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SUPPLEMENTARY TABLE 1 | Representative virus-targeting therapeutic candidates for COVID-19. 

 
 

Targets 

 

 

Drug class 

 

Examples 

 

Antiviral mechanism 

 

Pre-clinical antiviral data 

 

(A) Spike protein 

 

    

 

S1 subunit 

 

mAb and 

nanobodies 

 

Amubarvimab/roml

usevimab 

Bamlanivimab-

etesevimab 

Bebtelovimab 

Casirivimab-

imdevimab 

Regdanvimab 

Sotrovimab 

Tixagevimab/cilgav

imab 

10-40 

 

 

Targets the RBD and non-RBD regions 

of spike to inhibit virus entry into host 

cells. 

 

 

In vitro: potently ↓ viral load and virus titers 

with EC50 in nM range. 

In vivo: ↓ clinical signs, respiratory tract viral 

load, virus titers, and tissue pathology in 

various animal models. 

Antiviral effects against different variants are 

variable1,2. 

 Convalescent 

plasma 

Convalescent 

plasma 

Plasma from recovered COVID-19 

patients containing high-titer 

neutralizing anti-SARS-CoV-2 

antibodies. 

 

In vivo: passive immunization ↓ nasal and lung 

viral loads in Syrian hamsters and rhesus 

macaques3-5. 

 

 Aptamers nCoV-S1-Apt1 to 

Apt6 

RBD-PB6 

 

Binds with S1 to inhibit spike-ACE2 

interaction. 

In vitro: EC50: 0.1-0.2µM (HEK293T-hACE2-

TMPRSS2 cells)6,7. 

 Miniprotein 

inhibitors  

 

AHB1 & 2 

LCB1 to 5 

Binds with RBD to block spike-ACE2 

interaction. 

In vitro: EC50: 24pM to 35nM VeroE6 cells)8. 

 

 Naturally 

occurring alkaloid 

 

Cepharanthine Inhibits spike-ACE2 binding to prevent 

viral entry into host cells. 

In vitro: EC50: 0.98µmol/L (VeroE6 cells)9,10. 
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S2 subunit Indole derivate Umifenovir Influenza drug that binds with SARS-

CoV-2 S2 membrane fusion domain to ↓ 

viral fusion and entry. 

 

In vitro: EC50: 4.11μM (VeroE6 cells)11,12. 

 

 HIV protease 

inhibitors 

Cobicistat HIV protease inhibitor (darunavir-

cobicistat) that inhibits SARS-CoV-2 

spike-mediated fusion. 

In vitro: EC50: <8.76µM (cobicistat in VeroE6, 

Calu-3, and T84 cells) and is synergistic with 

remdesivir. 

In vivo: ↓ body weight loss and lung viral load 

and virus titer in Syrian hamsters13. 

 

 Peptides SARSHRC-PEG and 

related peptides 

EK1 and related 

peptides 

P9R and related 

peptides 

 

Antiviral peptides that inhibit fusion of 

SARS-CoV-2 spike-mediated fusion. 

In vitro: potently ↓ viral load and virus titers 

with IC50 in nM range. 

In vivo: ↓ respiratory tract viral load, virus 

titers, tissue pathology, and/or transmission in 

various animal models14-18.  

     

S1/S2 subunits DARPin Ensovibep 

(MP0420) 

MP0423 

 

Binds to multiple epitopes on the spike 

protein S1 and/or S2 subunits to inhibit 

virus entry into host cells. 

In vitro: EC50: <10ng/ml (VeroE6 cells). 

In vivo: ↑ survival and ↓ lung viral load, virus 

titers, and tissue pathology in Roborovski dwarf 

hamsters19. 

 

 Salicylanilide 

derivative 

Niclosamide 

DWRX2003 

Anthelminthic that inhibits SARS-CoV-

2 replication by ↓ TMEM16-mediated 

syncytium formation and/or other 

mechanisms.  

In vitro: EC50: 0.28-0.34µM (Vero and VeroE6 

cells). 

In vivo: ↓viral load and inflammation in lung 

tissues of ferrets20-22.  

 

 Lectins H84T-banana lectin 

(BanLec) 

Binds to high-mannose glycans on spike 

protein to prevent virus entry into host 

cells. 

In vitro: EC50: <0.02µM (VeroE6 cells).  

In vivo: ↓ respiratory tract viral load, virus titer, 

and tissue pathology in hamsters23.  

 

  FRIL Binds to complex-type glycans on spike 

protein. 

 

In vitro: EC50: <0.01µM (VeroE6 cells)24.  

 

  Griffithsin Binds to high mannose glycans on spike 

protein to prevent virus entry into host 

cells. 

In vitro: EC50: <0.05µM (VeroE6 cells).  

In vivo: ↓ viral load and virus titer in mice25,26. 
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(B) Viral enzymes 

 

 

PLpro 

 

CoV PLpro 

inhibitors 

 

F0213 

 

Potential “pan-CoV” PLpro inhibitor that 

competitively inhibits the PLpro of 

SARS-CoV-2 and other CoVs via 

binding with the 157K amino acid 

residue. 

 

In vitro: EC50: 7.4µmol/L against SARS-CoV-2 

PLpro. 

In vivo: oral or IP F0213 ↓ lung viral load, virus 

titers, viral antigen expression, and tissue 

pathology in hamsters27. 

 

  GRL-0617 SARS-CoV inhibitor that also inhibits 

SARS-CoV-2 PLpro.  

In vitro: EC50: 3.18µmol/L (VeroE6 cells)28,29. 

 

  rac3j, rac3k, and 

rac5c 

SARS-CoV inhibitors that also inhibit 

SARS-CoV-2 PLpro. 

 

In vitro: ↓ SARS-CoV-2 replication (Vero 

cells)30. 

 Other repositioned 

drugs 

6-thioguanine Guanine analog used in the treatment of 

leukemia that inhibits SARS-CoV-2 

PLpro. 

 

In vitro: EC50: 2.13µM (VeroE6 cells)31. 

  Cryptotanshinone Natural quinone compound and STAT-3 

inhibitor that inhibits SARS-CoV-2 

PLpro. 

 

In vitro: EC50: 0.70µmol/L (VeroE6 cells)28.  

  Sepantronium 

bromide (YM155) 

Survivin inhibitor that inhibits SARS-

CoV-2 PLpro. 

 

In vitro: EC50: 0.17µmol/L (VeroE6 cells)28.  

  Tanshinone I Tanshinone that inhibits SARS-CoV-2 

PLpro. 

 

In vitro: EC50: 2.26µmol/L (VeroE6 cells)28. 

 

Mpro 

 

CoV Mpro 

inhibitors 

 

Nirmatrelir-

ritonavir (PF-

07321332) 

 

Inhibits Mpro of SARS-CoV-2 and other 

CoVs. Lufotrelvir (PF-07304814) is a 

related intravenous SARS-CoV-2 Mpro 

inhibitor. 

 

 

 

In vitro: “pan-coronaviral” activity against 

human-pathogenic CoVs in Mpro enzymatic 

inhibition and CPE inhibition assays (EC50: 

<0.08µM in VeroE6s, A549-hACE2, and 

human bronchial epithelial cells). 

In vivo: ↓ weight loss, virus titer, and tissue 

pathology in BALB/c mice infected with 

mouse-adapted SARS-CoV-232. 

 

  13b Inhibits Mpro of SARS-CoV-2 and other In vitro: EC50: <5.0µM (Calu-3 cells)33. 
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CoVs. 

 

  ALG-097431 Inhibits Mpro of SARS-CoV-2 and other 

CoVs. 

 

In vitro: inhibits SARS-CoV-2 (EC50: 0.2µM), 

HCoV-OC43, and HCoV-229E in A549-

hACE2, HeLa, and Huh-7 cells, respectively. 

In vivo: ↓ lung viral load and virus titer in 

Syrian hamsters34. 

 

  ASC-11 Inhibits SARS-CoV-2 Mpro. In vitro: EC90: 0.005µM (VeroE6 cells)35. 

 

  EDP-235 Inhibits SARS-CoV-2 Mpro. In vitro: EC90: 0.033µM (VeroE6 cells)35,36. 

 

  Ensitrelvir (S-

217622) 

Inhibits SARS-CoV-2 Mpro. In vitro: “pan-coronaviral” activity against 

SARS-CoV-2 (EC50: <0.5µM in VeroE6-

TMPRSS2 cells) and other human-pathogenic 

CoVs37. 

In vivo: ↓ respiratory tract virus titer in mice 

and hamsters37-39. 

  

  GC373 

GC376 

Feline CoV Mpro inhibitors that also 

inhibit SARS-CoV-2 Mpro. 

In vitro: EC50: 1.50µM (GC373) and 0.90 

(GC376) (VeroE6 cells)40. 

 

  GDI-4405 Inhibits SARS-CoV-2 Mpro. 

 

In vitro: inhibits SARS-CoV-2 in multiple 

assays including in primary human-derived 

airway epithelial cells41. 

 

  11a & 11b 

FB2001 

Inhibits SARS-CoV-2 Mpro. In vitro: EC50: 0.53µM (VeroE6 cells)42.  

 

 

  Leritrelvir 

(RAY1216) 

 

Inhibits SARS-CoV-2 Mpro. In vitro: EC50: <200nM (VeroE6 cells)43.  

In vivo: ↑survival, ↓ lung viral titer, and tissue 

pathology in K18-hACE2 mice43. 

 

  MI-09 

MI-30 

Novel bicycloproline-containing SARS-

CoV-2 Mpro inhibitors. 

In vitro: EC50: <0.9µM (VeroE6 cells). 

In vivo: ↓ lung viral loads and tissue pathology 

in hACE2 mice44. 

 

  PBI-0451 Inhibits SARS-CoV-2 Mpro. In vitro: EC90: 32nM (VeroE6 cells)45. 
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  PF‐00835231 SARS-CoV Mpro inhibitor that also 

inhibits SARS-CoV-2 Mpro. 

 

In vitro: EC50: 0.221µM (A549-ACE2 cells)46.  

  N3 Michael acceptor inhibitor that inhibits 

Mpro of SARS-CoV-2 and other CoVs. 

 

In vitro: “pan-coronaviral” activity against 

SARS-CoV-2 (EC50: 16.77µM in VeroE6 cells) 

and other human-pathogenic CoVs47.  

 

  Simnotrelvir-

ritonavir 

(SIM0417) 

 

Inhibits SARS-CoV-2 Mpro. In vitro: EC50: 43nM (VeroE6 cells)48. 

In vivo: ↓ body weight loss, lung virus titer, and 

tissue pathology in K18-hACE2 mice48. 

 

  Y180 Inhibits SARS-CoV-2 Mpro. In vitro: EC50: <0.04µM (VeroE6-TMPRSS2 

cells). 

In vivo: ↑survival and ↓ body weight loss, lung 

viral load, virus titer, and tissue pathology in 

K18-hACE2 mice49. 

 

 HCV protease 

inhibitors 

Boceprevir 

Ciluprevir 

Narlaprevir 

Telaprevir 

 

HCV protease inhibitors that may also 

inhibit SARS-CoV-2 Mpro.  

In vitro: EC50: 11.552µM (telaprevir in VeroE6 

cells)50,51. 

 HIV protease 

inhibitors 

Atazanavir HIV protease inhibitor (atazanavir-

ritonavir) that also inhibits SARS-CoV-

2 Mpro. 

In vitro: EC50: <0.5µM (atazanavir in Calu-3 

cells)52. 

In vivo: ↑survival and ↓ body weight loss, lung 

viral load, and tissue pathology in K18-hACE2 

mice53. 

 

  Lopinavir HIV protease inhibitor (lopinavir-

ritonavir) that also inhibits SARS-CoV-

2 Mpro. 

In vitro: EC50: 11.6µM (lopinavir in VeroE6 

cells)54.  

In vivo: ↓ clinical scores but no significant ↓ 

nasal wash viral load in ferrets55. 

 

 Other repositioned 

drugs 

Emodin An anthraquinone that inhibits SARS-

CoV-2 Mpro. 

In vitro: EC50: <32.00µM (Vero and Calu-3 

cells)56. 

 

 

RdRp 

 

Remdesivir and 

related 

 

Remdesivir (GS-

5734) and its active 

 

Broad-spectrum nucleoside analog viral 

RdRp inhibitor. 

 

In vitro: EC50: 0.77µM (VeroE6 cells)57. 

In vivo: ↓ clinical signs, lung infiltrates, viral 
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compounds metabolite GS-

441524 

loads, virus titers, and tissue pathology in 

rhesus macaques58. 

 

  ATV006 Oral derivate of GS-441524 (parent 

nucleoside of remdesivir) viral RdRp 

inhibitor. 

In vitro: EC50: <2.00µM (VeroE6 and 

Huh7cells). 

In vivo: oral ATV006 ↓ lung viral loads, virus 

titer, and tissue pathology in mice59. 

 

  GS-621763 Oral prodrug of GS-441524 (parent 

nucleoside of remdesivir) viral RdRp 

inhibitor. 

In vitro: EC50: 0.11-0.73µM (VeroE6 cells). 

In vivo: ↓ clinical signs, respiratory tract viral 

load and virus titers, and transmission in 

ferrets60. 

 

  ODBG-P-RVn 

 

Oral prodrug of GS-441524 (parent 

nucleoside of remdesivir) viral RdRp 

inhibitor. 

In vitro: EC50: <0.30µM (VeroE6, Calu-3, Huh-

7.5, Caco-2, and human pluripotent stem cell-

derived lung cells)61. 

In vivo: achieved therapeutic levels in plasma 

above EC90 for SARS-CoV-2 in Syrian 

hamsters62. 

 

  Mindeudesivir 

(JT001; VV116) 

Oral derivate of GS-441524 (parent 

nucleoside of remdesivir) viral RdRp 

inhibitor. 

In vitro: EC50: 0.24µM (VeroE6 cells)63. 

In vivo: ↓ active against SARS-CoV-2 WT and 

variants in mice64. 

 

 Other broad-

spectrum RdRp 

inhibitors 

Galidesivir 

(BCX4430) 

Broad-spectrum nucleoside analog viral 

RdRp inhibitor. 

In vitro: EC90: <20.00µM (Vero76 and Caco2 

cells). 

In vivo: ↓ weight loss, viral burden, and tissue 

pathology in Syrian hamsters65. 

 

  Molnupiravir 

(EIDD-2801 or 

MK-4482) 

Oral prodrug of the broad-spectrum 

ribonucleoside analog NHC; induces 

mutations in the replication of viral 

RdRp. 

 

In vitro: EC50: <0.5µM (A549-hACE2 and 

Calu-3 cells)66.  

In vivo: ↓ lung viral load, virus titers, and tissue 

pathology in mice implanted with human lung 

tissue and Syrian hamsters, and ↓ transmission 

in ferrets67-70. 

 

 

  Ribavirin Broad-spectrum nucleoside analog viral 

RdRp inhibitor. 

In vitro: EC50: 109.50µM57. 
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  Triazavirin Broad-spectrum nucleoside analog viral 

RdRp inhibitor that may also inhibit 

SARS-CoV-2 RdRp and Mpro. 

 

In silico: potential SARS-CoV-2 Mpro 

inhibitor71. 

 HCV inhibitors Bemnifosbuvir 

(AT-527, 

RO7496998) 

HCV nucleotide analog viral RdRp 

inhibitor that also inhibits SARS-CoV-2 

RdRp. 

 

In vitro: EC90: 0.53µM72.  

  Sofosbuvir  HCV NS5B inhibitor that inhibits 

SARS-CoV-2 RdRp. 

 

In vitro: EC50: 5.1 to >10.0µM (VeroE6, Huh7, 

and Calu-3 cells)73. 

 HIV inhibitors Azvudine HIV RdRp inhibitor that also inhibits 

SARS-CoV-2 RdRp and may also have 

immunomodulatory effects. 

In vitro: inhibits replication of SARS-CoV-2 

(EC50: 4.31µM in VeroE6 cells) and HCoV-

OC43 (1.2µM in H460 cells). 

- In vivo: ↓ respiratory tract and blood viral 

load, lung viral antigen expression, and lung 

tissue pathology in rhesus macaques74. 

 

  Tenofovir HIV and HBV nucleotide analog RdRp 

inhibitor (tenofovir-emtricitabine) that 

also inhibits SARS-CoV-2 RdRp. 

 

In vivo: ↓ clinical signs and nasal wash virus 

titers in ferrets55,75. 

 Influenza 

inhibitors 

Enisamium 

(FAV00A) 

Isonicotinic acid derivative anti-

influenza drug that inhibits SARS-CoV-

2 RdRp. 

 

In vitro: EC50: 1200µM in Caco2 cells76. 

  Favipiravir Anti-influenza nucleoside analog viral 

RdRp inhibitor that also inhibits SARS-

CoV-2 RdRp. 

 

In vitro: EC50: 61.88µM57. 

In vivo: ↓ lung viral load, virus titers, and tissue 

pathology in Syrian hamsters77. 

 Other repositioned 

drugs 

Omipalisib A PI3K/mTOR inhibitor that is 

predicted to inhibit SARS-CoV-2 RdRp. 

 

In vitro: EC50: <0.50µM (Vero and Calu-3 

cells)56. 

  Tipifarnib A farnesyltransferase inhibitor that is 

predicted to inhibit SARS-CoV-2 RdRp. 

 

In vitro: EC50: <12.00µM (Vero and Calu-3 

cells)56. 

 siRNAs C6G25S 

sLNP-siUC7 

siRNAs (with or without sLNPs) that 

target SARS-CoV-2 RdRp. 

In vitro: EC50: <0.1nM.  

In vivo: intravenous sLNP-siUC7, inhaled 
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siR-7-EM/KK-46 C6G25S, and inhaled siR-7-EM/KK-46 ↓ lung 

viral load, virus titers, and tissue pathology in 

K18-hACE2 mice and Syrian hamsters78-80. 

 

 

Helicase 

 

Helicase inhibitors 

 

Ranitidine bismuth 

citrate 

 

Anti-Helicobacter pylori infection and 

peptic ulcer disease drug that inhibits 

SARS-CoV-2 helicase. 

 

In vitro: EC50: 2.3µM (VeroE6 cells). 

In vivo: ↓ clinical signs, and lung viral load, 

virus titer, and tissue pathology in Syrian 

hamsters81. 

 

  FPA-124 AKT inhibitor that inhibits SARS-CoV-

2 helicase. 

In vitro: EC50: 14µM (VeroE6 cells)82. 

 

  Myricetin Flavonoid that inhibits SARS-CoV-2 

helicase. 

In vitro: EC50: 32µM (VeroE6 cells)82. 

 

  Suramin Anti-parasitic that inhibits SARS-CoV-

2 helicase. 

In vitro: EC50: 9.9µM (VeroE6 cells)82. 

 

  SSYA10-001 SARS-CoV helicase inhibitor that also 

inhibits SARS-CoV-2 helicase. 

In vitro: EC50: 81µM (VeroE6 cells)82. 

 

  sLNP-siHel2 siRNAs with sLNPs that target SARS-

CoV-2 helicase. 

In vivo: intravenous sLNP-siHel2 and inhaled 

C6G25S ↓ lung viral load, virus titers, and 

tissue pathology in K18-hACE2 mice78. 

 

 

Exonuclease 

 

HCV inhibitors 

 

Elbasivr 

Pibrentasvir 

Ombitasvir 

 

 

Inhibit SARS-CoV-2 exonuclease. 

 

In vitro: EC50: 0.4-0.7µM (Calu-3 cells)83. 

 

Endoribonuclease 

 

TPase inhibitor 

 

Tipiracil 

 

TPase inhibitor used in the treatment of 

colorectal cancer that inhibits SARS-

CoV-2 SARS-CoV-2 endoribonuclease. 

 

In vitro: inhibition of endoribonuclease activity 

but limited effect on viral replication (A549-

hCE2 cells)84. 

 

 

2′-O-

methyltransferase 

 

Miscellaneous 

 

Compound 11 

Nsp10 peptides 

 

In silico prediction of high binding 

affinities with SARS-CoV-2 2′-O-

methyltransferase. 

 

 

In silico: uncertain in vitro or in vivo antiviral 

activity85,86. 

 

Multiple enzymes 

 

Antimycobacterial 

 

Clofazimine 

 

Inhibits SARS-CoV-2 helicase and 

 

In vitro: EC50: 0.31µM (VeroE6 cells). 
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RdRp. In vivo: ↓ lung viral load, virus titers, and tissue 

pathology in Syrian hamsters87. 

 

 HCV inhibitors Simeprevir 

Grazoprevir 

Paritaprevir 

Vaniprevir 

 

Inhibits SARS-CoV-2 Mpro, PLpro, 

and/or RdRp. 

In vitro: EC50: 4.082µM (VeroE6 cells)88,89. 

  Daclatasvir 

Ledipasvir 

Velpatasvir 

 

Inhibit SARS-CoV-2 RdRp and 

exonuclease. 

In vitro: EC50: 0.6-1.1µM (daclatasvir in 

VeroE6, Huh7, and Calu-3 cells)73,74,83. 

 

 Others Carmofur  

Disulfiram  

Ebselen 

PX-12 

Shikonin 

Tideglusib 

 

Non-specific inhibition of SARS-CoV-2 

PLpro, Mpro, nsp13 ATPase, and/or nsp14 

exoribonuclease. 

In vitro: inhibits SARS-CoV-2 PLpro, Mpro, 

nsp13 ATPase, and/or nsp14 exoribonuclease 

activities; EC50: 24.30µM (carmofur in VeroE6 

cells)47,90-92. 

 

(C) Other viral targets 

 

   

 

 

 

Viroporin 

inhibitors 

 

Amantadine 

Emodin 

Epigallocatechin 

Hexamethylene-

amiloride 

Quercetin 

Xanthene 

 

 

Inhibits SARS-CoV-2 envelope protein 

and other viroporins from inducing 

intracellular membrane remodelling to 

generate membrane vesicles as viral 

replication site and/or ion channel 

activities. 

 

In vitro: EC50: 83-119µM (amantadine in 

VeroE6 cells)93-95. 

 siRNAs siORF1 (O1 to O3) 

siL (L1 to L3) 

siN (N1 to N11) 

siU (U1 to U3) 

 

siRNA targeting different genomic and 

subgenomic RNAs of SARS-CoV-2. 

Ex vivo: siORF1 (O3) ↓ viral load in ex vivo 

lung culture model96,97. 

Abbreviations: CXR, chest X-ray; DARPin, designated ankyrin repeat protein; FRIL, Flt3 receptor interacting lectin; HCV, hepatitis C virus; HIV, human 

immunodeficiency virus; Mpro, main protease; NHC, beta-D-N4-hydroxycytidine; PLpro, papain-like protease; RdRp, RNA-dependent RNA polymerase; siRNA, small 

interfering RNA; sLNP, stealth lipid nanoparticle; TMEM16, transmembrane protein 16; TPase, thymidine phosphorylase.  
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SUPPLEMENTARY TABLE 2 | Representative host-targeting therapeutic candidates for COVID-19. 

 
 

Target 

 

 

Drug class 

 

Examples 

 

Antiviral mechanism 

 

Pre-clinical antiviral data 

 

(A) Host immune response 

 

 

Broad-spectrum     

   Alkaloid Colchicine Anti-mitotic drug that inhibits 

microtubule assembly and 

modulates multiple 

inflammatory pathways. 

Clinical uses: inflammatory disorders such as 

gout, pericarditis, Behçet's disease, and familial 

Mediterranean fever. 

Uncertain in vitro and in vivo efficacy against 

SARS-CoV-298. 

 

 Indole-imidazole 

derivative 

Sabizabulin (VERU-111) Novel bis-indole microtubule 

depolymerisation agent with 

anti-inflammatory and 

potentially antiviral effects. 

 

In vitro: ↓ inflammatory cytokines in endotoxin-

stimulated mouse spleen cells99. 

 Glucocorticoids Dexamethasone 

Methylprednisolone 

Hydrocortisone 

 

Systemic corticosteroids with 

broad-spectrum anti-

inflammatory effects. 

In vivo: combination of systemic 

methylprednisolone and remdesivir ↓ body 

weight loss, viral loads, and tissue inflammation 

in Syrian hamsters100. 

 

  Budesonide 

Ciclesonide 
Inhaled corticosteroids that ↓
airway inflammation. 

Ciclesonide also targets 

SARS-CoV-2 nsp3 and/or 

nsp4 to inhibit viral 

replication. 

 

In vitro: EC50: 4.33µM (ciclesonide in Vero 

cells) and EC90: 0.55µM in human bronchial 

tracheal epithelial cells20,101. 

 

Interferons 

 

    

 

Type I IFNs 

 

Recombinant type I 

 

Recombinant IFN-α 

 

A family of cytokines with 

 

Clinical uses: HBV and HCV infections (IFN-α) 
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IFNs Recombinant IFN-β broad-spectrum antiviral 

activities. 

 

and multiple sclerosis (IFN-β). 

In vitro: potent antiviral activity against SARS-

CoV-2 alone or in combination with other 

antivirals54,102. 

In vivo: early use of intranasal IFN-α ↓weight 

loss, lung viral load and virus titers, and tissue 

damage in Syrian hamsters103. 

 

Type II IFNs Antibodies against 

type II IFNs 

Neutralizing antibody 

against IFN-γ 

 

Neutralizing antibodies that 

block IFN-γ-mediated 

inflammation. 

In vitro: IFN-γ ↑ viral replication in human 

colonic organoids104. 

In vivo: neutralizing antibodies against IFN-γ 

and TNF-α co-treatment ↑ survival and ↓ tissue 

damage of K18-hACE2 mice105. 

 

Type III IFNs Recombinant type 

III IFNs 

Recombinant IFN-λ A family of cytokines with 

broad-spectrum antiviral 

activities. 

 

In vitro: pegylated IFN-λ1 ↓ SARS-CoV-2 

replication in primary human airway epithelial 

cells106. 

In vivo: early use of pegylated IFN-λ1 ↓ SARS-

CoV-2 replication in mice106. Intranasal IFN-λ2 

↓ respiratory tract viral load, virus titers, and 

tissue damage in K18-hACE2 mice107. 

 

IFN inducers Synthetic double-

stranded RNA 

analogues  

Poly(I:C) TLR3/MDA5 synthetic 

agonist that potently induces 

IFN production. 

 

In vitro: poly(I:C)-primed mesenchymal stem 

cells exhibit ↑ antiviral and immunomodulatory 

response pathways and ↑ expression of antiviral 

proteins (MX1, IFITM3, and OAS1). Addition 

of poly(I:C)-primed mesenchymal stem cells to 

COVID-19 patients’ whole blood ↓ 

inflammatory neutrophils and ↑ M2 monocytes 

with enhanced phagocytic effector function108.  

In vivo: early use of intranasal poly(I:C) results 

in ↑ survival rate, ↓ viral loads, and ↓ lung and 

brain cytokine storm in K18-hACE2-transgenic 

mice109. 

 

 

Interleukins 
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IL-1 IL-1 inhibitors Anakinra 

Canakinumab 

IL-1 receptor antagonist (eg: 

anakinra) and mAb (eg: 

canakinumab) that ↓ IL1-

mediated immunopathologies.  

 

Clinical uses: immune disorders such as 

rheumatoid arthritis, systemic juvenile 

idiopathic arthritis, Still’s disease, and neonatal-

onset multisystem inflammatory disease. 

Anakinra has been used to treat pediatric 

patients with MIS-C. 

 

IL-6 IL-6 inhibitors Sarilumab 

Siltuximab 

Tocilizumab 

Anti-IL-6 receptor mAb (eg: 

tocilizumab and sarilumab) 

and anti-IL-6 mAb (eg: 

siltuximab) that ↓ IL6-

mediated immunopathologies. 

 

Clinical uses: immune disorders such as 

rheumatoid arthritis, CAR T-cell therapy-

induced cytokine release syndrome, and 

Castleman disease. 

Tocilizumab and sarilumab may be used in 

combination of corticosteroids for treatment of 

COVID-19. 

 

Other inflammatory mediators 

 

 

BET BRD2 and BRD4 

inhibitors 

Mivebresib (ABBV-075) 

ABBV-744 

Apabetalone (RVX-208) 

CPI-0610 

dBET6 

JQ-1 

MZ1 

SF2523 

 

Inhibits BRD2 and BRD4-

mediated regulation of gene 

transcription.  

In vitro: EC50: 1.52µM (SF2523 in Vero STAT1 

KO cells)110,111. 

BTK BTK inhibitors Acalabrutinib 

Ibrutinib 

Zanubrutinib 

Inhibits B-cell and 

macrophage activation, 

signalling, and development to 

↓ immunopathologies. 

 

Clinical uses: B-cell malignancies such as 

chronic lymphocytic leukemia and mantle cell 

lymphoma, and chronic GVHD. 

Uncertain in vitro and in vivo anti-SARS-CoV-2 

efficacy. 

 

JAK JAK inhibitors Baricitinib 

Ruxolitinib 

Tofacitinib 

Interferes with 

phosphorylation of key 

proteins involved in the 

inflammatory response. 

Baricitinib may also ↓ 

clathrin-mediated endocytosis 

Clinical uses: immune disorders such as 

rheumatoid arthritis, psoriatic arthritis, juvenile 

idiopathic arthritis, and ulcerative colitis, and 

hematological disorders such as myelofibrosis, 

polycythemia vera, and acute GVHD. 

Used in combination with remdesivir and/or 
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of SARS-CoV-2112. corticosteroids. 

In vivo: baricitinb ↓ inflammation and 

pulmonary tissue pathologies in SARS-CoV-2-

infected rhesus macaques113. 

 

Sigma-1 and -2 

receptor 

SSRI Fluvoxamine Reduces pro-inflammatory 

cytokine production through 

binding to sigma-1 receptor on 

immune cells; may also ↓ 

SARS-CoV-2 entry through 

inhibition of acid 

sphingomyelinase and 

ceramide-enriched membrane 

domain formation114,115. 

 

Clinical uses: depression and obsessive-

compulsive disorder. 

Uncertain in vitro and in vivo efficacy against 

SARS-CoV-2. 

  Chloroquine 

Clemastine 

Haloperiodol 

PB28 

PD-144418 

RS-PPCC 

 

Perturbs sigma receptor-

mediated cell stress response. 

In vitro: ↓ viral antigen ± titer (VeroE6 cells)116. 

Histamine 

receptor 

H₂ receptor 

antagonist 

Famotidine Inhibits histamine-induced 

TLR3 expression and cytokine 

release in SARS-CoV-2 

infected cells. 

Clinical uses: peptic ulcer disease and 

gastroesophageal reflux disease.  

In vitro: no effect on viral replication, but ↓ 

CCL-2 and IL-6 expression levels in SARS-

CoV-2 infected cells117. 

 

GM-CSF Anti-GM-CSF 

mAbs 

Gimsilumab 

Lenzilumab 

Mavrilimumab 

Namilumab 

Otilimab  

Blocks interaction between 

GM-CSF and its cell surface 

receptor or the intracellular 

signalling of GM-CSF to ↓ 

immunopathologies.  

 

Uncertain in vitro and in vivo efficacy against 

SARS-CoV-2. 

Complements Complement 

inhibitors 

AMY-101 (anti-C3) 

Eculizumab (anti-C5) 

Ravulizumab (anti-C5) 

Zilucoplan (anti-C5) 

Vilobelimab (anti-C5a) 

Anti-complement mAbs and 

peptides that ↓ complement-

mediated immunopathologies. 

Clinical uses: myasthenia gravis, paroxysmal 

nocturnal hemoglobinuria118-121. 
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TOP1 TOP1 inhibitors Topotecan Inhibits TOP1-mediated 

inflammation. 

Clinical uses: chemotherapeutic agent for 

ovarian, cervical, and lung cancers. 

In vitro: ↓ SARS-CoV-2-induced inflammatory 

gene expression 

In vivo: ↓ inflammation in hamsters and ↑ 

survival in K18-hACE2 mice122. 

 

HMGB1 HMGB1 inhibitors Glycyrrhizin Inhibits HMGB1-mediated 

inflammatory response, lung 

ACE2 mRNA expression, and 

inhibits SARS-CoV-2 Mpro. 

 

In vitro: EC50: 0.44mg/mL (VeroE6 cells)123,124. 

HDAC2 HDAC inhibitors Apicidin  

Belinostat 

Vorinostat 

Valproic acid 

 

Inhibit HDAC2-mediated 

inflammatory and interferon 

response. 

In vitro: ↓ ACE2 expression but uncertain 

effects on SARS-CoV-2 replication116,125. 

S1P S1P receptor 

modulators and 

spingosine kinase 

inhibitors 

 

Fingolimod 

Opaganib 

Inhibits S1P synthesis and the 

associated inflammatory 

response. 

Clinical uses: multiple sclerosis (fingolimod). 

In vitro: ↓ viral load in human bronchial 

epithelial cells126. 

 

 

(B) Host factors involved in the viral replication cycle 

 

 

Receptor 

 

    

 

ACE2 

 

Recombinant 

soluble hACE2 

 

ACE2-1-618-DDC-ABD 

hACE2 1-618 

 

Act as decoys to compete with 

cell-bound ACE2 to ↓ spike-

ACE2 binding. 

 

In vitro: ↓ viral load of SARS-CoV-2 WT and 

variants and human kidney organoids127. 

In vivo: ↓ clinical scores, lung viral load and 

virus titers, and tissue damage in K18-hACE2-

transgenic mice and Syrian hamsters128,129.  

 

 Bivalent ACE2-Fc M81 Competes with cell-bound 

ACE2 and possesses robust 

In vitro: cross-neutralizes SARS-CoV-2 WT 

and variants with low nM EC50. 
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Fc-effector functions, 

including antibody-dependent 

cellular cytotoxicity, 

phagocytosis, and complement 

deposition. 

 

In vivo: ↑ survival and ↓ respiratory tract viral 

load in K18-hACE2-transgenic mice130. 

 Circulating 

extracellular 

vesicles expressing 

ACE2 

evACE2 Act as decoys to compete with 

cell-bound ACE2 to ↓ spike-

ACE2 binding. 

In vitro: neutralizes SARS-CoV-2 WT and 

variants with about 80-fold higher potentcy than 

recombinant soluble ACE2. 

In vivo: intranasal evACE2 ↑ survival and ↓ 

lung viral load in K18-hACE2-transgenic mice 

[114]. 

 

 PPAR-α agonist Fenofibrate Destabilizes RBD-ACE2 

binding and may reverse 

alterations in lipid metabolism 

induced by SARS-CoV-2. 

 

In vitro: EC50: 7-14µM (Vero cells)131. 

 

Attachment factors and/or co-receptors 

 

    

HSPGs 

 

Sulfated glycans 

 

LMWH 

Fucoidans 

Mucopolysaccharide 

polysulfate 

Pentosan polysulfate 

Unfractionated heparin 

 

 

Competitive inhibitors of 

heparan sulfate. 

 

Clinical uses: anticoagulation (heparin) and 

interstitial cystitis (pentosane polysulfate). 

In vitro: ↓ viral entry132-135. 

 Other inhibitors of 

HSPG-dependent 

endocytosis 

BNTX 

Brilacidin 

Lactoferrin 

Mitoxantrone 

Piceatannol 

Raloxifene 

Sunitinib 

Tilorone 

 

Directly inhibits heparan 

sulfate or disrupts actin 

network to indirectly inhibit 

heparan sulfate-assisted viral 

entry. 

In vitro: ↓ viral entry and virus-induced CPE; 

EC50: <23µM (brilacidin in Vero, Calu-3, Caco-

2, Huh-7, and 293T-ACE2 cells)132,136,137. 

 

CD147 (basigin or Humanized anti- Meplazumab (HP6H8) Inhibits CD147-mediated Clinical uses: severe eosinophilic ashma, 
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EMMPRIN) CD147 antibody SARS-CoV-2 entry. eosinophilic granulomatosis, and 

hypereosinophilic syndrome. 

In vitro: EC50: 15.16µg/ml138. 

 

 

Entry 

 

    

   

Surface host 

proteases 

 

Serine protease 

inhibitors 

 

Camostat 

Nafaomstat 

Upamostat 

 

Inhibits spike-TMPRSS2 

binding to reduce TMPRSS2-

mediated virus entry into host 

cells. 

 

 

Clinical uses: chronic pancreatitis and reflux 

esophagitis. 

In vitro: EC50: 2.2nM (HAE cells) to 22.50µM 

(nafamostat, VeroE6 cells)57,139,140. 

In vivo: intranasal nafamostat ↓ virus titers, 

weight loss, and mortality in K18-hACE2 

mice141. 

 

 Peptidomimetics N-0385 

 

Inhibits TMPRSS-2-mediated 

virus entry into host cells. 

In vitro: EC50: 2.8nM (Calu-3 cells)142. 

In vivo: ↓morbidity and mortality in K18-

hACE2 mice142. 

 

 Kallikrein-related 

B1 inhibitor 

 

Avoralstat Inhibits TMPRSS-2-mediated 

virus entry into host cells. 

In vitro: inhibits SARS-CoV-2 entry and 

replication in human airway epithelial cells143. 

In vivo: ↓ lung tissue viral titers and body 

weight loss in Ad5-hACE2-transduced BALB/c 

mice143. 

 

 Mucolytics Bromhexine Inhibits spike-TMPRSS2 

binding of TMPRSS2 to 

reduce TMPRSS2-mediated 

virus entry into host cells. 

 

In vitro: inhibits TMPRSS2 with EC50: 0.75µM 

and SARS-CoV-2 entry in lung cells144. 

 

 Antiandrogens Apalutamide 

Bicalutamide 

Enzalutamide 

 

Inhibits transcriptional 

expression of TMPRSS2 to 

reduce TMPRSS2-mediated 

virus entry into host cells. 

 

In vivo: ↓ TMPRSS2 levels in human lung cells 

and mouse lung145. 

  

Endosomal host 

 

Adamantanes 

 

Amantadine 

 

Inhibits cathepsin L-mediated 

 

In vitro: EC50: 83-119µM (amantadine in 
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proteases  virus entry into host cells. VeroE6 cells)93. 

In vivo: ↓ SARS-CoV-2 pseudovirus infection 

in hACE2 humanized mice146. 

 

 Cysteine protease 

inhibitor 

Aloxistatin (E64d) Inhibits cathepsin L-mediated 

virus entry into host cells. 

In vitro: ↓ SARS-CoV-2 pseudovirus infection 

(293T-hACE2 cells)147. 

In vivo: ↓ SARS-CoV-2 pseudovirus infection 

in hACE2 humanized mice146. 

 

 Glycopeptides Dalbavancin Inhibits cathepsin L-mediated 

virus entry into host cells. 

In vitro: EC50: 12nM (VeroE6 cells). 

In vivo: ↓ viral load and pulmonary tissue 

pathologies in hACE2 mice and rhesus 

macaques148.  

 

 Selective cathepsin 

L inhibitors 

SID 26681509 

 

Inhibits cathepsin L-mediated 

virus entry into host cells. 

In vitro: ↓ SARS-CoV-2 pseudovirus infection 

(293T-hACE2 cells)147. 

 

   

 

Other endosomal 

entry regulators 

 

 

4-aminoquinolines 

 

 

Chloroquine 

Hydroxychloroquine 

 

 

Increases endosomal pH to 

inhibit fusion of SARS-CoV-2 

with host cell membrane, 

glycosylation of ACE2, and 

transport of SARS-CoV-2 rom 

early endosomes to 

endolysosomes. 

 

 

 

In vitro: EC50: 1.13-7.36µM (chloroquine) and 

4.06-12.96µM (hydroxychloroquine) (VeroE6 

cells)57,149. 

In vivo: ↓ lung viral load and tissue pathology in 

hACE2 mice, but not in hamsters, ferrets, and 

rhesus macaques55,150-152. 

 

 

 Bis-

benzylisoquinoline 

alkaloids 

 

Berbamine Endosomal acidification In vitro: EC50: 2.4µM (VeroE6 cells)153. 

 Cardiac glycosides Bufalin 

Digoxin 

Ouabain 

Inhibits Na+/K+-ATPase-

mediated regulation of 

intracellular ion homeostasis 

and/or ATP1A1-mediated Src 

signalling154. 

 

In vitro: EC50: <0.2µM (Vero and VeroE6 

cells)155-157. 

 

 Macrolides Bafilomycin A1 Endosomal acidification In vitro: ↓ viral load (Vero, Huh-7, and 293T-

hACE2 cells). 
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In vivo: ↓ lung viral load and tissue pathology in 

hACE2 mice150. 

 

 Phenothiazines Chlorpromazine Inhibits viral entry through 

clathrin-mediated endocytosis. 

In vitro: EC50: 8.2µM (VeroE6 and A549-ACE2 

cells)158. 

 

 PIK-fyve inhibitors Apilimod 

Vacuolin-1 

YM201636 

Inhibits PIK-fyve-mediated 

synthesis of PI(3,5)P2 which 

regulates endosome 

maturation. 

 

In vitro: ↓ SARS-CoV-2 pseudovirus entry 

(apilimod, 293/hACE2 cells)147,159,160. 

  RAB7A siRNA RAB7A knockout ↓ viral entry by intracellular 

ACE2 sequestration through 

altered endosomal trafficking. 

 

In vitro: ↓ cell surface expression and ↑ 

endosomal accumulation of ACE2159.  

 

 TPC2 antagonists Naringenin 

Tetrandrine 

Inhibits TPC2-mediated 

endolysosomal functions and 

virus entry. 

In vitro: ↓ SARS-CoV-2-induced CPE 

(naringenin, VeroE6 cells) and pseudovirion 

entry (tetrandrine, 293/hACE2 cells)147,162. 

 

    

 

Other host 

proteases 

 

 

Furin inhibitors 

 

 

Agmatine 

Andrographolide 

BOS-981 and BOS-138 

CMK 

Naphthofluorescein 

 

 

 

Inhibits furin-mediated 

cleavage at the S1/S2 

polybasic cleavage (PRRAR) 

site which is important for 

virus entry. 

 

 

 

In vitro: ↓ viral load (EC50 of CMK: 0.057μM), 

CPE, spike cleavage and syncytia formation 

(VeroE6 and MK2 cells)162-166. 

   MT-MMP inhibitors Incyclinide 

Prinomastat 

20(R)-ginsenoside Rh2 

Inhibits MT-MMP-mediated 

virus entry into host cells. 

In vitro: ↓ viral load in Calu-3 and Caco-2 cells. 

In vivo: intranasal incyclinide or 20(R)-

ginsenoside Rh2 ↓ lung viral load, virus titers, 

viral antigen expression, and tissue pathology in 

Syrian hamsters167. 

 

 

Translation and protein synthesis 

 

   

AP2M1 

 

AP2M1 inhibitors 

 

ACA 

 

Inhibits AP2M1-YxxØ motif 

interaction-mediated 

 

In vitro: broad-spectrum activity against SARS-

CoV-2 and other CoVs, as well as multiple 
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intracellular virus trafficking. DNA and RNA families168. 

 

Translation 

elongation 

Translation 

elongation 

inhibitors 

 

Cycloheximide Inhibits translation elongation. In vitro: EC50: 0.17μM (Caco-2 cells)169. 

40S ribosomal 

protein S14 

40S ribosomal 

protein S14 

inhibitors 

 

Emetine Inhibits 40S ribosomal protein 

S14. 

In vitro: EC50: 0.47μM (Caco-2 cells)169. 

eEF1A eEF1A inhibitors Plitidepsin 

Ternatin-4 

Inhibits eEF1A-mediated 

mRNA translation, protein 

synthesis and viral replication. 

Clinical use: multiple myeloma 

In vitro: EC50: <0.8nM (plitidepsin in VeroE6 

and 293T-hACE2 cells). 

In vivo: sc plitidepsin ↓ lung virus titer and 

tissue pathology in K18-hACE2 mice116,170.  

 

eIF4A eIF4A inhibitor Zotatifin Inhibits eEF1A-mediated 

mRNA translation, protein 

synthesis and viral replication. 

 

Clinical use: phase 1 clinical trial for cancer 

In vitro: EC50: 0.037µM116. 

PI3K/AKT/ 

mTOR 

PI3K/AKT/mTOR 

inhibitors 

ASTEX 

Everolimus 

OSI-127 

Rapamycin 

Temisirolimus 

 

Inhibits PI3K/AKT/mTOR-

mediated protein synthesis and 

viral replication. 

In vitro: ↓ SARS-CoV-2 viral load (Vero, Calu-

3, and 293T-ACE2 cells)110,171-173.  

Viral glycoprotein 

folding 

Iminosugars Celgosivir 

EB-0281 

Miglustat 

MON-DNJ 

Inhibits α-glucosidases I and 

II which are involved in the 

early stages of glycoprotein N-

linked oligosaccharide 

processing in ER. 

 

Clinical uses: HCV (celgosivir) and lysosome 

storage diseases (miglustat). 

In vitro: EC50: 1µM (celgosivir, Huh7-hACE2 

cells), 9.5µM (EB-0281, Calu-3 cells) and 

45.2µM (miglustat, Calu-3 cells)174,175. 

 

Sec61 Sec61 inhibitors PS3061 Inhibits Sec61-mediated 

protein biogenesis. 

 

In vitro: ↓ virus titer (VeroE6 cells)116. 

UPR activation Antibiotics Clofoctol Inhibits translation of viral 

RNA possibly through 

activation of UPR pathways  

In vitro: EC50: 12.41µM (Vero-81 cells)176. 

In vivo: intraperitoneal clofoctol ↓ lung virus 

titer and inflammation in K18-hACE2 mice176.  
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Lipid and cholesterol biosynthesis 

 

   

ATP citrate lyase 

 

ATP citrate lyase 

inhibitors 

 

Bempedoic acid 

SB 204990 

 

Inhibits the conversion of 

acetyl-CoA from citrate in the 

citrate induced de novo 

lipogenesis mini pathway 

within the tricarboxylic acid 

cycle. 

 

Clinical use: hypercholesterolemia (bempedoic 

acid). 

In vitro: EC50: 5-20µM for WT and variants of 

SARS-CoV-2. 

In vivo: IP SB 204990 ↓ viral load, virus titer, 

and viral antigen expression in hamsters177.  

 

DGAT DGAT inhibitors Xanthohumol Inhibits DGAT-mediated lipid 

droplet formation. 

In vitro: EC50: 4.7µM (Caco-2 cells). 

In vivo: oral xanthohumol significantly reduces 

the viral loads, viral antigen expression, pro-

inflammatory cytokines, and tissue pathology in 

Syrian hamsters178. 

 

Eicosanoids PTGDR inhibitors Asapiprant Inhibits PTGDR-mediated 

eicosanoid signalling. 

In vivo: ↑ survival and ↓ lung virus titers and 

tissue damage in mice infected with mouse-

adapted SARS-CoV-2179. 

 

PIK3C3 PIK3C3 inhibitors Autophinib 

ALLN 

PIK-III 

Compound-19 

 

Increases cholesterol 

biosynthesis. 

In vitro: ↓ viral load (A549-ACE2 cells)161. 

SREBPs SREBP inhibitors AM580 

Tamibarotene 

Inhibits SREBP-mediated 

lipogenesis essential for viral 

replication. 

 

Clinical uses: acute promyelocytic leukemia 

In vitro: EC50: 7.6µM (AM580 in VeroE6 

cells)54. 

In vivo: inhaled tamibarotene ↓ clinical signs, 

lung viral load, virus titer, and tissue damage in 

Syrian hamsters180. 

 

 

Others 

 

    

   

Apoptosis 

 

Caspase 6 inhibitors 

 

z-VEID-fmk 

 

Inhibits coronavirus 

nucleocapsid cleavage, 

 

In vitro: EC50: 3.3µM (Calu-3 cells). 

In vivo: ↓ lung viral load, virus titers, viral 
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reduces IFN antagonism, and 

restricts virus replication. 

antigens, and tissue damage in Syrian 

hamsters181. 

 

Cyclophilins Cyclophilin 

inhibitors  

Alisporivir 

Cyclosporine A 

Interaction of cyclophilins 

with CoV nsp1 and the 

calcineurin-NFAT pathway. 

Clinical uses: HCV (alisporivir) and 

immunosuppression (cyclosporin A). 

In vitro: EC50: 0.46 µM (alisporivir in VeroE6 

cells)182. 

 

Virus-induced 

senescence 

Senolytics Dasatinib-quercetin 

Fisetin 

Navitoclax 

Selective elimination of virus-

induced senescent cells. 

In vitro: selectively eliminates virus-induced 

senescent cells. 

In vivo: ↑ survival and ↓ lung tissue damage in 

Roborovski dwarf hamsters and K18-hACE2 

mice183. 

 

Uncertain Avermectins Ivermectin Likely acts on multiple 

targets. 

 

Clinical uses: nematode and ectoparasite 

infection/infestation. 

In vitro: EC50: <10µM (VeroE6 cells)184,185. 

 

 Thiazolide Nitazoxanide Inhibition of proinflammatory 

cytokines and host enzymes to 

↓ post-translational processing 

of viral proteins. 

 

Clinical uses: Cryptosporidium parvum and 

Giardia duodenalis infections.  

In vitro: EC50: 0.58-3.19 µM (VeroE6 and 

Caco-2 cells)57. 

In vivo: no significant viral load reduction in 

Syrian hamsters with suboptimal tissue 

concentrations of tizoxanide (the active 

metabolite of nitazoxanide) that were below the 

in vitro EC50
186. 

 

Abbreviations: ACA, N-(p-amylcinnamoyl)anthranilic acid; ARDS, acute respiratory distress syndrome; ASTEX, activated specialized tissue effector extracellular vesicles; 

ATP, adenosine triphosphate; BET, bromodomain and extraterminal; BRD2 and BRD4, bromodomain-containing proteins 2 and 4; BTK, Bruton’s tyrosine kinase; CAR, 

chimeric antigen receptor; CD147; cluster of differentiation 147; CMK, decanoyl-RVKR-chloromethylketone; COPD, chronic obstructive pulmonary disease; CoV, 

coronavirus; CPE, cytopathic effects; DGAT, diacylglycerol acyltransferase; eEF1A, elongation factor-1A; eIF4A, eukaryotic initiation factor-4A; ER, endoplasmic 

reticulum; evACE2, extracellular vesicles expressing ACE2; GM-CSF, granulocyte-macrophage colony-stimulating factor; GVHD, graft-versus-host disease; hACE2, human 

angiotensin-converting enzyme 2; HAE, primary human airway epithelia; HBV, hepatitis B virus; HCV, hepatitis C virus; HDAC2, histone deacetylase 2; HDV, hepatitis D 

virus; HMGB1, high mobility group box 1; HSPGs, heparan sulfate proteoglycans; IFN, interferon; IFN, interferon; IL, interleukin; IP, intraperitoneal; JAK, Janus kinase; 

LMWH, low molecular weight heparin; mAb, monoclonal antibody; MEK/ERK, Ras/Raf/Mitogen-activated protein kinase/ERK kinase/extracellular-signal-regulated kinase; 

MIS-C, multisystem inflammatory syndrome; MMPRIN; extracellular matrix metalloproteinase induce; MMT-MMP, membrane-type matrix metalloproteinase; NF-κB, 

nuclear factor kappa B (NF-κB); NLRP3, nucleotide-binding oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing protein 3; PI(3,5)P2, phosphatidyl-

inositol-3,5-bisphosphate; PI3K/AKT/mTOR, phosphoinositide3-kinase/protein kinase B/mammalian target of rapamycin; PIK3C3, phosphatidylinositol 3-kinase catalytic 
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subunit type 3; PIK-fyve, phosphatidylinositol 3-phosphate 5-kinase; PTGDR, prostaglandin D2 receptor; S1P, sphingosine-1-phosphate; sc, subcutaneous; SERMs; selective 

estrogen receptor modulators; SREBPs, sterol regulatory-element binding proteins; SSRI, selective serotonin reuptake inhibitor; TMPRSS2, transmembrane protease, serine 2; 

TOP1, topoisomerase 1; TPC2, two-pore channel 2; TRPMLs, transient receptor potential mucolipin channels; UPR, unfolded protein response. 
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