ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

A Commercially Available Perfectly Hydrophobic Material (θAR = 180°/180°)

View Author Information
Polymer Science and Engineering Department, University of Massachusetts, Amherst, Massachusetts 01003
Cite this: Langmuir 2007, 23, 18, 9125–9127
Publication Date (Web):July 28, 2007
https://doi.org/10.1021/la701097k
Copyright © 2007 American Chemical Society

    Article Views

    1954

    Altmetric

    -

    Citations

    70
    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    We report contact angle studies of compressed samples of a commercially available lubricant (variable diameter submicrometer particles of tetrafluoroethylene oligomers) that indicate that this surface is perfectly hydrophobic (θAR = 180°/180°). We also report X-ray photoelectron spectroscopy (XPS) spectra, a scanning electron microscopy (SEM) micrograph, and 19F NMR characterization data, as it is a material for which no characterization data are available. These samples exhibit the most general lyophobicity of any material reported, showing nearly 180° contact angles with other liquids. That this material is commercially available (in kilogram quantities) will allow other groups, particularly nonsynthetic ones, to prepare and study perfectly hydrophobic surfaces. It should also have an impact on education:  demonstration of superhydrophobicity in classrooms is trivial to do with this material.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

     To whom correspondence should be addressed. E-mail:  tmccarthy@ polysci.umass.edu.

    Cited By

    This article is cited by 70 publications.

    1. Huaxin Gong, Diego Uruchurtu Patino, Jan Ilavsky, Ivan Kuzmenko, Amnahir Estefania Peña-Alcántara, Chenhui Zhu, Aidan H. Coffey, Lukas Michalek, Ahmed Elabd, Xin Gao, Shucheng Chen, Chengyi Xu, Hongping Yan, Yuanwen Jiang, Weichen Wang, Yucan Peng, Yitian Zeng, Hao Lyu, Hanul Moon, Zhenan Bao. Tunable 1D and 2D Polyacrylonitrile Nanosheet Superstructures. ACS Nano 2023, 17 (18) , 18392-18401. https://doi.org/10.1021/acsnano.3c05792
    2. Diana Garcia-Gonzalez, Tomas P. Corrales, Maria Dacunzi, Michael Kappl. Squeezing Drops: Force Measurements of the Cassie-to-Wenzel Transition. Langmuir 2022, 38 (48) , 14666-14672. https://doi.org/10.1021/acs.langmuir.2c02095
    3. Katherine T. Flynn Bolte, Rajesh Prabhu Balaraman, Kexin Jiao, Michael Tustison, Kiah S. Kirkwood, Chuanhong Zhou, Punit Kohli. Probing Liquid–Solid and Vapor–Liquid–Solid Interfaces of Hierarchical Surfaces Using High-Resolution Microscopy. Langmuir 2018, 34 (12) , 3720-3730. https://doi.org/10.1021/acs.langmuir.8b00298
    4. C. W. Extrand . Remodeling of Super-hydrophobic Surfaces. Langmuir 2016, 32 (34) , 8608-8612. https://doi.org/10.1021/acs.langmuir.6b02292
    5. Eren Simsek, Kazim Acatay, and Yusuf Z. Menceloglu . Dual Scale Roughness Driven Perfectly Hydrophobic Surfaces Prepared by Electrospraying a Polymer in Good Solvent–Poor Solvent Systems. Langmuir 2012, 28 (40) , 14192-14201. https://doi.org/10.1021/la302548z
    6. Adrianus I. Aria and Morteza Gharib . Reversible Tuning of the Wettability of Carbon Nanotube Arrays: The Effect of Ultraviolet/Ozone and Vacuum Pyrolysis Treatments. Langmuir 2011, 27 (14) , 9005-9011. https://doi.org/10.1021/la201841m
    7. Xiao Dan Zhao, Hai Ming Fan, Xiang Yang Liu, Haihua Pan, and Hong Yao Xu . Pattern-Dependent Tunable Adhesion of Superhydrophobic MnO2 Nanostructured Film. Langmuir 2011, 27 (7) , 3224-3228. https://doi.org/10.1021/la104709d
    8. Edward Bormashenko and Yelena Bormashenko . Non-Stick Droplet Surgery with a Superhydrophobic Scalpel. Langmuir 2011, 27 (7) , 3266-3270. https://doi.org/10.1021/la200258u
    9. C. W. Extrand and Sung In Moon. Contact Angles of Liquid Drops on Super Hydrophobic Surfaces: Understanding the Role of Flattening of Drops by Gravity. Langmuir 2010, 26 (22) , 17090-17099. https://doi.org/10.1021/la102566c
    10. Edward Bormashenko, Yelena Bormashenko and Gendelman Oleg . On the Nature of the Friction between Nonstick Droplets and Solid Substrates. Langmuir 2010, 26 (15) , 12479-12482. https://doi.org/10.1021/la1002836
    11. Sung-Gyu Park, Su Yeon Lee, Se Gyu Jang and Seung-Man Yang. Perfectly Hydrophobic Surfaces with Patterned Nanoneedles of Controllable Features. Langmuir 2010, 26 (8) , 5295-5299. https://doi.org/10.1021/la100409c
    12. Shu-Hau Hsu and Wolfgang M. Sigmund . Artificial Hairy Surfaces with a Nearly Perfect Hydrophobic Response. Langmuir 2010, 26 (3) , 1504-1506. https://doi.org/10.1021/la903813g
    13. Lichao Gao and Thomas J. McCarthy. Wetting 101°. Langmuir 2009, 25 (24) , 14105-14115. https://doi.org/10.1021/la902206c
    14. Lichao Gao and Thomas J. McCarthy. An Attempt to Correct the Faulty Intuition Perpetuated by the Wenzel and Cassie “Laws”. Langmuir 2009, 25 (13) , 7249-7255. https://doi.org/10.1021/la901416m
    15. Thierry Darmanin and Frédéric Guittard. Molecular Design of Conductive Polymers To Modulate Superoleophobic Properties. Journal of the American Chemical Society 2009, 131 (22) , 7928-7933. https://doi.org/10.1021/ja901392s
    16. Rongguo Chen, Xiaoguang Zhang, Zhaohui Su, Rui Gong, Xin Ge, Hongjie Zhang and Cheng Wang. Perfectly Hydrophobic Silicone Nanofiber Coatings: Preparation from Methyltrialkoxysilanes and Use as Water-Collecting Substrate. The Journal of Physical Chemistry C 2009, 113 (19) , 8350-8356. https://doi.org/10.1021/jp8114622
    17. Bernd Mockenhaupt, Hans-Jürgen Ensikat, Manuel Spaeth and Wilhelm Barthlott. Superhydrophobicity of Biological and Technical Surfaces under Moisture Condensation: Stability in Relation to Surface Structure. Langmuir 2008, 24 (23) , 13591-13597. https://doi.org/10.1021/la802351h
    18. Panagiotis N. Manoudis, Ioannis Karapanagiotis, Andreas Tsakalof, Ioannis Zuburtikudis and Costas Panayiotou . Superhydrophobic Composite Films Produced on Various Substrates. Langmuir 2008, 24 (19) , 11225-11232. https://doi.org/10.1021/la801817e
    19. Lichao Gao and Thomas J. McCarthy. Teflon is Hydrophilic. Comments on Definitions of Hydrophobic, Shear versus Tensile Hydrophobicity, and Wettability Characterization. Langmuir 2008, 24 (17) , 9183-9188. https://doi.org/10.1021/la8014578
    20. Yuekun Lai,, Changjian Lin,, Jianying Huang,, Huifang Zhuang,, Lan Sun, and, Tinh Nguyen. Markedly Controllable Adhesion of Superhydrophobic Spongelike Nanostructure TiO2 Films. Langmuir 2008, 24 (8) , 3867-3873. https://doi.org/10.1021/la7031863
    21. Meirong Song, Lei Jiang. Self‐Cleaning Property of Plant Leaves and Bioinspired Super Unwetting Surfaces. 2023, 371-409. https://doi.org/10.1002/9783527690688.ch16
    22. V. A. Benderskii, I. P. Kim, N. N. Dremova. On the Fabrication of Hydrophobic Coatings by Polycondensation of Fluoroalkylalkoxysilanes. High Energy Chemistry 2023, 57 (2) , 127-131. https://doi.org/10.1134/S0018143923020054
    23. V. A. Benderskii, I. P. Kim, N. N. Dremova. On the Fabrication of Hydrophobic Coatings by Polycondensation of Fluoroalkylalkoxysilanes. Химия высоких энергий 2023, 57 (2) , 120-124. https://doi.org/10.31857/S0023119323020055
    24. Xiannan Zhang, Zhenzhen Mo, Raul Arenal, Wenjiang Li, Cheng Wang. Efficient oil-water separation by a robust superhydrophobic coating prepared directly from commercial lacquer using silanized multi-walled carbon nanotubes as filler. Applied Surface Science 2023, 609 , 155208. https://doi.org/10.1016/j.apsusc.2022.155208
    25. Oral Cenk Aktas, Stefan Schröder, Salih Veziroglu, Muhammed Zubair Ghori, Ayman Haidar, Oleksandr Polonskyi, Thomas Strunskus, Karen Gleason, Franz Faupel. Superhydrophobic 3D Porous PTFE/TiO 2 Hybrid Structures. Advanced Materials Interfaces 2019, 6 (4) https://doi.org/10.1002/admi.201801967
    26. Darem Ahmad, Inge van den Boogaert, Jeremey Miller, Roy Presswell, Hussam Jouhara. Hydrophilic and hydrophobic materials and their applications. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2018, 40 (22) , 2686-2725. https://doi.org/10.1080/15567036.2018.1511642
    27. Yujin Sun, Youhua Jiang, Chang-Hwan Choi, Guangyuan Xie, Qingxia Liu, Jaroslaw W Drelich. The most stable state of a droplet on anisotropic patterns: support for a missing link. Surface Innovations 2018, 6 (3) , 133-140. https://doi.org/10.1680/jsuin.17.00064
    28. Tingyi “Leo” Liu, Chang-Jin “CJ” Kim. Contact Angle Measurement of Small Capillary Length Liquid in Super-repelled State. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-00607-9
    29. . Advances in the Theory of Superhydrophobic Surfaces and Interfaces. 2017, 59-84. https://doi.org/10.1002/9783527806720.ch3
    30. Boor Singh Lalia, Isam Janajreh, Raed Hashaikeh. A facile approach to fabricate superhydrophobic membranes with low contact angle hysteresis. Journal of Membrane Science 2017, 539 , 144-151. https://doi.org/10.1016/j.memsci.2017.05.071
    31. I. A. Korneev, V. A. Seleznev, V. Ya. Prinz. Fabrication and Study of Micro- and Nanostructured Superhydrophobic and Anti-Icing Surfaces. Nanotechnologies in Russia 2017, 12 (9-10) , 485-494. https://doi.org/10.1134/S1995078017050068
    32. A. A. Ali, A. Haidar, O. Polonskyi, F. Faupel, H. Abdul-Khaliq, M. Veith, O. C. Aktas. Extreme tuning of wetting on 1D nanostructures: from a superhydrophilic to a perfect hydrophobic surface. Nanoscale 2017, 9 (39) , 14814-14819. https://doi.org/10.1039/C7NR05336C
    33. Ishaq Ahmad, Chi-wai Kan. A Review on Development and Applications of Bio-Inspired Superhydrophobic Textiles. Materials 2016, 9 (11) , 892. https://doi.org/10.3390/ma9110892
    34. C. W. Extrand. Uncertainty in contact angle measurements from the tangent method. Journal of Adhesion Science and Technology 2016, 30 (15) , 1597-1601. https://doi.org/10.1080/01694243.2016.1142799
    35. Jian Li. Characterization for Cassie-Wenzel wetting transition based on the force response in the process of squeezing liquid drops by two parallel superhydrophobic surfaces. Review of Scientific Instruments 2016, 87 (6) https://doi.org/10.1063/1.4953333
    36. C.W. Extrand. Uncertainty in contact angle estimates from a Wilhelmy tensiometer. Journal of Adhesion Science and Technology 2015, 29 (23) , 2515-2520. https://doi.org/10.1080/01694243.2015.1072775
    37. Tomer Simovich, Alex H. Wu, Robert N. Lamb. Hierarchically rough, mechanically durable and superhydrophobic epoxy coatings through rapid evaporation spray method. Thin Solid Films 2015, 589 , 472-478. https://doi.org/10.1016/j.tsf.2015.05.065
    38. Georg R.J. Artus, Stefan Seeger. One-dimensional silicone nanofilaments. Advances in Colloid and Interface Science 2014, 209 , 144-162. https://doi.org/10.1016/j.cis.2014.03.007
    39. Stefan T. Yohe, Jonathan D. Freedman, Eric J. Falde, Yolonda L. Colson, Mark W. Grinstaff. A Mechanistic Study of Wetting Superhydrophobic Porous 3D Meshes. Advanced Functional Materials 2013, 23 (29) , 3628-3637. https://doi.org/10.1002/adfm.201203111
    40. Manika Mahajan, Suresh K. Bhargava, Anthony P. O’Mullane. Electrochemical formation of porous copper 7,7,8,8-tetracyanoquinodimethane and copper 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane honeycomb surfaces with superhydrophobic properties. Electrochimica Acta 2013, 101 , 186-195. https://doi.org/10.1016/j.electacta.2012.09.068
    41. Maciej Psarski, Grzegorz Celichowski, Jacek Marczak, Konrad Gumowski, Grzegorz B. Sobieraj. Superhydrophobic dual-sized filler epoxy composite coatings. Surface and Coatings Technology 2013, 225 , 66-74. https://doi.org/10.1016/j.surfcoat.2013.03.017
    42. Hongyun Zhang, Wen Li, Daoyi Cui, Zhiwei Hu, Liang Xu. Design of lotus-simulating surfaces: Thermodynamic analysis based on a new methodology. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2012, 413 , 314-327. https://doi.org/10.1016/j.colsurfa.2012.01.036
    43. Arun Kumar Gnanappa, Dimitrios P. Papageorgiou, Evangelos Gogolides, Angeliki Tserepi, Athanasios G. Papathanasiou, Andreas G. Boudouvis. Hierarchical, Plasma Nanotextured, Robust Superamphiphobic Polymeric Surfaces Structurally Stabilized Through a Wetting–drying Cycle. Plasma Processes and Polymers 2012, 9 (3) , 304-315. https://doi.org/10.1002/ppap.201100124
    44. Edward Bormashenko, Gene Whyman. Towards Understanding Wetting Transitions on Biomimetic Surfaces: Scaling Arguments and Physical Mechanisms. 2012, 127-147. https://doi.org/10.1007/978-3-642-23681-5_6
    45. Ben Wang, Yabin Zhang, Lei Shi, Jing Li, Zhiguang Guo. Advances in the theory of superhydrophobic surfaces. Journal of Materials Chemistry 2012, 22 (38) , 20112. https://doi.org/10.1039/c2jm32780e
    46. Y.Y. Yan, N. Gao, W. Barthlott. Mimicking natural superhydrophobic surfaces and grasping the wetting process: A review on recent progress in preparing superhydrophobic surfaces. Advances in Colloid and Interface Science 2011, 169 (2) , 80-105. https://doi.org/10.1016/j.cis.2011.08.005
    47. Vinayak V. Ganbavle, Uzma K.H. Bangi, Sanjay S. Latthe, Satish A. Mahadik, A. Venkateswara Rao. Self-cleaning silica coatings on glass by single step sol–gel route. Surface and Coatings Technology 2011, 205 (23-24) , 5338-5344. https://doi.org/10.1016/j.surfcoat.2011.05.055
    48. Edward Bormashenko. General equation describing wetting of rough surfaces. Journal of Colloid and Interface Science 2011, 360 (1) , 317-319. https://doi.org/10.1016/j.jcis.2011.04.051
    49. Jaroslaw Drelich, Emil Chibowski, Dennis Desheng Meng, Konrad Terpilowski. Hydrophilic and superhydrophilic surfaces and materials. Soft Matter 2011, 7 (21) , 9804. https://doi.org/10.1039/c1sm05849e
    50. Guan-Yu Wu, Shi-Sheng Wang, Jen-Chin Wu, Ming-Yau Hsu, Hui Chen. Preparation of Highly Adhesive and Superhydrophobic Epoxy-Based Thin Film by Sol–Gel Process. Journal of Adhesion Science and Technology 2011, 25 (10) , 1095-1106. https://doi.org/10.1163/016942410X535037
    51. Emil Chibowski. Apparent Surface Free Energy of Superhydrophobic Surfaces. Journal of Adhesion Science and Technology 2011, 25 (12) , 1323-1336. https://doi.org/10.1163/016942411X555890
    52. Edward Bormashenko. Wetting transitions on biomimetic surfaces. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2010, 368 (1929) , 4695-4711. https://doi.org/10.1098/rsta.2010.0121
    53. M.Rizwan Malik, Zi Rong Tang, Tie Lin Shi, Shi Yuan Liu. Simulation-Based Apparent Surface Free-Energy Analysis for Hydrophobic and Superhydrophobic Surfaces. Defect and Diffusion Forum 2010, 305-306 , 95-104. https://doi.org/10.4028/www.scientific.net/DDF.305-306.95
    54. Ryo Murakami, Alexander Bismarck. Particle‐Stabilized Materials: Dry Oils and (Polymerized) Non‐Aqueous Foams. Advanced Functional Materials 2010, 20 (5) , 732-737. https://doi.org/10.1002/adfm.200902007
    55. Michael A Nilsson, Robert J Daniello, Jonathan P Rothstein. A novel and inexpensive technique for creating superhydrophobic surfaces using Teflon and sandpaper. Journal of Physics D: Applied Physics 2010, 43 (4) , 045301. https://doi.org/10.1088/0022-3727/43/4/045301
    56. Jiann Shieh, Fu Ju Hou, Yan Chen Chen, Hung Min Chen, Shun Po Yang, Chao Chia Cheng, Hsuen Li Chen. Robust Airlike Superhydrophobic Surfaces. Advanced Materials 2010, 22 (5) , 597-601. https://doi.org/10.1002/adma.200901864
    57. Christian W.J. Berendsen, Marek Škereň, David Najdek, František Černý. Superhydrophobic surface structures in thermoplastic polymers by interference lithography and thermal imprinting. Applied Surface Science 2009, 255 (23) , 9305-9310. https://doi.org/10.1016/j.apsusc.2009.07.001
    58. Sen Hou, Xinxin Li, Xiaoyu Li, Xizeng Feng. Coating of hydrophobins on three-dimensional electrospun poly(lactic-co-glycolic acid) scaffolds for cell adhesion. Biofabrication 2009, 1 (3) , 035004. https://doi.org/10.1088/1758-5082/1/3/035004
    59. P.N. Manoudis, I. Karapanagiotis, A. Tsakalof, I. Zuburtikudis, B. Kolinkeová, C. Panayiotou. Surface Properties of Superhydrophobic Coatings for Stone Protection. Journal of Nano Research 2009, 8 , 23-33. https://doi.org/10.4028/www.scientific.net/JNanoR.8.23
    60. Robert J. Daniello, Nicholas E. Waterhouse, Jonathan P. Rothstein. Drag reduction in turbulent flows over superhydrophobic surfaces. Physics of Fluids 2009, 21 (8) https://doi.org/10.1063/1.3207885
    61. Christian Dorrer, Jürgen Rühe. Some thoughts on superhydrophobic wetting. Soft Matter 2009, 5 (1) , 51-61. https://doi.org/10.1039/B811945G
    62. Yugang Sun, Rui Qiao. Facile tuning of superhydrophobic states with Ag nanoplates. Nano Research 2008, 1 (4) , 292-302. https://doi.org/10.1007/s12274-008-8030-7
    63. Eng-Poh Ng, Svetlana Mintova. Nanoporous materials with enhanced hydrophilicity and high water sorption capacity. Microporous and Mesoporous Materials 2008, 114 (1-3) , 1-26. https://doi.org/10.1016/j.micromeso.2007.12.022
    64. David Quéré. Wetting and Roughness. Annual Review of Materials Research 2008, 38 (1) , 71-99. https://doi.org/10.1146/annurev.matsci.38.060407.132434
    65. Lichao Gao, Alexander Y. Fadeev, Thomas J. McCarthy. Superhydrophobicity and Contact-Line Issues. MRS Bulletin 2008, 33 (8) , 747-751. https://doi.org/10.1557/mrs2008.160
    66. Sampath Srinivasan, Vakayil K. Praveen, Robert Philip, Ayyappanpillai Ajayaghosh. Bioinspired Superhydrophobic Coatings of Carbon Nanotubes and Linear π Systems Based on the “Bottom‐up” Self‐Assembly Approach. Angewandte Chemie 2008, 120 (31) , 5834-5838. https://doi.org/10.1002/ange.200802097
    67. Sampath Srinivasan, Vakayil K. Praveen, Robert Philip, Ayyappanpillai Ajayaghosh. Bioinspired Superhydrophobic Coatings of Carbon Nanotubes and Linear π Systems Based on the “Bottom‐up” Self‐Assembly Approach. Angewandte Chemie International Edition 2008, 47 (31) , 5750-5754. https://doi.org/10.1002/anie.200802097
    68. Jan Zimmermann, Michael Rabe, Georg R. J. Artus, Stefan Seeger. Patterned superfunctional surfaces based on a silicone nanofilament coating. Soft Matter 2008, 4 (3) , 450. https://doi.org/10.1039/b717734h
    69. Zongwei Cao, Debao Xiao, Longtian Kang, Zhongliang Wang, Shuxiao Zhang, Ying Ma, Hongbing Fu, Jiannian Yao. Superhydrophobic pure silver surface with flower-like structures by a facile galvanic exchange reaction with [Ag(NH3)2]OH. Chemical Communications 2008, 2 (23) , 2692. https://doi.org/10.1039/b803959c
    70. Christophe Ybert, Catherine Barentin, Cécile Cottin-Bizonne, Pierre Joseph, Lydéric Bocquet. Achieving large slip with superhydrophobic surfaces: Scaling laws for generic geometries. Physics of Fluids 2007, 19 (12) https://doi.org/10.1063/1.2815730

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect