https://doi.org/10.1021/jf104517j
    51. Liyan Yin, Yingwen Cheng, Benjamin Espinasse, Benjamin P. Colman, Melanie Auffan, Mark Wiesner, Jerome Rose, Jie Liu, and Emily S. Bernhardt . More than the Ions: The Effects of Silver Nanoparticles on Lolium multiflorum. Environmental Science & Technology 2011, 45 (6) , 2360-2367. https://doi.org/10.1021/es103995x
    52. Elijah J. Petersen Theodore B. Henry . Ecotoxicity of Fullerenes and Carbon Nanotubes: A Critical Review of Evidence for Nano-Size Effects. 2011, 103-119. https://doi.org/10.1021/bk-2011-1079.ch005
    53. Karin Birbaum, Robert Brogioli, Maya Schellenberg, Enrico Martinoia, Wendelin J. Stark, Detlef Günther, and Ludwig K. Limbach. No Evidence for Cerium Dioxide Nanoparticle Translocation in Maize Plants. Environmental Science & Technology 2010, 44 (22) , 8718-8723. https://doi.org/10.1021/es101685f
    54. Craig W. Stocker, Vanessa N. L. Wong, Antonio F. Patti, Gil Garnier. Effect of lignin in cellulose nanofibers on biodegradation and seed germination. Chemical and Biological Technologies in Agriculture 2024, 11 (1) https://doi.org/10.1186/s40538-023-00528-y
    55. Bhaben Chowardhara, Bedabrata Saha, Jay Prakash Awasthi, Biswajit Bikom Deori, Ratul Nath, Swarnendu Roy, Sukamal Sarkar, Subhas Chandra Santra, Akbar Hossain, Debojyoti Moulick. An assessment of nanotechnology-based interventions for cleaning up toxic heavy metal/metalloid-contaminated agroecosystems: Potentials and issues. Chemosphere 2024, 359 , 142178. https://doi.org/10.1016/j.chemosphere.2024.142178
    56. Yashwant Singh, Shakti Nath Tripathi, Praveen Pandey, Arpita Tripathi, Namira Arif, Vaishali Yadav, Shweta Gaur, Devendra K. Chauhan. Comparative physiological and anatomical responses of Tagetes erecta L. and Zinnia elegans Jacq. seedlings to AgNO3 and ZnSO4 metals and their nanoparticles. Industrial Crops and Products 2024, 212 , 118378. https://doi.org/10.1016/j.indcrop.2024.118378
    57. Debojyoti Moulick, Arnab Majumdar, Abir Choudhury, Anupam Das, Bhaben Chowardhara, Binaya Kumar Pattnaik, Goutam Kumar Dash, Kanu Murmu, Karma Landup Bhutia, Munish Kumar Upadhyay, Poonam Yadav, Pradeep Kumar Dubey, Ratul Nath, Sidhu Murmu, Soujanya Jana, Sukamal Sarkar, Sourav Garai, Dibakar Ghosh, Mousumi Mondal, Subhas Chandra Santra, Shuvasish Choudhury, Koushik Brahmachari, Akbar Hossain. Emerging concern of nano-pollution in agro-ecosystem: Flip side of nanotechnology. Plant Physiology and Biochemistry 2024, 211 , 108704. https://doi.org/10.1016/j.plaphy.2024.108704
    58. Aditya Srivastava, Meet Joshi, Aravind Kumar Rengan. Feeding the future: the role of nanotechnology in tailored nutrition. The Nucleus 2024, 10 https://doi.org/10.1007/s13237-024-00496-0
    59. Aayushi Chanderiya, Atish Roy, Ratnesh Das. Introduction to Advanced and Sustainable Green Nanomaterial. 2024, 1-21. https://doi.org/10.1002/9781119900931.ch1
    60. Aishwary Awasthi, Aradhana Tripathi, Chhavi Baran, K. N. Uttam. Spectroscopic Characterization of the Biochemical Profile of Mung Seedlings Following Treatment by Copper Oxide Nanoparticles. Analytical Letters 2024, 83 , 1-14. https://doi.org/10.1080/00032719.2024.2346270
    61. Zhenjie Zhao, Huaxin Dai, Guiyao Wang, Yuhan Peng, Fu Liao, Jizhong Wu, Taibo Liang. Carbon Nanoparticles Promoted the Absorption of Potassium Ions by Tobacco Roots via Regulation of K+ Flux and Ion Channel Gene Expression. Current Nanoscience 2024, 20 (3) , 390-398. https://doi.org/10.2174/1573413719666230418110534
    62. Akansha Singh, Priti Upadhyay, Esha Rami, Shravan Kumar Singh. Nanotechnology Interventions for Sustainable Plant Nutrition and Biosensing. Journal of Soil Science and Plant Nutrition 2024, 7 https://doi.org/10.1007/s42729-024-01772-3
    63. Azam Noori, Mirza Hasanuzzaman, Rajib Roychowdhury, Mohammad Sarraf, Shadma Afzal, Susmita Das, Anshu Rastogi. Silver nanoparticles in plant health: Physiological response to phytotoxicity and oxidative stress. Plant Physiology and Biochemistry 2024, 209 , 108538. https://doi.org/10.1016/j.plaphy.2024.108538
    64. Shital Vaidya, Chaoyi Deng, Yi Wang, Nubia Zuverza-Mena, Christian Dimkpa, Jason C. White. Nanotechnology in agriculture: A solution to global food insecurity in a changing climate?. NanoImpact 2024, 34 , 100502. https://doi.org/10.1016/j.impact.2024.100502
    65. Abhishek Sharan, Seema Nara. Modifying the aquatic toxicity of Co3O4 nanoparticles in exposed microalgae by CTAB mediated synthesis. Biocatalysis and Agricultural Biotechnology 2024, 57 , 103111. https://doi.org/10.1016/j.bcab.2024.103111
    66. Babatunde Oluwafemi Adetuyi, Peace Abiodun Olajide, Oluwakemi Semiloore Omowumi, Charles Oluwaseun Adetunji. Application of Plant‐Based Nanobiopesticides as Disinfectant. 2024, 63-130. https://doi.org/10.1002/9781119836483.ch4
    67. Zijie Zhang, Huiyin Jin, Jie Fang, Shengzuo Fang. Effects of nanoparticle application on Cyclocarya paliurus growth: Mechanisms underlying the particle- and dose-dependent response. Industrial Crops and Products 2024, 209 , 117942. https://doi.org/10.1016/j.indcrop.2023.117942
    68. Pronabananda Das, Sapan Kumar Sen, Md. Serajum Manir, Md. Shahinur Islam, Abdul Al Mortuza, Nasrin Sultana, Md. Liakat Hossain, Md. Tanvir Ahsan, M. R. Hasan, ATM Fayezul Islam, ANK Mamun, M. A. Hakim. Impact of TiO2 Nanoparticles on Seed Germination and Growth of Nonabokra Rice, Mortality of Bean Weevil, and Antibacterial and Cytotoxic Activity. BioNanoScience 2024, 14 (1) , 102-118. https://doi.org/10.1007/s12668-023-01273-0
    69. Yuqing Huang, Shengguan Cai, Wu Ying, Tianxin Niu, Jianli Yan, Hongliang Hu, Songlin Ruan. Exogenous titanium dioxide nanoparticles alleviate cadmium toxicity by enhancing the antioxidative capacity of Tetrastigma hemsleyanum. Ecotoxicology and Environmental Safety 2024, 273 , 116166. https://doi.org/10.1016/j.ecoenv.2024.116166
    70. Magdalena Tomaszewska-Sowa, Dariusz Pańka, Karol Lisiecki, Grzegorz Lemańczyk. The Response of Rapeseed (Brassica napus L.) Seedlings to Silver and Gold Nanoparticles. Sustainability 2024, 16 (3) , 977. https://doi.org/10.3390/su16030977
    71. Dibyaranjan Samal, Pratima Khandayataray, Meesala Sravani, Meesala Krishna Murthy. Silver nanoparticle ecotoxicity and phytoremediation: a critical review of current research and future prospects. Environmental Science and Pollution Research 2024, 31 (6) , 8400-8428. https://doi.org/10.1007/s11356-023-31669-0
    72. Eva Kovačec, Marjana Regvar. Effects of Copper Compounds on Phenolic Composition of the Common and Tartary Buckwheat Seedlings. Agriculture 2024, 14 (2) , 269. https://doi.org/10.3390/agriculture14020269
    73. Mohammad Shiraz, Havza Imtiaz, Ameer Azam, Shamsul Hayat. Phytogenic nanoparticles: synthesis, characterization, and their roles in physiology and biochemistry of plants. BioMetals 2024, 37 (1) , 23-70. https://doi.org/10.1007/s10534-023-00542-5
    74. Sayeda S. Ahmed, Mahmoud H. Abdel Kader, Mahmoud A. M. Fahmy, Karima F. Abdelgawad. Control of Tuta absoluta (Lepidoptera: Gelechiidae) by the new trend of photosensitizer and nanocomposites and their effects on productivity and storability of tomato. International Journal of Tropical Insect Science 2024, 44 (1) , 273-296. https://doi.org/10.1007/s42690-023-01141-0
    75. Israt Jahan, Fatma Matpan Bekler, Ahmed Tunç, Kemal Güven. The Effects of Silver Nanoparticles (AgNPs) on Thermophilic Bacteria: Antibacterial, Morphological, Physiological and Biochemical Investigations. Microorganisms 2024, 12 (2) , 402. https://doi.org/10.3390/microorganisms12020402
    76. Sanjay Sarjerao Kale, Ratna Chauhan, Bhavna Nigam, Suresh Gosavi, Indra Jeet Chaudhary. Effectiveness of nanoparticles in improving soil fertility and eco-friendly crop resistance: A comprehensive review. Biocatalysis and Agricultural Biotechnology 2024, 56 , 103066. https://doi.org/10.1016/j.bcab.2024.103066
    77. Abigail Dingus, Marja I. Roslund, Soren Brauner, Aki Sinkkonen, Jeffrey D. Weidenhamer. Arabidopsis response to copper is mediated by density and root exudates: Evidence that plant density and toxic soils can shape plant communities. American Journal of Botany 2024, 111 (2) https://doi.org/10.1002/ajb2.16285
    78. Mohamed Naguib Abd El-Ghany, Rana Adel Yahia, Haidy Adel Fahmy. Nanosensors for Agriculture, Water, Environment, and Health. 2024, 1-29. https://doi.org/10.1007/978-3-031-16338-8_53-1
    79. Mohammad Faizan, Fadime Karabulut, Ira Khan, Mohd.Sayeed Akhtar, Pravej Alam. Emergence of nanotechnology in efficient fertilizer management in soil. South African Journal of Botany 2024, 164 , 242-249. https://doi.org/10.1016/j.sajb.2023.12.004
    80. Selahattin Kondak, Patrick Janovszky, Réka Szőllősi, Árpád Molnár, Dóra Oláh, Oluwatosin Peace Adedokun, Panayiotis G. Dimitrakopoulos, Andrea Rónavári, Zoltán Kónya, László Erdei, Gábor Galbács, Zsuzsanna Kolbert. Nickel oxide nanoparticles induce cell wall modifications, root anatomical changes, and nitrosative signaling in ecotypes of Ni hyperaccumulator Odontarrhena lesbiaca. Environmental Pollution 2024, 341 , 122874. https://doi.org/10.1016/j.envpol.2023.122874
    81. Kumar Rajendran, Latha Pujari, Madhuri Krishnamoorthy, Divya Dharmaraj, Kannan Karuppiah, Kannapiran Ethiraj. Toxicity of nanomaterials. 2024, 53-76. https://doi.org/10.1016/B978-0-12-822512-7.00001-6
    82. Kondaiah Seku, Syed Sulaiman Hussaini, G. Bhagavanth Reddy, M. Radha Krishna Reddy. Silver-based biofungicides for the suppression of pathogenic fungi in agriculture fields. 2024, 169-194. https://doi.org/10.1016/B978-0-323-95305-4.00009-1
    83. Manuel Fortis-Hernández, Tony González-Rodríguez, Bernardo Espinosa-Palomeque, Pablo Preciado-Rangel, Miguel Angel Gallegos-Robles, Edgar Omar Rueda-Puente. Foliar biofortification with copper nanoparticles and its effect on phytochemical quality and enzymatic activity in lettuce. Horticultura Brasileira 2024, 42 https://doi.org/10.1590/s0102-0536-2024-e2617
    84. Mohamed Naguib Abd El-Ghany, Rana Adel Yahia, Haidy Adel Fahmy. Nanosensors for Agriculture, Water, Environment, and Health. 2024, 1-29. https://doi.org/10.1007/978-3-031-16338-8_53-2
    85. Boregowda Nandini, Geetha Nagaraja, Sanjay C. Jogigowda. Multifunctional nanofertilizer for inducing systemic resistance in plants. 2024, 281-303. https://doi.org/10.1016/B978-0-443-13535-4.00011-0
    86. Sumera Javad, Ajit Singh, Nimra Kousar, Fizzah Arifeen, Komal Nawaz, Lalarukh Azhar. Zinc-based nanofertilizers: synthesis and toxicity assessments. 2024, 213-232. https://doi.org/10.1016/B978-0-443-13535-4.00018-3
    87. Ritika Sharma, Nindhia Sharma, Abhinav Prashar, Abish Hansa, Behnam Asgari Lajayer, G.W. Price. Unraveling the plethora of toxicological implications of nanoparticles on living organisms and recent insights into different remediation strategies: A comprehensive review. Science of The Total Environment 2024, 906 , 167697. https://doi.org/10.1016/j.scitotenv.2023.167697
    88. Shweta Sharma, Vijay Laxmi Tripathi, Versha Dixit, Faizan ul Haque Nagrami, Priyambada Kumari, Parul Singh, Kundan Kumar Chaubey, Anis Kumar Pal, N. C. Joshi. Functionalization of Carbon-Based Nanoparticles for Various Applications. 2024, 59-81. https://doi.org/10.1007/978-981-97-0240-4_4
    89. Mayur Mukut Murlidhar Sharma, Divya Kapoor, Atul Loyal, Rahul Kumar, Pankaj Sharma, Azamal Husen. Environmental Toxicity of Engineered Carbon Nanoparticles. 2024, 337-353. https://doi.org/10.1007/978-981-97-0240-4_16
    90. Rajamouli Boddula, Jyoti Singh, Tagare Jairam. Exploring the different anisotropic chirality-based carbon nanotubes and their organic/inorganic composites in rotten crop toxin sensing, prevention, and shelf-life expansion. 2024, 269-297. https://doi.org/10.1016/B978-0-443-15508-6.00003-8
    91. Ali A. Badawy, Azamal Husen, Salem S. Salem. Use of nanobiotechnology in augmenting soil–plant system interaction for higher plant growth and production. 2024, 423-443. https://doi.org/10.1016/B978-0-443-16082-0.00006-0
    92. D. A. Khlebnikova, O. B. Polivanova, M. V. Boytsova, I. I. Chepovoy, N.-O. Munkhbaatar, M. Yu. Cherednichenko. Physiological Aspects of Interaction of Nanoparticles with Plant and Microorganism Cells. Timiryazev Biological Journal 2023, (2) , 77-93. https://doi.org/10.26897/2949-4710-2023-2-77-93
    93. Hameed Ullah, Wang Zheng, Yanqing Sheng. Translocation of CdS nanoparticles in maize (Zea mays L.) plant and its effect on metabolic response. Chemosphere 2023, 343 , 140189. https://doi.org/10.1016/j.chemosphere.2023.140189
    94. Carlos Fito López, Beatriz Díaz Soler, Ana Guillem-Amat, Oscar Andreu Sánchez. Insights into the Potential Effects of Micro(nano)plastic-Containing Nanoparticles in the Environment. Sustainability 2023, 15 (23) , 16319. https://doi.org/10.3390/su152316319
    95. Narender Mohan, Jyoti Ahlawat, Lochan Sharma, Ajay Pal, Prateek, Pankaj Rao, Mandeep Redhu, Vikram Singh, Neelam Rani, Kajal Kumari, Taranjeet Kaur, Jogender, Sapna Yadav. Engineered nanoparticles a novel approach in alleviating abiotic and biotic stress in millets: A complete study. Plant Stress 2023, 10 , 100223. https://doi.org/10.1016/j.stress.2023.100223
    96. Ambreen, Mubarak Ali Khan, Afzal Raza, Tahir Hussain, Huma Ali. Unleashing the potential of carbon nanotubes for production of medicinal metabolites in Nigella sativa adventitious roots. Plant Cell, Tissue and Organ Culture (PCTOC) 2023, 155 (2) , 581-601. https://doi.org/10.1007/s11240-023-02611-6
    97. Paula A. Nevado-Velasquez, Joaquín Guillermo Ramírez-Gil, Claudia García, Diego A. Castellanos, A.A. Lopera, V.D. Nonato Bezzon, Carlos Paucar. Synthesis and application of Ag-doped TiO2 nanoparticles with antifungal activity and ethylene inhibition in postharvest of avocado cv. Hass. Biocatalysis and Agricultural Biotechnology 2023, 54 , 102901. https://doi.org/10.1016/j.bcab.2023.102901
    98. Anchal Tandon, Anupama Singh, Aayushee Thakur, Vishal Sharma. Nanomaterial mediated genome engineering for sustainable food production: Current status and future prospects. Biocatalysis and Agricultural Biotechnology 2023, 54 , 102891. https://doi.org/10.1016/j.bcab.2023.102891
    99. Fazal ur Rehman, Najeeba Paree Paker, Mohsin Khan, Nida Zainab, Naeem Ali, Muhammad Farooq Hussain Munis, Muhammad Iftikhar, Hassan Javed Chaudhary. Assessment of application of ZnO nanoparticles on physiological profile, root architecture and antioxidant potential of Solanum lycopersicum. Biocatalysis and Agricultural Biotechnology 2023, 53 , 102874. https://doi.org/10.1016/j.bcab.2023.102874
    100. Jingdan Hu, Jingxue Sang, Ping Li, Xinpei Wei, Zhun Wang, Kai Song. Synthesis and Biological Toxicity Evaluation of Red Light-Emitting Carbon Quantum Dots. Science of Advanced Materials 2023, 15 (10) , 1299-1310. https://doi.org/10.1166/sam.2023.4530
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect