Skip to main content
Log in

Research on Dual-Transmission Cross-Shaped Microcavity Metamaterials in the Mid-Infrared Region

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Mid-infrared detection technology is widely used in military and civilian applications with its unique advantages. The filter is the core component of the mid-infrared detection system, realizing controllable modulation of its dual-band transmission peak is an important prerequisite for optimizing detector performance. In this paper, a cross-shaped microcavity structure metamaterial based on gold material is designed to achieve mid-infrared dual-band transmission. By changing the width of the microcavity and the width of the gap, the controllable modulation of the dual-band transmission peaks is achieved, corresponding to the dual-band ranges of 3.23 ~ 3.46 μm and 4.06 ~ 4.60 μm. The maximum transmission of the resonant transmission peaks λI and λII can reach 94.5% and 92.6%, respectively. The corresponding FOM is up to 17.70. This study provides a theoretical basis for the preparation of dual-band transmission filters in the mid-infrared band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

  1. He Y, Shi J, Pleitez MA, Maslov KI, Wagenaar DA, Wang LV (2020) Label-free imaging of lipid-rich biological tissues by mid-infrared photoacoustic microscopy. J Biomed Opt 25:10650. https://doi.org/10.1117/1.JBO.25.10.106506

    Article  Google Scholar 

  2. Thapa D, Welch R, Dabas RP, Salimi M, Tavakolian P, Sivagurunathan K, Ngai K, Huang B, Finer Y, Abrams S, Mandelis A, Tabatabaei N (2022) Comparison of long-wave and mid-wave infrared imaging modalities for photothermal coherence tomography of human teeth. IEEE Trans Biomed Eng 69:2755–2766. https://doi.org/10.1109/TBME.2022.3153209

    Article  PubMed  Google Scholar 

  3. Kamboj A, Nordin L, Petluru P, Muhowski AJ, Woolf DN, Wasserman D (2021) All-epitaxial guided-mode resonance mid-wave infrared detectors. Appl Phys Lett 118:201102. https://doi.org/10.1063/5.0047534

  4. Singh H, Pant M, Khare S (2022) Object detection using particle swarm optimisation and Kalman filter to track partially-occluded targets. Def Sci J 72. https://doi.org/10.14429/dsj.72.17502

  5. Woo S, Yeon E, Chu RJ, Kim Y, Kim TS, Jung D, Choi WJ (2022) Flexible pin InAs thin-film photodetector with low dark current enabled by an InAlAs barrier. Opt Mater Express 12:2374–2381. https://doi.org/10.1364/OME.457345

    Article  CAS  Google Scholar 

  6. Zhang Z, Wang H, Cao K, Li Y (2023) Using a convolutional neural network and mid-infrared spectral images to predict the carbon dioxide content of ship exhaust. Remote Sens 15:2721. https://doi.org/10.3390/rs15112721

    Article  Google Scholar 

  7. Didier P, Knötig H, Spitz O et al (2023) Interband cascade technology for energy-efficient mid-infrared free-space communication[J]. Photonics Res 11(4):582–590

    Article  CAS  Google Scholar 

  8. Huang X, Zhou Z, Cao M, Li R, Sun C, Li X (2022) Ultra-broadband mid-infrared metamaterial absorber based on multi-sized resonators. Materials 15:5411. https://doi.org/10.3390/ma15155411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ali A, Mitra A, Aïssa B (2022) Metamaterials and metasurfaces: a review from the perspectives of materials, mechanisms and advanced metadevices. Nanomaterials 12:1027. https://doi.org/10.3390/nano12061027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cao S, Wang Q, Gao X, Zhang S, Hong R, Zhang Dawei (2022) Electrically-modulated infrared absorption of graphene metamaterials via magnetic dipole resonance. Physica E 137:115078. https://doi.org/10.1016/j.physe.2021.115078

  11. Santonocito A, Patrizi B, Toci G (2023) Recent advances in tunable metasurfaces and their application in opticS. Nanomaterials 13:1633. https://doi.org/10.3390/nano13101633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guo J, Lin L, Li S, Chen J, Wang S, Wu W, Cai J, Zhou T, Liu Y, Huang W (2022) Ferroelectric superdomain controlled graphene plasmon for tunable mid-infrared photodetector with dual-band spectral selectivity. Carbon 189:596–603. https://doi.org/10.1016/j.carbon.2021.12.095

    Article  CAS  Google Scholar 

  13. Chen YK, Wang BX, Zhao CY (2023) Dual-band spatially-distinguishable metasurface thermal emitter for filterless mid-infrared gas sensing. Int J Therm Sci 185:108069. https://doi.org/10.1016/j.ijthermalsci.2022.108069

  14. Xubo Z, Zhenyu P, Xiancun C, Yingjie H, Guansheng Y, Fei T, Lixue Z, Jiaxin D, Mo L, Liang Z, Wen W, Yanqiu L (2019) Mid-/short-wavelength dual-color infrared focal plane arrays based on type-II InAs/GaSb superlattice. Infrared Laser Eng 48:1104001–1104001. https://doi.org/10.3788/IRLA201948.1104001

    Article  Google Scholar 

  15. Jin K, Zheng W, Liu Y, Yang C, Han J, Wang Y, Wang H, Liu Q, Huang F (2019) Dual-channel ultra-narrowband mid-infrared filter based on bilayer metallic grating. Optik 199:163352. https://doi.org/10.1016/j.ijleo.2019.163352

  16. Yu S, Wang S, Zhao T, Yu J (2020) Tunable ultra-width bandgap U-shaped band-stop filters of chip scale based on periodic staggered double-side trapezoidal resonators in a metallic nanowaveguide. Opt Commun 463:125439. https://doi.org/10.1016/j.optcom.2020.125439

  17. Watts CM, Liu X, Padilla WJ (2012) Metamaterial electromagnetic wave absorbers. Adv Mater 24:OP98-OP120. https://doi.org/10.1002/adma.201200674

  18. Li HY, Zhou SM, Li J, Chen YL, Wang SY, Shen ZC, Chen LY, Liu H, Zhang XX (2001) Analysis of the Drude model in metallic films. Appl Opt 40:6307–6311. https://doi.org/10.1364/AO.40.006307

    Article  CAS  PubMed  Google Scholar 

  19. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370. https://doi.org/10.1103/PhysRevB.6.4370

    Article  CAS  Google Scholar 

  20. Linden S, Enkrich C, Wegener M, Zhou J, Koschny T, Soukoulis CM (2004) Magnetic response of metamaterials at 100 terahertz. Science 306:1351–1353. https://doi.org/10.1126/sicence.1105371

    Article  CAS  PubMed  Google Scholar 

  21. Zhang W, Wang Y, Luo L, Li G, Zhang Z (2015) Extraordinary optical transmission of broadband through tapered multilayer slits. Plasmonics 10:547–551. https://doi.org/10.1007/s11468-014-9839-4

    Article  CAS  Google Scholar 

  22. Pandey R, Angadi B, Kim SK, Choi JW, Hwang DK, Choi WK (2014) Fabrication and surface plasmon coupling studies on the dielectric/Ag structure for transparent conducting electrode applications. Opt Mater Express 4:2078–2089. https://doi.org/10.1364/OME.4.002078

    Article  CAS  Google Scholar 

  23. Rodrigo SG, Mahboub O, Degiron A, Genet C, Vidal FJG, Moreno LM, Ebbesen TW (2010) Holes with very acute angles: a new paradigm of extraordinary optical transmission through strongly localized modes. Opt Express 18:23691–23697. https://doi.org/10.1364/OE.18.023691

    Article  CAS  PubMed  Google Scholar 

  24. Janssens E, Gruene P, Meijer G, Wöste L, Lievens P, Fielicke A (2007) Argon physisorption as structural probe for endohedrally doped silicon clusters. Phys Rev Lett 99:063401. https://doi.org/10.1103/PhysRevLett.99.063401

  25. Appusamy K, Swartz M, Blair S, Nahata A, Shumaker-Parry JS, Guruswamy S (2016) Influence of aluminum content on plasmonic behavior of Mg-Al alloy thin films. Opt Mater Express 6:3180–3192. https://doi.org/10.1364/OME.6.003180

    Article  CAS  Google Scholar 

  26. Medina F, Mesa F, Marques R (2008) Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective. IEEE Trans Microw Theory Tech 56:3108–3120. https://doi.org/10.1109/TMTT.2008.2007343

    Article  Google Scholar 

  27. Janssens E, Gruene P, Meijer G, Wöste L, Lievens P, Fielicke A (2018) Hybrid metal-semiconductor meta-surface based photo-electronic perfect absorber. IEEE J Sel Top Quantum Electron 2:1–7. https://doi.org/10.1109/JSTQE.2018.2879019

    Article  Google Scholar 

  28. Chen Z, Li P, Zhang S, Chen Y, Liu P, Duan H (2019) Enhanced extraordinary optical transmission and refractive-index sensing sensitivity in tapered plasmonic nanohole arrays. Nanotechnology 30:335201. https://doi.org/10.1088/1361-6528/ab1b89

  29. Wei D, Hu C, Chen M, Shi J, Luo J, Zhang X, Wang H, Xie C (2020) Optical modulator based on the coupling effect of different surface plasmon modes excited on the metasurface. Opt Mater Express 10:105–118

    Article  CAS  Google Scholar 

  30. Shen H, Maes B (2012) Enhanced optical transmission through tapered metallic gratings. Appl Phys Lett 100:241104. https://doi.org/10.1364/OME.382116

  31. Chen Z, Li H, Zhan S, Li B, He Z, Xu H, Zheng M (2016) Tunable high quality factor in two multimode plasmonic stubs waveguide. Sci Rep 6:24446. https://doi.org/10.1038/srep24446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen Y, Chen Y, Chu J, Xu X (2017) Bridged bowtie aperture antenna for producing an electromagnetic hot spot. ACS Photonics 4:567–575. https://doi.org/10.1021/acsphotonics.6b00857

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Jilin Education Department Project Funding [JJKH20230795KJ, 2023].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Structural design, data collection, and analysis were performed by Teng Li, Yu Ren, Jianwei Zhou, Tingting Wang, Peng Sun, Boyu Ji, Hongxing Cai, and Guannan Qu. The first draft of the manuscript was written by Teng Li, and all authors commented on previous versions of the manuscript.

Corresponding author

Correspondence to Yu Ren.

Ethics declarations

Ethics Approval

Not applicable.

Consent of Participate

Not applicable.

Consent of Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Ren, Y., Zhou, J. et al. Research on Dual-Transmission Cross-Shaped Microcavity Metamaterials in the Mid-Infrared Region. Plasmonics 18, 2427–2436 (2023). https://doi.org/10.1007/s11468-023-01950-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01950-6

Keywords

Navigation