Title: A useful method integrating production and immobilization of recombinant cellulase

Journal: Applied Microbiology and Biotechnology

Chung-Jen Chiang¹, Po Ting Chen², Chien Yu Yeh³, Zei Wen Wang³ and Yun-Peng Chao^{3,4,5*}

¹ Department of Medical Laboratory Science and Biotechnology, China Medical

University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan

²Department of Biotechnology, Southern Taiwan University of Science and

Technology, No. 1, Nantai St., Tainan 71005, Taiwan

³Department of Chemical Engineering, Feng Chia University,

100 Wen-Hwa Road, Taichung 40724, Taiwan

⁴Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan

⁵Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan

*Correspondence should be addressed to:

Dr. Yun-Peng Chao E-mail: ypchao@fcu.edu.tw TEL: 886-4-24517250 ext. 3677 Fax: 886-4-24510890

Trial	Coded levels ($X_1 = A/K$; X_2			Actual levels			Response:
	= pH; X ₃ = Temperature)						enzyme activity
	X_1	X2	X3	X_1	X2	X3	(U/mg)
1	0	-1	+1	0.5	4	40	1.13
2	+1	-1	0	0.9	4	22	0.60
3	-1	+1	0	0.1	4	22	1.15
4	+1	+1	0	0.9	10	22	1.71
5	-1	0	+1	0.1	7	40	2.38
6	0	-1	-1	0.5	4	4	1.02
7	0	0	0	0.5	7	22	2.96
8	+1	0	-1	0.9	7	4	2.93
9	-1	0	-1	0.1	7	4	2.53
10	0	0	0	0.5	7	22	2.92
11	0	0	0	0.5	7	22	3.04
12	+1	0	+1	0.9	7	40	2.83
13	0	+1	-1	0.5	10	4	2.15
14	-1	+1	0	0.1	10	22	1.85
15	0	+1	+1	0.5	10	40	1.61

Table S1: Optimization of the assembly condition for AOBs assembled with CelA-Ole and Ole-CelK by the Box-Behnken design.

* CelA-Ole plus Ole-CelK in cell pellets was 200 μ g in total for assembly of AOBs. The target proteins (50 μ g in total) involved in AOBs were utilized to determine the enzyme activity.

Factor	Parameter estimate	Standard error	<i>P</i> -value
X1	0.021	0.102	0.842
X_2	0.429	0.102	0.008
X ₃	-0.086	0.102	0.435
$X_1 \ge X_2$	0.104	0.144	0.501
$X_1 \ge X_3$	0.011	0.144	0.940
$X_2 \ge X_3$	-0.164	0.144	0.306
$X_1 \ge X_1$	-0.281	0.150	0.119
$X_2 \ge X_2$	-1.470	0.150	0.0002
X ₃ x X ₃	-0.129	0.150	0.429

Table S2. Result of ANOVA for the Box-Behnken design.

Trial	Coded levels ($X_1 = G/AK$;			Actual levels			Response:
	$X_2 = pH; X_3 = temperature)$						enzyme activity
	X_1	X_2	X3	X_1	X_2	X3	(g/l-h)
1	+1	0	-1	4	6.5	20	0.24
2	0	+1	+1	2.5	8	40	0.17
3	-1	0	-1	1	6.5	20	0.22
4	0	-1	-1	2.5	5	20	0.24
5	0	-1	+1	2.5	5	40	0.25
6	+1	-1	0	4	5	30	0.22
7	0	+1	-1	2.5	8	20	0.17
8	+1	+1	0	4	8	30	0.16
9	-1	-1	0	1	5	30	0.23
10	0	0	0	2.5	6.5	30	0.26
11	0	0	0	2.5	6.5	30	0.26
12	0	0	0	2.5	6.5	30	0.27
13	-1	0	+1	1	6.5	40	0.23
14	-1	+1	0	1	8	30	0.20
15	+1	0	+1	4	6.5	40	0.24

Table S3: Optimization of the assembly condition for AOBs assembled with CelA-Ole, Ole-CelK, and Ole-Gls by the Box-Behnken design.

* CelA-Ole, Ole-CelK, and Ole-Gls in cell pellets was 200 μ g in total for assembly of AOBs. The target proteins (50 μ g in total) involved in AOBs were utilized to determine the enzyme activity.

Factor	Parameter estimate	Standard error	<i>P</i> -value
X1	-0.0025	0.0057	0.6812
X_2	-0.0300	0.0057	0.0034
X_3	0.0025	0.0057	0.6812
$X_1 \! imes \! X_2$	-0.0075	0.0081	0.3977
$X_1 \times X_3$	-0.0025	0.0081	0.7704
$X_2 \times X_3$	-0.0025	0.0081	0.7704
$X_1 \! imes \! X_1$	-0.0179	0.0084	0.0873
$X_2 \times X_2$	-0.0429	0.0084	0.0038
$X_3 \! imes \! X_3$	-0.0129	0.0084	0.1867

Table S4. Result of ANOVA for the Box-Behnken design.

Trial	Coded levels	Actual	levels	Response: enzyme	
	$(Z_1 = pH; Z_2 = temperature)$				activity (g/l-h)
	Z_1	Z_2	Z_1	$Z_2 (^{o}C)$	
1	0	-0.75	6	46	0.10
2	0	0	6	60	0.32
3	-0.75	0	4.6	60	0.015
4	0	0	6	60	0.34
5	+1	+1	7	70	0.29
6	-1	+1	5	70	0.27
7	0	0	6	60	0.34
8	+1	-1	7	50	0.14
9	0	0	6	60	0.34
10	0	0	6	60	0.34
11	0	+1.1	6	74	0.31
12	-1	-1	5	50	0.18
13	+1.1	0	7.4	60	0.22

Table S5. Optimization of the reaction condition for AOBs-bound cellulase using the CCD method.

Table S6. Result of ANOVA for the CCD method.

Factor	Parameter estimate	Standard error	<i>P</i> -value
Z ₁	0.0337	0.0187	0.1146
Z ₂	0.0671	0.0187	0.0089
$Z_1 \ge Z_2$	0.0150	0.0265	0.5888
$Z_1 \ge Z_1$	-0.0946	0.0201	0.0022
$Z_2 \ge Z_2$	-0.0508	0.0201	0.0392