Skip to main content
Log in

Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor

  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Media and growth conditions were optimized for the microaerobic cultivation of Magnetospirillum gryphiswaldense in flasks and in a fermentor, resulting in significantly increased cell and magnetosome yields, compared with earlier studies. A reliable method was established for the automatic control of low dissolved oxygen tensions (pO2) in the fermentor (oxystat). Growth and magnetosome formation by M. gryphiswaldense, M. magnetotacticum and Magnetospirillum sp. AMB-1 were studied at various oxygen concentrations. Despite differences in their growth responses with respect to oxygen, we found a clear correlation between pO2 and magnetosome formation in all three Magnetospirillum strains. Magnetite biomineralization was induced only below a threshold value of 20 mbar O2 and optimum conditions for magnetosome formation were found at a pO2 of 0.25 mbar (1 bar = 105 Pa). A maximum yield of 6.3 mg magnetite l-1 day-1 was obtained with M. gryphiswaldense grown under oxystat conditions, which is the highest magnetosome productivity reported so far for a magnetotactic bacterium. In conclusion, the presented results provide the basis for large-scale cultivation of magnetospirilla under defined conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a, b.
Fig. 2.
Fig. 3a–c.
Fig. 4.

Similar content being viewed by others

References

  • Arras T, Schirawski J, Unden G (1998) Availability of O2 as a substrate in the cytoplasm of bacteria under aerobic and microaerobic conditions. J Bacteriol 180:2133–2136

    CAS  PubMed  Google Scholar 

  • Baeuerlein E, Schüler D, Reszka R, Päuser S (1998) Specific magnetosomes, method for the production and use. German patent PCT/DE 98/00668

  • Balkwill D, Maratea D, Blakemore RP (1980) Ultrastructure of a magnetotactic spirillum. J Bacteriol 141:1399–1408

    CAS  PubMed  Google Scholar 

  • Bazylinski DA (1995) Structure and function of the bacterial magnetosome. ASM News 61:337–343

    Google Scholar 

  • Becker S, Holighaus G, Gabrielczyk T, Unden G (1996) O2 as the regulatory signal for FNR-dependent gene regulation in Escherichia coli. J Bacteriol 178:4515–4521

    CAS  PubMed  Google Scholar 

  • Blakemore RP, Maratea D, Wolfe RS (1979) Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium. J Bacteriol 140:720–729

    CAS  PubMed  Google Scholar 

  • Blakemore RP, Short KA, Bazylinski DA, Rosenblatt C, Frankel RB (1985) Microaerobic conditions are required for magnetite formation within Aquaspirillum magnetotacticum. Geomicrobiol J 4:53–72

    CAS  Google Scholar 

  • Deshpande M, Calenoff E, Daniels L (1995) Rapid large-scale growth of Helicobacter pylori in flasks and fermentors. Appl Environ Microbiol 61:2431–2435

    CAS  PubMed  Google Scholar 

  • Grünberg K, Wawer C, Tebo BM, Schüler D (2001) A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria. Appl Environ Microbiol 67:4573–4582

    PubMed  Google Scholar 

  • Krieg NR, Hoffman PS (1986) Microaerophily and oxygen toxicity. Annu Rev Microbiol 40:107–130

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga T, Takeyama H (1998) Biomagnetic nanoparticle formation and application. Supramol Sci 5:391–394

    Article  CAS  Google Scholar 

  • Matsunaga T, Sakaguchi T, Tadokoro F (1991) Magnetite formation by a magnetic bacterium capable of growing aerobically. Appl Microbiol Biotechnol 35:651–655

    CAS  Google Scholar 

  • Matsunaga T, Tsujimura N, Kamiya S (1996) Enhancement of magnetic particle-production by nitrate and succinate fed-batch culture of Magnetospirillum sp. AMB-1. Biotechnol Tech 10:495–500

    CAS  Google Scholar 

  • Moskowitz BM (1995) Biomineralization of magnetic minerals. Rev Geophys 33:123–128

    Google Scholar 

  • Sabra W, Zeng AP, Sabry S, Omar S, Deckwer WD (1999) Effect of phosphate and oxygen concentrations on alginate production and stoichiometry of metabolism of Azotobacter vinelandii under microaerobic conditions. Appl Microbiol Biotechnol 52:773–780

    Article  CAS  Google Scholar 

  • Safarik I, Safarikova M (2002) Magnetic nanoparticles and biosciences. Monatsh Chem 133:737–759

    CAS  Google Scholar 

  • Sarikaya M (1999) Biomimetics: materials fabrication through biology. Proc Natl Acad Sci USA 96:14183–14185

    Article  CAS  PubMed  Google Scholar 

  • Schleifer KH, Schüler D, Spring S, Weizenegger M, Amann R, Ludwig W, Köhler M (1991) The genus Magnetospirillum gen. nov., description of Magnetospirillum gryphiswaldense sp. nov. and transfer of Aquaspirillum magnetotacticum to Magnetospirillum magnetotacticum comb. nov. Syst Appl Microbiol 14:379–385

    Google Scholar 

  • Schüler D (1999) Formation of magnetosomes in magnetotactic bacteria. J Mol Microbiol Biotechnol 1:79–86

    Google Scholar 

  • Schüler D (2000) Characterization of the magnetosome membrane in Magnetospirillum gryphiswaldense. In: Baeuerlein E (ed) Biomineralization. Wiley–VCH, Weinheim, pp 109–118

  • Schüler D, Baeuerlein E (1996) Iron-limited growth and kinetics of iron uptake in Magnetospirillum gryphiswaldense. Arch Microbiol 166:301–307

    PubMed  Google Scholar 

  • Schüler D, Baeuerlein E (1997) Iron transport and magnetite crystal formation of the magnetic bacterium Magnetospirillum gryphiswaldense. J Phys D 7:647–650

    Google Scholar 

  • Schüler D, Baeuerlein E (1998) Dynamics of iron uptake and Fe3O4 biomineralization during aerobic and microaerobic growth of Magnetospirillum gryphiswaldense. J Bacteriol 180:159–162

    PubMed  Google Scholar 

  • Schüler D, Frankel RB (1999) Bacterial magnetosomes: microbiology, biomineralization and biotechnological applications. Appl Microbiol Biotechnol 52:464–473

    PubMed  Google Scholar 

  • Schüler D, Köhler M (1992) The isolation of a new magnetic spirillum. Zentralbl Mikrobiol 147:150–151

    Google Scholar 

  • Schüler D, Uhl R, Baeuerlein E (1995) A simple light-scattering method to assay magnetism in Magnetospirillum gryphiswaldense. FEMS Microbiol Lett 132:139–145

    Article  Google Scholar 

  • Widdel F, Bak F (1992) Gram-negative mesophilic sulfate-reducing bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, 2nd edn. Springer, Berlin Heidelberg New York, pp 3352–3378

  • Yang CD, Takeyama H, Tanaka T, Matsunaga T (2001) Effects of growth medium composition, iron sources and atmospheric oxygen concentrations on production of luciferase–bacterial magnetic particle complex by a recombinant Magnetospirillum magneticum AMB-1. Enzyme Microb Technol 29:13–19

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Hoffmann (B. Braun Biotech International) for valuable suggestions and helpful discussions concerning the development of the oxystat. We are grateful to K. Grünberg and C. Flies for help with electron microscopy and F. Mayer (Göttingen) for providing access to the EM. The help of A. Baier and O. Menke in several growth experiments is greatly acknowledged. This work was supported by the Max-Planck-Gesellschaft, the Federal Ministry of Education and Research (BMBF), and the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Schüler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heyen, U., Schüler, D. Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor. Appl Microbiol Biotechnol 61, 536–544 (2003). https://doi.org/10.1007/s00253-002-1219-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-002-1219-x

Keywords

Navigation