ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
ADDITION / CORRECTIONThis article has been corrected. View the notice.

Proteomic Identification of Protease Cleavage Sites Characterizes Prime and Non-prime Specificity of Cysteine Cathepsins B, L, and S

View Author Information
Institute for Molecular Medicine and Cell Research, University of Freiburg, Germany
Division of Clinical Chemistry and Clinical Biochemistry, Department of Surgery, Ludwig-Maximilians-University, Munich, Germany
§ Institute of Zoology, Cell and Matrix Biology, Johannes Gutenberg-University, Mainz, Germany
Tel: +49 761 203 9615. E-mail: [email protected]
Cite this: J. Proteome Res. 2011, 10, 12, 5363–5373
Publication Date (Web):October 3, 2011
https://doi.org/10.1021/pr200621z
Copyright © 2011 American Chemical Society

    Article Views

    9091

    Altmetric

    -

    Citations

    137
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (8)»

    Abstract

    Abstract Image

    Cysteine cathepsins mediate proteome homeostasis and have pivotal functions in diseases such as cancer. To better understand substrate recognition by cathepsins B, L, and S, we applied proteomic identification of protease cleavage sites (PICS) for simultaneous profiling of prime and non-prime specificity. PICS profiling of cathepsin B endopeptidase specificity highlights strong selectivity for glycine in P3′ due to an occluding loop blocking access to the primed subsites. In P1′, cathepsin B has a partial preference for phenylalanine, which is not found for cathepsins L and S. Occurrence of P1′ phenylalanine often coincides with aromatic residues in P2. For cathepsin L, PICS identifies 845 cleavage sites, representing the most comprehensive PICS profile to date. Cathepsin L specificity is dominated by the canonical preference for aromatic residues in P2 with limited contribution of prime-site selectivity determinants. Profiling of cathepsins B and L with a shorter incubation time (4 h instead of 16 h) did not reveal time-dependency of individual specificity determinants. Cathepsin S specificity was profiled at pH 6.0 and 7.5. The PICS profiles at both pH values display a high degree of similarity. Cathepsin S specificity is primarily guided by aliphatic residues in P2 with limited importance of prime-site residues.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Supplementary figure and tables. This material is available free of charge via the Internet at http://pubs.acs.org.

    Accession Codes

    The LC-MS/MS data associated with this manuscript may be downloaded from ProteomeCommons.org Tranche using the following hash:9vW9vw2eBchoa+zJvgpvBnFDRZuoYWUh+lMm/+tuQuF8olpOFNP/RLSgqem0fUO2fFuk/1CZv4zwuVQVpr2et9N2XpQAAAAAAAACvg== and zBwzs1VugEbcFXq5Iroi1ghudu7v2Hmb0jTfSpP/2sdudlhO8xHwHWEUv8XkvtoksNWMey9/4q62BlJxHLV079MvzuQAAAAAAAABqA==. The hash may be used to prove exactly what files were published as part of this manuscript′s data set, and the hash may also be used to check that the data has not changed since publication.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 137 publications.

    1. Sven Falke, Julia Lieske, Alexander Herrmann, Jure Loboda, Katarina Karničar, Sebastian Günther, Patrick Y. A. Reinke, Wiebke Ewert, Aleksandra Usenik, Nataša Lindič, Andreja Sekirnik, Klemen Dretnik, Hideaki Tsuge, Vito Turk, Henry N. Chapman, Winfried Hinrichs, Gregor Ebert, Dušan Turk, Alke Meents. Structural Elucidation and Antiviral Activity of Covalent Cathepsin L Inhibitors. Journal of Medicinal Chemistry 2024, 67 (9) , 7048-7067. https://doi.org/10.1021/acs.jmedchem.3c02351
    2. Adrián Fernández-de-la-Pradilla, Santiago Royo, Tanja Schirmeister, Fabian Barthels, Katarzyna Świderek, Florenci V. González, Vicent Moliner. Impact of the Warhead of Dipeptidyl Keto Michael Acceptors on the Inhibition Mechanism of Cysteine Protease Cathepsin L. ACS Catalysis 2023, 13 (20) , 13354-13368. https://doi.org/10.1021/acscatal.3c02748
    3. Lennart Brewitz, Leo Dumjahn, Yilin Zhao, C. David Owen, Stephen M. Laidlaw, Tika R. Malla, Dung Nguyen, Petra Lukacik, Eidarus Salah, Adam D. Crawshaw, Anna J. Warren, Jose Trincao, Claire Strain-Damerell, Miles W. Carroll, Martin A. Walsh, Christopher J. Schofield. Alkyne Derivatives of SARS-CoV-2 Main Protease Inhibitors Including Nirmatrelvir Inhibit by Reacting Covalently with the Nucleophilic Cysteine. Journal of Medicinal Chemistry 2023, 66 (4) , 2663-2680. https://doi.org/10.1021/acs.jmedchem.2c01627
    4. Bing Bai, Alexandr Belovodskiy, Mostofa Hena, Appan Srinivas Kandadai, Michael A. Joyce, Holly A. Saffran, Justin A. Shields, Muhammad Bashir Khan, Elena Arutyunova, Jimmy Lu, Sardeev K. Bajwa, Darren Hockman, Conrad Fischer, Tess Lamer, Wayne Vuong, Marco J. van Belkum, Zhengxian Gu, Fusen Lin, Yanhua Du, Jia Xu, Mohammad Rahim, Howard S. Young, John C. Vederas, D. Lorne Tyrrell, M. Joanne Lemieux, James A. Nieman. Peptidomimetic α-Acyloxymethylketone Warheads with Six-Membered Lactam P1 Glutamine Mimic: SARS-CoV-2 3CL Protease Inhibition, Coronavirus Antiviral Activity, and in Vitro Biological Stability. Journal of Medicinal Chemistry 2022, 65 (4) , 2905-2925. https://doi.org/10.1021/acs.jmedchem.1c00616
    5. Zhenze Jiang, Christopher B. Lietz, Sonia Podvin, Michael C. Yoon, Thomas Toneff, Vivian Hook, Anthony J. O’Donoghue. Differential Neuropeptidomes of Dense Core Secretory Vesicles (DCSV) Produced at Intravesicular and Extracellular pH Conditions by Proteolytic Processing. ACS Chemical Neuroscience 2021, 12 (13) , 2385-2398. https://doi.org/10.1021/acschemneuro.1c00133
    6. Birkir Reynisson, Carolina Barra, Saghar Kaabinejadian, William H. Hildebrand, Bjoern Peters, Morten Nielsen. Improved Prediction of MHC II Antigen Presentation through Integration and Motif Deconvolution of Mass Spectrometry MHC Eluted Ligand Data. Journal of Proteome Research 2020, 19 (6) , 2304-2315. https://doi.org/10.1021/acs.jproteome.9b00874
    7. Lorenzo Cianni, Christian Wolfgang Feldmann, Erik Gilberg, Michael Gütschow, Luiz Juliano, Andrei Leitão, Jürgen Bajorath, Carlos A. Montanari. Can Cysteine Protease Cross-Class Inhibitors Achieve Selectivity?. Journal of Medicinal Chemistry 2019, 62 (23) , 10497-10525. https://doi.org/10.1021/acs.jmedchem.9b00683
    8. Paulin L. Salomon, Emily E. Reid, Katie E. Archer, Luke Harris, Erin K. Maloney, Alan J. Wilhelm, Michael L. Miller, Ravi V. J. Chari, Thomas A. Keating, Rajeeva Singh. Optimizing Lysosomal Activation of Antibody–Drug Conjugates (ADCs) by Incorporation of Novel Cleavable Dipeptide Linkers. Molecular Pharmaceutics 2019, 16 (12) , 4817-4825. https://doi.org/10.1021/acs.molpharmaceut.9b00696
    9. Brian J. Engel, Seth T. Gammon, Rajan Chaudhari, Zhen Lu, Federica Pisaneschi, Hailing Yang, Argentina Ornelas, Victoria Yan, Lindsay Kelderhouse, Amer M. Najjar, William P. Tong, Shuxing Zhang, David Piwnica-Worms, Robert C. Bast, Jr., Steven W. Millward. Caspase-3 Substrates for Noninvasive Pharmacodynamic Imaging of Apoptosis by PET/CT. Bioconjugate Chemistry 2018, 29 (9) , 3180-3195. https://doi.org/10.1021/acs.bioconjchem.8b00514
    10. Emilie R. Mainz, D. Stephen Serafin, Tuong T. Nguyen, Teresa K. Tarrant, Christopher E. Sims, and Nancy L. Allbritton . Single Cell Chemical Cytometry of Akt Activity in Rheumatoid Arthritis and Normal Fibroblast-like Synoviocytes in Response to Tumor Necrosis Factor α. Analytical Chemistry 2016, 88 (15) , 7786-7792. https://doi.org/10.1021/acs.analchem.6b01801
    11. Shuwen Sun and Robert T. Kennedy . Droplet Electrospray Ionization Mass Spectrometry for High Throughput Screening for Enzyme Inhibitors. Analytical Chemistry 2014, 86 (18) , 9309-9314. https://doi.org/10.1021/ac502542z
    12. Chan-Jin Kim, Dong-Ik Lee, Cheonghee Kim, Kangtaek Lee, Chang-Ha Lee, and Ik-Sung Ahn . Gold Nanoparticles-Based Colorimetric Assay for Cathepsin B Activity and the Efficiency of Its Inhibitors. Analytical Chemistry 2014, 86 (8) , 3825-3833. https://doi.org/10.1021/ac4039064
    13. Shuwen Sun, Thomas R. Slaney, and Robert T. Kennedy . Label Free Screening of Enzyme Inhibitors at Femtomole Scale Using Segmented Flow Electrospray Ionization Mass Spectrometry. Analytical Chemistry 2012, 84 (13) , 5794-5800. https://doi.org/10.1021/ac3011389
    14. Maxim Frizler, Janina Schmitz, Anna-Christina Schulz-Fincke, and Michael Gütschow . Selective Nitrile Inhibitors To Modulate the Proteolytic Synergism of Cathepsins S and F. Journal of Medicinal Chemistry 2012, 55 (12) , 5982-5986. https://doi.org/10.1021/jm300734k
    15. Thomas Jakoby, Bart HJ van den Berg, and Andreas Tholey . Quantitative Protease Cleavage Site Profiling using Tandem-Mass-Tag Labeling and LC–MALDI-TOF/TOF MS/MS Analysis. Journal of Proteome Research 2012, 11 (3) , 1812-1820. https://doi.org/10.1021/pr201051e
    16. Evette S. Radisky. Extracellular proteolysis in cancer: Proteases, substrates, and mechanisms in tumor progression and metastasis. Journal of Biological Chemistry 2024, 300 (6) , 107347. https://doi.org/10.1016/j.jbc.2024.107347
    17. Aaron Petruzzella, Marine Bruand, Albert Santamaria-Martínez, Natalya Katanayeva, Luc Reymond, Sarah Wehrle, Sandrine Georgeon, Damla Inel, Floris J. van Dalen, David Viertl, Kelvin Lau, Florence Pojer, Margret Schottelius, Vincent Zoete, Martijn Verdoes, Caroline Arber, Bruno E. Correia, Elisa Oricchio. Antibody–peptide conjugates deliver covalent inhibitors blocking oncogenic cathepsins. Nature Chemical Biology 2024, 1824 https://doi.org/10.1038/s41589-024-01627-z
    18. Senhan Xu, Xing Xu, Zeyu Wang, Ronghu Wu. A Systematic Investigation of Proteoforms with N‐Terminal Glycine and Their Dynamics Reveals Its Impacts on Protein Stability. Angewandte Chemie 2024, 136 (6) https://doi.org/10.1002/ange.202315286
    19. Senhan Xu, Xing Xu, Zeyu Wang, Ronghu Wu. A Systematic Investigation of Proteoforms with N‐Terminal Glycine and Their Dynamics Reveals Its Impacts on Protein Stability. Angewandte Chemie International Edition 2024, 63 (6) https://doi.org/10.1002/anie.202315286
    20. Stephen J. Goodswen, Paul J. Kennedy, John T. Ellis. A state-of-the-art methodology for high-throughput in silico vaccine discovery against protozoan parasites and exemplified with discovered candidates for Toxoplasma gondii. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-34863-9
    21. Livija Tušar, Jure Loboda, Francis Impens, Piotr Sosnowski, Emmy Van Quickelberghe, Robert Vidmar, Hans Demol, Koen Sedeyn, Xavier Saelens, Matej Vizovišek, Marko Mihelič, Marko Fonović, Jaka Horvat, Gregor Kosec, Boris Turk, Kris Gevaert, Dušan Turk. Proteomic data and structure analysis combined reveal interplay of structural rigidity and flexibility on selectivity of cysteine cathepsins. Communications Biology 2023, 6 (1) https://doi.org/10.1038/s42003-023-04772-8
    22. Patrick Y. A. Reinke, Edmarcia Elisa de Souza, Sebastian Günther, Sven Falke, Julia Lieske, Wiebke Ewert, Jure Loboda, Alexander Herrmann, Aida Rahmani Mashhour, Katarina Karničar, Aleksandra Usenik, Nataša Lindič, Andreja Sekirnik, Viviane Fongaro Botosso, Gláucia Maria Machado Santelli, Josana Kapronezai, Marcelo Valdemir de Araújo, Taiana Tainá Silva-Pereira, Antônio Francisco de Souza Filho, Mariana Silva Tavares, Lizdany Flórez-Álvarez, Danielle Bruna Leal de Oliveira, Edison Luiz Durigon, Paula Roberta Giaretta, Marcos Bryan Heinemann, Maurice Hauser, Brandon Seychell, Hendrik Böhler, Wioletta Rut, Marcin Drag, Tobias Beck, Russell Cox, Henry N. Chapman, Christian Betzel, Wolfgang Brehm, Winfried Hinrichs, Gregor Ebert, Sharissa L. Latham, Ana Marcia de Sá Guimarães, Dusan Turk, Carsten Wrenger, Alke Meents. Calpeptin is a potent cathepsin inhibitor and drug candidate for SARS-CoV-2 infections. Communications Biology 2023, 6 (1) https://doi.org/10.1038/s42003-023-05317-9
    23. Paul J. Sampognaro, Shruti Arya, Giselle M. Knudsen, Emma L. Gunderson, Angelica Sandoval-Perez, Molly Hodul, Kathryn Bowles, Charles S. Craik, Matthew P. Jacobson, Aimee W. Kao. Mutations in α-synuclein, TDP-43 and tau prolong protein half-life through diminished degradation by lysosomal proteases. Molecular Neurodegeneration 2023, 18 (1) https://doi.org/10.1186/s13024-023-00621-8
    24. Alexandria Zabiegala, Yunjeong Kim, Kyeong-Ok Chang. Roles of host proteases in the entry of SARS-CoV-2. Animal Diseases 2023, 3 (1) https://doi.org/10.1186/s44149-023-00075-x
    25. Bridgette Hartley, Wesam Bassiouni, Richard Schulz, Olivier Julien. The roles of intracellular proteolysis in cardiac ischemia–reperfusion injury. Basic Research in Cardiology 2023, 118 (1) https://doi.org/10.1007/s00395-023-01007-z
    26. Qi Feng Lin, Casey X. L. Wong, Heather E. Eaton, Xiaoli Pang, Maya Shmulevitz, . Reovirus genomic diversity confers plasticity for protease utility during adaptation to intracellular uncoating. Journal of Virology 2023, 97 (10) https://doi.org/10.1128/jvi.00828-23
    27. Warren R. Francis, Michael Eitel, Sergio Vargas, Catalina A. Garcia-Escudero, Nicola Conci, Fabian Deister, Jasmine L. Mah, Nadège Guiglielmoni, Stefan Krebs, Helmut Blum, Sally P. Leys, Gert Wörheide. The genome of the reef-building glass sponge Aphrocallistes vastus provides insights into silica biomineralization. Royal Society Open Science 2023, 10 (6) https://doi.org/10.1098/rsos.230423
    28. E. Jane Homan, Robert D. Bremel. Determinants of tumor immune evasion: the role of T cell exposed motif frequency and mutant amino acid exposure. Frontiers in Immunology 2023, 14 https://doi.org/10.3389/fimmu.2023.1155679
    29. Y. V. Khramtsov, G. P. Georgiev, A. S. Sobolev. Selection of an Amino Acid Site with One of the Fastest Cleavage Kinetics by the Endosomal Protease Cathepsin B for Potential Use in Drug Delivery Systems. Doklady Biochemistry and Biophysics 2023, 509 (1) , 78-80. https://doi.org/10.1134/S1607672922600221
    30. Y. V. Khramtsov, G. P. Georgiev, A. S. Sobolev. SELECTION OF AN AMINO ACID SITE WITH ONE OF THE FASTEST CLEAVAGE KINETICS BY THE ENDOSOMAL PROTEASE CATHEPSIN B FOR POTENTIAL USE IN DRUG DELIVERY SYSTEMS. Доклады Российской академии наук. Науки о жизни 2023, 509 (1) , 211-214. https://doi.org/10.31857/S2686738923700166
    31. Subhiksha Raghuram, Yuri Mackeyev, Jessica Symons, Yasmin Zahra, Valeria Gonzalez, Krishnan K. Mahadevan, Katherinne I. Requejo, Anton Liopo, Paul Derry, Eugene Zubarev, Onur Sahin, Joseph Byung-Kyu Kim, Pankaj K. Singh, Sang Hyun Cho, Sunil Krishnan. Uncloaking cell-impermeant gold nanorods via tumor microenvironmental cathepsin B facilitates cancer cell penetration and potent radiosensitization. Biomaterials 2022, 291 , 121887. https://doi.org/10.1016/j.biomaterials.2022.121887
    32. Miao-Miao Zhao, Yun Zhu, Li Zhang, Gongxun Zhong, Linhua Tai, Shuo Liu, Guoliang Yin, Jing Lu, Qiong He, Ming-Jia Li, Ru-Xuan Zhao, Hao Wang, Weijin Huang, Changfa Fan, Lei Shuai, Zhiyuan Wen, Chong Wang, Xijun He, Qiuluan Chen, Banghui Liu, Xiaoli Xiong, Zhigao Bu, Youchun Wang, Fei Sun, Jin-Kui Yang. Novel cleavage sites identified in SARS-CoV-2 spike protein reveal mechanism for cathepsin L-facilitated viral infection and treatment strategies. Cell Discovery 2022, 8 (1) https://doi.org/10.1038/s41421-022-00419-w
    33. Natalia Ćwilichowska, Karolina W. Świderska, Agnieszka Dobrzyń, Marcin Drąg, Marcin Poręba. Diagnostic and therapeutic potential of protease inhibition. Molecular Aspects of Medicine 2022, 88 , 101144. https://doi.org/10.1016/j.mam.2022.101144
    34. Monika Biasizzo, Urban Javoršek, Eva Vidak, Miki Zarić, Boris Turk. Cysteine cathepsins: A long and winding road towards clinics. Molecular Aspects of Medicine 2022, 88 , 101150. https://doi.org/10.1016/j.mam.2022.101150
    35. Luana Xavier Soares Gomes Moura Fé, Eliane Pereira Cipolatti, Martina Costa Cerqueira Pinto, Suema Branco, Fábio César Sousa Nogueira, Gisela Maria Dellamora Ortiz, Anderson de Sá Pinheiro, Evelin Andrade Manoel. Enzymes in the time of COVID‐19: An overview about the effects in the human body, enzyme market, and perspectives for new drugs. Medicinal Research Reviews 2022, 42 (6) , 2126-2167. https://doi.org/10.1002/med.21919
    36. Lixia Hu, Shanshan Liu, Lisha Xia, Xiaoji Cong, Chu Xu, Li Wang, Yifeng Li. CHO cathepsin B identified as the protease responsible for a target bispecific antibody fragmentation. Protein Expression and Purification 2022, 199 , 106144. https://doi.org/10.1016/j.pep.2022.106144
    37. Dandan Liu, Shuqiong Liu, Jiande Li, Xiaohuan Liu, Xiaoxuan Wu, Ying Peng, Qingyu Shen. Proteome-wide analysis of the hippocampus in adolescent male mice with learning and memory impairment caused by chronic ethanol exposure. Neurobiology of Learning and Memory 2022, 194 , 107661. https://doi.org/10.1016/j.nlm.2022.107661
    38. Kamal Shokeen, Shambhavi Pandey, Manisha Shah, Sachin Kumar. Insight towards the effect of the multi basic cleavage site of SARS-CoV-2 spike protein on cellular proteases. Virus Research 2022, 318 , 198845. https://doi.org/10.1016/j.virusres.2022.198845
    39. Amy S. Espeseth, Maoli Yuan, Michael Citron, Lucia Reiserova, Gavin Morrow, Aaron Wilson, Melanie Horton, Mark Rukhman, Keith Kinek, Fuxiang Hou, Shui L. Li, Fengsheng Li, Yesle Choi, Gwen Heidecker, Bin Luo, Guoxin Wu, Lan Zhang, Erica Strable, Joanne DeStefano, Susan Secore, Tarit K. Mukhopadhyay, Douglas D. Richardson, Eddy Sayeed, Lisa S. Welch, Andrew J. Bett, Mark B. Feinberg, Swati B. Gupta, Christopher L. Cooper, Christopher L. Parks. Preclinical immunogenicity and efficacy of a candidate COVID-19 vaccine based on a vesicular stomatitis virus-SARS-CoV-2 chimera. eBioMedicine 2022, 82 , 104203. https://doi.org/10.1016/j.ebiom.2022.104203
    40. Oded Danziger, Roosheel S. Patel, Emma J. DeGrace, Mikaela R. Rosen, Brad R. Rosenberg, . Inducible CRISPR activation screen for interferon-stimulated genes identifies OAS1 as a SARS-CoV-2 restriction factor. PLOS Pathogens 2022, 18 (4) , e1010464. https://doi.org/10.1371/journal.ppat.1010464
    41. Makhabbat Saudenova, Jessica Promnitz, Gerrit Ohrenschall, Nina Himmerkus, Martina Böttner, Madlen Kunke, Markus Bleich, Franziska Theilig. Behind every smile there's teeth: Cathepsin B's function in health and disease with a kidney view. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2022, 1869 (4) , 119190. https://doi.org/10.1016/j.bbamcr.2021.119190
    42. Surinder M. Soond, Andrey A. Zamyatnin. Helicobacter pylori and gastric cancer: a lysosomal protease perspective. Gastric Cancer 2022, 25 (2) , 306-324. https://doi.org/10.1007/s10120-021-01272-8
    43. Xinyu R. Ma, Yugendar R. Alugubelli, Yuying Ma, Erol C. Vatansever, Danielle A. Scott, Yuchen Qiao, Ge Yu, Shiqing Xu, Wenshe Ray Liu. MPI8 is Potent against SARS‐CoV‐2 by Inhibiting Dually and Selectively the SARS‐CoV‐2 Main Protease and the Host Cathepsin L**. ChemMedChem 2022, 17 (1) https://doi.org/10.1002/cmdc.202100456
    44. Anastasiia I. Petushkova, Lyudmila V. Savvateeva, Andrey A. Zamyatnin. Structure determinants defining the specificity of papain-like cysteine proteases. Computational and Structural Biotechnology Journal 2022, 20 , 6552-6569. https://doi.org/10.1016/j.csbj.2022.11.040
    45. S. Johannes, A. Sommer, H.-G. Lerchen. Protease-sensitive Linkers. 2021, 173-212. https://doi.org/10.1039/9781839165153-00173
    46. Bjoern Meyer, Jeanne Chiaravalli, Stacy Gellenoncourt, Philip Brownridge, Dominic P. Bryne, Leonard A. Daly, Arturas Grauslys, Marius Walter, Fabrice Agou, Lisa A. Chakrabarti, Charles S. Craik, Claire E. Eyers, Patrick A. Eyers, Yann Gambin, Andrew R. Jones, Emma Sierecki, Eric Verdin, Marco Vignuzzi, Edward Emmott. Characterising proteolysis during SARS-CoV-2 infection identifies viral cleavage sites and cellular targets with therapeutic potential. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-25796-w
    47. Elisa Costanzi, Maria Kuzikov, Francesca Esposito, Simone Albani, Nicola Demitri, Barbara Giabbai, Marianna Camasta, Enzo Tramontano, Giulia Rossetti, Andrea Zaliani, Paola Storici. Structural and Biochemical Analysis of the Dual Inhibition of MG-132 against SARS-CoV-2 Main Protease (Mpro/3CLpro) and Human Cathepsin-L. International Journal of Molecular Sciences 2021, 22 (21) , 11779. https://doi.org/10.3390/ijms222111779
    48. Bing Bai, Elena Arutyunova, Muhammad Bashir Khan, Jimmy Lu, Michael A. Joyce, Holly A. Saffran, Justin A. Shields, Appan Srinivas Kandadai, Alexandr Belovodskiy, Mostofa Hena, Wayne Vuong, Tess Lamer, Howard S. Young, John C. Vederas, D. Lorne Tyrrell, M. Joanne Lemieux, James A. Nieman. Peptidomimetic nitrile warheads as SARS-CoV-2 3CL protease inhibitors. RSC Medicinal Chemistry 2021, 12 (10) , 1722-1730. https://doi.org/10.1039/D1MD00247C
    49. Alessandro Di Spiezio, André R.A. Marques, Lina Schmidt, Niklas Thießen, Lisa Gallwitz, Jens Fogh, Udo Bartsch, Paul Saftig. Analysis of cathepsin B and cathepsin L treatment to clear toxic lysosomal protein aggregates in neuronal ceroid lipofuscinosis. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2021, 1867 (10) , 166205. https://doi.org/10.1016/j.bbadis.2021.166205
    50. Tomislav Čaval, Elizabeth Sara Hecht, Wilfred Tang, Maelia Uy‐Gomez, Andrew Nichols, Yong J. Kil, Wendy Sandoval, Marshall Bern, Albert J. R. Heck. The lysosomal endopeptidases Cathepsin D and L are selective and effective proteases for the middle‐down characterization of antibodies. The FEBS Journal 2021, 288 (18) , 5389-5405. https://doi.org/10.1111/febs.15813
    51. Hoang Anh T. Phan, Sam G. Giannakoulias, Taylor M. Barrett, Chunxiao Liu, E. James Petersson. Rational design of thioamide peptides as selective inhibitors of cysteine protease cathepsin L. Chemical Science 2021, 12 (32) , 10825-10835. https://doi.org/10.1039/D1SC00785H
    52. Kelton A. Schleyer, Lina Cui. Molecular probes for selective detection of cysteine cathepsins. Organic & Biomolecular Chemistry 2021, 19 (28) , 6182-6205. https://doi.org/10.1039/D1OB00225B
    53. Mohit Arora, Garima Pandey, Shyam S. Chauhan. Cysteine Cathepsins and Their Prognostic and Therapeutic Relevance in Leukemia. Annals of the National Academy of Medical Sciences (India) 2021, 57 (02) , 108-116. https://doi.org/10.1055/s-0041-1726151
    54. Valentina Sala, Sophie Julie Cnudde, Alessandra Murabito, Alberto Massarotti, Emilio Hirsch, Alessandra Ghigo. Therapeutic peptides for the treatment of cystic fibrosis: Challenges and perspectives. European Journal of Medicinal Chemistry 2021, 213 , 113191. https://doi.org/10.1016/j.ejmech.2021.113191
    55. Ursula Kern, Klemens Fröhlich, Johanna Bedacht, Nico Schmidt, Martin Biniossek, Nicole Gensch, Katja Baerenfaller, Oliver Schilling. Impact of DJ-1 and Helix 8 on the Proteome and Degradome of Neuron-Like Cells. Cells 2021, 10 (2) , 404. https://doi.org/10.3390/cells10020404
    56. AmandaPhuong Tran, Jerry Silver. Cathepsins in neuronal plasticity. Neural Regeneration Research 2021, 16 (1) , 26. https://doi.org/10.4103/1673-5374.286948
    57. Srigayatri Ponnaiyan, Fatema Akter, Jasjot Singh, Dominic Winter. Comprehensive draft of the mouse embryonic fibroblast lysosomal proteome by mass spectrometry based proteomics. Scientific Data 2020, 7 (1) https://doi.org/10.1038/s41597-020-0399-5
    58. Angélica C. Kauffmann, Rhayssa G.S.P. Oliveira, Thainara A. Dourado, Iuri N. Soares, Paulo T. de Sousa, Tereza A.N. Ribeiro, Marcos J. Jacinto, Gabriel L.C. de Souza, Wagner A. de S. Judice, Marli de F.C. Emiliano, Luan dos S. Vianna, Mário G. de Carvalho, Virgínia C.P. Silva. Eleocarpanthraquinone, a novel anthraquinone from Rhamnidium elaeocarpum (Rhamnaceae). Tetrahedron Letters 2020, 61 (45) , 152489. https://doi.org/10.1016/j.tetlet.2020.152489
    59. Matej Vizovišek, Eva Vidak, Urban Javoršek, Georgy Mikhaylov, Andreja Bratovš, Boris Turk. Cysteine cathepsins as therapeutic targets in inflammatory diseases. Expert Opinion on Therapeutic Targets 2020, 24 (6) , 573-588. https://doi.org/10.1080/14728222.2020.1746765
    60. Tiffany Tang, Miya Bidon, Javier A. Jaimes, Gary R. Whittaker, Susan Daniel. Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antiviral Research 2020, 178 , 104792. https://doi.org/10.1016/j.antiviral.2020.104792
    61. Andrea Heinz. Elastases and elastokines: elastin degradation and its significance in health and disease. Critical Reviews in Biochemistry and Molecular Biology 2020, 55 (3) , 252-273. https://doi.org/10.1080/10409238.2020.1768208
    62. Felipe A.A. Oliveira, Marcus V. Buri, Boris L. Rodriguez, André L. Costa-da-Silva, Helena R.C. Araújo, Margareth L. Capurro, Stephen Lu, Aparecida S. Tanaka. The first characterization of a cystatin and a cathepsin L-like peptidase from Aedes aegypti and their possible role in DENV infection by the modulation of apoptosis. International Journal of Biological Macromolecules 2020, 146 , 141-149. https://doi.org/10.1016/j.ijbiomac.2019.12.010
    63. Vineet D. Menachery, Kenneth H. Dinnon, Boyd L. Yount, Eileen T. McAnarney, Lisa E. Gralinski, Andrew Hale, Rachel L. Graham, Trevor Scobey, Simon J. Anthony, Lingshu Wang, Barney Graham, Scott H. Randell, W. Ian Lipkin, Ralph S. Baric, . Trypsin Treatment Unlocks Barrier for Zoonotic Bat Coronavirus Infection. Journal of Virology 2020, 94 (5) https://doi.org/10.1128/JVI.01774-19
    64. Neil D. Rawlings. Twenty-five years of nomenclature and classification of proteolytic enzymes. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2020, 1868 (2) , 140345. https://doi.org/10.1016/j.bbapap.2019.140345
    65. Hsiao-Han Lin, Szu-Jung Chen, Meng-Ru Shen, Yi-Ting Huang, Hsing-Pang Hsieh, Shu-Yu Lin, Chun-Cheng Lin, Wun-Shaing Wayne Chang, Jang-Yang Chang. Lysosomal cysteine protease cathepsin S is involved in cancer cell motility by regulating store-operated Ca2+ entry. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2019, 1866 (12) , 118517. https://doi.org/10.1016/j.bbamcr.2019.07.012
    66. Alexandra Demcsák, Andrea Geisz, Miklós Sahin-Tóth. Engineering mouse cationic trypsinogen for rapid and selective activation by cathepsin B. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-45631-z
    67. Damien B. Wilburn, Richard C. Feldhoff. An annual cycle of gene regulation in the red-legged salamander mental gland: from hypertrophy to expression of rapidly evolving pheromones. BMC Developmental Biology 2019, 19 (1) https://doi.org/10.1186/s12861-019-0190-z
    68. Dylan J. Finneran, Kevin R. Nash. Neuroinflammation and fractalkine signaling in Alzheimer’s disease. Journal of Neuroinflammation 2019, 16 (1) https://doi.org/10.1186/s12974-019-1412-9
    69. Rune Alexander Høglund, Silje Bøen Torsetnes, Andreas Lossius, Bjarne Bogen, E. Jane Homan, Robert Bremel, Trygve Holmøy. Human Cysteine Cathepsins Degrade Immunoglobulin G In Vitro in a Predictable Manner. International Journal of Molecular Sciences 2019, 20 (19) , 4843. https://doi.org/10.3390/ijms20194843
    70. Tejinder Pal Khaket, Taeg Kyu Kwon, Sun Chul Kang. Cathepsins: Potent regulators in carcinogenesis. Pharmacology & Therapeutics 2019, 198 , 1-19. https://doi.org/10.1016/j.pharmthera.2019.02.003
    71. Dibyendu Dana, Jeremy Garcia, Ashif I. Bhuiyan, Pratikkumar Rathod, Laura Joo, Daniel A. Novoa, Suneeta Paroly, Karl R. Fath, Emmanuel J. Chang, Sanjai K. Pathak. Cell penetrable, clickable and tagless activity-based probe of human cathepsin L. Bioorganic Chemistry 2019, 85 , 505-514. https://doi.org/10.1016/j.bioorg.2019.02.032
    72. Eva Vidak, Urban Javoršek, Matej Vizovišek, Boris Turk. Cysteine Cathepsins and their Extracellular Roles: Shaping the Microenvironment. Cells 2019, 8 (3) , 264. https://doi.org/10.3390/cells8030264
    73. R.A. Orbegozo-Medina, V. Martínez-Sernández, I. Folgueira, M. Mezo, M. González-Warleta, M.J. Perteguer, F. Romarís, J.M. Leiro, F.M. Ubeira. Antibody responses to chimeric peptides derived from parasite antigens in mice and other animal species. Molecular Immunology 2019, 106 , 1-11. https://doi.org/10.1016/j.molimm.2018.11.019
    74. Janina Schmitz, Erik Gilberg, Reik Löser, Jürgen Bajorath, Ulrike Bartz, Michael Gütschow. Cathepsin B: Active site mapping with peptidic substrates and inhibitors. Bioorganic & Medicinal Chemistry 2019, 27 (1) , 1-15. https://doi.org/10.1016/j.bmc.2018.10.017
    75. Matej Vizovišek, Marko Fonović, Boris Turk. Cysteine cathepsins in extracellular matrix remodeling: Extracellular matrix degradation and beyond. Matrix Biology 2019, 75-76 , 141-159. https://doi.org/10.1016/j.matbio.2018.01.024
    76. Mengjie Gu, Xin Wang, Tan Boon Toh, Lissa Hooi, Daniel G. Tenen, Edward Kai‐Hua Chow. Nanodiamond‐Based Platform for Intracellular‐Specific Delivery of Therapeutic Peptides against Hepatocellular Carcinoma. Advanced Therapeutics 2018, 1 (8) https://doi.org/10.1002/adtp.201800110
    77. Andreas Porodko, Ana Cirnski, Drazen Petrov, Teresa Raab, Melanie Paireder, Bettina Mayer, Daniel Maresch, Lisa Nika, Martin L. Biniossek, Patrick Gallois, Oliver Schilling, Chris Oostenbrink, Marko Novinec, Lukas Mach. The two cathepsin B-like proteases of Arabidopsis thaliana are closely related enzymes with discrete endopeptidase and carboxydipeptidase activities. Biological Chemistry 2018, 399 (10) , 1223-1235. https://doi.org/10.1515/hsz-2018-0186
    78. Ashok Kumar, Yutti Daitsh, Louisa Ben-Aderet, Omar Qiq, Jinan Elayyan, George Batshon, Eli Reich, Yonatan Harel Maatuf, Stanislav Engel, Mona Dvir-Ginzberg. A predicted unstructured C-terminal loop domain in SIRT1 is required for cathepsin B cleavage. Journal of Cell Science 2018, 131 (16) https://doi.org/10.1242/jcs.214973
    79. Aneta Pogorzelska, Beata Żołnowska, Rafał Bartoszewski. Cysteine cathepsins as a prospective target for anticancer therapies—current progress and prospects. Biochimie 2018, 151 , 85-106. https://doi.org/10.1016/j.biochi.2018.05.023
    80. Kerri J. Grove, Nichole M. Lareau, Paul A. Voziyan, Fenghua Zeng, Raymond C. Harris, Billy G. Hudson, Richard M. Caprioli. Imaging mass spectrometry reveals direct albumin fragmentation within the diabetic kidney. Kidney International 2018, 94 (2) , 292-302. https://doi.org/10.1016/j.kint.2018.01.040
    81. Sonali R. Bhagwat, Krishnan Hajela, Amit Kumar. Proteolysis to Identify Protease Substrates: Cleave to Decipher. PROTEOMICS 2018, 18 (13) https://doi.org/10.1002/pmic.201800011
    82. Christian Breuer, Carina Lemke, Janina Schmitz, Ulrike Bartz, Michael Gütschow. Synthesis and kinetic evaluation of ethyl acrylate and vinyl sulfone derived inhibitors for human cysteine cathepsins. Bioorganic & Medicinal Chemistry Letters 2018, 28 (11) , 2008-2012. https://doi.org/10.1016/j.bmcl.2018.05.005
    83. Blake F. Frey, Jiansheng Jiang, Yongjun Sui, Lisa F. Boyd, Bin Yu, Gwen Tatsuno, Rolf Billeskov, Shahram Solaymani-Mohammadi, Phillip W. Berman, David H. Margulies, Jay A. Berzofsky. Effects of Cross-Presentation, Antigen Processing, and Peptide Binding in HIV Evasion of T Cell Immunity. The Journal of Immunology 2018, 200 (5) , 1853-1864. https://doi.org/10.4049/jimmunol.1701523
    84. Marcin Poreba, Wioletta Rut, Matej Vizovisek, Katarzyna Groborz, Paulina Kasperkiewicz, Darren Finlay, Kristiina Vuori, Dusan Turk, Boris Turk, Guy S. Salvesen, Marcin Drag. Selective imaging of cathepsin L in breast cancer by fluorescent activity-based probes. Chemical Science 2018, 9 (8) , 2113-2129. https://doi.org/10.1039/C7SC04303A
    85. Andreas Warnecke, Sonja Abele, Sravani Musunuri, Jonas Bergquist, Robert A. Harris. Scavenger Receptor A Mediates the Clearance and Immunological Screening of MDA-Modified Antigen by M2-Type Macrophages. NeuroMolecular Medicine 2017, 19 (4) , 463-479. https://doi.org/10.1007/s12017-017-8461-y
    86. Maristella Maggi, Steven D. Mittelman, Jean Hugues Parmentier, Giorgio Colombo, Massimiliano Meli, Jeannette Marie Whitmire, D. Scott Merrell, Julian Whitelegge, Claudia Scotti. A protease-resistant Escherichia coli asparaginase with outstanding stability and enhanced anti-leukaemic activity in vitro. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-15075-4
    87. Xin Zhang, Ran Xu, Chao Zhang, Yangyang Xu, Mingzhi Han, Bin Huang, Anjing Chen, Chen Qiu, Frits Thorsen, Lars Prestegarden, Rolf Bjerkvig, Jian Wang, Xingang Li. Trifluoperazine, a novel autophagy inhibitor, increases radiosensitivity in glioblastoma by impairing homologous recombination. Journal of Experimental & Clinical Cancer Research 2017, 36 (1) https://doi.org/10.1186/s13046-017-0588-z
    88. Rune A. Høglund, Andreas Lossius, Jorunn N. Johansen, Jane Homan, Jūratė Šaltytė Benth, Harlan Robins, Bjarne Bogen, Robert D. Bremel, Trygve Holmøy. In Silico Prediction Analysis of Idiotope-Driven T–B Cell Collaboration in Multiple Sclerosis. Frontiers in Immunology 2017, 8 https://doi.org/10.3389/fimmu.2017.01255
    89. Lovro Kramer, Dušan Turk, Boris Turk. The Future of Cysteine Cathepsins in Disease Management. Trends in Pharmacological Sciences 2017, 38 (10) , 873-898. https://doi.org/10.1016/j.tips.2017.06.003
    90. Anas Shamsi, Bilqees Bano. Journey of cystatins from being mere thiol protease inhibitors to at heart of many pathological conditions. International Journal of Biological Macromolecules 2017, 102 , 674-693. https://doi.org/10.1016/j.ijbiomac.2017.04.071
    91. Robert Vidmar, Matej Vizovišek, Dušan Turk, Boris Turk, Marko Fonović. Protease cleavage site fingerprinting by label‐free in‐gel degradomics reveals pH ‐dependent specificity switch of legumain. The EMBO Journal 2017, 36 (16) , 2455-2465. https://doi.org/10.15252/embj.201796750
    92. Marko Novinec, . Computational investigation of conformational variability and allostery in cathepsin K and other related peptidases. PLOS ONE 2017, 12 (8) , e0182387. https://doi.org/10.1371/journal.pone.0182387
    93. Yu-Yao Li, Jing Fang, Gui-Zhen Ao. Cathepsin B and L inhibitors: a patent review (2010 - present). Expert Opinion on Therapeutic Patents 2017, 27 (6) , 643-656. https://doi.org/10.1080/13543776.2017.1272572
    94. Paulina Kasperkiewicz, Marcin Poreba, Katarzyna Groborz, Marcin Drag. Emerging challenges in the design of selective substrates, inhibitors and activity‐based probes for indistinguishable proteases. The FEBS Journal 2017, 284 (10) , 1518-1539. https://doi.org/10.1111/febs.14001
    95. Tommy Weiss‐Sadan, Israel Gotsman, Galia Blum. Cysteine proteases in atherosclerosis. The FEBS Journal 2017, 284 (10) , 1455-1472. https://doi.org/10.1111/febs.14043
    96. Melanie Paireder, Stefan Tholen, Andreas Porodko, Martin L. Biniossek, Bettina Mayer, Marko Novinec, Oliver Schilling, Lukas Mach. The papain-like cysteine proteinases NbCysP6 and NbCysP7 are highly processive enzymes with substrate specificities complementary to Nicotiana benthamiana cathepsin B. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2017, 1865 (4) , 444-452. https://doi.org/10.1016/j.bbapap.2017.02.007
    97. Monika Łęgowska, Yveline Hamon, Anna Wojtysiak, Renata Grzywa, Marcin Sieńczyk, Timo Burster, Brice Korkmaz, Adam Lesner. Development of the first internally-quenched fluorescent substrates of human cathepsin C: The application in the enzyme detection in biological samples. Archives of Biochemistry and Biophysics 2016, 612 , 91-102. https://doi.org/10.1016/j.abb.2016.10.007
    98. Veronika Stoka, Vito Turk, Boris Turk. Lysosomal cathepsins and their regulation in aging and neurodegeneration. Ageing Research Reviews 2016, 32 , 22-37. https://doi.org/10.1016/j.arr.2016.04.010
    99. Florian Christoph Sigloch, Julia Daniela Knopf, Juliane Weißer, Alejandro Gomez-Auli, Martin Lothar Biniossek, Agnese Petrera, Oliver Schilling. Proteomic analysis of silenced cathepsin B expression suggests non-proteolytic cathepsin B functionality. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2016, 1863 (11) , 2700-2709. https://doi.org/10.1016/j.bbamcr.2016.08.005
    100. Melanie Paireder, Ulrich Mehofer, Stefan Tholen, Andreas Porodko, Philipp Schähs, Daniel Maresch, Martin L. Biniossek, Renier A.L. van der Hoorn, Brigita Lenarcic, Marko Novinec, Oliver Schilling, Lukas Mach. The death enzyme CP14 is a unique papain-like cysteine proteinase with a pronounced S2 subsite selectivity. Archives of Biochemistry and Biophysics 2016, 603 , 110-117. https://doi.org/10.1016/j.abb.2016.05.017
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect