Advertisement

Abstract

Voltage-dependent ion channels contain voltage sensors that allow them to switch between nonconductive and conductive states over the narrow range of a few hundredths of a volt. We investigated the mechanism by which these channels sense cell membrane voltage by determining the x-ray crystal structure of a mammalian Shaker family potassium ion (K+) channel. The voltage-dependent K+ channel Kv1.2 grew three-dimensional crystals, with an internal arrangement that left the voltage sensors in an apparently native conformation, allowing us to reach three important conclusions. First, the voltage sensors are essentially independent domains inside the membrane. Second, they perform mechanical work on the pore through the S4-S5 linker helices, which are positioned to constrict or dilate the S6 inner helices of the pore. Third, in the open conformation, two of the four conserved Arg residues on S4 are on a lipid-facing surface and two are buried in the voltage sensor. The structure offers a simple picture of how membrane voltage influences the open probability of the channel.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

File (papv2.pdf)

References and Notes

1
F. J. Sigworth, Q. Rev. Biophys.27, 1 (1994).
2
C. M. Armstrong, F. Bezanilla, J. Gen. Physiol.63, 533 (1974).
3
F. Bezanilla, Physiol. Rev.80, 555 (2000).
4
N. E. Schoppa, K. McCormack, M. A. Tanouye, F. J. Sigworth, Science255, 1712 (1992).
5
S. K. Aggarwal, R. MacKinnon, Neuron16, 1169 (1996).
6
S. A. Seoh, D. Sigg, D. M. Papazian, F. Bezanilla, Neuron16, 1159 (1996).
7
F. Bezanilla, J. Gen. Physiol.120, 465 (2002).
8
R. Horn, J. Gen. Physiol.120, 449 (2002).
9
C. S. Gandhi, E. Y. Isacoff, J. Gen. Physiol.120, 455 (2002).
10
M. Laine, D. M. Papazian, B. Roux, FEBS Lett.564, 257 (2004).
11
F. Elinder, P. Arhem, H. P. Larsson, Biophys. J.80, 1802 (2001).
12
Y. Li-Smerin, D. H. Hackos, K. J. Swartz, Neuron25, 411 (2000).
13
N. Yang, A. L. George Jr., R. Horn, Neuron16, 113 (1996).
14
L. M. Mannuzzu, M. M. Moronne, E. Y. Isacoff, Science271, 213 (1996).
15
S. P. Yusaf, D. Wray, A. Sivaprasadarao, Pflugers Arch.433, 91 (1996).
16
O. S. Baker, H. P. Larsson, L. M. Mannuzzu, E. Y. Isacoff, Neuron20, 1283 (1998).
17
H. P. Larsson, O. S. Baker, D. S. Dhillon, E. Y. Isacoff, Neuron16, 387 (1996).
18
A. Cha, G. E. Snyder, P. R. Selvin, F. Bezanilla, Nature402, 809 (1999).
19
K. S. Glauner, L. M. Mannuzzu, C. S. Gandhi, E. Y. Isacoff, Nature402, 813 (1999).
20
D. M. Starace, F. Bezanilla, Nature427, 548 (2004).
21
Z. Lu, A. M. Klem, Y. Ramu, Nature413, 809 (2001).
22
Y. Jiang et al., Nature423, 33 (2003).
23
Y. Jiang, V. Ruta, J. Chen, A. Lee, R. MacKinnon, Nature423, 42 (2003).
24
V. Ruta, thesis, Rockefeller University (2005).
25
T. Hessa, S. H. White, G. von Heijne, Science307, 1427 (2005).
26
S. B. Long, E. B. Campbell, R. MacKinnon, Science309, 897 (2005); published online 7 July 2005.
27
Y. Liu, M. Holmgren, M. E. Jurman, G. Yellen, Neuron19, 175 (1997).
28
N. E. Schoppa, F. J. Sigworth, J. Gen. Physiol.111, 295 (1998).
29
D. H. Hackos, T. H. Chang, K. J. Swartz, J. Gen. Physiol.119, 521 (2002).
30
O. Yifrach, R. MacKinnon, Cell111, 231 (2002).
31
M. Sukhareva, D. H. Hackos, K. J. Swartz, J. Gen. Physiol.122, 541 (2003).
32
Z. Lu, A. M. Klem, Y. Ramu, J. Gen. Physiol.120, 663 (2002).
33
M. Laine et al., Neuron39, 467 (2003).
34
D. J. Elliott et al., EMBO J.23, 4717 (2004).
35
Y. Murata, H. Iwasaki, M. Sasaki, K. Inaba, Y. Okamura, Nature435, 1239 (2005).
36
L. G. Cuello, D. M. Cortes, E. Perozo, Science306, 491 (2004).
37
R. MacKinnon, Science306, 1304 (2004).
38
C. S. Gandhi, E. Clark, E. Loots, A. Pralle, E. Y. Isacoff, Neuron40, 515 (2003).
39
H. C. Lee, J. M. Wang, K. J. Swartz, Neuron40, 527 (2003).
40
C. Gonzalez, F. J. Morera, E. Rosenmann, O. Alvarez, R. Latorre, Proc. Natl. Acad. Sci. U.S.A.102, 5020 (2005).
41
A. T. Brunger et al., Acta Crystallogr.D54, 905 (1998).
42
P. Kraulis, J. Appl. Crystallogr.24, 946 (1991).
43
A. Nicholls, K. A. Sharp, B. Honig, Proteins11, 281 (1991).
44
We thank A. Lee, V. Ruta, and members of the MacKinnon laboratory for helpful discussions; R. Jain for initial experiments with lipids; R. Dutzler for assistance with data collection; O. Pongs for Kv1.2 DNA; J. Trimmer for β2 subunit DNA; Brookhaven National Laboratory (National Synchrotron Light Source beamlines X25 and X29) and the Swiss Light Source (beamline PX1) staff for assistance in data collection; and W. Chin for help with manuscript preparation. This work was supported in part by NIH grant no. GM43949 to R.M.R.M. is an Investigator in the Howard Hughes Medical Institute. Atomic coordinates and structure factors have been deposited in the Protein Data Bank with accession ID 2A79.

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 309 | Issue 5736
5 August 2005

Article versions

You are viewing the most recent version of this article.

Submission history

Received: 17 June 2005
Accepted: 5 July 2005
Published in print: 5 August 2005

Permissions

Request permissions for this article.

Authors

Affiliations

Stephen B. Long
Howard Hughes Medical Institute, Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
Ernest B. Campbell
Howard Hughes Medical Institute, Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
Roderick MacKinnon* [email protected]
Howard Hughes Medical Institute, Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.

Notes

*
To whom correspondence should be addressed. E-mail: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Mechanosensitive pore opening of a prokaryotic voltage-gated sodium channel, eLife, 12, (2023).https://doi.org/10.7554/eLife.79271
    Crossref
  2. Binding of RPR260243 at the intracellular side of the hERG1 channel pore domain slows closure of the helix bundle crossing gate, Frontiers in Molecular Biosciences, 10, (2023).https://doi.org/10.3389/fmolb.2023.1137368
    Crossref
  3. Similar voltage-sensor movement in spHCN channels can cause closing, opening, or inactivation, Journal of General Physiology, 155, 5, (2023).https://doi.org/10.1085/jgp.202213170
    Crossref
  4. Mechanism underlying delayed rectifying in human voltage-mediated activation Eag2 channel, Nature Communications, 14, 1, (2023).https://doi.org/10.1038/s41467-023-37204-6
    Crossref
  5. Magnetic and ionic liquid inclusions in soft materials and engineering enhanced electro-magneto-mechanical response, International Journal of Solids and Structures, 262-263, (112081), (2023).https://doi.org/10.1016/j.ijsolstr.2022.112081
    Crossref
  6. MITOCHONDRIA: The dual function of the transient receptor potential melastatin 2 channels from cytomembrane to mitochondria, The International Journal of Biochemistry & Cell Biology, 157, (106374), (2023).https://doi.org/10.1016/j.biocel.2023.106374
    Crossref
  7. Intrinsic mechanical sensitivity of mammalian auditory neurons as a contributor to sound-driven neural activity, eLife, 11, (2022).https://doi.org/10.7554/eLife.74948
    Crossref
  8. Structural Determinants for Ligand Accommodation in Voltage Sensors, Ion Transporters - From Basic Properties to Medical Treatment, (2022).https://doi.org/10.5772/intechopen.102094
    Crossref
  9. Diversification of Potassium Currents in Excitable Cells via Kvβ Proteins, Cells, 11, 14, (2230), (2022).https://doi.org/10.3390/cells11142230
    Crossref
  10. Kinetic Alterations in Resurgent Sodium Currents of Mutant Nav1.4 Channel in Two Patients Affected by Paramyotonia Congenita, Biology, 11, 4, (613), (2022).https://doi.org/10.3390/biology11040613
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Purchase digital access to this article

Download and print this article for your personal scholarly, research, and educational use.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media