Title: A useful method integrating production and immobilization of recombinant cellulase

Journal: Applied Microbiology and Biotechnology

Chung-Jen Chiang ${ }^{1}$, Po Ting Chen ${ }^{2}$, Chien Yu Yeh ${ }^{3}$, Zei Wen Wang ${ }^{3}$ and Yun-Peng Chao ${ }^{3,4,5^{*}}$

${ }^{1}$ Department of Medical Laboratory Science and Biotechnology, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan
${ }^{2}$ Department of Biotechnology, Southern Taiwan University of Science and
Technology, No. 1, Nantai St., Tainan 71005, Taiwan
${ }^{3}$ Department of Chemical Engineering, Feng Chia University, 100 Wen-Hwa Road, Taichung 40724, Taiwan
${ }^{4}$ Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
${ }^{5}$ Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
*Correspondence should be addressed to:
Dr. Yun-Peng Chao
E-mail: ypchao@fcu.edu.tw
TEL: 886-4-24517250 ext. 3677
Fax: 886-4-24510890

Table S1: Optimization of the assembly condition for AOBs assembled with CelA-Ole and Ole-CelK by the Box-Behnken design.

Trial	Coded levels ($\mathrm{X}_{1}=\mathrm{A} / \mathrm{K} ; \mathrm{X}_{2}$ $=\mathrm{pH} ; \mathrm{X}_{3}=$ Temperature $)$			Actual levels			Response: enzyme activity (U/mg)
	X	X_{2}	X_{3}	X_{1}	X_{2}	X_{3}	
1	0	-1	+1	0.5	4	40	1.13
2	+1	-1	0	0.9	4	22	0.60
3	-1	+1	0	0.1	4	22	1.15
4	+1	+1	0	0.9	10	22	1.71
5	-1	0	+1	0.1	7	40	2.38
6	0	-1	-1	0.5	4	4	1.02
7	0	0	0	0.5	7	22	2.96
8	+1	0	-1	0.9	7	4	2.93
9	-1	0	-1	0.1	7	4	2.53
10	0	0	0	0.5	7	22	2.92
11	0	0	0	0.5	7	22	3.04
12	+1	0	+1	0.9	7	40	2.83
13	0	+1	-1	0.5	10	4	2.15
14	-1	+1	0	0.1	10	22	1.85
15	0	+1	+1	0.5	10	40	1.61

* CelA-Ole plus Ole-CelK in cell pellets was $200 \mu \mathrm{~g}$ in total for assembly of AOBs.

The target proteins ($50 \mu \mathrm{~g}$ in total) involved in AOBs were utilized to determine the enzyme activity.

Table S2. Result of ANOVA for the Box-Behnken design.

Factor	Parameter estimate	Standard error	P-value
X_{1}	0.021	0.102	0.842
X_{2}	0.429	0.102	0.008
X_{3}	-0.086	0.102	0.435
$\mathrm{X}_{1} \times \mathrm{X}_{2}$	0.104	0.144	0.501
$\mathrm{X}_{1} \times \mathrm{X}_{3}$	0.011	0.144	0.940
$\mathrm{X}_{2} \mathrm{X} \mathrm{X}_{3}$	-0.164	0.144	0.306
$\mathrm{X}_{1} \times \mathrm{X}_{1}$	-0.281	0.150	0.119
$\mathrm{X}_{2} \times \mathrm{X}_{2}$	-1.470	0.150	0.0002
$\mathrm{X}_{3} \times \mathrm{X}_{3}$	-0.129	0.150	0.429

Table S3: Optimization of the assembly condition for AOBs assembled with CelA-Ole, Ole-CelK, and Ole-Gls by the Box-Behnken design.

| Trial | Coded levels $\left(\mathrm{X}_{1}=\mathrm{G} / \mathrm{AK} ;\right.$ | | Actual levels | | | Response:
 enzyme activity |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\mathrm{X}_{2}=\mathrm{pH} ; \mathrm{X}_{3}=$ temperature $)$ | | | | | |

* CelA-Ole, Ole-CelK, and Ole-Gls in cell pellets was $200 \mu \mathrm{~g}$ in total for assembly of AOBs. The target proteins ($50 \mu \mathrm{~g}$ in total) involved in AOBs were utilized to determine the enzyme activity.

Table S4. Result of ANOVA for the Box-Behnken design.

Factor	Parameter estimate	Standard error	P-value
X_{1}	-0.0025	0.0057	0.6812
X_{2}	-0.0300	0.0057	0.0034
X_{3}	0.0025	0.0057	0.6812
$\mathrm{X}_{1} \times \mathrm{X}_{2}$	-0.0075	0.0081	0.3977
$\mathrm{X}_{1} \times \mathrm{X}_{3}$	-0.0025	0.0081	0.7704
$\mathrm{X}_{2} \times \mathrm{X}_{3}$	-0.0025	0.0081	0.7704
$\mathrm{X}_{1} \times \mathrm{X}_{1}$	-0.0179	0.0084	0.0873
$\mathrm{X}_{2} \times \mathrm{X}_{2}$	-0.0429	0.0084	0.0038
$\mathrm{X}_{3} \times \mathrm{X}_{3}$	-0.0129	0.0084	0.1867

Table S5. Optimization of the reaction condition for AOBs-bound cellulase using the CCD method.

Trial	Coded levels $\left(\mathrm{Z}_{1}=\mathrm{pH} ; \mathrm{Z}_{2}=\right.$ temperature $)$	Actual levels		Response: enzyme activity $(\mathrm{g} / \mathrm{l}-\mathrm{h})$	
	Z_{1}	Z_{2}	Z_{1}	$\mathrm{Z}_{2}\left({ }^{\circ} \mathrm{C}\right)$	
1	0	-0.75	6	46	0.10
2	0	0	6	60	0.32
3	-0.75	0	4.6	60	0.015
4	0	0	6	60	0.34
5	+1	+1	7	70	0.29
6	-1	+1	5	70	0.27
7	0	0	6	60	0.34
8	+1	-1	7	50	0.14
9	0	0	6	60	0.34
10	0	0	6	60	0.34
11	0	+1.1	6	74	0.31
12	-1	-1	5	50	0.18
13	+1.1	0	7.4	60	0.22

Table S6. Result of ANOVA for the CCD method.

Factor	Parameter estimate	Standard error	P-value
Z_{1}	0.0337	0.0187	0.1146
Z_{2}	0.0671	0.0187	0.0089
$\mathrm{Z}_{1} \times \mathrm{Z}_{2}$	0.0150	0.0265	0.5888
$\mathrm{Z}_{1} \times \mathrm{Z}_{1}$	-0.0946	0.0201	0.0022
$\mathrm{Z}_{2} \times \mathrm{Z}_{2}$	-0.0508	0.0201	0.0392

