Coherent locomotion as an attracting state for a free flapping body

Proc Natl Acad Sci U S A. 2005 Aug 9;102(32):11163-6. doi: 10.1073/pnas.0505064102. Epub 2005 Jul 29.

Abstract

A recent experiment [Vandenberghe, N., Zhang, J. & Childress, S. (2004) J. Fluid Mech. 506, 147-155] has shown that an axle-mounted blade can spontaneously rotate when oscillated (or "flapped") above a critical frequency in a fluid. To understand the nature of flapping locomotion we study numerically the dynamics of a simple body, flapped up and down within a viscous fluid and free to move horizontally. We show here that, at sufficiently large "frequency Reynolds number," unidirectional locomotion emerges as an attracting state for an initially nonlocomoting body. Locomotion is generated in two stages: first, the fluid field loses symmetry by an instability similar to the classical von Kármán instability; and second, precipitous interactions with previously shed vortical structures "push" the body into locomotion. Body mass and slenderness play central and unexpected roles in each stage. Conceptually, this work demonstrates how locomotion can be transduced from the simple oscillations of a body through an interaction with its fluid environment.

Publication types

  • Comparative Study
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Biomechanical Phenomena
  • Computer Simulation
  • Flight, Animal*
  • Models, Theoretical*
  • Rheology